@inproceedings{wang-etal-2022-uncovering,
title = "Uncovering Surprising Event Boundaries in Narratives",
author = "Wang, Zhilin and
Jafarpour, Anna and
Sap, Maarten",
editor = "Clark, Elizabeth and
Brahman, Faeze and
Iyyer, Mohit",
booktitle = "Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wnu-1.1",
doi = "10.18653/v1/2022.wnu-1.1",
pages = "1--12",
abstract = "When reading stories, people can naturally identify sentences in which a new event starts, i.e., event boundaries, using their knowledge of how events typically unfold, but a computational model to detect event boundaries is not yet available. We characterize and detect sentences with expected or surprising event boundaries in an annotated corpus of short diary-like stories, using a model that combines commonsense knowledge and narrative flow features with a RoBERTa classifier. Our results show that, while commonsense and narrative features can help improve performance overall, detecting event boundaries that are more subjective remains challenging for our model. We also find that sentences marking surprising event boundaries are less likely to be causally related to the preceding sentence, but are more likely to express emotional reactions of story characters, compared to sentences with no event boundary.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2022-uncovering">
<titleInfo>
<title>Uncovering Surprising Event Boundaries in Narratives</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhilin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Jafarpour</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maarten</namePart>
<namePart type="family">Sap</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Faeze</namePart>
<namePart type="family">Brahman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Iyyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>When reading stories, people can naturally identify sentences in which a new event starts, i.e., event boundaries, using their knowledge of how events typically unfold, but a computational model to detect event boundaries is not yet available. We characterize and detect sentences with expected or surprising event boundaries in an annotated corpus of short diary-like stories, using a model that combines commonsense knowledge and narrative flow features with a RoBERTa classifier. Our results show that, while commonsense and narrative features can help improve performance overall, detecting event boundaries that are more subjective remains challenging for our model. We also find that sentences marking surprising event boundaries are less likely to be causally related to the preceding sentence, but are more likely to express emotional reactions of story characters, compared to sentences with no event boundary.</abstract>
<identifier type="citekey">wang-etal-2022-uncovering</identifier>
<identifier type="doi">10.18653/v1/2022.wnu-1.1</identifier>
<location>
<url>https://aclanthology.org/2022.wnu-1.1</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>1</start>
<end>12</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Uncovering Surprising Event Boundaries in Narratives
%A Wang, Zhilin
%A Jafarpour, Anna
%A Sap, Maarten
%Y Clark, Elizabeth
%Y Brahman, Faeze
%Y Iyyer, Mohit
%S Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F wang-etal-2022-uncovering
%X When reading stories, people can naturally identify sentences in which a new event starts, i.e., event boundaries, using their knowledge of how events typically unfold, but a computational model to detect event boundaries is not yet available. We characterize and detect sentences with expected or surprising event boundaries in an annotated corpus of short diary-like stories, using a model that combines commonsense knowledge and narrative flow features with a RoBERTa classifier. Our results show that, while commonsense and narrative features can help improve performance overall, detecting event boundaries that are more subjective remains challenging for our model. We also find that sentences marking surprising event boundaries are less likely to be causally related to the preceding sentence, but are more likely to express emotional reactions of story characters, compared to sentences with no event boundary.
%R 10.18653/v1/2022.wnu-1.1
%U https://aclanthology.org/2022.wnu-1.1
%U https://doi.org/10.18653/v1/2022.wnu-1.1
%P 1-12
Markdown (Informal)
[Uncovering Surprising Event Boundaries in Narratives](https://aclanthology.org/2022.wnu-1.1) (Wang et al., WNU 2022)
ACL