Correct Metadata for
Abstract
By learning the human post-edits, the automatic post-editing (APE) models are often used to modify the output of the machine translation (MT) system to make it as close as possible to human translation. We introduce the system used in our submission of WMT’22 Automatic Post-Editing (APE) English-Marathi (En-Mr) shared task. In this task, we first train the MT system of En-Mr to generate additional machine-translation sentences. Then we use the additional triple to bulid our APE model and use APE dataset to further fine-tuning. Inspired by the mixture of experts (MoE), we use GMM algorithm to roughly divide the text of APE dataset into three categories. After that, the experts are added to the APE model and different domain data are sent to different experts. Finally, we ensemble the models to get better performance. Our APE system significantly improves the translations of provided MT results by -2.848 and +3.74 on the development dataset in terms of TER and BLEU, respectively. Finally, the TER and BLEU scores are improved by -1.22 and +2.41 respectively on the blind test set.- Anthology ID:
- 2022.wmt-1.68
- Volume:
- Proceedings of the Seventh Conference on Machine Translation (WMT)
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates (Hybrid)
- Editors:
- Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 689–693
- Language:
- URL:
- https://aclanthology.org/2022.wmt-1.68/
- DOI:
- 10.18653/v1/2022.wmt-1.68
- Bibkey:
- Cite (ACL):
- Xiaoying Huang, Xingrui Lou, Fan Zhang, and Tu Mei. 2022. LUL’s WMT22 Automatic Post-Editing Shared Task Submission. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 689–693, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
- Cite (Informal):
- LUL’s WMT22 Automatic Post-Editing Shared Task Submission (Huang et al., WMT 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.wmt-1.68.pdf
Export citation
@inproceedings{huang-etal-2022-luls,
title = "{LUL}{'}s {WMT}22 Automatic Post-Editing Shared Task Submission",
author = "Huang, Xiaoying and
Lou, Xingrui and
Zhang, Fan and
Mei, Tu",
editor = {Koehn, Philipp and
Barrault, Lo{\"i}c and
Bojar, Ond{\v{r}}ej and
Bougares, Fethi and
Chatterjee, Rajen and
Costa-juss{\`a}, Marta R. and
Federmann, Christian and
Fishel, Mark and
Fraser, Alexander and
Freitag, Markus and
Graham, Yvette and
Grundkiewicz, Roman and
Guzman, Paco and
Haddow, Barry and
Huck, Matthias and
Jimeno Yepes, Antonio and
Kocmi, Tom and
Martins, Andr{\'e} and
Morishita, Makoto and
Monz, Christof and
Nagata, Masaaki and
Nakazawa, Toshiaki and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Popel, Martin and
Turchi, Marco and
Zampieri, Marcos},
booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wmt-1.68/",
doi = "10.18653/v1/2022.wmt-1.68",
pages = "689--693",
abstract = "By learning the human post-edits, the automatic post-editing (APE) models are often used to modify the output of the machine translation (MT) system to make it as close as possible to human translation. We introduce the system used in our submission of WMT{'}22 Automatic Post-Editing (APE) English-Marathi (En-Mr) shared task. In this task, we first train the MT system of En-Mr to generate additional machine-translation sentences. Then we use the additional triple to bulid our APE model and use APE dataset to further fine-tuning. Inspired by the mixture of experts (MoE), we use GMM algorithm to roughly divide the text of APE dataset into three categories. After that, the experts are added to the APE model and different domain data are sent to different experts. Finally, we ensemble the models to get better performance. Our APE system significantly improves the translations of provided MT results by -2.848 and +3.74 on the development dataset in terms of TER and BLEU, respectively. Finally, the TER and BLEU scores are improved by -1.22 and +2.41 respectively on the blind test set."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2022-luls">
<titleInfo>
<title>LUL’s WMT22 Automatic Post-Editing Shared Task Submission</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaoying</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingrui</namePart>
<namePart type="family">Lou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tu</namePart>
<namePart type="family">Mei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Conference on Machine Translation (WMT)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loïc</namePart>
<namePart type="family">Barrault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fethi</namePart>
<namePart type="family">Bougares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajen</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Federmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Freitag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Grundkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paco</namePart>
<namePart type="family">Guzman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Jimeno Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Morishita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masaaki</namePart>
<namePart type="family">Nagata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toshiaki</namePart>
<namePart type="family">Nakazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Popel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>By learning the human post-edits, the automatic post-editing (APE) models are often used to modify the output of the machine translation (MT) system to make it as close as possible to human translation. We introduce the system used in our submission of WMT’22 Automatic Post-Editing (APE) English-Marathi (En-Mr) shared task. In this task, we first train the MT system of En-Mr to generate additional machine-translation sentences. Then we use the additional triple to bulid our APE model and use APE dataset to further fine-tuning. Inspired by the mixture of experts (MoE), we use GMM algorithm to roughly divide the text of APE dataset into three categories. After that, the experts are added to the APE model and different domain data are sent to different experts. Finally, we ensemble the models to get better performance. Our APE system significantly improves the translations of provided MT results by -2.848 and +3.74 on the development dataset in terms of TER and BLEU, respectively. Finally, the TER and BLEU scores are improved by -1.22 and +2.41 respectively on the blind test set.</abstract>
<identifier type="citekey">huang-etal-2022-luls</identifier>
<identifier type="doi">10.18653/v1/2022.wmt-1.68</identifier>
<location>
<url>https://aclanthology.org/2022.wmt-1.68/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>689</start>
<end>693</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T LUL’s WMT22 Automatic Post-Editing Shared Task Submission %A Huang, Xiaoying %A Lou, Xingrui %A Zhang, Fan %A Mei, Tu %Y Koehn, Philipp %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Freitag, Markus %Y Graham, Yvette %Y Grundkiewicz, Roman %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Jimeno Yepes, Antonio %Y Kocmi, Tom %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Popel, Martin %Y Turchi, Marco %Y Zampieri, Marcos %S Proceedings of the Seventh Conference on Machine Translation (WMT) %D 2022 %8 December %I Association for Computational Linguistics %C Abu Dhabi, United Arab Emirates (Hybrid) %F huang-etal-2022-luls %X By learning the human post-edits, the automatic post-editing (APE) models are often used to modify the output of the machine translation (MT) system to make it as close as possible to human translation. We introduce the system used in our submission of WMT’22 Automatic Post-Editing (APE) English-Marathi (En-Mr) shared task. In this task, we first train the MT system of En-Mr to generate additional machine-translation sentences. Then we use the additional triple to bulid our APE model and use APE dataset to further fine-tuning. Inspired by the mixture of experts (MoE), we use GMM algorithm to roughly divide the text of APE dataset into three categories. After that, the experts are added to the APE model and different domain data are sent to different experts. Finally, we ensemble the models to get better performance. Our APE system significantly improves the translations of provided MT results by -2.848 and +3.74 on the development dataset in terms of TER and BLEU, respectively. Finally, the TER and BLEU scores are improved by -1.22 and +2.41 respectively on the blind test set. %R 10.18653/v1/2022.wmt-1.68 %U https://aclanthology.org/2022.wmt-1.68/ %U https://doi.org/10.18653/v1/2022.wmt-1.68 %P 689-693
Markdown (Informal)
[LUL’s WMT22 Automatic Post-Editing Shared Task Submission](https://aclanthology.org/2022.wmt-1.68/) (Huang et al., WMT 2022)
- LUL’s WMT22 Automatic Post-Editing Shared Task Submission (Huang et al., WMT 2022)
ACL
- Xiaoying Huang, Xingrui Lou, Fan Zhang, and Tu Mei. 2022. LUL’s WMT22 Automatic Post-Editing Shared Task Submission. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 689–693, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.