HW-TSC’s Submission for the WMT22 Efficiency Task

Hengchao Shang, Ting Hu, Daimeng Wei, Zongyao Li, Xianzhi Yu, Jianfei Feng, Ting Zhu, Lizhi Lei, Shimin Tao, Hao Yang, Ying Qin, Jinlong Yang, Zhiqiang Rao, Zhengzhe Yu


Abstract
This paper presents the submission of Huawei Translation Services Center (HW-TSC) to WMT 2022 Efficiency Shared Task. For this year’s task, we still apply sentence-level distillation strategy to train small models with different configurations. Then, we integrate the average attention mechanism into the lightweight RNN model to pursue more efficient decoding. We tried adding a retrain step to our 8-bit and 4-bit models to achieve a balance between model size and quality. We still use Huawei Noah’s Bolt for INT8 inference and 4-bit storage. Coupled with Bolt’s support for batch inference and multi-core parallel computing, we finally submit models with different configurations to the CPU latency and throughput tracks to explore the Pareto frontiers.
Anthology ID:
2022.wmt-1.66
Volume:
Proceedings of the Seventh Conference on Machine Translation (WMT)
Month:
December
Year:
2022
Address:
Abu Dhabi, United Arab Emirates (Hybrid)
Editors:
Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
Venue:
WMT
SIG:
SIGMT
Publisher:
Association for Computational Linguistics
Note:
Pages:
677–681
Language:
URL:
https://aclanthology.org/2022.wmt-1.66
DOI:
Bibkey:
Cite (ACL):
Hengchao Shang, Ting Hu, Daimeng Wei, Zongyao Li, Xianzhi Yu, Jianfei Feng, Ting Zhu, Lizhi Lei, Shimin Tao, Hao Yang, Ying Qin, Jinlong Yang, Zhiqiang Rao, and Zhengzhe Yu. 2022. HW-TSC’s Submission for the WMT22 Efficiency Task. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 677–681, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
Cite (Informal):
HW-TSC’s Submission for the WMT22 Efficiency Task (Shang et al., WMT 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.wmt-1.66.pdf