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Abstract

Previous state-of-the-art models for lexical
simplification consist of complex pipelines
with several components, each of which re-
quires deep technical knowledge and fine-
tuned interaction to achieve its full potential.
As an alternative, we describe a frustratingly
simple pipeline based on prompted GPT-3 re-
sponses, beating competing approaches by a
wide margin in settings with few training in-
stances. Our best-performing submission to
the English language track of the TSAR-2022
shared task consists of an “ensemble” of six
different prompt templates with varying con-
text levels. As a late-breaking result, we fur-
ther detail a language transfer technique that
allows simplification in languages other than
English. Applied to the Spanish and Por-
tuguese subset, we achieve state-of-the-art re-
sults with only minor modification to the orig-
inal prompts. Aside from detailing the imple-
mentation and setup, we spend the remainder
of this work discussing the particularities of
prompting and implications for future work.
Code for the experiments is available online.1

1 Introduction

With recent advancements in Machine Learning
(ML) research coming largely from increasing
compute budgets, Richard Sutton coined the idea
of a “bitter lesson”, wherein more computational
power will ultimately supersede a hand-crafted
solution (Sutton, 2019). More recently, increas-
ing compute power on a general purpose archi-
tecture has also shown to be wildly successful in
the Natural Language Processing (NLP) commu-
nity (Vaswani et al., 2017; Wei et al., 2022). In
particular, emergent capabilities in very large lan-
guage models (vLLMs) have made it possible to
approach a variety of tasks wherein only few (if
any) samples are labeled, and no further fine-tuning

1https://github.com/dennlinger/
TSAR-2022-Shared-Task

on task-specific data is required at all.
In stark contrast to the complex pipelines in modern
lexical simplification systems (Ferrés et al., 2017;
Qiang et al., 2020; Štajner et al., 2022), we present
a simplistic approach utilizing few-shot prompts
based on a vLLM with basic instructions on sim-
plification, which returns frustratingly good results
considering the overall complexity of the approach,
which utilizes a grand total of four hand-labeled in-
stances. We present our results on the TSAR-2022
shared task (Saggion et al., 2022), which evaluates
lexical simplification systems in three available lan-
guages (English, Spanish and Portuguese), with
ten labeled instances and around 350 unlabeled
test samples provided per language. For the En-
glish subset, official results rank our model as the
best-performing submission, indicating that this ap-
proach may be another instance of the bitter lesson.
While the initial findings are indeed promising, we
want to carefully evaluate erroneous instances on
the test set to analyze potential pitfalls, and further
detail some of our experiences in hand-crafting
prompts. We also acknowledge the technical chal-
lenges in reproducing (and deploying) systems
based on vLLMs, especially given that suitable
models exceed traditional computing budgets.

2 Prompt-based Lexical Simplification

With the public release of the GPT-3 language
model (Brown et al., 2020), OpenAI has started the
run on a series of now-available vLLMs for general-
purpose text generation (Thoppilan et al., 2022;
BigScience, 2022; Zhang et al., 2022). Across
these models, a general trend in scaling beyond a
particular parameter size can be observed, while
keeping the underlying architectural design close to
existing smaller models. Through exhibiting zero-
shot transfer capabilities, such models have also
become more attractive for lower-resourced tasks;
oftentimes, models are able to answer questions
formulated in natural language with somewhat sen-
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sible results. Particular template patterns (so-called
prompts) are frequently used to guide models to-
wards predicting a particularly desirable output or
answer format, without requiring a dedicated train-
ing on labeled examples.
Utilizing this paradigm shift, we experimented
with different prompts issued to OpenAI’s largest
available model, text-davinici-002, which to-
tals 176B parameters. Our first approach uses a
singular prompt template in a zero-shot setting to
obtain predictions for the shared task; we further
improve upon these results by combining predic-
tions from different prompt templates later on.

2.1 Run 1: Zero-shot Prediction
Upon inspecting the provided trial data, we noted
that the simplification operations required a vastly
different contextualization within the provided sam-
ple sentence. Whereas some instances can be
solved with pure synonym look-ups (e.g., “com-
pulsory” and “mandatory”), others require a more
nuanced look at the context sentence (e.g., replac-
ing “disguised” with “dressed”). To avoid bias-
ing system predictions by providing samples as
a prompt template, we provide a baseline that is
entirely based on a single zero-shot query; it pro-
vides the context sentence and identifies the com-
plex word, asking the model for ten simplified syn-
onyms of the complex word in the given context.
Given that no additional knowledge is provided
to the model, the zero-shot contextual query also
provides a reasonable lower-bound for the task set-
ting. A secondary advantage of minimal provided
context in zero-shot settings is the reduced com-
putational cost, which will be discussed in more
detail in Section 3.4.

2.2 Filtering Predictions
Model suggestions are returned as free-form text
predictions, generally in the form of comma-
separated lists or enumerations. This requires the
additional step of parsing the output prediction into
the more structured ranked predictions required for
the shared task, which varies between the mod-
els used. In our experience, no clear pattern can
be expected from the model and seems to be non-
deterministic even with set template structures. We
additionally employ a list of simple filters to en-
sure the quality of predictions, as detailed in Ap-
pendix C. The resulting model suggestions are con-
sidered in ranked order, and no prediction confi-
dence scores or similar information was used to

re-rank single-prompt predictions.

2.3 Run 2: Ensemble Predictions
Upon inspecting the results from the first run,
we noticed that in some instances, predictions
were almost fully discarded due to filtering. Si-
multaneously, we had already previously encoun-
tered strong variability in system generations when
changing the prompt template or altering the con-
text setting. To this extent, an ensemble of pre-
dictions from multiple different prompt templates
was utilized to broaden the spectrum of possible
generations, as well as ensuring that a minimum
number of suggestions survives the filtering step.

2.3.1 Prompt Variations
The exact prompts are detailed in Table 3. Utilized
variations can be grouped into with context (the
context sentence is provided), or without context
(synonyms are generated from the complex word
alone). Simultaneously, different prompts also con-
tain between zero and two examples taken from the
trial data, including their expected outputs. This
can be interpreted as a few-shot setting in which
the model is demonstrated on what correct answers
may look like for the particular task. We further
vary the generation temperature, where a higher
value increases the likelihood of a more creative
(but not always correct) prediction, enabling a more
diverse candidate set.

2.3.2 Combining Predictions
For each of the six prompts p, we ask the model
to suggest ten alternative simplified expressions
Sp and filter them with the exact same rules as the
single prompt system in Run 1. In order to combine
and re-rank suggestions s, we assign a combination
score V to each distinct prediction s ∈ ⋃

p Sp:

V (s) =
∑

p

max(5.5− 0.5 · rankSp(s), 0), (1)

where rankSp(s) is the ranked position of sugges-
tion s in the resulting ranking from prompt p. If
s /∈ Sp, we set rankSp(s) = ∞. The scaling pa-
rameters are chosen arbitrarily and can be adjusted
to account for the expected number of suggestions
per prompt. We estimate that the biggest perfor-
mance improvement is coming simply from pro-
viding enough predictions post filtering. As a sec-
ondary gain, we see more consistent behavior in
the top-most prediction slots, boosting especially
the @1 performance of the ensemble.

252



Acc@k@Top1 MAP@k Potential@k
Run ACC@1 k = 1 k = 2 k = 3 k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

Ensemble (Ours) 0.8096 0.4289 0.6112 0.6863 0.5834 0.4491 0.2812 0.9624 0.9812 0.9946
Single (Ours) 0.7721 0.4262 0.5335 0.5710 0.5090 0.3653 0.2092 0.8900 0.9302 0.9436
MANTIS-1 0.6568 0.319 0.4504 0.5388 0.473 0.3599 0.2193 0.8766 0.9463 0.9785
UoM&MMU-1 0.6353 0.2895 0.4530 0.5308 0.4244 0.3173 0.1951 0.8739 0.9115 0.9490
LSBert 0.5978 0.3029 0.4450 0.5308 0.4079 0.2957 0.1755 0.8230 0.8766 0.9463
TUNER 0.3404 0.1420 0.1689 0.1823 0.1706 0.1087 0.0546 0.4343 0.4450 0.4450

Table 1: Results on the English language test set of the TSAR-2022 shared task, ranked by ACC@1 scores.
Listed are our own results (Ensemble and Single), the two best-performing competing systems (MANTIS and
UoM&MMU), as well as provided baselines (LSBert (Qiang et al., 2020) and TUNER (Ferrés et al., 2017)).

3 Results and Limitations

3.1 Results for English

For the official runs, we initially only submitted
predictions for the English subset; an excerpt of the
results can be seen in Table 1. While the zero-shot
single prompt run has consistently better results on
most metrics, it does not outperform all systems
for large candidate sets; e.g., Potential@10 is lower
than that of competing approaches, including the
LSBert baseline. We attribute this to the previously
mentioned issue of filtering predictions, and can
see a consequent improvement especially for larger
k by using the proposed ensemble method. Here,
the Potential@10 scores indicate that at least one
viable prediction is present in all but three samples.

3.2 Results for Spanish and Portuguese

Given the surprisingly good results on the English
subset, we decided to extend our experiments to
the Spanish and Portuguese tracks as well. Trans-
ferring the prompts to Spanish or Portuguese is sur-
prisingly simple. We alter the prompt to: “Given
the above context, list ten alternative Spanish
words for ‘complex_word’ that are easier to un-
derstand.” (bold highlight indicates change).
Without this adaption, returned suggestions gen-
erally tend to be in English, which could be an
attractive opportunity to mine cross-lingual sim-
plifications in future work. By adding the output
language explicitly, we ensure that the suggestions
match the expected results. For Portuguese, the
prompt can be adapted accordingly.
We find that our system also outperforms all com-
peting submitted approaches in the shared task;
result comparisons can be found in Table 4 and 5
in the Appendix, respectively. Notably, predictions
for Portuguese perform slightly better, which goes
against intuition, given that Spanish is usually a

highly represented language in multilingual cor-
pora. We suspect that a more literal wording of
synonyms in Portuguese, compared to multi-word
expressions in Spanish, could be the cause.

3.3 Error Analysis

As is common for sequence-to-sequence tasks,
crafting an approach centered around a LM requires
consideration of the particular challenges arising.
We detail some of the errors we have encountered
in our predictions that are unlikely to appear in
more stringently designed pipelines. Instances for
particular failure cases can be found in Table 2.

Unstable Prompts One of the primary chal-
lenges, particularly for zero-shot prompt settings, is
the unreasonable variance observed in results based
on even just slightly altered prompt templates. For
example, when removing the explicit mention of
Context:, Question: and Answer: in the prompt
template, the model is frequently predicting fewer
than the ten requested answers. Practical limita-
tions in our computational budget also mean that
we have no guarantee that these prompts are yield-
ing the best possible results; given the variability,
multiple runs should be compared for a thorough
pattern of a “best” prompt.

Lack of Context Instances with longer (or sub-
tly enforced) context cues show issues where these
hints are not properly recognized. In Table 2, we
can see the model changing the term “collision”
to a particular mode of transportation, such as
“car crash”, while an explicit context clue is given
through the word “flight” in the original sentence.

Enforcing Language While the transfer to Span-
ish and Portuguese is largely successful, the
model’s capabilities seem to be still limited in
maintaining the language throughout all samples.
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Error Type Context (complex word in bold) Model Predictions

Lack of Context #7-8 Despite the fog, other flights are reported
to have landed safely leading up to the collision.

car crash, train wreck, ...

Hallucinations The larva grows to about 120-130 mm,
and pupates in an underground chamber.

Transforms into a pupa, ...

Language [...] propiciado la decadencia de la Revolución francesa. decline, deterioration, ...

Table 2: Instances of observed failure classes in our system’s predictions.

For instances with particularly rare complex terms,
the predictions are sometimes still in English, de-
spite the specific prompt request to return Span-
ish/Portuguese results.

Hallucinations The necessity for post-filtering
of suggestions stems largely from the spontaneous
occurrence of hallucinations in responses. While
hallucinations in vLLMs are less about invalid vo-
cabulary terms, we observe instances where unnec-
essary multi-word suggestions were chosen over
a simple synonymous single-word expression, or
random inflections (such as the infinitive form with
an additional “to”) were generated.
Similar to the issues with language enforcing, this
occurs more frequently with particularly complex
words; in this sense, the system conversely fails
at instances that are most in need of simplifica-
tion. However, we note that some of the generated
multi-word expressions are actually more helpful
for understanding, even though the generations are
not precisely matching expected outputs.

3.4 Computational Limitations

Running a vLLM in practice, even for inference-
only settings, is non-trivial and requires compute
resources that are far beyond many public institu-
tion’s hardware budget. For the largest models with
publicly available checkpoints2, a total of around
325GB GPU memory is required, assuming ef-
ficient storage in bfloat16 or similar precision
levels. The common alternative is to obtain pre-
dictions through a (generally paid) API, as was
the case in this work. Especially for the ensemble
model, which issues six individual requests to the
API per sample, this can further bloat the net cost
of a single prediction. To give context of the total
cost, we incurred a total charge of slightly over $7
for computing predictions across the entire test set
of 373 English samples, which comes out to about

2At the time of writing, this would be the 176B Bloom
model (BigScience, 2022), which has a similar parameter
count to OpenAI’s davinci-002 model.

1000 tokens per sample, or around $0.02 at the cur-
rent OpenAI pricing scheme.3 For the Spanish sub-
set and language-dependent prompt development,
the total cost came to about $10, primarily due
to longer sample contexts. Costs for Portuguese
processing were around $6.50. While the singu-
lar prompt approach is cheaper at around 1/6 of
the total cost, even then a continuously deployed
model has to be supplied with a large enough bud-
get. Aside from monetary concerns, environmental
impacts are also to be considered for larger-scale
deployments of this kind (Lacoste et al., 2019).

4 Conclusion and Future Work

Utilizing prompted responses from vLLMs seems
to be a promising direction for lexical simplifica-
tion; particularly in the constrained setting with
pre-identified complex words the model performs
exceptionally well, even when presented with a
severely restricted budget of labeled training data.
While the approach also offers promising directions
for multi- and cross-lingual approaches, obtaining
state-of-the-art results in other languages, we are
presented with a prohibitive amount of computa-
tion per sample instance. It would therefore be an
interesting addition to deal with resource-constraint
systems, putting the prediction power into a slightly
different perspective. Finally, we are reminded of
the unstable nature of neural LMs; given similar
inputs, quality can vary greatly between samples,
including a complete breakdown in performance.
For future work, we are considering approaches
to generate static resources from vLLMs (Schick
and Schütze, 2021), which may require only a one-
time commitment to spending on datasets, which
can then used as training data for cheaper systems.
Exploration of prompt tuning approaches for auto-
mated search of suitable prompt templates would
also greatly accelerate the development process of
domain-specific applications (Lester et al., 2021).

3https://openai.com/api/pricing/, last accessed:
2022-10-01
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A Prompt Templates

Table 3 provides the exact prompt templates used
in the submission. Notably, the zero-shot with con-
text prompt is included twice, but with different
generation temperatures; with this we increase the
likelihood of strong candidates being retained. For
few-shot prompts, we have taken samples from the
previously published trial set for the respective lan-
guage. In instances where less than 10 distinctly
different suggestions were provided by annotators,
we manually extended the list of examples to match
exactly ten results based on our own judgment. For
instances with more provided suggestions, we limit
ourselves to the ten most frequently occurring ones.
The reason for this is that GPT-3 otherwise tended
to return an inconsistent number of suggestions in
our preliminary testing. The exact prompts for the
Spanish and Portuguese runs can be found in our
repository.

B Hyperparameters

We use the OpenAI Python package4 version
0.23.0 for our experiments. For generation, the
function openai.Completion.create() is used,
where most hyperparameters remain fixed across
all prompts. We explicitly list those hyperparame-
ters below that differ from their respective default
values.

1. model="text-davinci-002", which is the
latest and biggest available model for text
completion.

2. max_tokens=256, to ensure sufficient room
for generated outputs. In practice, most com-
pletions are vastly below the limit.

3. frequency_penalty=0.5, as well as
presence_penalty=0.3, which jointly
penalize present tokens and token repetitions.
The values are well below the maximum
(values can range from -2 to 2), since
individual subword tokens might indeed be
present several times across multiple (valid)
predictions. A more detailed computation can
be found in the documentation of OpenAI.5

Outside of the repetition penalties, the most influen-
tial parameter choice for generation is the sampling

4https://github.com/openai/openai-python
5https://beta.openai.com/docs/api-reference/

parameter-details

temperature. We generally take a more measured
approach than the default (temperature=1.0), but
vary temperature across our ensemble prompts to
ensure a more diverse result set overall. We list
the used temperatures in Table 3. Zero-shot with
context is used twice in the ensemble, once with
a more conservative temperature, and once with a
more “creative” (higher) temperature. For the sin-
gular prompt run, we use the conservative zero-shot
with context variant.

C Post-Filtering Operations

Given the uncertain nature of predictions by a lan-
guage model, we employ a series of post-filtering
steps to ensure high quality outputs. This includes
stripping newlines/spaces/punctuation (\n :;.?!),
lower-casing, removing infinitive forms (in some
instances, we observed predictions in the form of
“to deploy” instead of simply “deploy”), as well as
removing identity predictions (e.g., the prediction
being the same as the original complex word) and
deduplicating suggestions. Additionally, we no-
ticed that for some instances, generated synonyms
resemble more of a “description” rather than truly
synonymous expressions (example: “people that
are crazy” as a suggestion for “maniacs”). Given
the nature of provided data, we removed extreme
multi-word expressions (for English, any sugges-
tion with more than two words, for Spanish and
Portuguese more than three words in a single ex-
pression).
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Prompt Type Template
Zero-shot /w context Context: {context_sentence}\n
temperature: Question: Given the above context, list ten alternatives for
0.3 (conservative), “{complex_word}” that are easier to understand.\n
0.8 (creative) Answer:

Single-shot /w context Context: A local witness said a separate group of attackers
temperature: 0.5 disguisedin burqas — the head-to-toe robes worn by conservative

Afghan women — then tried to storm the compound.\n
Question: Given the above context, list ten alternative words
for “disguised” that are easier to understand.\n

Answer:\n1. concealed\n2. dressed\n3. hidden\n4. camouflaged\n
5. changed\n6. covered\n7. masked\n8. unrecognizable\n
9. converted\n10. impersonated\n\n

Context: {context_sentence}\n
Question: Given the above context, list ten alternatives for
“{complex_word}” that are easier to understand.\n

Answer:

Two-shot /w context Context: That prompted the military to deploy its largest
temperature: 0.5 warship, the BRP Gregorio del Pilar, which was recently

acquired from the United States.\n
Question: Given the above context, list ten alternative words
for “deploy” that are easier to understand.\n

Answer:\n1. send\n2. post\n3. use\n4. position\n5. send out\n
6. employ\n7. extend\n8. launch\n9. let loose\n10. organize\n\n

Context: The daily death toll in Syria has declined as the
number of observers has risen, but few experts expect the
U.N. plan to succeed in its entirety.\n

Question: Given the above context, list ten alternative words
for “observers” that are easier to understand.\n

Answer:\n1. watchers\n2. spectators\n3. audience\n4. viewers\n
5. witnesses\n6. patrons\n7. followers\n8. detectives\n
9. reporters\n10. onlookers\n\n

Context: {context_sentence}\n
Question: Given the above context, list ten alternatives for
“{complex_word}” that are easier to understand.\n

Answer:

Zero-shot w/o context Give me ten simplified synonyms for the following word:
temperature: 0.7 {complex_word}

Single-shot w/o context Question: Find ten easier words for “compulsory”.\n
temperature: 0.6 Answer:\n1. mandatory\n2. required\n3. essential\n4. forced\n

5. important\n6. necessary\n7. obligatory\n8. unavoidable\n
9. binding\n10. prescribed\n\n

Question: Find ten easier words for “{complex_word}”.\n
Answer:

Table 3: The English prompt templates used for querying the OpenAI model, including associated generation
temperatures. Only written out “\n” symbols indicate newlines, visible line breaks are inserted for better legibility.
Only top-most prompt template with conservative temperature was used in the single prompt (Run 1), as well as in
the ensemble run (Run 2). All other prompts were only included in the ensemble submission.
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Acc@k@Top1 MAP@k Potential@k
Run ACC@1 k = 1 k = 2 k = 3 k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

Ensemble (Ours) 0.6521 0.3505 0.5108 0.5788 0.4281 0.3239 0.1967 0.8206 0.8885 0.9402
Single (Ours) 0.5706 0.3070 0.3967 0.4510 0.3526 0.2449 0.1376 0.6902 0.7146 0.7445
PresiUniv-1 0.3695 0.2038 0.2771 0.3288 0.2145 0.1499 0.0832 0.5842 0.6467 0.7255
UoM&MMU-3 0.3668 0.1603 0.2282 0.269 0.2128 0.1506 0.0899 0.5326 0.6005 0.6929
LSBert 0.2880 0.0951 0.1440 0.1820 0.1868 0.1346 0.0795 0.4945 0.6114 0.7472
TUNER 0.1195 0.0625 0.0788 0.0842 0.0575 0.0356 0.0184 0.144 0.1467 0.1494

Table 4: Results on the Spanish language test set of the TSAR-2022 shared task, ranked by ACC@1 scores.
Listed are our own results (Ensemble and Single), the two best-performing competing systems (PresiUniv and
UoM&MMU), as well as provided baselines (LSBert (Qiang et al., 2020) and TUNER (Ferrés et al., 2017)).

Acc@k@Top1 MAP@k Potential@k
Run ACC@1 k = 1 k = 2 k = 3 k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

Ensemble (Ours) 0.7700 0.4358 0.5347 0.6229 0.5014 0.3620 0.2167 0.9171 0.9491 0.9786
Single (Ours) 0.6363 0.3716 0.4625 0.5160 0.4105 0.2889 0.1615 0.7860 0.8181 0.8422
GMU-WLV-1 0.4812 0.2540 0.3716 0.3957 0.2816 0.1966 0.1153 0.6871 0.7566 0.8395
Cental-1 0.3689 0.1737 0.2433 0.2673 0.1983 0.1344 0.0766 0.524 0.5641 0.6096
LSBert 0.3262 0.1577 0.2326 0.286 0.1904 0.1313 0.0775 0.4946 0.5802 0.6737
TUNER 0.2219 0.1336 0.1604 0.1604 0.1005 0.0623 0.0311 0.2673 0.2673 0.2673

Table 5: Results on the Portuguese language test set of the TSAR-2022 shared task, ranked by ACC@1 scores.
Listed are our own results (Ensemble and Single), the two best-performing competing systems (GMU-WLV and
Cental), as well as provided baselines (LSBert (Qiang et al., 2020) and TUNER (Ferrés et al., 2017)).
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