Linguistically Motivated Evaluation of the 2022 State-of-the-art Machine Translation Systems for Three Language Directions

Vivien Macketanz, Shushen Manakhimova, Eleftherios Avramidis, Ekaterina Lapshinova-koltunski, Sergei Bagdasarov, Sebastian Möller


Abstract
This document describes a fine-grained linguistically motivated analysis of 29 machine translation systems submitted at the Shared Task of the 7th Conference of Machine Translation (WMT22). This submission expands the test suite work of previous years by adding the language direction of English–Russian. As a result, evaluation takes place for the language directions of German–English, English–German, and English–Russian. We find that the German–English systems suffer in translating idioms, some tenses of modal verbs, and resultative predicates, the English–German ones in idioms, transitive-past progressive, and middle voice, whereas the English–Russian ones in pseudogapping and idioms.
Anthology ID:
2022.wmt-1.40
Volume:
Proceedings of the Seventh Conference on Machine Translation (WMT)
Month:
December
Year:
2022
Address:
Abu Dhabi, United Arab Emirates (Hybrid)
Editors:
Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
Venue:
WMT
SIG:
SIGMT
Publisher:
Association for Computational Linguistics
Note:
Pages:
432–449
Language:
URL:
https://aclanthology.org/2022.wmt-1.40
DOI:
Bibkey:
Cite (ACL):
Vivien Macketanz, Shushen Manakhimova, Eleftherios Avramidis, Ekaterina Lapshinova-koltunski, Sergei Bagdasarov, and Sebastian Möller. 2022. Linguistically Motivated Evaluation of the 2022 State-of-the-art Machine Translation Systems for Three Language Directions. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 432–449, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
Cite (Informal):
Linguistically Motivated Evaluation of the 2022 State-of-the-art Machine Translation Systems for Three Language Directions (Macketanz et al., WMT 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.wmt-1.40.pdf