The VolcTrans System for WMT22 Multilingual Machine Translation Task
Xian Qian, Kai Hu, Jiaqiang Wang, Yifeng Liu, Xingyuan Pan, Jun Cao, Mingxuan Wang
Abstract
This report describes our VolcTrans system for the WMT22 shared task on large-scale multilingual machine translation. We participated in the unconstrained track which allows the use of external resources. Our system is a transformer-based multilingual model trained on data from multiple sources including the public training set from the data track, NLLB data provided by Meta AI, self-collected parallel corpora, and pseudo bitext from back-translation. Both bilingual and monolingual texts are cleaned by a series of heuristic rules. On the official test set, our system achieves 17.3 BLEU, 21.9 spBLEU, and 41.9 chrF2++ on average over all language pairs. Averaged inference speed is 11.5 sentences per second using a single Nvidia Tesla V100 GPU.- Anthology ID:
- 2022.wmt-1.104
- Volume:
- Proceedings of the Seventh Conference on Machine Translation (WMT)
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates (Hybrid)
- Editors:
- Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1068–1075
- Language:
- URL:
- https://aclanthology.org/2022.wmt-1.104
- DOI:
- Bibkey:
- Cite (ACL):
- Xian Qian, Kai Hu, Jiaqiang Wang, Yifeng Liu, Xingyuan Pan, Jun Cao, and Mingxuan Wang. 2022. The VolcTrans System for WMT22 Multilingual Machine Translation Task. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 1068–1075, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
- Cite (Informal):
- The VolcTrans System for WMT22 Multilingual Machine Translation Task (Qian et al., WMT 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.wmt-1.104.pdf
- Dataset:
- 2022.wmt-1.104.dataset.zip
Export citation
@inproceedings{qian-etal-2022-volctrans, title = "The {V}olc{T}rans System for {WMT}22 Multilingual Machine Translation Task", author = "Qian, Xian and Hu, Kai and Wang, Jiaqiang and Liu, Yifeng and Pan, Xingyuan and Cao, Jun and Wang, Mingxuan", editor = {Koehn, Philipp and Barrault, Lo{\"\i}c and Bojar, Ond{\v{r}}ej and Bougares, Fethi and Chatterjee, Rajen and Costa-juss{\`a}, Marta R. and Federmann, Christian and Fishel, Mark and Fraser, Alexander and Freitag, Markus and Graham, Yvette and Grundkiewicz, Roman and Guzman, Paco and Haddow, Barry and Huck, Matthias and Jimeno Yepes, Antonio and Kocmi, Tom and Martins, Andr{\'e} and Morishita, Makoto and Monz, Christof and Nagata, Masaaki and Nakazawa, Toshiaki and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Popel, Martin and Turchi, Marco and Zampieri, Marcos}, booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wmt-1.104", pages = "1068--1075", abstract = "This report describes our VolcTrans system for the WMT22 shared task on large-scale multilingual machine translation. We participated in the unconstrained track which allows the use of external resources. Our system is a transformer-based multilingual model trained on data from multiple sources including the public training set from the data track, NLLB data provided by Meta AI, self-collected parallel corpora, and pseudo bitext from back-translation. Both bilingual and monolingual texts are cleaned by a series of heuristic rules. On the official test set, our system achieves 17.3 BLEU, 21.9 spBLEU, and 41.9 chrF2++ on average over all language pairs. Averaged inference speed is 11.5 sentences per second using a single Nvidia Tesla V100 GPU.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="qian-etal-2022-volctrans"> <titleInfo> <title>The VolcTrans System for WMT22 Multilingual Machine Translation Task</title> </titleInfo> <name type="personal"> <namePart type="given">Xian</namePart> <namePart type="family">Qian</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kai</namePart> <namePart type="family">Hu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jiaqiang</namePart> <namePart type="family">Wang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yifeng</namePart> <namePart type="family">Liu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Xingyuan</namePart> <namePart type="family">Pan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jun</namePart> <namePart type="family">Cao</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mingxuan</namePart> <namePart type="family">Wang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-12</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Seventh Conference on Machine Translation (WMT)</title> </titleInfo> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Loïc</namePart> <namePart type="family">Barrault</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fethi</namePart> <namePart type="family">Bougares</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marta</namePart> <namePart type="given">R</namePart> <namePart type="family">Costa-jussà</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Fraser</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Markus</namePart> <namePart type="family">Freitag</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Roman</namePart> <namePart type="family">Grundkiewicz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paco</namePart> <namePart type="family">Guzman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="family">Jimeno Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tom</namePart> <namePart type="family">Kocmi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaaki</namePart> <namePart type="family">Nagata</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Toshiaki</namePart> <namePart type="family">Nakazawa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martin</namePart> <namePart type="family">Popel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marcos</namePart> <namePart type="family">Zampieri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This report describes our VolcTrans system for the WMT22 shared task on large-scale multilingual machine translation. We participated in the unconstrained track which allows the use of external resources. Our system is a transformer-based multilingual model trained on data from multiple sources including the public training set from the data track, NLLB data provided by Meta AI, self-collected parallel corpora, and pseudo bitext from back-translation. Both bilingual and monolingual texts are cleaned by a series of heuristic rules. On the official test set, our system achieves 17.3 BLEU, 21.9 spBLEU, and 41.9 chrF2++ on average over all language pairs. Averaged inference speed is 11.5 sentences per second using a single Nvidia Tesla V100 GPU.</abstract> <identifier type="citekey">qian-etal-2022-volctrans</identifier> <location> <url>https://aclanthology.org/2022.wmt-1.104</url> </location> <part> <date>2022-12</date> <extent unit="page"> <start>1068</start> <end>1075</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T The VolcTrans System for WMT22 Multilingual Machine Translation Task %A Qian, Xian %A Hu, Kai %A Wang, Jiaqiang %A Liu, Yifeng %A Pan, Xingyuan %A Cao, Jun %A Wang, Mingxuan %Y Koehn, Philipp %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Freitag, Markus %Y Graham, Yvette %Y Grundkiewicz, Roman %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Jimeno Yepes, Antonio %Y Kocmi, Tom %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Popel, Martin %Y Turchi, Marco %Y Zampieri, Marcos %S Proceedings of the Seventh Conference on Machine Translation (WMT) %D 2022 %8 December %I Association for Computational Linguistics %C Abu Dhabi, United Arab Emirates (Hybrid) %F qian-etal-2022-volctrans %X This report describes our VolcTrans system for the WMT22 shared task on large-scale multilingual machine translation. We participated in the unconstrained track which allows the use of external resources. Our system is a transformer-based multilingual model trained on data from multiple sources including the public training set from the data track, NLLB data provided by Meta AI, self-collected parallel corpora, and pseudo bitext from back-translation. Both bilingual and monolingual texts are cleaned by a series of heuristic rules. On the official test set, our system achieves 17.3 BLEU, 21.9 spBLEU, and 41.9 chrF2++ on average over all language pairs. Averaged inference speed is 11.5 sentences per second using a single Nvidia Tesla V100 GPU. %U https://aclanthology.org/2022.wmt-1.104 %P 1068-1075
Markdown (Informal)
[The VolcTrans System for WMT22 Multilingual Machine Translation Task](https://aclanthology.org/2022.wmt-1.104) (Qian et al., WMT 2022)
- The VolcTrans System for WMT22 Multilingual Machine Translation Task (Qian et al., WMT 2022)
ACL
- Xian Qian, Kai Hu, Jiaqiang Wang, Yifeng Liu, Xingyuan Pan, Jun Cao, and Mingxuan Wang. 2022. The VolcTrans System for WMT22 Multilingual Machine Translation Task. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 1068–1075, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.