Mapping Phonology to Semantics: A Computational Model of Cross-Lingual Spoken-Word Recognition

Iuliia Zaitova, Badr Abdullah, Dietrich Klakow


Abstract
Closely related languages are often mutually intelligible to various degrees. Therefore, speakers of closely related languages are usually capable of (partially) comprehending each other’s speech without explicitly learning the target, second language. The cross-linguistic intelligibility among closely related languages is mainly driven by linguistic factors such as lexical similarities. This paper presents a computational model of spoken-word recognition and investigates its ability to recognize word forms from different languages than its native, training language. Our model is based on a recurrent neural network that learns to map a word’s phonological sequence onto a semantic representation of the word. Furthermore, we present a case study on the related Slavic languages and demonstrate that the cross-lingual performance of our model not only predicts mutual intelligibility to a large extent but also reflects the genetic classification of the languages in our study.
Anthology ID:
2022.vardial-1.6
Volume:
Proceedings of the Ninth Workshop on NLP for Similar Languages, Varieties and Dialects
Month:
October
Year:
2022
Address:
Gyeongju, Republic of Korea
Editors:
Yves Scherrer, Tommi Jauhiainen, Nikola Ljubešić, Preslav Nakov, Jörg Tiedemann, Marcos Zampieri
Venue:
VarDial
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
54–63
Language:
URL:
https://aclanthology.org/2022.vardial-1.6
DOI:
Bibkey:
Cite (ACL):
Iuliia Zaitova, Badr Abdullah, and Dietrich Klakow. 2022. Mapping Phonology to Semantics: A Computational Model of Cross-Lingual Spoken-Word Recognition. In Proceedings of the Ninth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 54–63, Gyeongju, Republic of Korea. Association for Computational Linguistics.
Cite (Informal):
Mapping Phonology to Semantics: A Computational Model of Cross-Lingual Spoken-Word Recognition (Zaitova et al., VarDial 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.vardial-1.6.pdf