@inproceedings{hosseini-etal-2022-gispy,
title = "{G}is{P}y: A Tool for Measuring Gist Inference Score in Text",
author = "Hosseini, Pedram and
Wolfe, Christopher and
Diab, Mona and
Broniatowski, David",
editor = "Clark, Elizabeth and
Brahman, Faeze and
Iyyer, Mohit",
booktitle = "Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wnu-1.5",
doi = "10.18653/v1/2022.wnu-1.5",
pages = "38--46",
abstract = "Decision making theories such as Fuzzy-Trace Theory (FTT) suggest that individuals tend to rely on gist, or bottom-line meaning, in the text when making decisions. In this work, we delineate the process of developing GisPy, an opensource tool in Python for measuring the Gist Inference Score (GIS) in text. Evaluation of GisPy on documents in three benchmarks from the news and scientific text domains demonstrates that scores generated by our tool significantly distinguish low vs. high gist documents. Our tool is publicly available to use at: https: //github.com/phosseini/GisPy.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hosseini-etal-2022-gispy">
<titleInfo>
<title>GisPy: A Tool for Measuring Gist Inference Score in Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pedram</namePart>
<namePart type="family">Hosseini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Wolfe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mona</namePart>
<namePart type="family">Diab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Broniatowski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Faeze</namePart>
<namePart type="family">Brahman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Iyyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Decision making theories such as Fuzzy-Trace Theory (FTT) suggest that individuals tend to rely on gist, or bottom-line meaning, in the text when making decisions. In this work, we delineate the process of developing GisPy, an opensource tool in Python for measuring the Gist Inference Score (GIS) in text. Evaluation of GisPy on documents in three benchmarks from the news and scientific text domains demonstrates that scores generated by our tool significantly distinguish low vs. high gist documents. Our tool is publicly available to use at: https: //github.com/phosseini/GisPy.</abstract>
<identifier type="citekey">hosseini-etal-2022-gispy</identifier>
<identifier type="doi">10.18653/v1/2022.wnu-1.5</identifier>
<location>
<url>https://aclanthology.org/2022.wnu-1.5</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>38</start>
<end>46</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GisPy: A Tool for Measuring Gist Inference Score in Text
%A Hosseini, Pedram
%A Wolfe, Christopher
%A Diab, Mona
%A Broniatowski, David
%Y Clark, Elizabeth
%Y Brahman, Faeze
%Y Iyyer, Mohit
%S Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F hosseini-etal-2022-gispy
%X Decision making theories such as Fuzzy-Trace Theory (FTT) suggest that individuals tend to rely on gist, or bottom-line meaning, in the text when making decisions. In this work, we delineate the process of developing GisPy, an opensource tool in Python for measuring the Gist Inference Score (GIS) in text. Evaluation of GisPy on documents in three benchmarks from the news and scientific text domains demonstrates that scores generated by our tool significantly distinguish low vs. high gist documents. Our tool is publicly available to use at: https: //github.com/phosseini/GisPy.
%R 10.18653/v1/2022.wnu-1.5
%U https://aclanthology.org/2022.wnu-1.5
%U https://doi.org/10.18653/v1/2022.wnu-1.5
%P 38-46
Markdown (Informal)
[GisPy: A Tool for Measuring Gist Inference Score in Text](https://aclanthology.org/2022.wnu-1.5) (Hosseini et al., WNU 2022)
ACL
- Pedram Hosseini, Christopher Wolfe, Mona Diab, and David Broniatowski. 2022. GisPy: A Tool for Measuring Gist Inference Score in Text. In Proceedings of the 4th Workshop of Narrative Understanding (WNU2022), pages 38–46, Seattle, United States. Association for Computational Linguistics.