KU X Upstage’s Submission for the WMT22 Quality Estimation: Critical Error Detection Shared Task
Sugyeong Eo, Chanjun Park, Hyeonseok Moon, Jaehyung Seo, Heuiseok Lim
Abstract
This paper presents KU X Upstage’s submission to the quality estimation (QE): critical error detection (CED) shared task in WMT22. We leverage the XLM-RoBERTa large model without utilizing any additional parallel data. To the best of our knowledge, we apply prompt-based fine-tuning to the QE task for the first time. To maximize the model’s language understanding capability, we reformulate the CED task to be similar to the masked language model objective, which is a pre-training strategy of the language model. We design intuitive templates and label words, and include auxiliary descriptions such as demonstration or Google Translate results in the input sequence. We further improve the performance through the template ensemble, and as a result of the shared task, our approach achieve the best performance for both English-German and Portuguese-English language pairs in an unconstrained setting.- Anthology ID:
- 2022.wmt-1.56
- Volume:
- Proceedings of the Seventh Conference on Machine Translation (WMT)
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates (Hybrid)
- Editors:
- Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 606–614
- Language:
- URL:
- https://aclanthology.org/2022.wmt-1.56
- DOI:
- Bibkey:
- Cite (ACL):
- Sugyeong Eo, Chanjun Park, Hyeonseok Moon, Jaehyung Seo, and Heuiseok Lim. 2022. KU X Upstage’s Submission for the WMT22 Quality Estimation: Critical Error Detection Shared Task. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 606–614, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
- Cite (Informal):
- KU X Upstage’s Submission for the WMT22 Quality Estimation: Critical Error Detection Shared Task (Eo et al., WMT 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.wmt-1.56.pdf
Export citation
@inproceedings{eo-etal-2022-ku, title = "{KU} {X} Upstage{'}s Submission for the {WMT}22 Quality Estimation: Critical Error Detection Shared Task", author = "Eo, Sugyeong and Park, Chanjun and Moon, Hyeonseok and Seo, Jaehyung and Lim, Heuiseok", editor = {Koehn, Philipp and Barrault, Lo{\"\i}c and Bojar, Ond{\v{r}}ej and Bougares, Fethi and Chatterjee, Rajen and Costa-juss{\`a}, Marta R. and Federmann, Christian and Fishel, Mark and Fraser, Alexander and Freitag, Markus and Graham, Yvette and Grundkiewicz, Roman and Guzman, Paco and Haddow, Barry and Huck, Matthias and Jimeno Yepes, Antonio and Kocmi, Tom and Martins, Andr{\'e} and Morishita, Makoto and Monz, Christof and Nagata, Masaaki and Nakazawa, Toshiaki and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Popel, Martin and Turchi, Marco and Zampieri, Marcos}, booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wmt-1.56", pages = "606--614", abstract = "This paper presents KU X Upstage{'}s submission to the quality estimation (QE): critical error detection (CED) shared task in WMT22. We leverage the XLM-RoBERTa large model without utilizing any additional parallel data. To the best of our knowledge, we apply prompt-based fine-tuning to the QE task for the first time. To maximize the model{'}s language understanding capability, we reformulate the CED task to be similar to the masked language model objective, which is a pre-training strategy of the language model. We design intuitive templates and label words, and include auxiliary descriptions such as demonstration or Google Translate results in the input sequence. We further improve the performance through the template ensemble, and as a result of the shared task, our approach achieve the best performance for both English-German and Portuguese-English language pairs in an unconstrained setting.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="eo-etal-2022-ku"> <titleInfo> <title>KU X Upstage’s Submission for the WMT22 Quality Estimation: Critical Error Detection Shared Task</title> </titleInfo> <name type="personal"> <namePart type="given">Sugyeong</namePart> <namePart type="family">Eo</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chanjun</namePart> <namePart type="family">Park</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hyeonseok</namePart> <namePart type="family">Moon</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jaehyung</namePart> <namePart type="family">Seo</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heuiseok</namePart> <namePart type="family">Lim</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-12</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Seventh Conference on Machine Translation (WMT)</title> </titleInfo> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Loïc</namePart> <namePart type="family">Barrault</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fethi</namePart> <namePart type="family">Bougares</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marta</namePart> <namePart type="given">R</namePart> <namePart type="family">Costa-jussà</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Fraser</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Markus</namePart> <namePart type="family">Freitag</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Roman</namePart> <namePart type="family">Grundkiewicz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paco</namePart> <namePart type="family">Guzman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="family">Jimeno Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tom</namePart> <namePart type="family">Kocmi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaaki</namePart> <namePart type="family">Nagata</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Toshiaki</namePart> <namePart type="family">Nakazawa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martin</namePart> <namePart type="family">Popel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marcos</namePart> <namePart type="family">Zampieri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This paper presents KU X Upstage’s submission to the quality estimation (QE): critical error detection (CED) shared task in WMT22. We leverage the XLM-RoBERTa large model without utilizing any additional parallel data. To the best of our knowledge, we apply prompt-based fine-tuning to the QE task for the first time. To maximize the model’s language understanding capability, we reformulate the CED task to be similar to the masked language model objective, which is a pre-training strategy of the language model. We design intuitive templates and label words, and include auxiliary descriptions such as demonstration or Google Translate results in the input sequence. We further improve the performance through the template ensemble, and as a result of the shared task, our approach achieve the best performance for both English-German and Portuguese-English language pairs in an unconstrained setting.</abstract> <identifier type="citekey">eo-etal-2022-ku</identifier> <location> <url>https://aclanthology.org/2022.wmt-1.56</url> </location> <part> <date>2022-12</date> <extent unit="page"> <start>606</start> <end>614</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T KU X Upstage’s Submission for the WMT22 Quality Estimation: Critical Error Detection Shared Task %A Eo, Sugyeong %A Park, Chanjun %A Moon, Hyeonseok %A Seo, Jaehyung %A Lim, Heuiseok %Y Koehn, Philipp %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Freitag, Markus %Y Graham, Yvette %Y Grundkiewicz, Roman %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Jimeno Yepes, Antonio %Y Kocmi, Tom %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Popel, Martin %Y Turchi, Marco %Y Zampieri, Marcos %S Proceedings of the Seventh Conference on Machine Translation (WMT) %D 2022 %8 December %I Association for Computational Linguistics %C Abu Dhabi, United Arab Emirates (Hybrid) %F eo-etal-2022-ku %X This paper presents KU X Upstage’s submission to the quality estimation (QE): critical error detection (CED) shared task in WMT22. We leverage the XLM-RoBERTa large model without utilizing any additional parallel data. To the best of our knowledge, we apply prompt-based fine-tuning to the QE task for the first time. To maximize the model’s language understanding capability, we reformulate the CED task to be similar to the masked language model objective, which is a pre-training strategy of the language model. We design intuitive templates and label words, and include auxiliary descriptions such as demonstration or Google Translate results in the input sequence. We further improve the performance through the template ensemble, and as a result of the shared task, our approach achieve the best performance for both English-German and Portuguese-English language pairs in an unconstrained setting. %U https://aclanthology.org/2022.wmt-1.56 %P 606-614
Markdown (Informal)
[KU X Upstage’s Submission for the WMT22 Quality Estimation: Critical Error Detection Shared Task](https://aclanthology.org/2022.wmt-1.56) (Eo et al., WMT 2022)
- KU X Upstage’s Submission for the WMT22 Quality Estimation: Critical Error Detection Shared Task (Eo et al., WMT 2022)
ACL
- Sugyeong Eo, Chanjun Park, Hyeonseok Moon, Jaehyung Seo, and Heuiseok Lim. 2022. KU X Upstage’s Submission for the WMT22 Quality Estimation: Critical Error Detection Shared Task. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 606–614, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.