@inproceedings{yusuf-etal-2022-hindiwsd,
title = "{H}indi{WSD}: A package for word sense disambiguation in {H}inglish {\&} {H}indi",
author = "Yusuf, Mirza and
Surana, Praatibh and
Sharma, Chethan",
editor = "Jha, Girish Nath and
L., Sobha and
Bali, Kalika and
Ojha, Atul Kr.",
booktitle = "Proceedings of the WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.wildre-1.4/",
pages = "18--23",
abstract = "A lot of commendable work has been done, especially in high resource languages such as English, Spanish, French, etc. However, work done for Indic languages such as Hindi, Tamil, Telugu, etc is relatively less due to difficulty in finding relevant datasets, and the complexity of these languages. With the advent of IndoWordnet, we can explore important tasks such as word sense disambiguation, word similarity, and cross-lingual information retrieval, and carry out effective research regarding the same. In this paper, we worked on improving word sense disambiguation for 20 of the most common ambiguous Hindi words by making use of knowledge-based methods. We also came up with {\textquotedblleft}hindiwsd{\textquotedblright}, an easy-to-use framework developed in Python that acts as a pipeline for transliteration of Hinglish code-mixed text followed by spell correction, POS tagging, and word sense disambiguation of Hindi text. We also curated a dataset of these 20 most used ambiguous Hindi words. This dataset was then used to enhance a modified Lesk`s algorithm and more accurately carry out word sense disambiguation. We achieved an accuracy of about 71{\%} using our customized Lesk`s algorithm which was an improvement to the accuracy of about 34{\%} using the original Lesk`s algorithm on the test set."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yusuf-etal-2022-hindiwsd">
<titleInfo>
<title>HindiWSD: A package for word sense disambiguation in Hinglish & Hindi</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirza</namePart>
<namePart type="family">Yusuf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Praatibh</namePart>
<namePart type="family">Surana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chethan</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Girish</namePart>
<namePart type="given">Nath</namePart>
<namePart type="family">Jha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="family">L.</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A lot of commendable work has been done, especially in high resource languages such as English, Spanish, French, etc. However, work done for Indic languages such as Hindi, Tamil, Telugu, etc is relatively less due to difficulty in finding relevant datasets, and the complexity of these languages. With the advent of IndoWordnet, we can explore important tasks such as word sense disambiguation, word similarity, and cross-lingual information retrieval, and carry out effective research regarding the same. In this paper, we worked on improving word sense disambiguation for 20 of the most common ambiguous Hindi words by making use of knowledge-based methods. We also came up with “hindiwsd”, an easy-to-use framework developed in Python that acts as a pipeline for transliteration of Hinglish code-mixed text followed by spell correction, POS tagging, and word sense disambiguation of Hindi text. We also curated a dataset of these 20 most used ambiguous Hindi words. This dataset was then used to enhance a modified Lesk‘s algorithm and more accurately carry out word sense disambiguation. We achieved an accuracy of about 71% using our customized Lesk‘s algorithm which was an improvement to the accuracy of about 34% using the original Lesk‘s algorithm on the test set.</abstract>
<identifier type="citekey">yusuf-etal-2022-hindiwsd</identifier>
<location>
<url>https://aclanthology.org/2022.wildre-1.4/</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>18</start>
<end>23</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HindiWSD: A package for word sense disambiguation in Hinglish & Hindi
%A Yusuf, Mirza
%A Surana, Praatibh
%A Sharma, Chethan
%Y Jha, Girish Nath
%Y L., Sobha
%Y Bali, Kalika
%Y Ojha, Atul Kr.
%S Proceedings of the WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F yusuf-etal-2022-hindiwsd
%X A lot of commendable work has been done, especially in high resource languages such as English, Spanish, French, etc. However, work done for Indic languages such as Hindi, Tamil, Telugu, etc is relatively less due to difficulty in finding relevant datasets, and the complexity of these languages. With the advent of IndoWordnet, we can explore important tasks such as word sense disambiguation, word similarity, and cross-lingual information retrieval, and carry out effective research regarding the same. In this paper, we worked on improving word sense disambiguation for 20 of the most common ambiguous Hindi words by making use of knowledge-based methods. We also came up with “hindiwsd”, an easy-to-use framework developed in Python that acts as a pipeline for transliteration of Hinglish code-mixed text followed by spell correction, POS tagging, and word sense disambiguation of Hindi text. We also curated a dataset of these 20 most used ambiguous Hindi words. This dataset was then used to enhance a modified Lesk‘s algorithm and more accurately carry out word sense disambiguation. We achieved an accuracy of about 71% using our customized Lesk‘s algorithm which was an improvement to the accuracy of about 34% using the original Lesk‘s algorithm on the test set.
%U https://aclanthology.org/2022.wildre-1.4/
%P 18-23
Markdown (Informal)
[HindiWSD: A package for word sense disambiguation in Hinglish & Hindi](https://aclanthology.org/2022.wildre-1.4/) (Yusuf et al., WILDRE 2022)
ACL