@inproceedings{alturayeif-etal-2022-mawqif,
title = "Mawqif: A Multi-label {A}rabic Dataset for Target-specific Stance Detection",
author = "Alturayeif, Nora Saleh and
Luqman, Hamzah Abdullah and
Ahmed, Moataz Aly Kamaleldin",
editor = "Bouamor, Houda and
Al-Khalifa, Hend and
Darwish, Kareem and
Rambow, Owen and
Bougares, Fethi and
Abdelali, Ahmed and
Tomeh, Nadi and
Khalifa, Salam and
Zaghouani, Wajdi",
booktitle = "Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wanlp-1.16",
doi = "10.18653/v1/2022.wanlp-1.16",
pages = "174--184",
abstract = "Social media platforms are becoming inherent parts of people{'}s daily life to express opinions and stances toward topics of varying polarities. Stance detection determines the viewpoint expressed in a text toward a target. While communication on social media (e.g., Twitter) takes place in more than 40 languages, the majority of stance detection research has been focused on English. Although some efforts have recently been made to develop stance detection datasets in other languages, no similar efforts seem to have considered the Arabic language. In this paper, we present Mawqif, the first Arabic dataset for target-specific stance detection, composed of 4,121 tweets annotated with stance, sentiment, and sarcasm polarities. Mawqif, as a multi-label dataset, can provide more opportunities for studying the interaction between different opinion dimensions and evaluating a multi-task model. We provide a detailed description of the dataset, present an analysis of the produced annotation, and evaluate four BERT-based models on it. Our best model achieves a macro-F1 of 78.89{\%}, which shows that there is ample room for improvement on this challenging task. We publicly release our dataset, the annotation guidelines, and the code of the experiments.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="alturayeif-etal-2022-mawqif">
<titleInfo>
<title>Mawqif: A Multi-label Arabic Dataset for Target-specific Stance Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="given">Saleh</namePart>
<namePart type="family">Alturayeif</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamzah</namePart>
<namePart type="given">Abdullah</namePart>
<namePart type="family">Luqman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Moataz</namePart>
<namePart type="given">Aly</namePart>
<namePart type="given">Kamaleldin</namePart>
<namePart type="family">Ahmed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fethi</namePart>
<namePart type="family">Bougares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadi</namePart>
<namePart type="family">Tomeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wajdi</namePart>
<namePart type="family">Zaghouani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Social media platforms are becoming inherent parts of people’s daily life to express opinions and stances toward topics of varying polarities. Stance detection determines the viewpoint expressed in a text toward a target. While communication on social media (e.g., Twitter) takes place in more than 40 languages, the majority of stance detection research has been focused on English. Although some efforts have recently been made to develop stance detection datasets in other languages, no similar efforts seem to have considered the Arabic language. In this paper, we present Mawqif, the first Arabic dataset for target-specific stance detection, composed of 4,121 tweets annotated with stance, sentiment, and sarcasm polarities. Mawqif, as a multi-label dataset, can provide more opportunities for studying the interaction between different opinion dimensions and evaluating a multi-task model. We provide a detailed description of the dataset, present an analysis of the produced annotation, and evaluate four BERT-based models on it. Our best model achieves a macro-F1 of 78.89%, which shows that there is ample room for improvement on this challenging task. We publicly release our dataset, the annotation guidelines, and the code of the experiments.</abstract>
<identifier type="citekey">alturayeif-etal-2022-mawqif</identifier>
<identifier type="doi">10.18653/v1/2022.wanlp-1.16</identifier>
<location>
<url>https://aclanthology.org/2022.wanlp-1.16</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>174</start>
<end>184</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mawqif: A Multi-label Arabic Dataset for Target-specific Stance Detection
%A Alturayeif, Nora Saleh
%A Luqman, Hamzah Abdullah
%A Ahmed, Moataz Aly Kamaleldin
%Y Bouamor, Houda
%Y Al-Khalifa, Hend
%Y Darwish, Kareem
%Y Rambow, Owen
%Y Bougares, Fethi
%Y Abdelali, Ahmed
%Y Tomeh, Nadi
%Y Khalifa, Salam
%Y Zaghouani, Wajdi
%S Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F alturayeif-etal-2022-mawqif
%X Social media platforms are becoming inherent parts of people’s daily life to express opinions and stances toward topics of varying polarities. Stance detection determines the viewpoint expressed in a text toward a target. While communication on social media (e.g., Twitter) takes place in more than 40 languages, the majority of stance detection research has been focused on English. Although some efforts have recently been made to develop stance detection datasets in other languages, no similar efforts seem to have considered the Arabic language. In this paper, we present Mawqif, the first Arabic dataset for target-specific stance detection, composed of 4,121 tweets annotated with stance, sentiment, and sarcasm polarities. Mawqif, as a multi-label dataset, can provide more opportunities for studying the interaction between different opinion dimensions and evaluating a multi-task model. We provide a detailed description of the dataset, present an analysis of the produced annotation, and evaluate four BERT-based models on it. Our best model achieves a macro-F1 of 78.89%, which shows that there is ample room for improvement on this challenging task. We publicly release our dataset, the annotation guidelines, and the code of the experiments.
%R 10.18653/v1/2022.wanlp-1.16
%U https://aclanthology.org/2022.wanlp-1.16
%U https://doi.org/10.18653/v1/2022.wanlp-1.16
%P 174-184
Markdown (Informal)
[Mawqif: A Multi-label Arabic Dataset for Target-specific Stance Detection](https://aclanthology.org/2022.wanlp-1.16) (Alturayeif et al., WANLP 2022)
ACL