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Abstract

Customer feedback can be an important signal
for improving commercial machine translation
systems. One solution for fixing specific trans-
lation errors is to remove the related erroneous
training instances followed by re-training of
the machine translation system, which we refer
to as instance-specific data filtering. Influence
functions (IF) have been shown to be effec-
tive in finding such relevant training examples
for classification tasks such as image classifi-
cation, toxic speech detection and entailment
task. Given a probing instance, IF find influen-
tial training examples by measuring the simi-
larity of the probing instance with a set of train-
ing examples in gradient space. In this work,
we examine the use of influence functions for
Neural Machine Translation (NMT). We pro-
pose two effective extensions to a state of the
art influence function and demonstrate on the
sub-problem of copied training examples that
IF can be applied more generally than hand-
crafted regular expressions.

1 Introduction

Neural Machine Translation (NMT) is the de facto
standard for recent high-quality machine transla-
tion systems. NMT, however, requires abundant
amount of bi-text for supervised training. One com-
mon approach to increase the amount of bi-text
is via data augmentation (Sennrich et al., 2015;
Edunov et al., 2018; He et al., 2019, inter alia).
Another approach is the use of web-crawled data
(Bañón et al., 2020) but since crawled data is
known to be notoriously noisy (Khayrallah and
Koehn, 2018; Caswell et al., 2020), a plethora of
data filtering techniques (Junczys-Dowmunt, 2018;
Wang et al., 2018; Ramírez-Sánchez et al., 2020, in-
ter alia) have been proposed for retaining a cleaner
portion of the bi-text for training.

While standard data filtering techniques aim to
improve the quality of the overall training data
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without targeting the translation quality of specific
instances, instance-specific data filtering focuses
on the improvement of translation quality toward
a specific set of input sentences via removal of
the related training data. In commercial MT, this
selected set of sentences can be the problematic
translations reported by customers. One simple
approach of instance-specific data filtering in NMT
is manual filtering. In manual filtering, human
annotators identify translation errors on sentences
reported by customer and designs filtering scheme,
e.g., regular expressions to search related training
examples for removal from the training set.

In this work, we attempt to apply a more au-
tomatable technique called influence functions (IF)
which is shown to be effective on image classifi-
cation (Koh and Liang, 2017), and certain NLP
tasks such as sentiment analysis, entailment and
toxic speech detection (Han et al., 2020; Guo et al.,
2020). Given a probing example, influence func-
tions (IF) search for the influential training exam-
ples by measuring the similarity of the probing
example with a set of training examples in gradi-
ent space. Schioppa et al. (2021) use a low-rank
approximation of the Hessian to speed up the com-
putation of IF and apply the idea of self-influence to
NMT. However, self-influence measures if a train-
ing instance is an outlier rather than its similar-
ity with another instance. Akyürek et al. (2022)
question the back-tracing ability of IF on the fact-
tracing task. They compare IF with heuristics used
in Information Retrieval and attribute the worse
performance of IF to a problem called saturation.
Compared to fact-tracing, the target sides of ma-
chine translation can be more diverse which com-
plicates the application of IF.

We apply an effective type of IF called TracIn
(Pruthi et al., 2020) to NMT for instance-specific
data filtering and analyze its behaviour by con-
structing synthetic training examples containing
simulated translation errors. In particular, we find
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that

• the gradient similarity, also called the influ-
ence1, is highly sensitive to the network com-
ponent.

• vanilla IF may not be sufficient to achieve
good retrieval performance. We proposed two
contrastive methods to further improve the
performance.

• training examples consisting of copied source
sentences have similar gradients even when
they are lexically different. This indicates
that the use of influence functions can go be-
yond what can be achieved with regular ex-
pressions.

• an effective automation of the instance-
specific data filtering remains challenging.

To the best of our knowledge, we are the first to
investigate applying IF for instance-specific data
filtering to NMT.

2 Method

Influence functions IF is a technique from ro-
bust statistics (Hampel, 1974; Cook and Weisberg,
1982, inter alia). It aims to trace a model’s predic-
tions back to the most responsible training exam-
ples without repeated re-training of the model, aka
Leave-One-Out. Koh and Liang (2017) extend this
idea from robust statistics to deep neural network
that requires only the gradient of the loss functions
L and Hessian-vector products so that the influence
I(z, z′) of two examples z and z′ is approximated
as

I(z, z′) ≈ ∇θL(z′)TH−1θ̂ ∇θL(z) (1)

where θ̂ is the model parameters at optimum and
Hθ̂ =

1
n

∑n
i=1∇2

θL(θ) is the Hessian of the model
parameters at θ̂. Given n number of training in-
stances and p number of model parameters, the in-
verse of Hessian has a complexity of O(np2 + p3)
which is expensive to compute for deep neural net-
work. There are several proposed methods to speed
up the computation of IF, e.g., by computing on
a training subset selected by KNN-search (Guo
et al., 2020), by approximating the Hessian with
LISSA (Agarwal et al., 2017), by computing on a

1In this work, we use gradient similarity or influence inter-
changeably to denote the result of IF. Be aware that TracIn is
also one type of IF.

subset of model parameters (Koh and Liang, 2017),
or by replacing the Hessian with some other pro-
cedures (Pruthi et al., 2020). In this work, we
focus on TracIn which is shown to be better than
some other variations (Han and Tsvetkov, 2020;
Schioppa et al., 2021) in terms of retrieval perfor-
mance.

TracIn, denoted by ITracIn(z, z
′), replaces the

computationally costly Hessian matrix with an
identity matrix. The remained gradient dot product,
or called the gradient similarity, is instead com-
puted over C number of checkpoints, followed by
averaging:

ITracIn(z, z
′) =

1

C

C∑

i=1

∇θL(z′)T∇θL(z) (2)

In NMT, given the same source sentence, the mag-
nitude of the gradient in general is positively corre-
lated to the length of the target sentence. In order
to reduce the effect of the target length, we normal-
ize equation 2 by the product of ‖∇θL(z′)‖ and
‖∇θL(z)‖, or equivalently, we compute the cosine
similarity of∇θL(z′) and ∇θL(z).

Given a probing instance z′ and its probing gra-
dient ∇θL(z′), instances in the training set that
yield a positive value of ITracIn(z, z

′) are called
the positively influential training instances (+IF-
Train) whereas those that yield a negative value of
ITracIn(z, z

′) are called the negatively influential
training instances (-IFTrain). Taking a gradient
step on +IFTrain reduces the loss on the probing
example while taking a gradient step on -IFTrain
increases it. IF can be used for data filtering by
removing the +IFTrain examples of low quality
probing samples since their gradients have similar
direction. Conversely, if the probing sample is of
high quality, removing -IFTrain examples from the
training data would be expected to increase transla-
tion quality w.r.t. the probing sample.

3 Experimental Setting

Model configuration and training We use
Transformer BASE configuration as described in
Vaswani et al. (2017) with default setting and im-
plementation in FAIRSEQ. We use a sentence-piece
model to create subword units of size 32k. Un-
less otherwise specified, we pre-trained our NMT
on Europarl-v7 data and News Commentary-v12
data in German-English direction from WMT17
for 100 epochs, about 112K updates, using Adam
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Shared parameters Non-shared parameters
Samples ∇Full ∇Emb ∇srcEmb ∇trgEmb ∇output ∇concat

Probing Noch kommt Volkswagen glimpflich durch. 1 1 1 1 1 1
Volkswagen gets off lightly.

1 Das £ 1,35 Mrd. teure Projekt soll bis 0.153 0.240 0.006 0.287 0.437 0.339
Mai 2017 fertiggestellt werden
Volkswagen gets off lightly.

2 Alle in Frage kommenden Produkte wurden 0.238 0.320 0.013 0.230 0.401 0.319
aus dem Verkauf gezogen.
Volkswagen gets off lightly.

3 Noch kommt Volkswagen glimpflich durch. -0.021 -0.030 -0.149 -0.022 -0.017 -0.040
In 2008, most malware programmes were
still focused on sending out adverts.

4 Noch kommt Volkswagen glimpflich durch. -0.007 -0.016 -0.120 -0.003 0.011 -0.013
We’ve made a complete turnaround.

5 Noch kommt Volkswagen glimpflich durch. 0.950 0.894 0.973 0.927 0.843 0.873
Volkswagen gets off lightly!

6 Noch kommt Volkswagen glimpflich durch! 0.899 0.912 0.873 0.915 0.940 0.927
Volkswagen gets off lightly.

Table 1: Example showing the changes of influence by network components. Segments that are marked in red
are perturbed from the probing example. ∇X indicates the network components used in computing the influence,
∇concat indicates the concatenation of∇srcEmb, ∇trgEmb and ∇output.

optimizerion training of 16-bit2. The effective
mini-batch size is 4096 x 16 tokens and it takes a
p3.16xlarge3 machine on AWS 6 hours for training.
We evaluate the MT model on the newstest2017
test set with a checkpoint averaged over the 10-best
checkpoints, measured by the validation loss on
the newstest2014-2016 dev set. On the test set, our
NMT model with non-shared parameters with the
two word embeddings and the output layer scores
29.99 BLEU whereas the one with shared parame-
ters scores 29.78 BLEU. We use beam search with
beam size of 5 in decoding.

TracIn We select 5 checkpoints, i.e., at epoch 5,
8, 15, 30 and 100 for computing TracIn4. We select
checkpoints which have relatively large changes
in the validation loss, i.e., usually in the earlier
phrase of training, and include the last one to cover
information at the end of the training. We com-

2We use 32-bit precision to compute the gradient similarity
once the training is done.

3See https://aws.amazon.com/ec2/instance-types/ for de-
tails.

4It is tempting to just use the deployed checkpoint to com-
pute the influence. As shown by Liang et al. 2017, however,
the Hessian term in equation 1 captures more accurately the
effect of model training than the dot product of the optimal
checkpoint. In TracIn, the Hessian is approximated by the av-
erage over a set of checkpoints, and we follow their guidelines
for checkpoints selection.

pute the per-sample gradient with a batch size of
1 parallelized over multiple processes with several
g4dn.2x3 machines on AWS.

4 Experimental results

This section describes our findings on the proper-
ties of applying IF on NMT for instance-specific
data filtering.

4.1 Sensitivity of gradient similarity to the
network components

In previous works, the influence, or called the gra-
dient similarity, is usually computed with respect to
a small part of the network parameters, especially
the last or the last few layers (Han et al. (2020);Bar-
shan et al. (2020); inter alia). In NMT, we found
that the resulting influence is highly sensitive to
the network components used in computing the
gradients (or gradient component). For illustration,
we construct a set of perturbed instances, compute
its influence by different gradient components and
observe their changes. The perturbed instances are
not included during the NMT training. This in-
dependence between the NMT and the perturbed
instances provides a simpler setting for checking
how gradient components and the perturbed exam-
ples affect the influence.
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Table 1 shows the gradient similarities of a prob-
ing example from newstest2017 with six artifi-
cially created instances. We use two NMT mod-
els, 1) trained with shared parameters between the
two word embeddings and the output layer and 2)
trained without parameter sharing, to compute the
similarities.

We notice that gradient similarity for the model
with shared parameters is more strongly influenced
by lexical matches on the target side, as shown
by the larger magnitude of influence values for
probing examples 1 and 2 with random source
sides compared to probing examples 3 and 4 with
random target sides. For non-shared parameters,
we observe that the gradient w.r.t. the output
layer (∇output) has stronger response (0.437 and
0.401) to the probing instances with random source
side whereas the gradient w.r.t. source embed-
ding (∇srcEmb) has stronger response (-0.149 and
-0.120) to the instances with random target sides.
On the same probing example, we repeat this ran-
dom sampling of source and target sentences by
using the other 3003 instances in the newstest2017
set. We find that the mean magnitude of∇srcEmb
is 0.04 for random target whereas it is 0.004 for ran-
dom source. In the case of ∇output, the mean mag-
nitude for random target is 0.021 whereas it is 0.428
for random source. This indicates that ∇output has
a tendency of scoring sentence pairs higher when
their target side overlaps with the target side of the
probing instance and is less influenced by source-
side overlap. This may be suboptimal for retrieving
problematic training examples that are relevant to
a given probing instance.

When using a gradient vector ∇concat which
is the concatenation of ∇srcEmb, ∇trgEmb and
∇output, its similarity is dominated by ∇output
rather than equally shared between the three given
that they have the same number of parameters. This
may explain why, in the case of shared parameters,
instances with random source side have higher sim-
ilarities than those with random target side.

Instance 5 and 6 are minor edits of the prob-
ing instance with changes to punctuation. For in-
stance 5, it is not easy to interpret the results for
the model with shared parameters. However, in
the non-shared parameter setting, we observe a
higher similarity for ∇srcEmb than for ∇trgEmb
and ∇output. This is more interpretable because
the punctuation change is on the target side. For
instance 6, the punctuation change is on the source

side and we see a higher TracIn value for ∇output
than for ∇srcEmb and ∇trgEmb. As before, the
value of ∇concat is more similar to the value of
∇output. Further examples can be found in Table
A1 in the Appendix.

These qualitative results show that the choice of
network component is crucial in computing the gra-
dient similarity. As shown in the next experiment,
this affects the retrieval of training examples.

4.2 Contrastive signal is crucial for better
retrieval performance

In this section, we try to illustrate how different gra-
dient components affect the retrieval of the noisy
instances with TracIn. We add control to the re-
trieval outcome by adding synthetic noisy training
instances to the training data. In addition, we show
that vanilla IF may not be sufficient to achieve good
performance because the gradients are aggregated
over all tokens in the target sentence. We thus
propose two contrastive methods to sharpen the
gradient signal.

Synthetic noisy examples We use the error tem-
plate X→ Y which stands for X is translated to Y
to construct synthetic noise examples for the train-
ing set . We created four simple error patterns: 1)
August→ January, 2) Deutschland→ Italy, 3) Ok-
tober→ December and 4) Türkei→ New Zealand.

Error pattern
Number of instances

train synthetic noisy probing

August→ January 8,017 925 9

Deutschland→ Italy 15,360 4,891 30

Oktober→ December 11,927 2,422 8

Türkei→ New Zealand 14,963 7,417 22

Table 2: Number of instances per error pattern

In the training set, we replace the translation of
the sentences containing the source pattern by the
erroneous translation with a probability of 60% so
that the total number of training data is unchanged.
We select these error patterns because translation
errors of months and country names can easily re-
sult from noisy training examples and are therefore
suitable to simulate real customer issues. In addi-
tion, there are related source sentences in the test
set, i.e., newstest2017, which can be used as prob-
ing examples. In order to speed up the computation
of IF, we extract a subset of training data contain-
ing the original pattern, the perturbed pattern and
some randomly sampled training sentences. For
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example, in the error pattern Oktober→ December,
the training subset contains sentences with Okto-
ber, Dezember, October and December on either
the source or target side together with some ran-
domly sampled sentences. Table 2 gives the exact
number of instances for each case. We follow the
same training procedure as section 3 to pre-train
a NMT model on the training corpus perturbed by
the synthetic noises.

Contrastive-IF The gradient of a source-target
pair in NMT involves complicated mapping be-
tween the source tokens and the target tokens. That
is, the gradient vector does not just contain the in-
formation of the error pattern but also other context.
In order to isolate the gradient of the error pattern
from the aggregated signal, we propose two meth-
ods: 1) gradient masking and 2) gradient difference.
Both methods leverage a cleaner translation either
in the form of a gold-reference translation or a cor-
rected hypothesis, i.e. the hypothesis with the error
pattern corrected. We refer to them as Contrastive
Influence Functions (Contrastive-IF).

The idea of gradient masking (Mask) is to ap-
ply a 0/1 token-level mask to the loss function so
as to remove the contribution of irrelevant tokens
from the gradient computation. We assign the mask
based on which tokens differ between hypothesis
and reference. If the 0-mask is applied everywhere
except for the location of the error according to a
corrected translation, we refer to it as MaskExact.

We can use the difference between two hypothe-
ses in a continuous fashion by simply subtracting
their gradients. Specifically, we compute the dif-
ference of the gradient of a sentence A and the
gradient of a sentence B as the probing gradient:
GD(A,B) = ∇(A) − ∇(B). In this work, we
use the hypothesis as A and a cleaner translation
as B (either the reference or the corrected hypothe-
sis) so that positively influential training instances
w.r.t. to GD(A,B) are the synthetic noisy training
instances.

Results Table 3 shows the retrieval performance
of vanilla IF, gradient masking and gradient dif-
ference where the gradient is computed w.r.t. to
either the source embedding, output layer or the full
model. We evaluate the performance with preci-
sion over the top-X% influential training instances,
i.e. the number of synthetic training instances suc-
cessfully retrieved given top-X% of the influential
training samples. We combine results of the four

error patterns by (macro) averaging their precision.

The first three rows show results for vanilla
IF (TracIn) when either the hypothesis, the refer-
ence or a corrected hypothesis is used for probing
the training data. Using ∇srcEmb or ∇output ob-
tain substantially higher precision for each variant
than using ∇Full, i.e., the gradient w.r.t. the en-
tire model, which demonstrates the importance of
the choice of gradient component(s) in vanilla-IF
for retrieval performance. Using the corrected hy-
potheses to retrieve negatively-influential examples
yields the best precision for both top-1% and top-
10% of retrieved training examples.

We qualitatively examine the influential in-
stances retrieved. By using the source-hypothesis
pair as the probing instance, we find that instances
retrieved via ∇output have less similarity on the
source side. In the first probing example, Januar
→ January occurs more frequently in the ranking
than August →January. In the second example,
Italien→ Italy appears as the third influential train-
ing instance when using ∇output whereas all top-3
influential instances obtained by∇srcEmb contain
the desired error pattern of Deutschland→ Italy,
see Table A2 in the Appendix.

We find that both gradient masking,
∇(HYPMask), and gradient difference, ∇(HYP) −
∇(REF), perform better than the vanilla IF given
the same gradient component. ∇(HYPMask) always
outperforms the comparable vanilla IF variants
∇(HYP) and ∇(REF). If we can identify the exact
location of the error pattern, with the probing gra-
dient ∇(HYPMaskExact) or ∇(CorrHYPMaskExact),
the precision can be further boosted and this is
consistent for gradients ∇srcEmb, ∇output and
∇Full. While the gradient difference variants do
not always outperform the comparable masking
variants for all ∇X , ∇(HYP) − ∇(CorrHYP)
yields the overall best result using∇srcEmb.

An interesting finding is the improvement
brought by the corrected hypothesis (CorrHYP).
Applying vanilla-IF on it already achieves a preci-
sion of 0.930 under ∇srcEmb considering the top-
1% influential instances. By applying MaskExact
or gradient difference on it, we achieve very high
precisions of 0.989 and 1.0 under ∇srcEmb consid-
ering the top-1% influential training instances. One
notable gain brought by the proposed approaches is
that for∇Full, the precision increases from 0.531
to around 0.987 for the ∇(HYP) − ∇(CorrHYP)
variant, bringing it on-par to the performance of
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∇(Probing) +/- Precision
∇srcEmb ∇output ∇Full

∇(HYP) + 0.846 0.720 0.503
∇(REF) - 0.876 0.794 0.481
∇(CorrHYP) - 0.930 0.905 0.531

∇(HYPMask) + 0.893 0.840 0.654
∇(HYPMaskExact) + 0.957 0.910 0.862
∇(CorrHYPMaskExact) - 0.989 0.992 0.924

∇(HYP) -∇(REF) + 0.930 0.856 0.584
∇(HYP) -∇(CorrHYP) + 1.000 0.971 0.987

(a) Retrieval performance for top-1% influential training examples

∇(Probing) +/- Precision
∇srcEmb ∇output ∇Full

∇(HYP) + 0.765 0.644 0.442
∇(REF) - 0.799 0.693 0.437
∇(CorrHYP) - 0.844 0.781 0.455

∇(HYPMask) + 0.848 0.829 0.567
∇(HYPMaskExact) + 0.936 0.904 0.825
∇(CorrHYPMaskExact) - 0.962 0.958 0.875

∇(HYP) -∇(REF) + 0.855 0.764 0.515
∇(HYP) -∇(CorrHYP) + 0.986 0.935 0.931

(b) Retrieval performance for top-10% influential training examples

Table 3: Retrieval performance measured in (macro) averaged precision over all error patterns. ∇(Probing) refers
to the gradient with input ‘source-Probing’. HYP, REF and CorrHYP stands for hypothesis, reference and corrected
hypothesis respectively. “+” (“-”) indicates that positively (negatively) influential training instances were retrieved.
∇X indicates network components used in computing the gradient. We mark the best result per column in bold.

∇output. We include results for additional gradient
components in Table A3 in the Appendix.

∇(Probing)
top-X% influential

+/-
Precision

training samples ∇Emb ∇Full

∇(HYP)
1%

+
0.660 0.502

10% 0.596 0.444

∇(CorrHYP)
1%

-
0.877 0.541

10% 0.746 0.463

∇(HYP) - ∇(CorrHYP)
1%

+
0.891 0.691

10% 0.808 0.607

Table 4: Retrieval performance measured in average
precision across all error patterns for an NMT model
with shared parameters between the word embeddings
and the output layer.

We also conducted a side experiment with a
NMT model with shared parameters between the
embeddings and the output layer. Similar to the
case of a NMT model with non-shared parameters,
gradient difference improves over the vanilla-IF
when averaging precisions over all error patterns
as shown in Table 4.

To summarize, both our contrastive-IF variants
improve retrieval performance regardless of the net-

work component used in computing gradients and
whether the NMT model has shared parameters.

4.3 Copied source sentences have similar
gradient signature

Our initial motivation for applying influence func-
tions to NMT was to arrive at a more automatable
way of retrieving relevant training examples for
reported translation problems. We were also hop-
ing to generalize over what can be achieved by
applying manually composed regular expressions
which are limited to detecting lexical overlap. In
this section, we focus on the latter and investigate
whether Influence Functions can retrieve training
examples that cause an undesired copy behaviour
in the decoder.

Experimental settings On top-of the Europarl-
v7 and News Commentary-v12 data, we append a
set of 176,004 copied source sentences provided
by Khayrallah and Koehn (2018) to the training
set. Following the training recipe in section 3, our
NMT with non-shared parameters has a degrada-
tion of translation quality from 29.99 BLEU to
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∇(Probing) +/- Precision
∇srcEmb ∇encoder ∇Full

∇(HYP) + 0.930 0.972 0.994
∇(REF) - 0.525 0.452 0.548
∇(HYP) -∇(REF) + 0.708 0.712 0.949

(a) Retrieval performance for top-10% influential training
examples

∇(Probing) +/- Precision
∇srcEmb ∇encoder ∇Full

∇(HYP) + 0.888 0.932 0.986
∇(REF) - 0.508 0.449 0.504
∇(HYP) -∇(REF) + 0.670 0.647 0.895

(b) Retrieval performance for top-20% influential training
examples

Table 5: Retrieval performance measured in averaged
precision over the probing instances, on copied train-
ing instances. ∇(Probing) refers to the gradient with
input ‘source-Probing’. HYP, REF stands for hypothe-
sis, reference. “+” (“-”) indicates that positively (neg-
atively) influential training instances were retrieved.
∇X indicates the network components used in comput-
ing the gradient.

17.64 BLEU on the newstest2017 data, showing the
detrimental effect of the untranslated target sides.

We select 40 probing instances from the new-
stest2017 data where their translation by the above
NMT model is a copy of the source sentence. We
again reduce the computation time by running
TracIn over a training subset which contains the
newly added noisy data, i.e., 176,004 instances and
a set of randomly sampled training instances. This
creates a training subset of 476,004 instances.

Results Table 5 shows the retrieval performance
on copied source sentences in the training sub-
set with probing gradients of∇(HY P ),∇(REF )
and ∇(HY P ) - ∇(REF ) computed over source
embedding (∇srcEmb), the encoder (∇encoder), or
the entire model (∇Full). We skip the masking
strategy in this case since it would mask all target
tokens, resulting in a loss of 0. Different from our
results so far, the vanilla IF using only the hypoth-
esis preforms better than using the reference for
retrieval and better than the gradient difference vari-
ant for all network components. For example, when
considering only the top-10% influential training
instances, the precision is 0.930 for∇(HY P ) with
∇srcEmb and only 0.525 for ∇(REF ). This may
indicate that instances of copied source sentence
have similar gradient signature despite their lexi-

cal difference (see Table A4 for some examples)
and that the reference translation is less useful in
this setting because it cannot provide a specific
contrastive signal.

A surprising finding in this setting is that using
gradients computed over the entire network is better
than the source embedding or the entire encoder.
This is in contrast to the previous findings in the
synthetic training instances. This possibly indicates
that the copy mechanism is spread over the entire
model or parts beyond the source embedding or the
encoder.

4.4 An effective IF-based instance-specific
data filtering is hard to automate

Many data filtering algorithms require a threshold
to decide which instances are to be filtered. This
threshold can be a model score in an offline filtering
algorithm (Junczys-Dowmunt, 2018) or a dynamic
formula that is changed according to the learning
state of the model (Wang et al., 2018). In both
cases, a desirable threshold should be effective as
measured in the downstream model performance
and be easily computed and generalized to other
situations. In the case of IF-based instance-specific
data filtering, we observe two properties in the rank-
ing of the influence which makes the automation
of the data filtering algorithm challenging.

1: The range of influence varies across prob-
ing examples Although the influence is bounded
between [−1, 1] because of the cosine similarity,
the maximum magnitude of the influence for each
probing example can still be very different. Table
6 shows the mean and standard deviation of the
maximum influence value of positively influential
training instances computed over probing examples
of the same configuration. Firstly, the mean value
is quite diverse across different gradient compo-
nents, and across different probing gradients of the
same error pattern. For example, the mean value of
the error pattern August→ January computed with
∇srcEmb is 0.399 or 0.059 depending on which
probing gradient is used. Secondly, the standard
deviation within each configuration is relatively
large when compared to the corresponding mean
value. For example, it is about 26%, 36%, 22%
and 19% in the case of ∇srcEmb using gradient
difference as the probing gradient. This large stan-
dard deviation indicates the difficulty of setting an
effective threshold for filtering even for probing
examples with the same type of error pattern.
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Error pattern ∇(HYP) -∇(CorrHYP) ∇(HYP)
∇srcEmb ∇Full ∇srcEmb ∇Full

August→ January 0.399 ± 0.104 0.199 ± 0.041 0.059 ± 0.023 0.119 ± 0.042
Oktober→ December 0.524 ± 0.192 0.397 ± 0.123 0.056 ± 0.028 0.143 ± 0.043
Deutschland→ Italy 0.576 ± 0.126 0.428 ± 0.047 0.097 ± 0.061 0.135 ± 0.046
Türkei→ New Zealand 0.527 ± 0.100 0.540 ± 0.118 0.080 ± 0.044 0.165 ± 0.051

Table 6: Statistics showing the mean and standard deviation of the largest influence per configuration. The large
standard deviation of the maximum influence value for probing examples of the same error pattern shows the
difficulty of defining a comparable filtering threshold across probing instances.

Error pattern ∇(HYP) -∇(CorrHYP) ∇(HYP)
∇srcEmb ∇Full ∇srcEmb ∇Full

August→ January 1.44 ± 0.50 3.33 ± 1.76 1.78 ± 1.55 1.44 ± 0.69
Oktober→ December 2.25 ± 0.43 2.00 ± 0.00 2.88 ± 1.76 2.00 ± 1.58
Deutschland→ Italy 1.00 ± 0.00 1.77 ± 0.62 1.67 ± 1.22 2.70 ± 2.62
Turkei→ New Zealand 3.05 ± 1.46 1.32 ± 1.26 2.27 ± 2.09 2.32 ± 1.66

Table 7: Mean and standard deviation of the number of influential training instances to be removed per configura-
tion, using the largest consecutive difference found in the ranking as clustering criterion.

2: The influence value drops abruptly at the
top-of the ranking Apart from a fixed threshold
across different probing example, we also examine
the possibility of automatically setting a threshold
for each probing example.

We first examine a simple clustering strategy by
searching for the position where the consecutive
difference is the largest in the ranking of influence.
Table 7 shows the result of the mean and standard
deviation of the number of most influential train-
ing instances to be removed per configuration. By
considering only the largest consecutive difference,
less than 5 training instances would be removed
which is far less than the number of synthetic train-
ing instances.

We examine further by investigating the shape
of the influence of the positively influential train-
ing instances in the ranking. Figure 1 shows the
influences, computed via TracIn, of the top-500
positively influential training instances per error
pattern. For each error pattern, we randomly se-
lect a probing example to examine its influence
under different gradient conditions. In all these
cases, the influence drops sharply in the first few
instances, especially in the case of vanilla IF, de-
noted by “GradHYP” in the figures. After the sharp
drop, the influence becomes quite steady for the
remaining instances. This steady behaviour holds
even for instances of much lower rank, see Figure
A1 in the Appendix. The “elbow” occurs before
the first 50 influential training instances, which in-
cludes only a tiny portion of the synthetic noisy
training instances.

How about Top-K filtering? In previous work,
the authors use either Top-K or Top-X% as the
filtering threshold which is not realistic in the case
of NMT where 1) there can be billions of training
instances, and 2) the error types are more diverse
than the prediction of wrong classes. In spite of
the good retrieval performance demonstrated in
the previous section, our results here show that
an effective automation of the IF-based instance-
specific data filtering for NMT remains a challenge.

5 Conclusion

We have analyzed the use of Influence Functions
for NMT as instance-specific data filtering. By
constructing synthetic instances, we found that 1)
the gradient similarity is very sensitive to the se-
lected network components, 2) vanilla Influence
Functions are not sufficient for good retrieval per-
formance, 3) our proposed contrastive-IF can boost
the retrieval performance regardless of the gradi-
ent component or parameter sharing, 4) finding
an effective automation of IF for instance-specific
data filtering is difficult. This is because the proper
choice of gradient component with respect to the
type of error in the probing example is crucial for
the effectiveness of Influence Functions. Despite
the reported effectiveness for certain classification
tasks in previous literature, our results show that ap-
plying IF to NMT poses some practical difficulties
that we have not yet been able to solve.
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Figure 1: TracIn of the top-500 positively influential training examples. In each subfigure, we randomly select
a probing example from each error pattern to compute its influence using gradient difference w.r.t. 1) source
embedding (GradDiff srcEmbed), 2) entire model (GradDiff full) and using vanilla-IF with source-hypothesis as
input w.r.t. 1) source embedding (GradHYP srcEmbed), 2) entire model (GradHYP full).

6 Limitations

In this work, we provided an analysis of using In-
fluence Functions for Neural Machine Translation
as instance-specific data filtering for the purpose of
cost saving and finding a more generally applica-
ble solution. Despite the reported success of some
previous works in NLP/Vision-related classifica-
tion tasks, we faced several challenges in applying
Influence Functions to NMT. We are aware of the
following limitations to our analysis:

• Our analysis focuses on TracIn rather than
other influence functions because TracIn is
reported to be very effective.

• Our analysis is based on a fixed set of check-
points, following the practice of previous
works. The selection and the number of check-
points used in TracIn are computationally
costly hyper-parameters.

• Our analysis focuses on major network com-
ponents such as embeddings, encoder and the

output layer, excluding other possible combi-
nations.

• The scale of our experiments is limited, e.g.,
only the De-En language direction with 3M
training instances and the synthetic exam-
ples are relatively simple. However, given
such simple setting, we can already see
the challenges of applying IF on NMT as
instance-specific data filtering or as an attribu-
tion/interpretable method.

• The proposed contrastive IF requires a cor-
rected translation, e.g., reference translation.

We hope that our analysis can inspire further
evaluation and modification of the technique.
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A Appendix

Samples ∇Full ∇Emb ∇srcEmb ∇trgEmb ∇output ∇concat
Probing Selbst die britische Queen hat ihn schon geadelt. 1 1 1 1 1 1

Even the British Queen has bestowed an
honour upon him.

1 Nur fehlten die Beweise. 0.358 0.284 0.024 0.225 0.401 0.319
Even the British Queen has bestowed
an honour upon him.

2 Biologen haben in Hannover untersucht, 0.275 0.168 0.004 0.219 0.280 0.200
welchen Effekt das Rufen von Katzenbabys
auf erwachsene Tiere hat.
Even the British Queen has bestowed
an honour upon him.

3 Selbst die britische Queen hat ihn schon geadelt. -0.035 -0.038 -0.125 0.025 -0.043 -0.036
The German branch of the Gülen movement
also fears that many Turks will flee abroad.

4 Selbst die britische Queen hat ihn schon geadelt. -0.039 -0.013 -0.141 0.039 0.001 -0.003
Demonstrators demanding political change
in Ethiopia have been met with violent resistance
by the government.

5 Selbst die britische Queen hat ihn schon geadelt. 0.962 0.924 0.992 0.981 0.905 0.924
Even the British Queen has bestowed
an honour upon him!

6 Selbst die britische Queen hat ihn schon geadelt! 0.908 0.899 0.912 0.949 0.935 0.935
Even the British Queen has bestowed
an honour upon him.

Table A1: Another example showing the changes of gradient similarity by selected network components. Segments
that are marked in red are perturbed from the probing example. The notation∇X indicates the network components
used in computing the gradient similarity. ∇srcEmb has a mean magnitude of 0.051 and 0.007 on random target
and random source respectively whereas ∇output has respectively a mean magnitude of 0.0145 and 0.350. This
shows that∇output has a tendency of scoring sentence-pairs containing random source higher.
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Figure A1: TracIn of the top-50% positively influential training examples. In each subfigure, we randomly select
a probing example from each error pattern to compute its influence using gradient difference w.r.t. 1) source
embedding (GradDiff srcEmbed), and 2) entire model (GradDiff full) as well as using vanilla-IF with source-
hypothesis as input w.r.t. 1) source embedding (GradHYP srcEmbed), and 2) entire model (GradHYP full).
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probing 1 Der Film läuft bei uns ab dem 25. August.
The film will be filmed here on 25 January.

∇srcEmb 1 Die Vereinbarung läuft am 31. Januar ab.
This agreement formally expires on 31 January.

2 Dieses Gesetz wurde im August unterzeichnet.
It was signed in January.

3 Die Vereinigten Staaten haben diese Garantie am 15. August 1971 aufgegeben.
The United States abandoned that guarantee on 15 January 1971.

∇output 1 Der Cardiff-Bericht erscheint Mitte Januar.
The Cardiff report will be published in mid-January.

2 Eine zweite Tagung ist für Januar 2004 vorgesehen.
A second meeting will be held in January 2004.

3 Ich hoffe, dass die Dynamik beibehalten und das Siebte Rahmenprogramm
am 1. Januar 2007 auf den Weg gebracht wird.
I hope that the momentum will be maintained and the Seventh Framework Programme
will be launched on 1 January 2007.

probing 2 Auch in Deutschland finde eine "Hexenjagd" gegen Erdogan-Kritiker statt.
A ’witch hunt’ against Erdogan critics is also taking place in Italy.

∇srcEmb 1 Deutschland ist dagegen.
Italy is opposed to this.

2 Dies wäre ein besseres Wirtschaftsmodell für Deutschland.
This would be a better economic model for Italy.

3 Deutschland und China können mehr tun als andere.
Italy and China can do more than others.

∇output 1 Eine weitere Lehre für Sarkozy aus Deutschland ist, dass ein aufgeklärter
korporatistischer Staat unterstützender politischer Führung
ebenso bedarf wie entgegenkommender Gewerkschaften.
A further lesson for Sarkozy from Italy is that an enlightened corporate state
needs supportive political leadership as well as accommodating trade unions.

2 Insgesamt wurden fast 2 300 Tonnen möglicherweise kontaminiertes Futtermittelfett
an 25 Futtermittelhersteller in Deutschland geliefert.
A total of almost 2 300 tonnes of potentially contaminated feed fat was delivered
to 25 feed manufacturers in Italy.

3 Leider Gottes ist der Titel der heutigen Debatte Italien.
Alas, the title of today’s debate is Italy.

Table A2: Two probing examples with source-hypothesis as input and their top-3 positively influential training
instances. ∇output has a tendency to assign higher scores to sentence-pairs which target side has overlapped
tokens but ignoring the similarity of the source side. For example, the pattern “Januar -> January” occurs more
frequently in the ranking than “August -> January” in probing 1.
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∇(Probing) +/- Precision
∇srcEmb ∇encoder ∇trgEmb ∇output ∇concat ∇Full

∇(HYP) + 0.846 0.485 0.334 0.720 0.722 0.503
∇(REF) - 0.876 0.432 0.303 0.794 0.805 0.481
∇(CorrHYP) - 0.930 0.494 0.324 0.905 0.919 0.531

∇(HYPMask) + 0.893 0.581 0.347 0.840 0.844 0.654
∇(HYPMaskExact) + 0.957 0.862 0.474 0.910 0.916 0.862
∇(CorrHYPMaskExact) - 0.989 0.903 0.467 0.992 0.994 0.924

∇(HYP) -∇(REF) + 0.930 0.523 0.321 0.856 0.855 0.584
∇(HYP) -∇(CorrHYP) + 1.000 0.985 0.458 0.971 0.980 0.987

(a) Retrieval performance for top-1% influential training examples

∇(Probing) +/- Precision
∇srcEmb ∇encoder ∇trgEmb ∇output ∇concat ∇Full

∇(HYP) + 0.765 0.399 0.301 0.644 0.646 0.442
∇(REF) - 0.799 0.382 0.297 0.693 0.700 0.437
∇(CorrHYP) - 0.844 0.402 0.299 0.781 0.789 0.455

∇(HYPMask) + 0.848 0.478 0.311 0.829 0.831 0.567
∇(HYPMaskExact) + 0.936 0.794 0.380 0.904 0.908 0.825
∇(CorrHYPMaskExact) - 0.962 0.821 0.372 0.958 0.960 0.875

∇(HYP) -∇(REF) + 0.855 0.442 0.307 0.764 0.765 0.515
∇(HYP) -∇(CorrHYP) + 0.986 0.884 0.371 0.935 0.939 0.931

(b) Retrieval performance for top-10% influential training examples

Table A3: Retrieval performance measured in (macro) averaged precision over all error patterns (extended version
of Table 3). ∇(Probing) refers to the gradient with input ‘source-Probing’. HYP, REF and CorrHYP stands
for hypothesis, reference and corrected hypothesis respectively. “+” (“-”) indicates that positively (negatively)
influential training instances were retrieved. ∇X indicates network components used in computing the gradient,
∇concat indicates concatenation of∇srcEmb, ∇trgEmb and ∇output. We mark the best result per column in bold.
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probing 1 Golfer Langer erhält die Sportpyramide
Golfer Langer erhält die Sportpyramide

∇srcEmb 1 Binnenmarktanzeiger
Binnenmarktanzeiger

2 Vollständige Liste der ausgewählten Aussteller:
Vollständige Liste der ausgewählten Aussteller:

3 Dimiter TZANTCHEV Ständiger Vertreter
Dimiter TZANTCHEV Ständiger Vertreter

∇Full 1 Erstellung einzelstaatlicher Aktionspläne für die Verhütung von Verletzungen durch die Mitgliedstaaten.
Erstellung einzelstaatlicher Aktionspläne für die Verhütung von Verletzungen durch die Mitgliedstaaten.

2 Für weitere Informationen wenden Sie sich bitte an die Dienststelle Außenbeziehungen Europäischer Rechnungshof
Für weitere Informationen wenden Sie sich bitte an die Dienststelle Außenbeziehungen Europäischer Rechnungshof

3 Dimiter TZANTCHEV Ständiger Vertreter
Dimiter TZANTCHEV Ständiger Vertreter

probing 2 Die demokratische Bewerberin kündigt gar die größte Investition in neue Arbeitsplätze seit dem Zweiten Weltkrieg an.
Die demokratische Bewerberin kündigt gar die größte Investition in neue Arbeitsplätze seit dem Zweiten Weltkrieg an.

∇srcEmb 1 Die Krise hat die großen Unterschiede innerhalb der EU deutlich gemacht.
Die Krise hat die großen Unterschiede innerhalb der EU deutlich gemacht.

2 Die Regierungskonferenz ist nur eine Versammlung aller Regierungen.
Die Regierungskonferenz ist nur eine Versammlung aller Regierungen.

3 Die Entschließung wird uns dabei helfen, auf einer soliden Grundlage in die nächste Phase der Entwicklung
einer Meeresstrategie einzutreten.
Die Entschließung wird uns dabei helfen, auf einer soliden Grundlage in die nächste Phase der Entwicklung
einer Meeresstrategie einzutreten.

∇Full 1 Die Partei für Freiheit möchte dafür sorgen, dass die niederländische Öffentlichkeit nicht länger als
Geldautomat Europas behandelt wird.
Die Partei für Freiheit möchte dafür sorgen, dass die niederländische Öffentlichkeit nicht länger als
Geldautomat Europas behandelt wird.

2 Die russische Regierung hat geschätzt, dass ein Drittel aller Wasserleitungen dringend ersetzt werden muss.
Die russische Regierung hat geschätzt, dass ein Drittel aller Wasserleitungen dringend ersetzt werden muss.

3 Die internationale Gemeinschaft erkannte ihn einstimmig an.
Die internationale Gemeinschaft erkannte ihn einstimmig an.

Table A4: Two probing examples with copied training instances as input and their top-3 positively influential
training instances. Both ∇srcEmb and ∇Full can retrieve copied instances in the training subset given a probing
instance of copied source sentence which is lexically different.
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