Correct Metadata for
Abstract
This paper describes DUTNLP Lab’s submission to the WMT22 General MT Task on four translation directions: English to/from Chinese and English to/from Japanese under the constrained condition. Our primary system are built on several Transformer variants which employ wider FFN layer or deeper encoder layer. The bilingual data are filtered by detailed data pre-processing strategies and four data augmentation methods are combined to enlarge the training data with the provided monolingual data. Several common methods are also employed to further improve the model performance, such as fine-tuning, model ensemble and post-editing. As a result, our constrained systems achieve 29.01, 63.87, 41.84, and 24.82 BLEU scores on Chinese-to-English, English-to-Chinese, English-to-Japanese, and Japanese-to-English, respectively.- Anthology ID:
- 2022.wmt-1.35
- Volume:
- Proceedings of the Seventh Conference on Machine Translation (WMT)
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates (Hybrid)
- Editors:
- Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 397–402
- Language:
- URL:
- https://aclanthology.org/2022.wmt-1.35/
- DOI:
- 10.18653/v1/2022.wmt-1.35
- Bibkey:
- Cite (ACL):
- Ting Wang, Huan Liu, Junpeng Liu, and Degen Huang. 2022. DUTNLP Machine Translation System for WMT22 General MT Task. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 397–402, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
- Cite (Informal):
- DUTNLP Machine Translation System for WMT22 General MT Task (Wang et al., WMT 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.wmt-1.35.pdf
Export citation
@inproceedings{wang-etal-2022-dutnlp,
title = "{DUTNLP} Machine Translation System for {WMT}22 General {MT} Task",
author = "Wang, Ting and
Liu, Huan and
Liu, Junpeng and
Huang, Degen",
editor = {Koehn, Philipp and
Barrault, Lo{\"i}c and
Bojar, Ond{\v{r}}ej and
Bougares, Fethi and
Chatterjee, Rajen and
Costa-juss{\`a}, Marta R. and
Federmann, Christian and
Fishel, Mark and
Fraser, Alexander and
Freitag, Markus and
Graham, Yvette and
Grundkiewicz, Roman and
Guzman, Paco and
Haddow, Barry and
Huck, Matthias and
Jimeno Yepes, Antonio and
Kocmi, Tom and
Martins, Andr{\'e} and
Morishita, Makoto and
Monz, Christof and
Nagata, Masaaki and
Nakazawa, Toshiaki and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Popel, Martin and
Turchi, Marco and
Zampieri, Marcos},
booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wmt-1.35/",
doi = "10.18653/v1/2022.wmt-1.35",
pages = "397--402",
abstract = "This paper describes DUTNLP Lab{'}s submission to the WMT22 General MT Task on four translation directions: English to/from Chinese and English to/from Japanese under the constrained condition. Our primary system are built on several Transformer variants which employ wider FFN layer or deeper encoder layer. The bilingual data are filtered by detailed data pre-processing strategies and four data augmentation methods are combined to enlarge the training data with the provided monolingual data. Several common methods are also employed to further improve the model performance, such as fine-tuning, model ensemble and post-editing. As a result, our constrained systems achieve 29.01, 63.87, 41.84, and 24.82 BLEU scores on Chinese-to-English, English-to-Chinese, English-to-Japanese, and Japanese-to-English, respectively."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2022-dutnlp">
<titleInfo>
<title>DUTNLP Machine Translation System for WMT22 General MT Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ting</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junpeng</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Degen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Conference on Machine Translation (WMT)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loïc</namePart>
<namePart type="family">Barrault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fethi</namePart>
<namePart type="family">Bougares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajen</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Federmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Freitag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Grundkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paco</namePart>
<namePart type="family">Guzman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Jimeno Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Morishita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masaaki</namePart>
<namePart type="family">Nagata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toshiaki</namePart>
<namePart type="family">Nakazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Popel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes DUTNLP Lab’s submission to the WMT22 General MT Task on four translation directions: English to/from Chinese and English to/from Japanese under the constrained condition. Our primary system are built on several Transformer variants which employ wider FFN layer or deeper encoder layer. The bilingual data are filtered by detailed data pre-processing strategies and four data augmentation methods are combined to enlarge the training data with the provided monolingual data. Several common methods are also employed to further improve the model performance, such as fine-tuning, model ensemble and post-editing. As a result, our constrained systems achieve 29.01, 63.87, 41.84, and 24.82 BLEU scores on Chinese-to-English, English-to-Chinese, English-to-Japanese, and Japanese-to-English, respectively.</abstract>
<identifier type="citekey">wang-etal-2022-dutnlp</identifier>
<identifier type="doi">10.18653/v1/2022.wmt-1.35</identifier>
<location>
<url>https://aclanthology.org/2022.wmt-1.35/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>397</start>
<end>402</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T DUTNLP Machine Translation System for WMT22 General MT Task %A Wang, Ting %A Liu, Huan %A Liu, Junpeng %A Huang, Degen %Y Koehn, Philipp %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Freitag, Markus %Y Graham, Yvette %Y Grundkiewicz, Roman %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Jimeno Yepes, Antonio %Y Kocmi, Tom %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Popel, Martin %Y Turchi, Marco %Y Zampieri, Marcos %S Proceedings of the Seventh Conference on Machine Translation (WMT) %D 2022 %8 December %I Association for Computational Linguistics %C Abu Dhabi, United Arab Emirates (Hybrid) %F wang-etal-2022-dutnlp %X This paper describes DUTNLP Lab’s submission to the WMT22 General MT Task on four translation directions: English to/from Chinese and English to/from Japanese under the constrained condition. Our primary system are built on several Transformer variants which employ wider FFN layer or deeper encoder layer. The bilingual data are filtered by detailed data pre-processing strategies and four data augmentation methods are combined to enlarge the training data with the provided monolingual data. Several common methods are also employed to further improve the model performance, such as fine-tuning, model ensemble and post-editing. As a result, our constrained systems achieve 29.01, 63.87, 41.84, and 24.82 BLEU scores on Chinese-to-English, English-to-Chinese, English-to-Japanese, and Japanese-to-English, respectively. %R 10.18653/v1/2022.wmt-1.35 %U https://aclanthology.org/2022.wmt-1.35/ %U https://doi.org/10.18653/v1/2022.wmt-1.35 %P 397-402
Markdown (Informal)
[DUTNLP Machine Translation System for WMT22 General MT Task](https://aclanthology.org/2022.wmt-1.35/) (Wang et al., WMT 2022)
- DUTNLP Machine Translation System for WMT22 General MT Task (Wang et al., WMT 2022)
ACL
- Ting Wang, Huan Liu, Junpeng Liu, and Degen Huang. 2022. DUTNLP Machine Translation System for WMT22 General MT Task. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 397–402, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.