
Proceedings of the Seventh Conference on Machine Translation (WMT), pages 661 - 667
December 7-8, 2022 ©2022 Association for Computational Linguistics

Edinburgh’s submission to the WMT 2022 Efficiency task

Nikolay Bogoychev† Biao Zhang†, Maximiliana Behnke† Graeme Nail†
Jelmer van der Linde† Sidharth Kashyap‡ Kenneth Heafield†

†University of Edinburgh ‡Intel Corporation
{n.bogoych, biao.zhang, maximiliana.behnke, graeme.nail, jelmer.vanderlinde

kenneth.heafield}@ed.ac.uk, sidharth.n.kashyap@intel.com

Abstract

We participated in all tracks of the WMT 2022
efficient machine translation task: single-core
CPU, multi-core CPU, and GPU hardware with
throughput and latency conditions. Our sub-
missions explore a number of efficiency strate-
gies: knowledge distillation, a simpler simple
recurrent unit (SSRU) decoder with one or two
layers, shortlisting, deep encoder, shallow de-
coder, pruning and bidirectional decoder. For
the CPU track, we used quantized 8-bit models.
For the GPU track, we used FP16 quantisa-
tion. We explored various pruning strategies
and combination of one or more of the above
methods.

1 Introduction

This paper describes the University of Edinburgh’s
submission to Seventh Conference on Machine
Translation (WMT2022) Efficiency Task1, which
measures performance on latency and throughput
on both CPU and GPU, in addition to translation
quality. Our submission focused on the trade-off
between these metrics and quality.

Our submission builds upon the work of last
year’s submission (Behnke et al., 2021). We trained
our models in a teacher-student setting (Kim and
Rush, 2016), using the data provided by the organ-
isers. For the students, we used a Simpler Sim-
ple Recurrent Unit (SSRU) (Kim et al., 2019) de-
coder, used a target vocabulary shortlist, and ex-
perimented with pruning the student models by
removing component and block-level parameters
to improve speed. We used 8-bit quantisation for
the CPU submission and FP16 quantisation for the
GPU submission. We further experimented with
IBDecoder (Zhang et al., 2020).

For running our experiments, we improved upon
the Marian (Junczys-Dowmunt et al., 2018) ma-
chine translation framework by incorporating speed

1http://statmt.org/wmt22/
efficiency-task.html

ups for 8-bit matrix multiplication operations, opti-
mizations for pruning neural network parameters
on Intel CPUs, and profiler aided optimisation of
various components.

1.1 Efficiency Shared Task

The WMT22 efficiency shared task consists of two
sub-tasks: throughput and latency. Systems should
translate English to German under the constrained
conditions, where the teacher model and the dis-
tilled data are provided. For each task, systems are
provided 1 million lines of raw English input with
at most 150 space-separated words. The through-
put task receives this input directly. The latency
task, introduced in WMT21, is fed input one sen-
tence at a time, waiting for the translation output
before providing the next sentence.

Throughput is measured on multi-core CPU or
GPU system, and latency is measured on single-
core CPU or GPU systems. The CPU-based eval-
uations use an Intel Ice Lake system via Oracle
Cloud BM.Optimized3.36, while the GPU-based
use a single A100 via Oracle Cloud BM.GPU4.8.

Entries to both tasks are measured on quality,
approximated via COMET score (Rei et al., 2020),
speed, model size, Docker image size, and memory
consumption. We did not optimise specifically for
the latency task beyond configuring the relevant
batch sizes to one. We used Ubuntu 22.04 based
images for our systems, with standard Ubuntu
for CPU-only systems and NVIDIA’s Ubuntu-
based CUDA-11.7 docker for GPU-capable sys-
tems. Docker images were created using multi-
stage builds, with model disk size reduced by com-
pression with xzip.

2 Knowledge distillation

We used the provided distilled data to build dif-
ferent student systems. The provided data was dis-
tilled through two different processes; for the mono-
lingual input, distilled data was generated using a

661

http://statmt.org/wmt22/efficiency-task.html
http://statmt.org/wmt22/efficiency-task.html

beam-size of 6. For the parallel data, the teacher
ensemble was used to produce the 6 best candi-
date translations for each input sentence, the candi-
date most similar to the parallel reference in BLEU
score was kept as the distilled sentence. We trained
student models using just the provided parallel data
and identical systems using parallel+monolingual
data. Our early comparisons showed that the full
corpora produced higher quality student systems
according to automatic metrics; submitted systems
therefore use both parallel and monolingual data.

The student models were trained using a valida-
tion set consisting of the subset of sentences in the
English-German WMT test sets from 2014–2019
that were originally in English. Training concluded
after reaching 20 consecutive validations without
an improvement in BLEU score. The student mod-
els all used the provided shared SentencePiece vo-
cabulary. We used the default training hyperparam-
eters from Marian for the transformer-base model
with the learning rate reduced to 0.0002.

We explored a number of different configuration
in order to find the optimal system on the Pareto
frontier for speed-quality. We experimented with
the following configurations:

Deep encoders/Shallow decoders The majority
of the computational cost of the machine transla-
tion system falls to the decoder. We can therefore
increase drastically the number of encoder layers
and decrease the decoder layers without noticeable
drop in quality (Kong et al., 2021).

Tied decoder layers Since matrix multiplication
is a memory bound problem, we can increase the
number of decoder layers, as long as we don’t add
extra parameters. Tied decoder layers allow us to
maintain the same memory footprint and keep all
the traversed matrices in cache.

SSRU We replace the self-attention in the de-
coder with an RNN using the less computation and
memory intensive cell SSRU.

Reduced model dimensions We reduce the
model dimensions, using several presets. See ta-
ble 1 for details.

Wide embeddings We increased the size of the
embedding dimension to match the FFN dimension.
While this produces models that are strictly larger
than their non-wide equivalent, the initial increased
capacity can yield competitive systems using fewer
layers.

Fewer heads We reduced the number of attention
heads for some of the smaller models. These have
the same number of parameters, but intermediate
computations have different shape inputs.

3 Pruning

Attention is a crucial part of the transformer ar-
chitecture, but it is also computationally expensive.
Research has shown that many heads can be pruned
after training; with further work suggesting that
pruning during training can be less damaging to
quality. Feedforward layers are also expensive and
could be reduced.

We expand upon our work from the previous
year on the group lasso regularisation. We build
upon the standard group lasso with a novel ap-
proach of aided regularisation. The idea behind
it is to use supplementary information to scale the
penalties per layer to steer them towards a specific
behaviour. In practice, it means adding a new scalar
γ alongside an already existing λ:

E(batch) = 1
|batch|

(
∑

x∈batch
CE(x) + λ

∑
l∈layers

γbatchl R(l)

)

As shown in the equation above, each layer has
its individual γ, which gets updated after every
backpropagation pass. In order to avoid sudden
shits in γ between individual batches, which could
make a ratio between perplexities and penalties
even more unstable, γ are exponentially smoothed
as training progresses:

γj ← αγj + (1− α) ∗ γj−1

After every batch i, we calculate a local scalar
γj for each layer j based on information gathered
during this specific update, which then updates a
smoothed global scalar. α is a constant used in
exponential average that controls the contribution
of a new element in a sequence towards the overall
average. We use α = 1e−4 in my experiments.

We explore gradient-aided regularisation which
scales penalties based on layer gradients. γ scalars
should increase as gradients stop flowing through
a layer since it indicates that this layer does not
contribute to training as much, possibly stopping
learning altogether. A layer with small gradients
is a good candidate to be regularised more aggres-
sively and vice versa.

With Wi being a regularised layer and ∇W as
accumulated gradients in a model, the gradient-
aided γ function is defined as:

662

Layers Dimensions Size Quality Speed
Model Encoder Decoder Emb. FFN Att. heads Params Disk BLEU chrF COMET Time

Teacher 6 6 1024 4096 16 627.5M 3.19GB 43.37 67.39 0.5908 —

Large 12 1 1024 3072 8 171.4M 654MB 44.26 68.06 0.5901 170.4
Base 12 1 512 2048 8 57.9M 222MB 44.06 67.94 0.5842 57.7
Tiny 12 1 256 1536 8 22.0M 85MB 43.32 67.36 0.5516 23.4
Micro 12 1 256 1024 8 18.6M 72MB 43.00 67.16 0.5389 20.9

Base 6 2 512 2048 8 42.7M 163MB 44.04 67.90 0.5879 50.5
Tiny 6 2 256 1536 8 16.9M 65MB 42.76 67.12 0.5538 19.6
Tied.Tiny 6 2 256 1536 8 15.7M 61MB 42.72 67.08 0.5470 17.7

Tied.Tiny 8 4 256 1536 8 17.8M 69MB 43.22 67.38 0.5621 23.0

Base.Wide 12 1 2048 2048 8 401.5M 1.50GB 43.82 67.74 0.5773 395.4
Base.Wide 6 2 2048 2048 8 283.8M 1.1GB 44.28 68.14 0.5979 374.7

Table 1: Architectures for the different student models. The number of encoder/decoder layers are reported with
the size of the embedding and FFN layers, the total number of parameters and the model size on disk. Quality and
speed evaluated and averaged across WMT16–19.

Layers Sparsity Quality Speed
Model Encoder Decoder Attention FFN BLEU chrF COMET Time

Base 12 1 0% 0% 44.06 67.94 0.5842 57.7
+ pruning 12 1 63% 20% 43.92 67.86 0.5825 44.6
+ pruning + ft8bit 12 1 63% 20% 43.68 67.66 0.5710 18.6

Tiny 12 1 0% 0% 43.32 67.36 0.5516 23.4
+ pruning 12 1 74% 72% 41.54 66.16 0.4882 12.3
+ pruning + ft8bit 12 1 74% 72% 41.02 65.70 0.4615 5.8

Tied Tiny 8 4 0% 0% 43.22 67.38 0.5621 23.0
+ pruning 8 4 46% 20% 42.98 67.22 0.5584 19.3
+ pruning + ft8bit 8 4 46% 20% 42.36 66.78 0.5393 10.0

Table 2: The evaluation of student models pruned with aided regularisation and quantised to 8-bits. Both quality and
speed has been averaged over WMT16–20 testsets. Quantised models were finetuned shortly to help recover quality.

γi = −log
(
∥∂Wi

∂E ∥2
∥∇W∥2

)

We follow the training regime outlined by
Behnke et al. (2021):

1. Pretraining (50k batches)

2. Regularise (200/300k batches)

3. Slice and converge (200k+ batches)

All on-going training statistics including the
learning rate and Adam optimiser were refreshed
after each step. The results are presented in Tab. 2.
The results include quantised inference with mod-
els finetuned for the best quality performance. The
12-1.Base model was regularised for 300k batches
with λ = 0.05. The 12-1.Tiny model was reg-
ularised for 200k batches with λ = 0.5. Both
aforementioned models were pruned in the encoder
only. The 8-4.Tiny.Tied model was regularised for

200k batches with λ = 0.3 with both encoder and
decoder layers being penalised.

The quality gap becomes larger the harsher prun-
ing is. The base transformer model with 12 pruned
encoder layers gets 1.3× faster at the cost of 0.0017
COMET point. Applying quantisation on the top
of it makes translation 3.1× faster in exchange of
0.13 COMET points.

We applied regularisation onto both encoder and
decoder with the “8-4” tied tiny transformer archi-
tecture. This pruned and quantised model speeds
up by a factor of 2.3× at a 0.8 BLEU drop.

The most aggressive pruning among the pre-
sented results is a tiny transformer with 12 encoder
layers with more than 70% parameters removed.
This model is 4× faster in comparison to its base-
line with 3.3 BLEU and 0.09 COMET points drop.

We note that quantisation struggles with quality
on smaller models, both when trained from scratch
or pruned. Fine-tuning rectifies the problem to
some degree, but quality is sacrificed for faster

663

translation in the end.

4 Fixed Point 8-bit Quantisation

Quantising FP32 models into 8-bit integers is a
known strategy to reduce decoding time, specifi-
cally on CPU, with a minimal impact on quality
(Kim et al., 2019; Bhandare et al., 2019; Rodriguez
et al., 2018). This year’s submission closely fol-
lows the quantisation scheme of last year’s work
(Behnke and Heafield, 2021).

Quantisation entails computing a scaling fac-
tor to collapse the range of values to [−127, 127].
For parameters, this scaling factor is computed
offline using the maximum absolute value but
activation tensors change at runtime. To com-
pute a scaling factor for them, we decoded the
WMT16-20 datasets and recorded the scaling fac-
tor α(Ai) = 127/max(|Ai|) for each instance Ai

of an activation tensor A. Then, for production, we
fixed the scaling factor for activation tensor A to
the mean scaling factor plus 1.1 standard deviation:
α(A) = µ({α(Ai)}) + 1.1 ∗ σ({α(Ai)}). These
scaling factors were baked into the model file so
that statistics were not computed at runtime.

We used predominantly intgemm2 for our 8-bit
GEMM operations, including for the shortlisted
output layer. All parameter matrices are quantised
to 8-bit offline and the activations get quantised dy-
namically before a GEMM operation. We only per-
form the GEMM operation and the following acti-
vation in 8-bit integer mode. After a GEMM opera-
tion, the output is de-quantized back to FP32. More
formally we perform dequantize(σ(A∗B+bias)),
where the addition of the bias, the activation func-
tion σ, and the de-quantisation are applied in a
streaming fashion to prevent a round trip to mem-
ory.

Furthermore we make use of Intel’s DNNL3 for
our pruned models, as it performs better than int-
gemm for irregular sized matrices. Unfortunately,
DNNL doesn’t support streaming de-quantisation,
bias addition or activation function application.

Quantisation does not extend to the attention
layer, which is still computed in FP32. The reason
being is that in the attention layer, both the A and B
matrices of the GEMM operation would need to be
quantised at runtime, which makes the quantisation
too expensive. We note that we only perform the
GEMM operations in 8-bit integers.

2https://github.com/kpu/intgemm
3https://github.com/oneapi-src/oneDNN

Similar to previous’ year’s submission, we per-
formed quantisation fine-tuning for some 8-bit
models, where we perform a small amount of train-
ing with low learning rate and a damaged GEMM
implementation that simulates the quantised out-
put. We found that this helps regain some quality,
especially in smaller models.

5 Shortlisting

The single most expensive computation in machine
translation is the cost of the output layer. We can
reduce the computation if we only take into account
likely output tokens, reducing the output layer size
from 32000 to something much more manageable
like 500-2000. We used IBM model based short-
listing (Kim et al., 2019).

This lexical shortlist is straightforward to work
with, but it is limiting in the sense that it doesn’t
capture well idioms and favours more literal trans-
lations. The hyper-parameters that control the size
of this shortlist are: the number of most frequently
targeted words included, and the number of prob-
able translations for each token in the input. This
year we increased the number of most-frequent and
aligned tokens to 100,100 (from 50,50 in the
previous year) in order to improve quality.

The shortlist is built using alignment models
trained on a specific corpora. The total number of
tokens in a shortlist considered is influenced by the
size of the current batch: The shortlist produced
is the union of probable translations for each in-
put token and overall most-likely candidates. In
latency scenarios, where batches are a single sen-
tence, a small shortlist is more detrimental to the
quality than for larger batches, such as in through-
put scenarios, that benefit from inclusion of more
candidate tokens. Similarly, this approach benefits
when inputs are batched.

6 IBDecoder

The sequential nature of autoregressive decoding
forms an inference bottleneck, hurting decoding
parallelisation and latency. A popular method to
break this bottleneck is to allow the parallel pre-
diction of multiple target tokens per step through
semi- or non-autoregressive modelling (Gu et al.,
2018; Wang et al., 2018) with a quality tradeoff.

We experimented with Interleaved Bidirectional
Decoder (Zhang et al., 2020), a variant of semi-
autoregressive decoder that predicts target tokens
from the left-to-right and the right-to-left directions

664

https://github.com/kpu/intgemm
https://github.com/oneapi-src/oneDNN

Layers Size Quality Speed

Model Encoder Decoder Params Disk BLEU chrF COMET Time

Base 12 1 57.9M 222MB 44.06 67.94 0.5842 57.7
+ IBDecoder 12 1 57.9M 221MB 43.84 67.74 0.5605 51.6
+ 8bit quantisation 12 1 57.9M 221MB 43.50 67.48 0.5412 28.6

Base + IBDecoder 12 1 57.9M 221MB 43.84 67.74 0.5605 51.6
+ pruning 12 1 57.9M 168MB 43.50 67.48 0.5340 42.1
+ 8bit quantisation 12 1 57.9M 168MB 43.26 67.28 0.5166 18.8

Tiny 6 2 16.9M 65MB 42.76 67.12 0.5538 19.6
+ IBDecoder 6 2 16.9M 65MB 41.88 66.64 0.5074 17.1
+ 8bit quantisation 6 2 16.9M 65MB 41.00 65.94 0.4628 9.8

Tiny + IBDecoder 6 3 18.1M 69MB 42.48 66.98 0.5275 19.6
+ 8bit quantisation 6 3 18.1M 69MB 41.62 66.32 0.4971 11.2

Micro + IBDecoder 12 4 21.4M 82MB 42.96 67.28 0.5475 25.3
+ 8bit quantisation 12 4 21.4M 82MB 42.56 67.08 0.5338 15.4

Table 3: The evaluation of IBDecoder models and their 8-bit quantisation (without finetuning). Both quality and
speed has been averaged over WMT16–20 testsets.

simultaneously. Zhang et al. (2020) showed that
words from different directions are more loosely
dependent thus their parallel generation hurts qual-
ity less. IBDecoder produces one word in each
direction at a time, thus halving the total decoding
steps and approximately doubling speed.

The efficiency gains from IBDecoder decrease
when using deep encoders and shallow decoders
(Tab. 3). In general, IBDecoder delivers a speed-
up over our baseline system and is competitive at
BLEU scores but much worse at COMET scores.
IBDecoder shows higher sensitivity to model sizes,
where reducing model size dramatically hurts its
performance regardless of BLEU or COMET. We
also tried to initialise IBDecoder from the baseline
system which unfortunately doesn’t help. IBDe-
coder also benefits from pruning and quantisation
in speed, but at the cost of losing COMET.

7 Quality issues

Quantisation applied to small models, especially
those that were pruned, struggles with maintaining
the quality. For example, as can be seen in Tab. 2,
quantisation on top of pruned models damages the
quality from 0.1 to 0.3 COMET points. This gap
is more evident in smaller architectures such as
Tiny or Tied Tiny. We hypothesise that the fewer
parameters there are in a model, the more difficult it
is to optimise through pruning and/or quantisation,
or using a bidirectional generation.

IBDecoder suffers from the pruning and quanti-
sation particularly on the COMET scores as shown
in Tab. 3.

We compared several sentences that showed lit-
tle difference in BLEU but significant difference
in the COMET scores and tried to see what went
wrong (Table 4). We can see that the IBDecoder is
prone to pathological repetitions (Example 1) and
even more so when quantised (Examples 3 and 4).
Those repetitions, especially long ranged one don’t
hurt the BLEU score, but they get heavily penalised
by the COMET score (Example 3).

It seems quantisation doesn’t always result in
a a worse transaltion. In the second example the
quantised IBDecoder produces a more complicated,
but overall much better translation than the IBDe-
coder, which also suffers from a repetition error.
This suggests that the model is quite brittle and
very susceptible to small changes.

8 Software improvements

We built our work using the Marian machine trans-
lation framework, making some improvements on
top of the submission from last year:

AVX512 inrinsics We implemented hand crafted
intrinsics for various arithmetic operations, result-
ing in .5% improvement in performance.

Max element We identified via a profiler that the
max element implementation was taking more time
than usual so we implemented a hand optimised
version resulting in 5% performance improvement.
More details are available in Appendix A.

Thread configuration For the CPU_ALL
throughput track, we swept configurations of multi-
ple processes and threads on the platform, settling

665

Reference Biotechnische Anwendungen
Baseline Biotech-Anwendungen (0.6632)
IBDecoder Anwendungen in der-Anwendungen (-1.4205)
IBDecoder-Quant Anwendungen in der-Anwendungen (-1.4205)

Reference Die nächste Show findet am 9. Oktober in San Francisco statt. Am 16. März 2020 wird die Band
ihre UK-Tournee in Manchester eröffnen.

Baseline Ihre nächste Show ist am 9. Oktober in San Francisco und die Band wird ihre UK-Tour in Manchester
am 16. März 2020 eröffnen. (0.7350)

IBDecoder Ihr nächster Auftritt ist am 9. Oktober in San Francisco und eröffnet eröffnet ihre UK-Tour in
Manchester am 16. März 2020. (-0.1582)

IBDecoder-Quant Ihre nächste Show findet am 9. Oktober in San Francisco statt, wo die Band ihre UK-Tournee in
Manchester am 16. März 2020 eröffnen wird. (0.7387)

Reference Die Herzogin von York schrieb auf Twitter: „ Ich kenne die Gefühle einer Mutter, deshalb weine ich
vor Freude. Ich freue mich sehr über diese sensationellen Neuigkeiten

Baseline Die Herzogin von York schrieb auf Twitter: "Ich weiß, was eine Mutter fühlt, also habe ich Tränen
der Freude. (0.4349)

IBDecoder Die Herzogin von York schrieb auf Twitter: "Ich weiß, was eine Mutter fühlt, also habe ich Tränen
der Freude. (0.4351)

IBDecoder-Quant Die Herzogin von York schrieb auf Twitter: "Ich weiß, was eine Mutter Freude, also habe ich Tränen
der Freude, also habe ich Tränen der Freude. (-0.9820)

Reference Meghan Markle bezüglich des Kurzauftritts bei Suits „nie gefragt“
Baseline Meghan Markle wurde nach Suits Cameo "nie gefragt" (0.1344)
IBDecoder Meghan Markle wurde "niemals" nach Suits Cameo gefragt (0.0509)
IBDecoder-Quant Meghan Markle wurde "nicht gefragt" nach Suits Cameo gefragt (-1.1194)

Table 4: Case study for IBDecoder models. All models are with 12 encoder layers and 1 decoder layer under the
base setup. IBDecoder-Quant denotes the quantised system. We show cases where IBDecoder and IBDecoder-Quant
performs worse than Baseline and IBDecoder, respectively, and the numbers in bracket shows the COMET scores.

on 4 processes with 9 threads each. The input
text is simply split into 4 pieces and parallelised
(Tange, 2011) over processes. The mini-batch sizes
past 16 did not impact performance substantially
but 32 was chosen as the best performing one. The
Hyperthreads do not increase performance. Each
process is bound to 9 cores assigned sequentially
and to the memory domain corresponding to the
socket with those cores using numactl. Output
from the data parallel run is then stitched together
to produce the final output.

For our GPU submission we reused the work
from the last year’s submission (Behnke et al.,
2021) with the improved models.

9 Conclusion

We participated in all tracks of the WMT 2022 ef-
ficiency task and we submitted multiple systems
that have different trade-offs between speed and
translation quality. For the CPU submission we
used 8-bit integer decoding and a combination of
pruned and non-pruned system, together with a lex-
ical shortlist in order to reduce the computational
cost of the output layer. We also experimented with
IBDecoder in both CPU and GPU setting.

Acknowledgements

The computations described in this research
were performed using the Baskerville Tier 2
HPC service (https://www.baskerville.
ac.uk/). Baskerville was funded by the EPSRC
and UKRI through the World Class Labs scheme
(EP/T022221/1) and the Digital Research Infras-
tructure programme (EP/W032244/1) and is op-
erated by Advanced Research Computing at the
University of Birmingham.

References
Maximiliana Behnke, Nikolay Bogoychev, Alham Fikri

Aji, Kenneth Heafield, Graeme Nail, Qianqian Zhu,
Svetlana Tchistiakova, Jelmer van der Linde, Pinzhen
Chen, Sidharth Kashyap, and Roman Grundkiewicz.
2021. Efficient machine translation with model prun-
ing and quantization. In Proceedings of the Sixth
Conference on Machine Translation, pages 775–780,
Online. Association for Computational Linguistics.

Maximiliana Behnke and Kenneth Heafield. 2021. Prun-
ing neural machine translation for speed using group
lasso. In Proceedings of the Six Conference on Ma-
chine Translation, Online. Association for Computa-
tional Linguistics.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada,
Vivek Menon, Sun Choi, Kushal Datta, and Vikram

666

https://www.baskerville.ac.uk/
https://www.baskerville.ac.uk/
https://aclanthology.org/2021.wmt-1.74
https://aclanthology.org/2021.wmt-1.74

Saletore. 2019. Efficient 8-bit quantization of trans-
former neural machine language translation model.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In International Confer-
ence on Learning Representations.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, et al. 2018.
Marian: Fast neural machine translation in C++. In
Proceedings of ACL 2018, System Demonstrations,
pages 116–121.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Has-
san, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. 2019. From
research to production and back: Ludicrously fast
neural machine translation. In Proceedings of the
3rd Workshop on Neural Generation and Transla-
tion, pages 280–288, Hong Kong. Association for
Computational Linguistics.

Xiang Kong, Adithya Renduchintala, James Cross,
Yuqing Tang, Jiatao Gu, and Xian Li. 2021. Mul-
tilingual neural machine translation with deep en-
coder and multiple shallow decoders. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 1613–1624, Online. Association for
Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Andres Rodriguez, Eden Segal, Etay Meiri, Evarist
Fomenko, Young Jin Kim, Haihao Shen, and Barukh
Ziv. 2018. Lower numerical precision deep learning
inference and training.

O. Tange. 2011. Gnu parallel - the command-line power
tool. ;login: The USENIX Magazine, 36(1):42–47.

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018. Semi-
autoregressive neural machine translation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 479–488,
Brussels, Belgium. Association for Computational
Linguistics.

Biao Zhang, Ivan Titov, and Rico Sennrich. 2020. Fast
interleaved bidirectional sequence generation. In Pro-
ceedings of the Fifth Conference on Machine Trans-
lation, pages 503–515, Online. Association for Com-
putational Linguistics.

A Profiler aided optimisation

We used a profiler to identify hotspots for potential
software optimisations.

Max element improvements We identified that
the max element operation takes surprisingly large
amounts of runtime during decoding. max element
is used to select the next word to be produced from
the output layer during decoding with beam size
of 1. We explored various different implementa-
tions and achieved 10X performance improvement
compared to the standard library when using GCC
and 2X otherwise. This resulted in about 5% per-
formance improvement in the CPU setting. More
details about different implementations can be seen
on Table 5

GCC clang
std::max_element 2.670s 0.422s
sequential 1.083s 1.192s
AVX512 max + max_reduce 0.241s 0.215s
AVX512 max_reduce only 0.257s 0.263s
AVX512 cmp_ps_mask 0.188s 0.183s
AVX512 ^+ vectorized overhang0.210s 0.209s
AVX cmp_ps + movemask 0.218s 0.170s
SSE cmplt_psp + movemask 0.269s 0.205s

Table 5: Performance of max element with GCC
11.2 and clang 14 on Intel Cascade lake. For
more information check https://github.com/
XapaJIaMnu/maxelem_test.

667

http://arxiv.org/abs/1906.00532
http://arxiv.org/abs/1906.00532
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
https://www.aclweb.org/anthology/P18-4020
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://www.aclweb.org/anthology/D19-5632
https://www.aclweb.org/anthology/D19-5632
https://www.aclweb.org/anthology/D19-5632
https://doi.org/10.18653/v1/2021.eacl-main.138
https://doi.org/10.18653/v1/2021.eacl-main.138
https://doi.org/10.18653/v1/2021.eacl-main.138
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.5281/zenodo.16303
https://doi.org/10.5281/zenodo.16303
https://doi.org/10.18653/v1/D18-1044
https://doi.org/10.18653/v1/D18-1044
https://aclanthology.org/2020.wmt-1.62
https://aclanthology.org/2020.wmt-1.62
https://github.com/XapaJIaMnu/maxelem_test
https://github.com/XapaJIaMnu/maxelem_test

