Correct Metadata for
Abstract
We here describe our neural machine translation system for general machine translation shared task in WMT 2022. Our systems are based on the Transformer (Vaswani et al., 2017) with base settings. We explore the high-efficiency model training strategies, aimed to train a model with high-accuracy by using small model and a reasonable amount of data. We performed fine-tuning and ensembling with N-best ranking in English to/from Japanese directions. We found that fine-tuning by filtered JParaCrawl data set leads to better translations for both of direction in English to/from Japanese models. In English to Japanese direction model, ensembling and N-best ranking of 10 different checkpoints improved translations. By comparing with other online translation service, we found that our model achieved a great translation quality.- Anthology ID:
- 2022.wmt-1.22
- Volume:
- Proceedings of the Seventh Conference on Machine Translation (WMT)
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates (Hybrid)
- Editors:
- Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 290–294
- Language:
- URL:
- https://aclanthology.org/2022.wmt-1.22/
- DOI:
- 10.18653/v1/2022.wmt-1.22
- Bibkey:
- Cite (ACL):
- Shivam Kalkar, Yoko Matsuzaki, and Ben Li. 2022. KYB General Machine Translation Systems for WMT22. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 290–294, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
- Cite (Informal):
- KYB General Machine Translation Systems for WMT22 (Kalkar et al., WMT 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.wmt-1.22.pdf
Export citation
@inproceedings{kalkar-etal-2022-kyb,
title = "{KYB} General Machine Translation Systems for {WMT}22",
author = "Kalkar, Shivam and
Matsuzaki, Yoko and
Li, Ben",
editor = {Koehn, Philipp and
Barrault, Lo{\"i}c and
Bojar, Ond{\v{r}}ej and
Bougares, Fethi and
Chatterjee, Rajen and
Costa-juss{\`a}, Marta R. and
Federmann, Christian and
Fishel, Mark and
Fraser, Alexander and
Freitag, Markus and
Graham, Yvette and
Grundkiewicz, Roman and
Guzman, Paco and
Haddow, Barry and
Huck, Matthias and
Jimeno Yepes, Antonio and
Kocmi, Tom and
Martins, Andr{\'e} and
Morishita, Makoto and
Monz, Christof and
Nagata, Masaaki and
Nakazawa, Toshiaki and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Popel, Martin and
Turchi, Marco and
Zampieri, Marcos},
booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wmt-1.22/",
doi = "10.18653/v1/2022.wmt-1.22",
pages = "290--294",
abstract = "We here describe our neural machine translation system for general machine translation shared task in WMT 2022. Our systems are based on the Transformer (Vaswani et al., 2017) with base settings. We explore the high-efficiency model training strategies, aimed to train a model with high-accuracy by using small model and a reasonable amount of data. We performed fine-tuning and ensembling with N-best ranking in English to/from Japanese directions. We found that fine-tuning by filtered JParaCrawl data set leads to better translations for both of direction in English to/from Japanese models. In English to Japanese direction model, ensembling and N-best ranking of 10 different checkpoints improved translations. By comparing with other online translation service, we found that our model achieved a great translation quality."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kalkar-etal-2022-kyb">
<titleInfo>
<title>KYB General Machine Translation Systems for WMT22</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shivam</namePart>
<namePart type="family">Kalkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoko</namePart>
<namePart type="family">Matsuzaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ben</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Conference on Machine Translation (WMT)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loïc</namePart>
<namePart type="family">Barrault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fethi</namePart>
<namePart type="family">Bougares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajen</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Federmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Freitag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Grundkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paco</namePart>
<namePart type="family">Guzman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Jimeno Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Morishita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masaaki</namePart>
<namePart type="family">Nagata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toshiaki</namePart>
<namePart type="family">Nakazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Popel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We here describe our neural machine translation system for general machine translation shared task in WMT 2022. Our systems are based on the Transformer (Vaswani et al., 2017) with base settings. We explore the high-efficiency model training strategies, aimed to train a model with high-accuracy by using small model and a reasonable amount of data. We performed fine-tuning and ensembling with N-best ranking in English to/from Japanese directions. We found that fine-tuning by filtered JParaCrawl data set leads to better translations for both of direction in English to/from Japanese models. In English to Japanese direction model, ensembling and N-best ranking of 10 different checkpoints improved translations. By comparing with other online translation service, we found that our model achieved a great translation quality.</abstract>
<identifier type="citekey">kalkar-etal-2022-kyb</identifier>
<identifier type="doi">10.18653/v1/2022.wmt-1.22</identifier>
<location>
<url>https://aclanthology.org/2022.wmt-1.22/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>290</start>
<end>294</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T KYB General Machine Translation Systems for WMT22 %A Kalkar, Shivam %A Matsuzaki, Yoko %A Li, Ben %Y Koehn, Philipp %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Freitag, Markus %Y Graham, Yvette %Y Grundkiewicz, Roman %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Jimeno Yepes, Antonio %Y Kocmi, Tom %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Popel, Martin %Y Turchi, Marco %Y Zampieri, Marcos %S Proceedings of the Seventh Conference on Machine Translation (WMT) %D 2022 %8 December %I Association for Computational Linguistics %C Abu Dhabi, United Arab Emirates (Hybrid) %F kalkar-etal-2022-kyb %X We here describe our neural machine translation system for general machine translation shared task in WMT 2022. Our systems are based on the Transformer (Vaswani et al., 2017) with base settings. We explore the high-efficiency model training strategies, aimed to train a model with high-accuracy by using small model and a reasonable amount of data. We performed fine-tuning and ensembling with N-best ranking in English to/from Japanese directions. We found that fine-tuning by filtered JParaCrawl data set leads to better translations for both of direction in English to/from Japanese models. In English to Japanese direction model, ensembling and N-best ranking of 10 different checkpoints improved translations. By comparing with other online translation service, we found that our model achieved a great translation quality. %R 10.18653/v1/2022.wmt-1.22 %U https://aclanthology.org/2022.wmt-1.22/ %U https://doi.org/10.18653/v1/2022.wmt-1.22 %P 290-294
Markdown (Informal)
[KYB General Machine Translation Systems for WMT22](https://aclanthology.org/2022.wmt-1.22/) (Kalkar et al., WMT 2022)
- KYB General Machine Translation Systems for WMT22 (Kalkar et al., WMT 2022)
ACL
- Shivam Kalkar, Yoko Matsuzaki, and Ben Li. 2022. KYB General Machine Translation Systems for WMT22. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 290–294, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.