Embarrassingly Easy Document-Level MT Metrics: How to Convert Any Pretrained Metric into a Document-Level Metric

Giorgos Vernikos, Brian Thompson, Prashant Mathur, Marcello Federico


Abstract
We present a very simple method for extending pretrained machine translation metrics to incorporate document-level context. We apply our method to four popular metrics: BERTScore, Prism, COMET, and the reference-free metric COMET-QE. We evaluate our document-level metrics on the MQM annotations from the WMT 2021 metrics shared task and find that the document-level metrics outperform their sentence-level counterparts in about 85% of the tested conditions, when excluding results on low-quality human references. Additionally, we show that our document-level extension of COMET-QE dramatically improves accuracy on discourse phenomena tasks, supporting our hypothesis that our document-level metrics are resolving ambiguities in the reference sentence by using additional context.
Anthology ID:
2022.wmt-1.6
Volume:
Proceedings of the Seventh Conference on Machine Translation (WMT)
Month:
December
Year:
2022
Address:
Abu Dhabi, United Arab Emirates (Hybrid)
Editors:
Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
Venue:
WMT
SIG:
SIGMT
Publisher:
Association for Computational Linguistics
Note:
Pages:
118–128
Language:
URL:
https://aclanthology.org/2022.wmt-1.6
DOI:
Bibkey:
Cite (ACL):
Giorgos Vernikos, Brian Thompson, Prashant Mathur, and Marcello Federico. 2022. Embarrassingly Easy Document-Level MT Metrics: How to Convert Any Pretrained Metric into a Document-Level Metric. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 118–128, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
Cite (Informal):
Embarrassingly Easy Document-Level MT Metrics: How to Convert Any Pretrained Metric into a Document-Level Metric (Vernikos et al., WMT 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.wmt-1.6.pdf
Video:
 https://aclanthology.org/2022.wmt-1.6.mp4