Abstract
Despite the wide use of inline formatting, not much has been studied on translating sentences with inline formatted tags. The detag-and-project approach using word alignments is one solution to translating a tagged sentence. However, the method has a limitation: tag reinsertion is not considered in the translation process. Another solution is to use an end-to-end model which takes text with inline tags as inputs and translates them into a tagged sentence. This approach can alleviate the problems of the aforementioned method, but there is no sufficient parallel corpus dedicated to such a task. To solve this problem, an automatic data augmentation method by tag injection is suggested, but it is computationally expensive and augmentation is limited since the model is based on isolated translation for all fragments. In this paper, we propose an efficient and effective tag augmentation method based on word alignment. Our experiments show that our approach outperforms the detag-and-project methods. We also introduce a metric to evaluate the placement of tags and show that the suggested metric is reasonable for our task. We further analyze the effectiveness of each implementation detail.- Anthology ID:
- 2022.wmt-1.81
- Volume:
- Proceedings of the Seventh Conference on Machine Translation (WMT)
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates (Hybrid)
- Editors:
- Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 886–894
- Language:
- URL:
- https://aclanthology.org/2022.wmt-1.81
- DOI:
- Bibkey:
- Cite (ACL):
- Yonghyun Ryu, Yoonjung Choi, and Sangha Kim. 2022. Data Augmentation for Inline Tag-Aware Neural Machine Translation. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 886–894, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
- Cite (Informal):
- Data Augmentation for Inline Tag-Aware Neural Machine Translation (Ryu et al., WMT 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.wmt-1.81.pdf
Export citation
@inproceedings{ryu-etal-2022-data, title = "Data Augmentation for Inline Tag-Aware Neural Machine Translation", author = "Ryu, Yonghyun and Choi, Yoonjung and Kim, Sangha", editor = {Koehn, Philipp and Barrault, Lo{\"\i}c and Bojar, Ond{\v{r}}ej and Bougares, Fethi and Chatterjee, Rajen and Costa-juss{\`a}, Marta R. and Federmann, Christian and Fishel, Mark and Fraser, Alexander and Freitag, Markus and Graham, Yvette and Grundkiewicz, Roman and Guzman, Paco and Haddow, Barry and Huck, Matthias and Jimeno Yepes, Antonio and Kocmi, Tom and Martins, Andr{\'e} and Morishita, Makoto and Monz, Christof and Nagata, Masaaki and Nakazawa, Toshiaki and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Popel, Martin and Turchi, Marco and Zampieri, Marcos}, booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wmt-1.81", pages = "886--894", abstract = "Despite the wide use of inline formatting, not much has been studied on translating sentences with inline formatted tags. The detag-and-project approach using word alignments is one solution to translating a tagged sentence. However, the method has a limitation: tag reinsertion is not considered in the translation process. Another solution is to use an end-to-end model which takes text with inline tags as inputs and translates them into a tagged sentence. This approach can alleviate the problems of the aforementioned method, but there is no sufficient parallel corpus dedicated to such a task. To solve this problem, an automatic data augmentation method by tag injection is suggested, but it is computationally expensive and augmentation is limited since the model is based on isolated translation for all fragments. In this paper, we propose an efficient and effective tag augmentation method based on word alignment. Our experiments show that our approach outperforms the detag-and-project methods. We also introduce a metric to evaluate the placement of tags and show that the suggested metric is reasonable for our task. We further analyze the effectiveness of each implementation detail.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="ryu-etal-2022-data"> <titleInfo> <title>Data Augmentation for Inline Tag-Aware Neural Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">Yonghyun</namePart> <namePart type="family">Ryu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yoonjung</namePart> <namePart type="family">Choi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sangha</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-12</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Seventh Conference on Machine Translation (WMT)</title> </titleInfo> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Loïc</namePart> <namePart type="family">Barrault</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fethi</namePart> <namePart type="family">Bougares</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marta</namePart> <namePart type="given">R</namePart> <namePart type="family">Costa-jussà</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Fraser</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Markus</namePart> <namePart type="family">Freitag</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Roman</namePart> <namePart type="family">Grundkiewicz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paco</namePart> <namePart type="family">Guzman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="family">Jimeno Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tom</namePart> <namePart type="family">Kocmi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaaki</namePart> <namePart type="family">Nagata</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Toshiaki</namePart> <namePart type="family">Nakazawa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martin</namePart> <namePart type="family">Popel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marcos</namePart> <namePart type="family">Zampieri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Despite the wide use of inline formatting, not much has been studied on translating sentences with inline formatted tags. The detag-and-project approach using word alignments is one solution to translating a tagged sentence. However, the method has a limitation: tag reinsertion is not considered in the translation process. Another solution is to use an end-to-end model which takes text with inline tags as inputs and translates them into a tagged sentence. This approach can alleviate the problems of the aforementioned method, but there is no sufficient parallel corpus dedicated to such a task. To solve this problem, an automatic data augmentation method by tag injection is suggested, but it is computationally expensive and augmentation is limited since the model is based on isolated translation for all fragments. In this paper, we propose an efficient and effective tag augmentation method based on word alignment. Our experiments show that our approach outperforms the detag-and-project methods. We also introduce a metric to evaluate the placement of tags and show that the suggested metric is reasonable for our task. We further analyze the effectiveness of each implementation detail.</abstract> <identifier type="citekey">ryu-etal-2022-data</identifier> <location> <url>https://aclanthology.org/2022.wmt-1.81</url> </location> <part> <date>2022-12</date> <extent unit="page"> <start>886</start> <end>894</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Data Augmentation for Inline Tag-Aware Neural Machine Translation %A Ryu, Yonghyun %A Choi, Yoonjung %A Kim, Sangha %Y Koehn, Philipp %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Freitag, Markus %Y Graham, Yvette %Y Grundkiewicz, Roman %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Jimeno Yepes, Antonio %Y Kocmi, Tom %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Popel, Martin %Y Turchi, Marco %Y Zampieri, Marcos %S Proceedings of the Seventh Conference on Machine Translation (WMT) %D 2022 %8 December %I Association for Computational Linguistics %C Abu Dhabi, United Arab Emirates (Hybrid) %F ryu-etal-2022-data %X Despite the wide use of inline formatting, not much has been studied on translating sentences with inline formatted tags. The detag-and-project approach using word alignments is one solution to translating a tagged sentence. However, the method has a limitation: tag reinsertion is not considered in the translation process. Another solution is to use an end-to-end model which takes text with inline tags as inputs and translates them into a tagged sentence. This approach can alleviate the problems of the aforementioned method, but there is no sufficient parallel corpus dedicated to such a task. To solve this problem, an automatic data augmentation method by tag injection is suggested, but it is computationally expensive and augmentation is limited since the model is based on isolated translation for all fragments. In this paper, we propose an efficient and effective tag augmentation method based on word alignment. Our experiments show that our approach outperforms the detag-and-project methods. We also introduce a metric to evaluate the placement of tags and show that the suggested metric is reasonable for our task. We further analyze the effectiveness of each implementation detail. %U https://aclanthology.org/2022.wmt-1.81 %P 886-894
Markdown (Informal)
[Data Augmentation for Inline Tag-Aware Neural Machine Translation](https://aclanthology.org/2022.wmt-1.81) (Ryu et al., WMT 2022)
- Data Augmentation for Inline Tag-Aware Neural Machine Translation (Ryu et al., WMT 2022)
ACL
- Yonghyun Ryu, Yoonjung Choi, and Sangha Kim. 2022. Data Augmentation for Inline Tag-Aware Neural Machine Translation. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 886–894, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.