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Abstract

Academic writing should be concise as con-
cise sentences better keep the readers’ attention
and convey meaning clearly. Writing concisely
is challenging, for writers often struggle to re-
vise their drafts. We introduce and formulate
revising for concision as a natural language pro-
cessing task at the sentence level. Revising for
concision requires algorithms to use only neces-
sary words to rewrite a sentence while preserv-
ing its meaning. The revised sentence should
be evaluated according to its word choice, sen-
tence structure, and organization. The revised
sentence also needs to fulfil semantic retention
and syntactic soundness. To aide these efforts,
we curate and make available a benchmark par-
allel dataset that can depict revising for con-
cision. The dataset contains 536 pairs of sen-
tences before and after revising, and all pairs
are collected from college writing centres. We
also present and evaluate the approaches to this
problem, which may assist researchers in this
area.

1 Introduction

Concision and clarity1 are important in academic
writing as wordy sentences will obscure good ideas
(Figure 1). Concise writing encourages writers
to choose words deliberately and precisely, con-
struct sentences carefully to eliminate deadword,
and use grammar properly (Stanford University),
which often requires experience and time. A first
draft often contains far more words than neces-
sary, and achieving concise writing requires revi-
sions (MON, 2020). As far as we know, currently
this revision process can only be done manually, or
semi-manually with the help of some rule-based
wordiness detectors (Adam and Long, 2013). We
therefore introduce and formulate revising for con-
cision as a natural language processing (NLP) task

1We treat concision and conciseness as equivalent, and
clarity as part of concision

Wordy

Concise

Wordy

Concise

As you carefully read what you have written to 
improve your wording and catch small errors of 
spelling, punctuation, and so on, the thing to do 
before you do anything else is to try to see 
where a series of words expressing action could 
replace the ideas found in nouns rather than 
verbs.

For example, in the field of image recognition, 
experimental results on some standard test sets 
indicate that the recognition capabilities of deep 
learning models can already reach the level of 
human intelligence.

As you edit, first find nominalizations that you 
can replace with verb phrases.

For example, in the field of image recognition, 
test results show that deep learning models can 
already reach human intelligence.

Figure 1: Wordy sentences are more boring to read than
concise sentences. But how do we turn lengthy sen-
tences into concise ones? We show two examples. The
above sentence pair is taken from the Purdue Writing
Lab, which suggests how college students should suc-
cinctly revise their writing (PU). In the other example,
the wordy sentence comes from a scientific paper (Chen
et al., 2020), and its concise counterpart is predicted
from the concise revisioner we developed (Section 5).
In each pair, text with the same colour delivers the same
information.

and address it. In this study, we make the following
contributions:

1. We formulate the revising for concision NLP
task at the sentence level, which reflects the
revising task in academic writing. We also
survey the differences between this task and
sentence compression, paraphrasing, etc.

2. We release a corpus of 536 sentence pairs,
curated from 72 writing centres and addition-
ally coded with the various linguistic rules for
concise sentence revision.

3. We propose an gloss-based Seq2Seq approach

57



to this problem, and conduct automatic and
human evaluations. We observed promising
preliminary results and we believe that our
findings will be useful for researchers working
in this area.

2 Problem Statement

2.1 Revision as an English Writing Task
Concise writing itself is a lesson that is often em-
phasized in colleges, and revision is crucial in writ-
ing. The following definitions are helpful when we
set out to formulate the task.
Definition 2.1 (Concise). Marked by brevity of
expression or statement: free from all elaboration
and superfluous detail (Merriam-Webster).
Definition 2.2 (Concise writing, English). Writing
that is clear and does not include unnecessary or
vague/unclear words or language (UOA).

Revising for concision at paragraph level, or
even article level, may be the best practice. How-
ever, sentence-level revising usually suffices. We
focus on revising for concision at the sentence level
now. Indeed, in many college academic writing tu-
torials, revisions for concision are for individual
sentences, and this process is defined as follows.
Definition 2.3 (Revise for concision at the sentence
level, English2). Study a sentence in draft, use
specific strategies3 to edit the sentence concisely
without losing meaning.

If someone, such as a college student, wants
to concisely modify a sentence, specific strategies
(e.g., delete weak modifiers, replace phrasal verbs
with single verbs, or rewrite in active voice, etc.)
tell us how to locate wordiness and how to edit
it (PU; WU; UALR; UNZ; MON, 2020). The rule
is to repeatedly detect wordiness and revise it until
no wordiness is detected or it cannot be removed
without adding new wordiness. The final product
serves as a concise version of the original sentence,
if it does not lose its meaning.

2.2 Task Definition in NLP
Now that we know how humans can revise a sen-
tence, what about programs? Each strategy is clear
to a trained college student, but not clear enough
to program in code. On the one hand, existing ver-
bosity detectors may suggest which part of a sen-
tence is too "dense" (Adam and Long, 2013), but

2Adapted from notes of PU Writing Lab and Rambo (2019)
3Presented in Appendix (Table 4) as a periphery of this

study.

fail to expose fine-grained wordiness details. On
the other hand, how programs can edit sentences
without losing their meaning remains challenging.
In short, no existing program can generate well-
modified sentences in terms of concision.

Eager for a program that revises sentences nicely
and concisely, we set out to formulate this modifica-
tion process as a sequence-to-sequence (Seq2Seq)
NLP task. In this task, the input is any English sen-
tence and the output should be its concise version.
We define it as follows.

Definition 2.4 (Revise for concision at the sentence
level, NLP). Produce a sentence where minimum
wordiness can be identified. (And,) the produced
sentence delivers the same information as input
does. (And,) the produced sentence is syntactically
correct.

As many other NLP tasks, e.g., machine transla-
tion, named-entity recognition, etc., Definition 2.4
describes the product (text) of a process, not the
process itself, i.e., how the text is produced. This
perspective is different from that of Definition 2.3.

Among the three components in Definition 2.4,
both the first and the third are clear and self-
contained. They are related to syntax; hence, at
least human experts would think it straightforward
to determine the soundness of a sentence on both.
For example, the syntax correctness of an English
sentence will not be judged differently by different
experts, unless the syntax itself changes. Unfor-
tunately, the second component is neither clear
nor self-contained. This component asks for in-
formation retention, which is a rule inherited from
Definition 2.3. Determining the semantic similarity
between texts has long been challenging, even for
human experts (Rus et al., 2014).

We then clarify the definition by assuming that
combining the second and third components in Def-
inition 2.4 meet the definition of the paraphrase
generation task (Rus et al., 2014). Henceforth, Def-
inition 2.4 can be simplified to Definition 2.5.

Definition 2.5 (Revise for concision at the sen-
tence level, NLP, simplified). Produce a para-
phrase where minimum wordiness can be iden-
tified.

The revising4 task is well-defined, as long as
"paraphrase generation" is well-defined. It is a
paraphrase generation task with a syntactic con-
straint.

4stands for (machine) revising for concision if not other-
wise specified, so does revision
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2.3 Task Performance Indicator
How does one approximately measure revision per-
formance? In principle, Definition 2.4 should be
used as a checklist. A good sample requires cor-
rect grammar (γ), complete information (ρ) and
reduced wordiness (1 − ω), assuming each com-
ponent as a float number between 0 and 1. The
overall assessment (χ) of the three components is
as follows,

χ = α2 · (γ − 1) + α · (ρ− 1) + (1− ω), (1)

where α ∈ R>1 is a large enough number, as we
believe that γ and ρ overweigh 1−ω. Intuitively, if
a revised sentence does not paraphrase the original
one, assessing the reduction of wordiness makes
little sense. Concision χ would always be negative
if γ < 1 or ρ < 1.

Corresponding to the three components is a mix
of three tasks, including grammatical error correc-
tion for g, textual semantic similarity for r, and
wordiness detection for w. Unfortunately, both a
reference-free metric good enough to characterize
the paraphrase and a robust wordiness detector are
rare. Therefore, such assessment of concision is
now only feasible through human evaluation.

To enable automatic evaluation for faster feed-
back, we currently follow Papineni’s viewpoint (Pa-
pineni et al., 2002). The closer a machine revision
is to a professional human revision, the better it
is. To judge the quality of a machine revision, one
measures its closeness to one or more reference
human revisions according to a numerical metric.
Thus, our revising evaluation system requires two
main components:

1. A numerical "revision closeness" metric.

2. A corpus of good quality human reference
revisions.

Different from days when Papineni needed to
propose a closeness metric, we can adopt various
metrics from machine translation and summariza-
tion community (Lin, 2004; Banerjee and Lavie,
2005). Since it is certain which criterion corre-
lates best, we take multiple relevant and reasonable
metrics into account to estimate quality of revi-
sion. These metrics include those measuring higher
order n-grams precision (BLEU, Papineni et al.,
2002), explicit Word-matching, stem-matching,
or synonym-matching (METEOR, Banerjee and
Lavie, 2005), surface bigram units overlapping

(ROUGE-2-F1, Lin, 2004), cosine similarity be-
tween matched contextual words embeddings
(BERTScore-F1, Zhang et al., 2020b), edit distance
with single-word insertion, deletion, or replace-
ment (word error rate, Su et al., 1992), edit dis-
tance with block insertion, deletion, or replacement
(translation edit rate, Snover et al., 2006), and ex-
plicit goodness of words editing against reference
and source (SARI, Xu et al., 2016). In short, BLEU,
METEOR, ROUGE-2-F1, SARI, word error rate
and translation edit rate estimate sentence well-
formedness lexically; METEOR and BERTScore-
F1 consider semantic equivalence. Comparing
grammatical relations found in prediction with
those found in references can also measure seman-
tic similarity (Clarke and Lapata, 2006b; Riezler
et al., 2003; Toutanova et al., 2016). Grammatical
relations are extracted from dependency parsing,
and F1 scores can then be used to measure overlap.

In contrast, the lack of good parallel corpus im-
pedes (machine) revising for concision. To address
this limitation, we curate and make available such
a corpus as benchmark. Each sample in the cor-
pus contains a wordy sentence, and at least one
sentence revised for concision. Samples are from
English writing centres of 57 universities, ten col-
leges, four community colleges, and a postgraduate
school.

3 Related Work

Manual revision operations include delete, replace,
and rewrite. Intuitively, a revising program should
do similar jobs, too. In fact, these actions are imple-
mented individually in various NLP tasks. For ex-
ample, sentence compression requires programs to
delete unnecessary words, and paraphrasing itself
is a matter of replacement. Machine revision for
concision could also share traits with them. Prac-
tically, when a neural model learns in a Seq2Seq
manner, the difference among these tasks is the
parallel dataset. We are also interested in whether
programs developed for these tasks can work in
machine revision.

3.1 Deleting as in Sentence Compression

When revising, deleting redundant words is com-
mon. For example, we can revise "research is
increasing in the field of nutrition and food sci-
ence" to "research is increasing in nutrition and
food science" (URI, 2019), simply by deleting "the
field of ". Deleting is canonical in sentence com-
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pression, a task aiming to reduce sentence length
from source sentences while retaining basic mean-
ing (Jing, 2000; Knight and Marcu, 2000; McDon-
ald, 2006). For example, the compression task
has been formulated as integer linear programming
optimization using syntactic trees (Clarke and La-
pata, 2006a), or as a sequence labelling optimiza-
tion problem using the recurrent neural networks
(RNN) (Filippova et al., 2015; Klerke et al., 2016;
Kamigaito et al., 2018). They explicitly or im-
plicitly use dependency grammar. Pre-trained lan-
guage models such as ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2019) can encode fea-
tures apart from dependency parsing (Kamigaito
and Okumura, 2020), bringing prediction and ref-
erence sentences closer.

All methods rely on parallel datasets labelling
parts to be deleted. However, the deleting part
in sentence compression differs from that in revi-
sion. Filippova and Altun (2013) created Google
dataset from titles and first sentence of news arti-
cles. The information retained in the first sentence
depends on the title. While this creation is useful
for reducing excessive information, the deleted part
is probably not wordiness.

Deleting does not solve everything in revision.
We can revise "in this report I will conduct a study
of ants and the setup of their colonies" to "in this
report I will study ants and their colonies", tak-
ing advantage of noun-and-verb homograph. How-
ever, a more concise version "this report stud-
ies ants" (Commnet) requires changing "study" to
third-person singular.

3.2 Replacing as in Paraphrase Generation

Word choice matters as well, thus we revise by
paraphrasing to stronger words. Paraphrase gen-
eration changes a sentence grammatically and re-
selects words, while retaining meaning. Paraphras-
ing matters in academic writing, for it helps avoid
plagiarism. Rule-based or statistical machine para-
phrasing substitutes words by finding synonyms
from lexical databases, and decodes syntax accord-
ing to template sentences. This rigid method may
undermine creativity (Bui et al., 2021). Pre-trained
neural language models like GPT (Radford et al.,
2019) or BART (Lewis et al., 2020) paraphrase
more accurately (Hegde and Patil, 2020). Through
paraphrasing, we can replace verb phrase "con-
duct a study" to verb "study" in the example above,
rather than delete and rely on noun-and-verb homo-

graphs to keep the sentence syntactically correct.
Machine revision is a kind of paraphrase gen-

eration, and vice versa is not true. Current para-
phrase generation does not require concision in gen-
erated sentences. Automatically annotated datasets
for paraphrasing include ParaNMT (Wieting and
Gimpel, 2018), Twitter (Lan et al., 2017), or re-
purposed noisy datasets such as MSCOCO (Lin
et al., 2014) and WikiAnswers (Fader et al., 2013).
We may adapt paraphrase parallel datasets to train
revising models, as investigated in Section 5.

3.3 Other related tasks

Summarization produces a shorter text of one or
several documents, while retaining most of mean-
ing (Paulus et al., 2018). This is similar to sen-
tence compression. In practice, summarization
welcomes novel words, allows specifying output
length (Kikuchi et al., 2016), and removes much
more information than sentence compression does.
Datasets include XSum (Narayan et al., 2018) , CN-
N/DM (Hermann et al., 2015), WikiHow (Koupaee
and Wang, 2018), NYT (Sandhaus, 2008), DUC-
2004 (Over et al., 2007), and Gigaword (Rush et al.,
2015), where summaries are generally shorter than
one-tenth of documents. On the other hand, sen-
tence summarization (Chopra et al., 2016) uses
summarization methods on sentence compression
datasets, retaining more information and possibly
generating new words.

Text simplification modifies vocabulary and syn-
tax for easier reading, while retaining approxi-
mate meaning (Omelianchuk et al., 2021). Hand-
crafted syntactic rules (Siddharthan, 2006; Car-
roll et al., 1999; Chandrasekar et al., 1996) and
aligned sentences-driven simplification (Yatskar
et al., 2010) have been explored. Corpora such
as Turk (Xu et al., 2016) and PWKP (Zhu et al.,
2010) are compiled from Wikipedia and Simple
English Wikipedia (Coster and Kauchak, 2011).
Rules for simplification may deviate from that for
revision, e.g., text simplification sometimes encour-
ages prepositional phrases (Xu et al., 2016). Still,
adapting these approaches may benefit academic
revising for concision.

Fluency editing (Napoles et al., 2017) not only
corrects grammatical errors but paraphrases text to
be more native sounding as well. Its paraphrasing
section is constrained such that outputs represent a
higher level of English proficiency than inputs. As
a constrained paraphrase task, fluency editing may
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alleviate ill-posed problems in paraphrase genera-
tion (Cao et al., 2020; Rus et al., 2014). However,
such constraints may not be consistent with those
required for concision.

In general, machine revision for academic writ-
ing requires new methods. Rules for revision can
be adapted from these related tasks, so do training
strategies.

4 Benchmark Corpus

The collated corpus, named Concise-536, contains
536 pairs of sentences. This is a fair starting size,
comparable with 385 of RST-DT (semantic pars-
ing, Carlson et al., 2003), 500 of DUC 2004 (sum-
marization5), or 575 by Cohn and Lapata (2008)
(sentence compression). Each concise sentence
is revised from its wordy counterpart by English
specialists from the 72 universities, colleges, or
community colleges. Sentence ID, category and
original link are available for each data point6, and
a 120-point validation split from other sources is
attached.

Revising different sentences can go through a
completely different process. As seen below, sim-
ply crossing out a few words revises Example 4.1;
a new word is needed in revising Example 4.2;
and even the sentence structure needs changing in
Example 4.3.
Corpus Example 4.1 (Delete). Any particular type
of dessert is fine with me. (PU)
Corpus Example 4.2 (Replace). She has the ability
to can influence the outcome. (PU)
Corpus Example 4.3 (Rewrite). The 1780 con-
stitution of Massachusetts was written by John
Adams. John Adams wrote the 1780 Massachusetts
Constitution. (UNC, 2021)

In Concise-536, we do not identify fine-grained
wordiness because a phrase can have more than one
type of verbosity at the same time. For instance,
we can revise "Her poverty also helped in the for-
mation of her character." to "Her poverty also
helped form her character." (George Mason Univer-
sity, 2021), treating "in the formation of " as either
a wordy prepositional phrase, or nominalization.
Rather, we focus on editing.

In editing, the three actions are not complemen-
tary, and instead have varying degrees of power.
Deleting can be covered by replacing (See Sec-
tion 3.1), which could be again covered by rewrit-

5https://duc.nist.gov/duc2004/
6https://huggingface.co/datasets

ing, i.e., rewriting is the most flexible. However,
Occam’s razor pushes us to prioritize the actions
requiring lower effort to complete, i.e., delete <
replace < rewrite. Supposedly, the difficulty for im-
plement each action with programs shares the same
trend. In addition, some sentences contain multiple
wordiness occurrences, each of which may need a
different action, e.g., delete + replace.

Interested in how well a revising algorithm re-
sembles each action, we label revisions in each
sentence pair and divide them into seven categories.
Revisions that require the same set of actions will
be assigned to the same category. Each revision is
assigned to one of seven categories in Table 1.

For convenience, we standardize categorizing
rules as follows where each sentence is a word-
level sequence. For each pair, we have a wordy
sequence (w) and a concise sequence (c).

1. If c is a (not necessarily consecutive) subse-
quence of w, we consider revision only re-
quires deletion (category I).

2. If not, we only delete redundancy from w to
get w′, i.e., w′ paraphrases w, and w′ is a
subsequence of w. Then, we make local7 re-
placement(s) to w′ to get w∗, and every in-
dividual state from w′ to w∗ (i.e., after each
local replacement) paraphrases w′. If w∗ = c
and w′ = w, we consider revision only re-
quires replacement (category II). If w∗ = c
and w′ ̸= w, we consider revision only re-
quires deletion and replacement (category IV).

3. If w∗ = w, we consider revision relies solely
on rewriting (category III).

Corpus Example 4.4 (category I). There are four
rules that should be observed. (PU)
Corpus Example 4.5 (category III). Regular re-
views of online content should be scheduled re-
viewed regularly. (MON, 2020)
Corpus Example 4.6 (category IV). She fell down
due to the fact that because she hurried. (PU)

Example 4.4 used to be wordy in the running
start, but deleting suffices in revision. Therefore,
although counter intuitive, it belongs to category
I. An adjective-noun pair is the wordiness in Ex-
ample 4.5, yet its revision is more complex than re-
placing a verb. Usually, revision involves multiple

7Empirically, in a sentence or clause, we do not replace
the subject and predicate verb together.

61

https://duc.nist.gov/duc2004/
https://huggingface.co/datasets


Category Action # sents. Mean words wordy sent. Mean words concise sent. Translation Edit Rate
I Delete 169 13.16 9.17 4.72
II Replace 116 12.37 9.02 5.1
III Rewrite 153 14.43 9.73 9.54
IV Delete + Replace 42 23.81 11.57 15.16
V Replace + Rewrite 33 21.52 12.85 14.88
VI Delete + Rewrite 14 24.5 11.36 17.71
VII Delete + Replace + Rewrite 9 32.56 14.56 25.56
All - 536 15.32 9.86 8.31

Table 1: Revising a sentence can involve either one of the three strategies (category I, II, III), or a combination
of them (category IV, V, VI, VII). Sample sizes, average word counts before and after revisions, and average edit
distance (translate edit rate, TER) for revision are listed.

strategies, as seen in Example 4.6 (delete "down" +
replace "due to the fact that with" with "because").

Human annotators implement the rules, as we
need to check whether the meaning is still the same
at each step.

Usually, category III sentences are the hardest
to revise as the easier strategies of deleting and
replacing are not applicable. In fact, revising cate-
gory V, VI, and VII sentences are more challenging,
as these sentences are longer, more complex, and
more deliberate than category III sentences (Fig-
ure 4, Table 9, 10), which is a bias in this corpus.

5 Approaches to Revisions

We approach the raised problem in this study. So-
lutions to machine revision for concision can be
diverse. Neural model solutions include tree-to-
tree transduction models (Cohn and Lapata, 2008),
or general Seq2Seq models. We present a Seq2Seq
approach, for it is flexible and straightforward. The
model architecture is BART (Lewis et al., 2020).

Ideally, training corpora tune statistical models
or neural models, such that we can test tuned mod-
els on the benchmark corpus. However, lacking
authoritative revisions prompted us to let models
fit relevant task data. We also use public external
knowledge, e.g., WordNet (Fellbaum, 2010). This
section describes how we build an ad hoc training
corpus to initiate this task.

The BART base model (124,058,116 parame-
ters) is then used to fit each training set in this
section. Training settings are fixed (batch size at
32, PyTorch Adam optimizer (Paszke et al., 2019;
Kingma and Ba, 2015) with initial learning rate at
5 × 10−5, validated every 5,000 iterations). We
then evaluate trained models on Concise-536.

5.1 Baselines

We prepare training samples by adjusting data
from paraphrase generation (ParaNMT, Wieting
and Gimpel, 2018), sentence simplification (Wik-

iSmall, Zhang and Lapata, 2017), or sentence com-
pression (Gigaword, Rush et al., 2015; Google
News datasets, Filippova and Altun, 2013; MSR
Abstractive Text Compression Dataset, Toutanova
et al., 2016).

5.2 Approach 1: WordNet as Booster

Baseline methods are useful, but they are not de-
veloped for revision tasks after all. To replace a
verb or noun phrase with a single word, we lever-
age word glosses in public dictionaries, i.e., Word-
Net (Fellbaum, 2010). Word semantics are close
to semantics in their glosses. This feature is usu-
ally used to improve word embedding (Bosc and
Vincent, 2018) or evaluate analogy of word embed-
ding (Mikolov et al., 2013). We use this feature to
replace a verb or noun phrase with a single word.

We create data samples using WordNet and a
language modelling corpus. For each sentence s in
the corpus, we use WordNet vocabulary glosses to
inflate it and obtain s′. Resulted parallel data ap-
proximate phrase replacement in sentence revision.

We first pick a unigram u, one of nouns, verbs,
adjectives, or adverbs in s. At the same time,
we avoid common words, e.g., "old", or colloca-
tions and compounds, e.g., "united" in "United
Kingdom". Next, we apply Lesk’s dictionary-
based word sense disambiguation (WSD) algo-
rithm (Lesk, 1986) on u and s to get gloss g. Then,
we parse s and g to obtain respective dependency
trees Ts and Tg; rg denotes root node in Tg. Usu-
ally, if u is a noun, rg is a noun, and if u is an
adjective, rg is a verb. Eight u → rg patterns ac-
count for over 90% of the WordNet vocabulary
(Table 5). In Algorithm 1, we modify dependency
trees (Ts and Tg) according to the eight patterns.
The remaining six patterns are NOUN→VERB,
ADJ(-S) → ADJ, ADJ → ADP, ADJ → VERB,
and ADV → ADP.

Finally, we filter and post-process synthesized
sentences. We parse s′ again and compare it with
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Algorithm 1 Rule-based Gloss Substitution
Require: Ts, Tg return s′

Copy-children(from u, to rg)
Locate hu ▷ head node of u
Delete (u with children, from Ts)
if u ∈ NOUN then

Insert-child-node (rg with children, to hu)
if rg ∈ VERB then

u← Gerund(u)
end if
Correct inflections (singular and plural forms)
Remove duplicate determiners

else if u ∈ VERB then
Insert-child-node (rg with children, to hu)
Correct inflections (person and tense)
Add/Remove prepositions according to verb transitivity

else
Insert-right-child-node (rg with children, to hu) ▷ Post

attributive
end if
s′ ← Linearize(Ts)

the dependency tree from which s′ is linearized.
We drop those with more than three mismatches,
or with accuracy lower than 0.9. We "smooth"
synthesized sentences with parroting8, to mitigate
overfitting. We also drop those sharing low seman-
tic similarity (BERTScore ≤ 0.82) with original
s.

We take the first 0.2 million sentences from
WikiText-103 corpus (Merity et al., 2017) and
around 71 thousand data points after filtration are
available to train the BART base model.

5.3 Approach 2: Multi-Task Learning

Each dataset in baselines and Approach 1 han-
dles part of task. However, sentence compression
or simplification does not emphasize complete in-
formation retention; paraphrase generation hardly
encourages deletion; synthetic data limit editing
scope because word glosses are limited. We hy-
pothesize that mixing the good samples among
these datasets could more closely approximate
the revision task. Therefore, we adjust datasets
again. We keep every sample in MSR as it is
small (21,145, see Appendix). Semantic similarity
lower bound for sentence compression and simpli-
fication datasets is set at BERTScore = 0.9. For
ParaNMT, we discard samples with less than 10
words. As a result, ablation of mixed and shuffled
data samples shows that a mixture of MSR, filtered
ParaNMT, and synthetic WordNet dataset leads to
the strongest approach. This approach uses transfer
learning from multiple datasets to learn revising

8https://huggingface.co/prithivida/
parrot_paraphraser_on_T5

strategies such as deletion and phrase replacement.

5.4 Experiment and Result

Table 2 shows test results in each category. Our ap-
proach 2 has the highest overall score and is more
robust than baseline models on category I, IV, and
VII. The same architecture trained only on MSR
outperforms any other baseline for deletion (cate-
gory I) and ranks second for replacement (category
II). The top-ranked baseline for replacement (cate-
gory II) is trained on ParaNMT. In category V, the
model trained on WordNet scores highest, slightly
outperforming other baselines. Trends in category
III, IV, VI, VII are less clear. Datasets Gigaword,
Google News, and WikiSmall may be quite differ-
ent from the benchmark corpus, and thus models
trained on these datasets do not score well.

Our approach 2 suffers from two shortcomings
common to all baselines. First, the model relies
on transfer learning from MSR and ParaNMT and
struggle to rewrite (category III) or to handle com-
posite wordiness (category V, VI, VII). Second,
the approach 2 outputs score worse than the in-
put text on many metrics in many categories, es-
pecially on category III. These shortcomings sug-
gest challenges in revision. We take the 5th and
95th percentile from all 536 samples to qualita-
tively illustrate the best proposed approach in Ta-
ble 3. Apart from samples in Concise-536, Figure 1
shows an arbitrary sentence by non-English native
speakers (Chen et al., 2020). The proposed revi-
sioner removes repetition and unnecessary preposi-
tional phrases, illustrating its potential in academic
writing.

For human evaluation, we adopt an approach
similar to Hsu et al. (2018); Zhang et al. (2020a);
Ravaut et al. (2022). We (1) rank the samples by
overall automatic evaluation on the model in de-
scending order; (2) divide the examples in each
category into two buckets; (3) randomly pick one
example from each bucket. For each picked sample,
we ask three graduate students (IELTS 7.0 or equiv-
alent) to rank the predictions of seven systems, and
the average ranking of each system is shown in H
column in Table 2.

For top three systems, human evaluators then
assess information retention (ρ) and wordiness (ω),
since system outputs are in good syntax. Particu-
larly, human assessment on wordiness engages the
Paramedic Method (Lanham and Stodel, 1992) to
highlight the wordy part and ω = (# wordy words)
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Methods I II III IV V VI VII All H ρ ω
ParaNMT (Wieting and Gimpel, 2018) 0.46 0.62 0.46 0.53 0.44 0.45 0.38 0.55 3.40
MSR (Toutanova et al., 2016) 0.74 0.58 0.44 0.51 0.41 0.44 0.37 0.57 2.79 0.78 0.40
G. News (Filippova and Altun, 2013) 0.61 0.46 0.39 0.40 0.35 0.39 0.33 0.48 5.74
Gigaword (Rush et al., 2015) 0.30 0.29 0.28 0.31 0.25 0.29 0.23 0.29 6.74
WikiSmall (Zhang and Lapata, 2017) 0.70 0.59 0.48 0.52 0.44 0.46 0.38 0.57 3.31
Our Approach 1 0.70 0.60 0.47 0.52 0.46 0.45 0.37 0.58 2.79 0.99 0.47
Our Approach 2 0.75 0.60 0.47 0.55 0.40 0.45 0.41 0.59 2.62 0.82 0.41

Table 2: We average BLEU, METEOR, ROUGE-2-F1, SARI, Parsed relation F1, BERTScore-F1, and (negative)
translation edit rate of (pre-)baseline methods. The most favorable score in each column is in bold, the second most
favorable in italics. This table estimates the strengths and weaknesses of each variants. System ranking from human
evaluation (H), information retention (ρ), and wordiness (ω) are presented in the right-most columns.

Category Reference(s) Prediction
5th percentile Bob provided an explanation of explained the com-

puter to his grandmother.
Bob provided an explanation of explained the com-
puter to his grandmother.

95th percentile Rather than taking the bull by the horns, she was
quiet as a church mouse avoided confrontation by
remaining silent.

Rather than taking the bull by the horns, she was
quiet as a church mouse.

Table 3: Well/poorly revised samples in the corpus. Shorter sentences that require simpler actions are perfectly
revised. Rewriting clichés is difficult, in which case the approach tends to use deletion.

/ (# all words). The model trained adapted Word-
Net data preserves information better, which also
accounts for its good human ranking.

We observe general correlation between auto-
matic score ranking and human evaluation rank-
ing. However, information retention is not suffi-
ciently represented by semantic similarity scores
like BERTScore. These findings suggest further
investigation on the evaluation scheme of this task.

6 Discussion

Comparing the proposed revisioner’s effectiveness
for different categories, we understand deleting and
replacing are much easier sub-tasks than rewriting
is. The former two actions, especially deletion,
are less ill-posed, while rewriting is open. Still,
revision for concision requires an algorithm that is
able to use all three actions in combination. Its goal
is to resolve all seven categories of cases, marking
distinction between revision and other tasks such
as sentence compression.

We use seven metrics to estimate a revisioner’s
effectiveness, since each metric has its shortcom-
ings. For example, METEOR does not adequately
penalize nominalization, and thus wordy input texts
typically score higher on METEOR than algorithm
outputs. More targeted metrics for this task, in-
cluding reference-free structural metrics (Sulem
et al., 2018), might help. We do not include word
counts. Although concision is marked by brevity
and wordiness often correlates to high word count,
concise writing does not always require the fewest

words (PU). Optimizing a lower word count may
be misleading even if it is constrained to zero in-
formation loss (Siddharthan, 2006). For example,
abusing pronouns and ellipses can result in shorter
sentences that are harder to read.

Transferring knowledge from other tasks to ap-
proximate revising is a stopgap measure. Special-
ized revising methods exist, e.g., the Paramedic
Method (Lanham and Stodel, 1992). Automated
specialized methods may be more efficient.

7 Conclusion

We formulate sentence-level revision for concision
as a constrained paraphrase generation task. The
revision task not only requires semantics preserva-
tion as in usual paraphrasing tasks, but also speci-
fies syntactic changes. A revised sentence is free
of wordiness and as informative. Revising sen-
tences is challenging and requires coordinated use
of delete, replace, and rewrite. To benchmark re-
vising algorithms, we collect 536 sentence pairs
before and after revising from 72 college writing
centres. We then propose a Seq2Seq revising model
and evaluate it on this benchmark. Despite scarcity
of training data, the proposed approaches offer
promising results for revising academic texts. We
believe this corpus will drive specialized revision
algorithms that benefit both authors and readers.
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Ethical considerations

The release of Concise-536 is intended only for
"not-for-profit" educational purposes or private re-
search and study in accordance with the Copyright
Act 1994; all original text content is acknowledged
as the property of each educational institution. All
text content in Concise-536 (and the 120-point vali-
dation split) are public, and our release details their
original links, thus making the release no different
from a list of outbound links.

Limitations

The transfer of knowledge from other tasks to the
rough revision is an emergency solution. There
are specialised revision methods. For example,
automating the Paramedic method (Lanham and
Stodel, 1992) could possibly lead to a more effi-
cient revisioner.
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A Linguistic Rules in Revising for
Concision

We collate and present a set of practical linguis-
tic rules for concise sentence revision, which we
synthesize based on guidelines from writing cen-
tres at numerous major universities and educational
institutes. Table 4 illustrates how wordiness can
be fine-grained, and what action is required once
a wordiness is identified (UNC, 2021; PU; MON,
2020).

B Technical Difficulties in Reference-free
Revision Evaluation

Had we chosen not to follow Papineni’s viewpoint,
reference-free evaluation is the way to go. How-
ever, it is technically not trivial to use programs
to detect wordiness or syntax errors these days
(See Section 2.3), let alone detect semantic simi-
larity. Progress in sentence embedding (Lin et al.,
2017) and semantic textual similarity (Yang et al.,
2019) enables meaning comparison between sen-
tences, but relying on one developing system to
evaluate another is risky. Moreover, information
delivered by a sentence is sometimes beyond its
textual meaning. Concise writing can suggest elim-
inating first-person narratives; e.g., "I feel that the
study is significant" is revised to "The study is sig-
nificant" (WU). Here, the first-person statement

Wordiness identified Action
Weak modifiers Delete
(qualifiers / intensifiers)

Redundant pairs
Grouped synonyms
Stock phrases
Unnecessary hedging
Implied information
Yourself
Informal language Replace
Vague pronoun references
Possessive constructions using "of"
Prepositional phrases
All-purpose nouns
Vague Swamp
Fancy words
Helping verbs
("to be" verbs, "be" + adjective)

Adjective-noun pairs
Phrasal verbs
Verb-adverb pairs
Nominalisation / noun strings
Cliches and Euphemisms
Empty phrases
Expletive constructions
long sentences (>25 words) Rewrite
Running starts
(with "there / it" + "be")

Long opening phrases / clauses
Needless transitions
Interrupted subjects and verbs
Interrupted verbs and objects
Negatives (opposite to affirmatives)

and anything violating:
A blend of active and passive verbs
Elliptical constructions / parallelism
Only one main idea per sentence

Table 4: Revising rules collated from college writing
centers. Three actions are available. Redundancy can
be deleted; short, specific, concrete and stronger ex-
pressions shall replace vague ones; sentences should be
rewritten if neither deleting nor replacing helps.

used to be the main clause, and removing it will
shift sentence embedding. Nevertheless, in aca-
demic writing, these two sentences deliver identical
information.

C Balance between Syntax, Information,
and Wordiness

The coefficient α tells how much syntax over-
weighs information, or information overweighs re-
duced wordiness. Empirically, minimum of α can
be around the word count in a standard sentence.
In other words, even if a single key word is miss-
ing, the decrease in ρ is bigger than the increase in
1− ω.
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Figure 2: Revising a sentence can involve either one of
the three strategies (category I, II, III), or a combination
of them (category IV, V, VI, VII).

D Explaining Categories in the Corpus

There are seven categories, as seen in Figure 2.
Note that although three actions (delete, replace,
rewrite) are put side-by-side, they are with different
levels of flexibility. In fact, every revision made
with deleting can be done through replace, e.g., the
fourth example in Table 9, "fell down" could be
replaced to "fell", but we would simply consider
the cheapest revision, which is to delete "down"9.
Similarly, rewriting is even more expensive and
ambiguous. Therefore, our rule of Occam’s razor
is that only when a cheaper revision fails, will we
use a more expensive one.

Here, we give examples of which category a
revision corresponds to. Indeed, many sentence
revisions are categorized in original websites. See
the two examples from Purdue Writing Lab (PU)
below. The strategies applied are to "eliminate
words that explain the obvious or provide excessive
detail" (category I) and to "replace several vague
words with more powerful and specific words" (cat-
egory II), respectively.
Corpus Example D.1 (category I). Imagine a men-
tal picture of someone engaged in the intellectual
activity of trying to learn what the rules are for how
to play the game of chess.
Corpus Example D.2 (category II). The politician
talked about several of the merits of touted after-
school programs in his speech

For revisions not categorized in sources, we
first align the segments of a pair of sentences by
their meaning, as seen in Figure 1. This is intu-
itively straightforward when the revised sentence

9"fell" means "fell down", as one never "fell up".

is given10.
Then, we determine the actions to revise. For

example, in the fourth example (category IV) in
Table 9, we find that we cannot delete any words in
"due to the fact that" without violating the second
and third components in Definition 2.4. Thus, we
have to put some more concise conjunction to take
its place, i.e., "because".

Another example is the sixth one (category IV)
in Table 10. Though it looks that the entire wordy
sentence can only be written to reach the concise
form, a cheaper revision is actually to first delete
some redundancy, e.g., "sent to you by us", and
then rewrite the necessary part.

Whether the subject and predicate of a sentence
(clause) is changed together determines the border
between replacing and rewriting. In the fifth ex-
ample (category IV) in Table 9, "it was necessary"
is aligned to "had to", and "us" to "we". However,
we cannot change either of them individually with-
out violating the third component in Definition 2.4.
Therefore, when two or more replacements inter-
twine, we rewrite.

E Explaining Rule-based Gloss
Substitution

A demonstration of Algorithm 1 is shown in Fig.3,
where a verb that appears in the past participle is
replaced. By running this rule-based gloss replace-
ment multiple times, we can recursively expand a
sentence because the words used in a gloss have
their associated glosses (Bosc and Vincent, 2018).
Table 5 describes u → rg in the WordNet vocabu-
lary.

F Details in Datasets Used to Train
baselines

We prepare training samples by adjusting data
from paraphrase generation, sentence simplifica-
tion, or sentence compression. ParaNMT (Wiet-
ing and Gimpel, 2018) contains over five million
paraphrase pairs annotated from machine transla-
tion tasks; we sort each pair by sentence length.
This is a rough approximation, since shorter sen-
tences are not necessarily more concise. Google
News datasets (News, Filippova and Altun, 2013)
contains 0.2 million pairs of sentences, where the
longer one is the leading sentence of each arti-
cle, and the shorter one is a subsequence of the

10If the revised sentences were not from a trustworthy site,
this process could have been less intuitive.
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Several reviews have been published
ADJ NOUN AUX AUX VERB

root

amod

nsubjpass

aux

auxpass

(a) Sentence "Several reviews have been published" and its dependency tree. We expand the word "publish" below.

have ( one ’s work) issued for publication
VERB PRON PART NOUN VERB ADP NOUN

root
dobj

poss

case acl prep pobj

(b) Gloss of "publish" from WordNet(Fellbaum, 2010); the root node is the verb "have".

Several reviews have been had issued for publication
ADJ NOUN AUX AUX AUX VERB ADP NOUN

root

amod

nsubjpass

aux

auxpass

aux prep pobj

(c) Synthesized sentence with the first stage of our approach; rg node "have/had" is grafted onto the original sentence in (a).

Figure 3: Demonstration of dependency tree grafting in sentence synthesis. The dependency in (c) is obtained
by re-parsing the synthesized sentence. As we can see, the POS tag of "have/had" has changed from a verb to
an auxiliary word, and the synthesized sentence is still syntactically and semantically correct, which shows that
dependency changes may be unavoidable in the process of sentence synthesis. We also dealt with inflections to
reduce grammatical errors.

longer one. Gigaword (Rush et al., 2015) con-
tains four million pairs of article headline and the
first sentence. Although these datasets are mainly
for generating news headlines (P.V.S and Meyer,
2019), they approximate the deletion aspect of sen-
tence revision. MSR Abstractive Text Compression
Dataset (Toutanova et al., 2016) contains six thou-
sand sentence pairs from business letters, newswire,
journals, and technical documents sampled from
the Open American National Corpus11; humans
rewrite sentences at a fixed compression ratio. Wik-
iSmall (Zhang and Lapata, 2017) contains sentence
pairs from Wikipedia articles and corresponding
Simple English Wikipedia. We adopt training splits
of these datasets, and Table 6 lists their sizes.

G Random Sample Selection in Human
Evaluation

i m p o r t random

11https://www.anc.org/data/oanc

random . seed ( 0 )
f o r k i n [ 1 6 9 , 116 , 153 , 42 , 33 , 14 , 9 ] :

p r i n t ( random . r a n d i n t ( 0 , k / / 2 ) )
p r i n t ( random . r a n d i n t ( k / / 2 , k ) )

H Evaluation on Individual Metrics
For each sample in the benchmark corpus, we compute indi-
vidual metric score for its best-revised sentence and average
the corpus ranking of its individual metric scores to obtain the
final ranking for that sample. Table 9 lists the well-treated
samples (at the third percentile) in each category. Table 10 lists
the cases that were not well resolved (at the 97th percentile).

Figure 4 shows the difficulty of revising sentences for each
category. The data in Figure 4, while demonstrating strengths
and weaknesses of the proposed approach, can also serve as
an approximation of the difficulty of the corpus itself. The
proposed approach is better at deleting and replacing than
rewriting due to heavy reliance on transfer learning.

71

https://www.anc.org/data/oanc


POS ADJ ADJS ADV NOUN VERB
VERB 3627 6354 221 3349 11586
DET 1 6 4 1594 0
ADJ 1053 2825 50 544 316
NOUN 155 405 57 73527 1739
CCONJ 0 0 0 24 0
PUNCT 0 1 0 6 0
PART 0 5 4 4 6
ADV 10 84 235 37 52
ADP 2615 972 3019 222 29
AUX 5 5 4 108 1
PRON 0 3 2 1516 1
SCONJ 4 10 14 3 10
PROPN 0 6 0 534 15
X 2 2 2 16 19
NUM 1 16 8 658 0
INTJ 1 1 3 13 12
SYM 0 0 0 0 0

Table 5: Part-of-speech (POS) tags for a word w and its
corresponding rg. Representation of POS tags follows
the Stanford typed dependencies manual (De Marneffe
and Manning, 2008) (except for ADJ-S, which stands
for ’adjective satellite’ in WordNet (Fellbaum, 2010)).
POS tags of rg are closely related to the POS tags of
w, and we bold the pairs that appear frequently. In
particular, among nearly 117,000 word-gloss (w → rg)
pairs, NOUN → NOUN is most frequent, accounting
for more than three fifths. We have now studied the
eight most frequently occurring pairs.

Dataset Size
MSR ( 2016) 21,145
ParaNMT ( 2018) 5,306,522
Google News (G. News 2013) 200,000
Gigaword ( 2015) 3,803,957
WikiSmall ( 2017) 89,042
Approach 2 fine-tuning set (Section 5.3) 182,330

Table 6: Sample numbers of training sets. MSR dataset
has multiple references, we take each reference as a
sample point. The mixed fine-tuning set in Section 5.3
is composed of 89,712 samples from ParaNMT, 21,145
from MSR, and 71,473 from our synthesized dataset
from WordNet.

0.0 0.2 0.4 0.6 0.8 1.0
Relative Difficulty
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Figure 4: Difficulty faced by the proposed approachs
when dealing with sentences from different categories.
This difficulty is relative to other samples in the corpus
of 536 sentences. Deletion (category I) is the least
challenging. The most challenging samples are most
likely from category III. Handling sentences requiring
more than one revising strategies (category IV-VII) is
usually more challenging.
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BL M R S P BS T
ParaNMT .40 .78 .56 .49 .55 .96 .53
MSR .55 .86 .69 .62 .73 .97 .39
News .36 .67 .56 .52 .62 .95 .51
Gigaword .04 .27 .19 .25 .16 .89 .92
WikiSmall .47 .91 .65 .59 .63 .95 .82
Approach 1 .48 .90 .65 .59 .66 .94 .82
Approach 2 .57 .87 .71 .66 .74 .97 .37

(a) Category I, 169 / 536, Delete

BL M R S P BS T
.38 .75 .54 .54 .51 .97 .50
.33 .73 .51 .45 .47 .96 .56
.17 .56 .39 .35 .37 .94 .64
.01 .26 .17 .28 .15 .89 .92
.33 .80 .51 .48 .44 .95 .92
.36 .80 .54 .51 .46 .95 .91
.36 .76 .53 .50 .50 .96 .53

(b) Category II, 116 / 536, Replace

ParaNMT .16 .60 .33 .44 .28 .94 .94
MSR .15 .56 .31 .38 .28 .93 .92
News .10 .44 .26 .37 .25 .92 .85
Gigaword .03 .20 .12 .38 .09 .88 1.00
WikiSmall .19 .66 .35 .45 .29 .93 1.26
Approach 1 .17 .65 .36 .43 .29 .93 1.27
Approach 2 .18 .60 .35 .42 .30 .94 .91

(c) Category III, 153 / 536, Rewrite

.27 .68 .40 .48 .41 .94 1.22

.26 .63 .39 .44 .39 .94 1.09

.12 .41 .29 .37 .31 .92 .77

.03 .24 .16 .35 .16 .89 .86

.24 .71 .39 .46 .37 .93 1.69

.23 .72 .39 .44 .39 .92 1.70

.32 .67 .44 .47 .43 .95 .94

(d) Category IV, 42 / 536, Delete + Replace

ParaNMT .16 .55 .27 .44 .26 .94 1.18
MSR .14 .49 .28 .37 .24 .93 1.05
News .08 .34 .21 .35 .22 .92 .85
Gigaword .01 .15 .09 .34 .06 .87 .90
WikiSmall .17 .58 .30 .40 .27 .93 1.40
Approach 1 .20 .59 .31 .43 .29 .93 1.37
Approach 2 .14 .49 .26 .35 .25 .93 1.04

(e) Category V, 33 / 536, Replace + Rewrite

.21 .56 .30 .43 .27 .93 1.35

.19 .53 .30 .40 .30 .93 1.23

.12 .39 .26 .37 .25 .92 .81

.04 .20 .12 .38 .10 .87 .87

.17 .62 .31 .43 .30 .92 1.92

.16 .62 .31 .41 .29 .92 1.96

.22 .55 .31 .41 .30 .93 1.23

(f) Category VI, 14 / 536, Delete + Rewrite

ParaNMT .06 .50 .17 .40 .20 .92 1.61
MSR .06 .49 .17 .39 .17 .92 1.34
News .03 .28 .15 .38 .21 .91 .79
Gigaword .00 .11 .04 .36 .02 .86 .95
WikiSmall .08 .54 .20 .38 .18 .91 2.02
Approach 1 .04 .53 .18 .39 .17 .91 1.96
Approach 2 .08 .55 .23 .43 .24 .93 1.18

(g) Category VII, 9 / 536, Delete + Replace + Rewrite

.29 .69 .44 .48 .42 .95 .77

.32 .69 .48 .48 .47 .95 .71

.20 .53 .38 .41 .40 .93 .69

.03 .23 .15 .31 .13 .88 .94

.31 .76 .48 .49 .43 .94 1.12

.31 .76 .49 .50 .45 .94 1.12

.35 .72 .50 .51 .49 .95 .68
(h) Overall

Table 7: BLEU (BL), METEOR (M) , ROUGE-2-F1 (R), SARI (S), Parsed relation F1 (P), BERTScore-F1 (BS),
and translation edit rate (T) of pre-Approach 2s and Approach 2 method. Numbers are shown in categories. Smaller
edit distance is more favorable. The most favorable score(s) in each column is bold. In category V, the model trained
on Approach 1 has the highest scores on three metrics, slightly outperforming other pre-Approach 2s. In category
III,IV, VI, VII, no particular pre-Approach 2 scores well on all metrics.
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W R1 RL
ParaNMT .65 .75 .71
MSR .43 .85 .8
News .54 .73 .7
Gigaword .97 .39 .37
WikiSmall .89 .82 .77
Approach 1 .96 .82 .77
Approach 2 .42 .86 .81

(a) Category I, 169 / 536, Delete

W R1 RL
.61 .73 .72
.58 .71 .7
.66 .6 .59
.98 .37 .35
.93 .71 .7
1.03 .73 .72
.54 .73 .72

(b) Category II, 116 / 536, Replace

ParaNMT 1.04 .61 .50
MSR .99 .60 .48
News .88 .52 .43
Gigaword 1.03 .32 .29
WikiSmall 1.35 .63 .50
Approach 1 1.40 .63 .50
Approach 2 .97 .63 .51
(c) Category III, 153 / 536, Rewrite

1.28 .59 .58
1.14 .59 .57
.81 .48 .46
.90 .37 .32
1.74 .58 .56
1.79 .59 .56
.97 .63 .62

(d) Category IV, 42 / 536, Delete + Replace

ParaNMT 1.36 .52 .45
MSR 1.17 .51 .43
News .91 .42 .36
Gigaword .96 .28 .24
WikiSmall 1.58 .53 .44
Approach 1 1.59 .55 .46
Approach 2 1.15 .52 .43

(e) Category V, 33 / 536, Replace + Rewrite

1.54 .49 .41
1.37 .51 .41
.87 .45 .38
.89 .30 .30
2.04 .51 .43
2.10 .51 .43
1.39 .54 .45

(f) Category VI, 14 / 536, Delete + Rewrite

ParaNMT 1.64 .44 .35
MSR 1.38 .47 .35
News .81 .38 .34
Gigaword .97 .25 .20
WikiSmall 2.04 .44 .33
Approach 1 1.98 .45 .34
Approach 2 1.24 .53 .43

(g) Category VII, 9 / 536, Delete + Replace + Rewrite

.88 .66 .61

.76 .69 .63

.72 .59 .55

.98 .35 .33
1.19 .69 .63
1.25 .70 .63
.73 .71 .65

(h) Overall

Table 8: Other metrics include word error rate (W), ROUGE-1-F1 (R1), and ROUGE-L-F1 (RL) . Numbers are
shown in categories. Smaller edit distance is more favorable. The most favorable score(s) in each column is bold.
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Category Reference(s) Prediction
I The reason she moved is because she was

offered a better position.
The reason she moved is because she was
offered a better position.

II We outlined the letters for the banner in a
careful way carefully.

We outlined the letters for the banner in a
careful way carefully.

III The current focus of the medical profession
is The medical profession currently focuses
on disease prevention.

The current focus of the medical profession
is The medical profession focuses on dis-
ease prevention.

IV She fell down due to the fact that because
she hurried.

She fell down due to the fact that because
she hurried.

V We didn’t renew the contract with our sup-
plier on account of the fact that because it
was necessary for us to we had to find a
cheaper supplier one.

We didn’t renew the contract with our sup-
plier on account of the fact that because
it was necessary for us to find a cheaper
supplier.

VI Research is increasing in the field of nutri-
tion and food science. OR Research within
nutrition and food science is increasing the
field of nutrition and food science.

Research is increasing in the field of nutri-
tion and food science.

VII Joe found that the fictional novel by Al-
cott’s book, Little Women, conveyed a sense
of emotion and feeling both delightful and
tragic.

Joe found that the fictional novel by Alcott’s
novel, Little Women, conveyed a sense of
emotion and feeling.

Table 9: Well-revised samples in each category (about the third percentile). Shorter sentences that require simpler
actions are perfectly revised. When sentence length increases, not all wordiness can be resolved. The baseline
method tends to delete and replace, even if sentences need to be rewritten.
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Category Reference(s) Prediction
I I would call your attention to the fact that

our President, who was formerly the Gover-
nor of Arkansas, is basically a Southerner.

I would call your attention to the fact that
our President , who was formerly the Gover-
nor of Arkansas, is a basically Southerner.

II We have conducted an investigation inves-
tigated and arrived at the conclusion con-
cluded.

We have conducted an investigation and ar-
rived at the conclusion.

III As far as my professor is concerned, the
problem of wordiness is the thing she’d re-
ally like to see us involved with actually
eliminating. My professor wants us to focus
on eliminating wordiness.

As far as my professor is concerned, the
problem of wordiness is the thing she’d re-
ally like to see us involved with actually
eliminating.

IV The existence of computers and computer
technology has have improved commer-
cial enterprise business and information ex-
change communication.

The existence of computers and computer
technology has greatly influenced commer-
cial enterprise and information exchange.

V It has come to my attention that I have no-
ticed there is a vast proliferation of unde-
sirable vegetation many weeds growing sur-
rounding the periphery of around this facil-
ity the building

It has come to my attention that there is a
vast proliferation of undesirable vegetation
surrounding the periphery of this facility.

VI Your statement in your letter that has the
contention that the information submitted
and sent to you by us contained certain in-
accuracies and errors has prompted us to
embark on a careful and thorough reevalua-
tion of the information submitted, with the
result that the original informative data has
been determined to be accurate and correct
in all instances and aspects of the informa-
tion. As you suggested, we have checked
our information and confirmed its accuracy.

Your statement in your letter that has the
contention that the information submitted
and sent to you by us contained certain some
inaccuracies and errors has prompted us to
embark on a careful and thorough reevalua-
tion of the information submitted, with the
result that the original informative data has
been determined to be accurate and correct
in all instances and aspects of the informa-
tion.

VII In the event that If you get some any infor-
mation concerning about Mr. Smith should
be brought to your attention, it should be for-
warded via mail or courier or telephone to
us please contact us in view of the possibil-
ity that in case the information may reveal
any attempt on the part of Mr. Smith to de-
part from the United States he tries to leave
the country.

In the event that If some any information
concerning Mr. Smith should be brought to
your attention, it should be forwarded via
mail or courier or telephone to us in view
of the possibility that the information may
reveal any attempt on the part of Mr. Smith
to depart from the United States.

Table 10: Badly-revised samples in each category (about the 97th percentile). These sentences are longer than
sentences in Table 9. Informative part may be trimmed. Replacing nominalizations with verbs is hard. For severely
wordy sentences (category VI, VII), the model fails to rewrite, and resorts to deletion. A lot of improvement is
needed.
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