@inproceedings{chavan-kane-2022-chavankane,
title = "{C}havan{K}ane at {WANLP} 2022 Shared Task: Large Language Models for Multi-label Propaganda Detection",
author = "Chavan, Tanmay and
Kane, Aditya Manish",
editor = "Bouamor, Houda and
Al-Khalifa, Hend and
Darwish, Kareem and
Rambow, Owen and
Bougares, Fethi and
Abdelali, Ahmed and
Tomeh, Nadi and
Khalifa, Salam and
Zaghouani, Wajdi",
booktitle = "Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wanlp-1.60",
doi = "10.18653/v1/2022.wanlp-1.60",
pages = "515--519",
abstract = "The spread of propaganda through the internet has increased drastically over the past years. Lately, propaganda detection has started gaining importance because of the negative impact it has on society. In this work, we describe our approach for the WANLP 2022 shared task which handles the task of propaganda detection in a multi-label setting. The task demands the model to label the given text as having one or more types of propaganda techniques. There are a total of 21 propaganda techniques to be detected. We show that an ensemble of five models performs the best on the task, scoring a micro-F1 score of 59.73{\%}. We also conduct comprehensive ablations and propose various future directions for this work.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chavan-kane-2022-chavankane">
<titleInfo>
<title>ChavanKane at WANLP 2022 Shared Task: Large Language Models for Multi-label Propaganda Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tanmay</namePart>
<namePart type="family">Chavan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aditya</namePart>
<namePart type="given">Manish</namePart>
<namePart type="family">Kane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fethi</namePart>
<namePart type="family">Bougares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadi</namePart>
<namePart type="family">Tomeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wajdi</namePart>
<namePart type="family">Zaghouani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The spread of propaganda through the internet has increased drastically over the past years. Lately, propaganda detection has started gaining importance because of the negative impact it has on society. In this work, we describe our approach for the WANLP 2022 shared task which handles the task of propaganda detection in a multi-label setting. The task demands the model to label the given text as having one or more types of propaganda techniques. There are a total of 21 propaganda techniques to be detected. We show that an ensemble of five models performs the best on the task, scoring a micro-F1 score of 59.73%. We also conduct comprehensive ablations and propose various future directions for this work.</abstract>
<identifier type="citekey">chavan-kane-2022-chavankane</identifier>
<identifier type="doi">10.18653/v1/2022.wanlp-1.60</identifier>
<location>
<url>https://aclanthology.org/2022.wanlp-1.60</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>515</start>
<end>519</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ChavanKane at WANLP 2022 Shared Task: Large Language Models for Multi-label Propaganda Detection
%A Chavan, Tanmay
%A Kane, Aditya Manish
%Y Bouamor, Houda
%Y Al-Khalifa, Hend
%Y Darwish, Kareem
%Y Rambow, Owen
%Y Bougares, Fethi
%Y Abdelali, Ahmed
%Y Tomeh, Nadi
%Y Khalifa, Salam
%Y Zaghouani, Wajdi
%S Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F chavan-kane-2022-chavankane
%X The spread of propaganda through the internet has increased drastically over the past years. Lately, propaganda detection has started gaining importance because of the negative impact it has on society. In this work, we describe our approach for the WANLP 2022 shared task which handles the task of propaganda detection in a multi-label setting. The task demands the model to label the given text as having one or more types of propaganda techniques. There are a total of 21 propaganda techniques to be detected. We show that an ensemble of five models performs the best on the task, scoring a micro-F1 score of 59.73%. We also conduct comprehensive ablations and propose various future directions for this work.
%R 10.18653/v1/2022.wanlp-1.60
%U https://aclanthology.org/2022.wanlp-1.60
%U https://doi.org/10.18653/v1/2022.wanlp-1.60
%P 515-519
Markdown (Informal)
[ChavanKane at WANLP 2022 Shared Task: Large Language Models for Multi-label Propaganda Detection](https://aclanthology.org/2022.wanlp-1.60) (Chavan & Kane, WANLP 2022)
ACL