@inproceedings{son-etal-2022-discourse,
title = "Discourse Relation Embeddings: Representing the Relations between Discourse Segments in Social Media",
author = "Son, Youngseo and
Varadarajan, Vasudha and
Schwartz, H. Andrew",
editor = "Han, Wenjuan and
Zheng, Zilong and
Lin, Zhouhan and
Jin, Lifeng and
Shen, Yikang and
Kim, Yoon and
Tu, Kewei",
booktitle = "Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.umios-1.5/",
doi = "10.18653/v1/2022.umios-1.5",
pages = "45--55",
abstract = "Discourse relations are typically modeled as a discrete class that characterizes the relation between segments of text (e.g. causal explanations, expansions). However, such predefined discrete classes limit the universe of potential relationships and their nuanced differences. Adding higher-level semantic structure to contextual word embeddings, we propose representing discourse relations as points in high dimensional continuous space. However, unlike words, discourse relations often have no surface form (relations are in between two segments, often with no word or phrase in that gap) which presents a challenge for existing embedding techniques. We present a novel method for automatically creating discourse relation embeddings (DiscRE), addressing the embedding challenge through a weakly supervised, multitask approach to learn diverse and nuanced relations in social media. Results show DiscRE representations obtain the best performance on Twitter discourse relation classification (macro F1=0.76), social media causality prediction (from F1=0.79 to 0.81), and perform beyond modern sentence and word transformers at traditional discourse relation classification, capturing novel nuanced relations (e.g. relations at the intersection of causal explanations and counterfactuals)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="son-etal-2022-discourse">
<titleInfo>
<title>Discourse Relation Embeddings: Representing the Relations between Discourse Segments in Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Youngseo</namePart>
<namePart type="family">Son</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vasudha</namePart>
<namePart type="family">Varadarajan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="given">Andrew</namePart>
<namePart type="family">Schwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenjuan</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zilong</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhouhan</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lifeng</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yikang</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoon</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kewei</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Discourse relations are typically modeled as a discrete class that characterizes the relation between segments of text (e.g. causal explanations, expansions). However, such predefined discrete classes limit the universe of potential relationships and their nuanced differences. Adding higher-level semantic structure to contextual word embeddings, we propose representing discourse relations as points in high dimensional continuous space. However, unlike words, discourse relations often have no surface form (relations are in between two segments, often with no word or phrase in that gap) which presents a challenge for existing embedding techniques. We present a novel method for automatically creating discourse relation embeddings (DiscRE), addressing the embedding challenge through a weakly supervised, multitask approach to learn diverse and nuanced relations in social media. Results show DiscRE representations obtain the best performance on Twitter discourse relation classification (macro F1=0.76), social media causality prediction (from F1=0.79 to 0.81), and perform beyond modern sentence and word transformers at traditional discourse relation classification, capturing novel nuanced relations (e.g. relations at the intersection of causal explanations and counterfactuals).</abstract>
<identifier type="citekey">son-etal-2022-discourse</identifier>
<identifier type="doi">10.18653/v1/2022.umios-1.5</identifier>
<location>
<url>https://aclanthology.org/2022.umios-1.5/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>45</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discourse Relation Embeddings: Representing the Relations between Discourse Segments in Social Media
%A Son, Youngseo
%A Varadarajan, Vasudha
%A Schwartz, H. Andrew
%Y Han, Wenjuan
%Y Zheng, Zilong
%Y Lin, Zhouhan
%Y Jin, Lifeng
%Y Shen, Yikang
%Y Kim, Yoon
%Y Tu, Kewei
%S Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F son-etal-2022-discourse
%X Discourse relations are typically modeled as a discrete class that characterizes the relation between segments of text (e.g. causal explanations, expansions). However, such predefined discrete classes limit the universe of potential relationships and their nuanced differences. Adding higher-level semantic structure to contextual word embeddings, we propose representing discourse relations as points in high dimensional continuous space. However, unlike words, discourse relations often have no surface form (relations are in between two segments, often with no word or phrase in that gap) which presents a challenge for existing embedding techniques. We present a novel method for automatically creating discourse relation embeddings (DiscRE), addressing the embedding challenge through a weakly supervised, multitask approach to learn diverse and nuanced relations in social media. Results show DiscRE representations obtain the best performance on Twitter discourse relation classification (macro F1=0.76), social media causality prediction (from F1=0.79 to 0.81), and perform beyond modern sentence and word transformers at traditional discourse relation classification, capturing novel nuanced relations (e.g. relations at the intersection of causal explanations and counterfactuals).
%R 10.18653/v1/2022.umios-1.5
%U https://aclanthology.org/2022.umios-1.5/
%U https://doi.org/10.18653/v1/2022.umios-1.5
%P 45-55
Markdown (Informal)
[Discourse Relation Embeddings: Representing the Relations between Discourse Segments in Social Media](https://aclanthology.org/2022.umios-1.5/) (Son et al., UM-IoS 2022)
ACL