@inproceedings{park-lee-2022-unsupervised,
title = "Unsupervised Abstractive Dialogue Summarization with Word Graphs and {POV} Conversion",
author = "Park, Seongmin and
Lee, Jihwa",
editor = "Hruschka, Estevam and
Mitchell, Tom and
Mladenic, Dunja and
Grobelnik, Marko and
Bhutani, Nikita",
booktitle = "Proceedings of the 2nd Workshop on Deriving Insights from User-Generated Text",
month = may,
year = "2022",
address = "(Hybrid) Dublin, Ireland, and Virtual",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wit-1.1",
doi = "10.18653/v1/2022.wit-1.1",
pages = "1--9",
abstract = "We advance the state-of-the-art in unsupervised abstractive dialogue summarization by utilizing multi-sentence compression graphs. Starting from well-founded assumptions about word graphs, we present simple but reliable path-reranking and topic segmentation schemes. Robustness of our method is demonstrated on datasets across multiple domains, including meetings, interviews, movie scripts, and day-to-day conversations. We also identify possible avenues to augment our heuristic-based system with deep learning. We open-source our code, to provide a strong, reproducible baseline for future research into unsupervised dialogue summarization.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="park-lee-2022-unsupervised">
<titleInfo>
<title>Unsupervised Abstractive Dialogue Summarization with Word Graphs and POV Conversion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seongmin</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jihwa</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Deriving Insights from User-Generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Estevam</namePart>
<namePart type="family">Hruschka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Mitchell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dunja</namePart>
<namePart type="family">Mladenic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikita</namePart>
<namePart type="family">Bhutani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">(Hybrid) Dublin, Ireland, and Virtual</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We advance the state-of-the-art in unsupervised abstractive dialogue summarization by utilizing multi-sentence compression graphs. Starting from well-founded assumptions about word graphs, we present simple but reliable path-reranking and topic segmentation schemes. Robustness of our method is demonstrated on datasets across multiple domains, including meetings, interviews, movie scripts, and day-to-day conversations. We also identify possible avenues to augment our heuristic-based system with deep learning. We open-source our code, to provide a strong, reproducible baseline for future research into unsupervised dialogue summarization.</abstract>
<identifier type="citekey">park-lee-2022-unsupervised</identifier>
<identifier type="doi">10.18653/v1/2022.wit-1.1</identifier>
<location>
<url>https://aclanthology.org/2022.wit-1.1</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1</start>
<end>9</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Abstractive Dialogue Summarization with Word Graphs and POV Conversion
%A Park, Seongmin
%A Lee, Jihwa
%Y Hruschka, Estevam
%Y Mitchell, Tom
%Y Mladenic, Dunja
%Y Grobelnik, Marko
%Y Bhutani, Nikita
%S Proceedings of the 2nd Workshop on Deriving Insights from User-Generated Text
%D 2022
%8 May
%I Association for Computational Linguistics
%C (Hybrid) Dublin, Ireland, and Virtual
%F park-lee-2022-unsupervised
%X We advance the state-of-the-art in unsupervised abstractive dialogue summarization by utilizing multi-sentence compression graphs. Starting from well-founded assumptions about word graphs, we present simple but reliable path-reranking and topic segmentation schemes. Robustness of our method is demonstrated on datasets across multiple domains, including meetings, interviews, movie scripts, and day-to-day conversations. We also identify possible avenues to augment our heuristic-based system with deep learning. We open-source our code, to provide a strong, reproducible baseline for future research into unsupervised dialogue summarization.
%R 10.18653/v1/2022.wit-1.1
%U https://aclanthology.org/2022.wit-1.1
%U https://doi.org/10.18653/v1/2022.wit-1.1
%P 1-9
Markdown (Informal)
[Unsupervised Abstractive Dialogue Summarization with Word Graphs and POV Conversion](https://aclanthology.org/2022.wit-1.1) (Park & Lee, WIT 2022)
ACL