
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 113–126

July 10-12, 2023 ©2023 Association for Computational Linguistics

LIDA: A Tool for Automatic Generation of Grammar-Agnostic
Visualizations and Infographics using Large Language Models

Victor Dibia
Microsoft Research

victordibia@microsoft.com

Abstract

Systems that support users in the automatic
creation of visualizations must address sev-
eral subtasks - understand the semantics of
data, enumerate relevant visualization goals
and generate visualization specifications. In
this work, we pose visualization generation as
a multi-stage generation problem and argue that
well-orchestrated pipelines based on large lan-
guage models (LLMs) and image generation
models (IGMs) are suitable to addressing these
tasks. We present LIDA, a novel tool for gen-
erating grammar-agnostic visualizations and
infographics. LIDA comprises of 4 modules
- A SUMMARIZER that converts data into a
rich but compact natural language summary,
a GOAL EXPLORER that enumerates visualiza-
tion goals given the data, a VISGENERATOR
that generates, refines, executes and filters visu-
alization code and an INFOGRAPHER module
that yields data-faithful stylized graphics using
IGMs. LIDA provides a python api, and a hy-
brid USER INTERFACE (direct manipulation
and multilingual natural language) for interac-
tive chart, infographics and data story genera-
tion. Code and demo are available at this url -
https://microsoft.github.io/lida/

1 Introduction

Visualizations make data accessible by reducing
the cognitive burden associated with extracting in-
sights from large tabular datasets. However, vi-
sualization authoring is a complex creative task,
involving multiple steps. First the user must build
familiarity with the dataset (content and semantics)
and enumerate a set of relevant goals or hypothe-
ses that can be addressed using the data. Next,
users must select the right visualization representa-
tion (marks, transformations and layout) for each
goal. Finally, the user must implement the visu-
alization either as code or using available direct
manipulation interfaces. Each of these steps re-
quire expertise, and can be tedious as well as error

prone for users with limited visualization experi-
ence (novices). Existing research has sought to
address these challenges by automating the visual-
ization (AUTOVIZ) creation process, given a dataset
(Podo et al., 2023). Automation may occur in two
modes: i.) fully automated - the system automati-
cally generates visualizations relevant to the data
ii.) semi-automated - the user specifies their goals
and the system generates visualizations that address
these goals. The former mode is valuable for users
unfamiliar with the data and the latter is valuable
for users with some familiarity with the data and
the visualization task.

Consequently, a successful AUTOVIZ tool must
excel at each of several subtasks - understand the
semantics of the data, enumerate relevant visual-
ization goals and generate visualization specifica-
tions that meet syntax, design, task and perceptual
requirements of these goals (Podo et al., 2023).
Furthermore, given the target demographic (novice
users), such a tool must support the user by offering
NL (NL) interaction modalities (Mitra et al., 2022;
Narechania et al., 2020; Chen et al., 2022), affor-
dances to control system behavior and sense mak-
ing tools to understand and debug/verify system
behavior. While related work has addressed aspects
of the AUTOVIZ task, there are several known limi-
tations (Podo et al., 2023) such as they: (i) rely on
heuristics that are limited in coverage, challenging
to craft and tedious to maintain (Wongsuphasawat
et al., 2017). (ii) require significant user interac-
tion to generate visualizations (Wongsuphasawat
et al., 2017; Moritz et al., 2018). (iii) implement
automated approaches that offer limited control
over system input and output (Dibia and Demiralp,
2019) (iv) require grammar (or chart type) specific
training data and model architectures (Dibia and
Demiralp, 2019; Luo et al., 2018) for each sub task,
(v) do not consider alternative chart representation
formats such as infographics.

Concurrently, advances in large foundation mod-

113

https://microsoft.github.io/lida/

GOAL EXPLORER VIZ GENERATOR INFOGRAPHERSUMMARIZER

Convert datasets into a rich but
compact natural language
representation (context).

The cars dataset contains
technical specifications for
cars and has 9 fields - Name,
Miles_per_Gallon, Cylinders,
Displacement, Horsepower,
Weight_in_lbs, Acceleration,
Year, Origin ..

 Histogram of Miles per
gallo

 Plot of miles per gallon vs
horse powe

 Trends in miles per gallon
over time

 Average horsepower per
country

Generate a set of potential
“goals*” given the dataset
context.

Generate, evaluate, repair, filter
execute

and visualization code
to yield specifications* .

Generate stylized infographics
based based on visualization
and style prompts.

Output Output Output Output

* goals may also be directly provided by
the user. Supports multi-lingual input. * specification may be in any

programming language or grammar. * Style prompt: line sketch art, line
drawing

Cars.csv Generate code in visualization
based on context and goal

“

”

RULES + LLM LLM IGMLLM

Figure 1: LIDA generates visualizations and infographics across 4 modules - data summarization, goal exploration,
visualization generation and infographics generations. Example output from each module is shown.

Reference Visualization Generated stylized infographics

underwater art, shells pastel art oil on canvas, impasto

Figure 2: Example data-faithful infographics and associated style prompts generated with LIDA.

els (Bommasani et al., 2021) have shown state of
the art performance on a variety of creative tasks
such as multilingual text generation, code genera-
tion, image captioning, image generation, and im-
age editing. In this work, we argue that the vast
capabilities of these models can be assembled to ad-
dress the AUTOVIZ task, whilst addressing the lim-
itations of existing approaches. This work makes
the following contributions:

• We present a novel multi-stage, modular ap-
proach (Fig 1) for the automatic generation
of data visualization and infographics using
LLMs1. Specifically, we (i) Efficiently represent
datasets as NL summaries, suitable as ground-
ing context for an LLM to address visualization
tasks. (ii) Generate a set of visualization goals
using LLMs. Importantly, we leverage prompt
engineering to steer the model towards generat-

1This work primarily utilizes the OpenAI gpt-3.5-turbo-x
line of models for text and code generation.

ing correct visualization that follow best prac-
tices (see Appendix C). (iii) Apply LLMs to
generate grammar-agnostic visualization speci-
fication based on generated (or human provided)
goals. (iv) Provide a hybrid interface that sup-
ports traditional direct manipulation controls
(e.g., manually select which fields to explore)
and a rich multilingual NL interface to sup-
port user’s with varied skill/experience. (v) Ap-
ply text-conditioned image generation models
(IGM) models in generating stylized infograph-
ics that are both informative (generally faithful
to data), aesthetically pleasing, memorable and
engaging (see section 2.3).

• We introduce metrics for evaluating LLM-
enabled visualization tools, including a metric
for pipeline reliability (visualization error rate -
VER), and visualization quality (self-evaluated
visualization quality - SEVQ) (see section 4).

114

• We implement our approach in an Open Source
library - LIDA2. LIDA provides a python api,
a web api and a rich web interface useful for
research and practical applications.

Compared to existing AUTOVIZ approaches, LIDA

proposes an implementation that is simplified
(eliminates the need for subtask-specific mod-
els), general (can be adapted to generate visual-
izations in any programming language or gram-
mar), flexible (individual modules can be opti-
mized) and scalable (the system performance will
improve with advances in the underlying LLM).
Taken together, these contributions provide build-
ing blocks towards complex workflows such as
visualization translation, chart question answering
(with applications in accessibility of charts), auto-
mated data exploration and automated data stories.

To the best of our knowledge, LIDA is the first
tool to formulate visualization/infographic genera-
tion as a multi-step generation task and demonstrate
an end-to-end pipeline that addresses a variety of
subtasks.

2 Related Work

LIDA is informed by research on large foundation
models applied to creative tasks across modalities
such as text and images, and advances in automated
generation of visualizations and infographics.

2.1 Foundation Models for Creative Tasks

Advances in large transformer-based (Vaswani
et al., 2017) models trained on massive amounts
of data (terabytes of text and images) have led
to a paradigm shift where a single model demon-
strates state of the art task performance across mul-
tiple data modalities such as text, images, audio
and video. These models, also known as founda-
tion models (Bommasani et al., 2021), have been
shown to be effective for a variety of human cre-
ativity tasks. LLMs like the GPT3 series (Brown
et al., 2020), OPT (Zhang et al., 2022), PALM
(Chowdhery et al., 2022), LAMBDA (Cohen et al.,
2022) learn complex semantics of language allow-
ing them to be effective in tasks such as text sum-
marization, question answering. Code LLMs such
as Codex (Chen et al., 2021), AlphaCode (Li et al.,
2022), InCoder (Fried et al., 2022) show state of
the art performance on a suite of code intelligence
tasks. Finally, models such as CLIP (Radford et al.,

2https://microsoft.github.io/lida/.

2021), DALLE (Ramesh et al., 2022, 2021) and La-
tent Diffusion (Rombach et al., 2022) have shown
state of the art capabilities on image generation
tasks such as image captioning, image editing, and
image generation.

In this work, we adopt insights from Program-
Aided Language models (Gao et al., 2022) - a setup
where LLMs generate programs as the intermedi-
ate reasoning steps, but offload the solution step to
a runtime such as a python interpreter. We lever-
age the language modeling capabilities of LLMs in
generating semantically meaningful visualization
goals, and their code writing capabilities in gener-
ating visualization code which is compiled to yield
visualizations. These visualizations (images) are
then used as input to image generation models in
generating stylized infographics.

2.2 Automated Visualization (AUTOVIZ)

Extant AUTOVIZ research have explored multiple
approaches such as heuristics, task decomposition
or learning based approaches. Heuristics-based ap-
proaches explore properties of data in generating
a search space of potential visualizations (Wong-
suphasawat et al., 2017), ranking these visualiza-
tions based on quality attributes (Luo et al., 2018;
Moritz et al., 2018) and presenting them to the
user. For example, DeepEye (Luo et al., 2018)
enumerates all possible visualizations and classi-
fies/ranks them as “good” or “bad” using a binary
decision tree classifier while Voyager (Wongsupha-
sawat et al., 2017) uses heuristics to enumerate the
space of visualizations. However, heuristics can
be tedious to maintain, may have poor coverage
of the visualization space and does not leverage
information encoded in existing datasets. More
recent work has explored a task decomposition
approach where the AUTOVIZ process is decom-
posed into multiple tasks that are solved individu-
ally via specialized tools and aggregated to yield
visualizations (Narechania et al., 2020; Chen et al.,
2022; Wang et al., 2022b). For example NL4DV
(Narechania et al., 2020) implements a custom
query engine that parses natural language queries,
identifies attributes/tasks and generates Vega-Lite
specifications. A limitation of task decomposition
approaches is that they are bottlenecked by the
implementation performance for each step (e.g.,
limitations with models for disambiguating natural
language queries as seen in NL4DV (Narechania
et al., 2020)). Finally, end-to-end learning-based

115

approaches seek to automatically learn mappings
from data directly to generated visualizations. For
example, Data2Vis (Dibia and Demiralp, 2019)
(the most relevant work to this study) uses a se-
quence to sequence model that implicitly addresses
AUTOVIZ subtasks by learning a mapping from
raw JSON data sampled from datasets to Vega-Lite
(Satyanarayan et al., 2017) specifications. Some
limitations of current learning approaches is that
they are limited to a single grammar, require cus-
tom models, custom paired training data and train-
ing objectives (Dibia and Demiralp, 2019; Luo
et al., 2018; Chen et al., 2022) for each supported
grammar, and do not provide a path to generating
infographics. Furthermore, they do not provide
mechanisms for fine-grained control of visualiza-
tion output or provide robust error detection and
recovery strategies.

LIDA addresses these limitations in several ways:
(i) Leverages patterns learned by LLMs from mas-
sive language and code dataset, applying this
knowledge to subtasks. (ii) Provides a single gram-
mar-agnostic pipeline that generates visualization
in multiple programming languages and visualiza-
tion grammars. (iii) Supports natural language
based control of generated visualizations. (iv) lever-
age emergent capabilities of large language models
such chain of thought reasoning to improve reliabil-
ity of generated text/code (Kojima et al., 2022; Wei
et al., 2022; Shi et al., 2022a), model calibration
(Kadavath et al., 2022) (predictions on correctness
probabilities of visualizations) as well as self-con-
sistency (Wang et al., 2022a) in ranking/filtering
results. (v) provides a mechanism for generating
infographics that are data-faithful and aesthetically
pleasing. (vi) supports a fully automatic mode
where an LLM is used to discover meaningful goal-
s/hypotheses (fields to visualize, questions to ask)
or a semi automatic mode where the user provides
a hypothesis and it generates a visualization.
By choosing to cast visualization/infographic gen-
eration as generation tasks that offloads core prob-
lem solving to LLMs and IGMs, LIDA simplifies the
design and maintenance of such systems.

2.3 Infographics Generation

Infographics (information graphics) are visual arti-
facts that seek to convey complex data-driven nar-
ratives using visual imagery and embellishments
(Harrison et al., 2015). Existing research has shown
that infographics are aesthetically pleasing, engag-

ing and more memorable (Tyagi et al., 2021; Harri-
son et al., 2015; Haroz et al., 2015), at no additional
cost to the user (Haroz et al., 2015). These prop-
erties have driven their applications in domains
like fashion, advertisemnt, business and general
communications. However, the creation of info-
graphics that convey data insights can be a tedious
process for content creators, often requiring skills
across multiple tools and domains. Research on
infographic generation have mainly explored the
creation of pictographs (Haroz et al., 2015) - replac-
ing the marks on traditional charts with generated
images and learning to extract/transfer styles from
existing pictographs (Shi et al., 2022b). In this
work, we extend this domain to exploring the gener-
ation of both visual marks as well as generating the
entire infographic based on natural language style
descriptions using large image generation models
such as DALLE (Ramesh et al., 2022, 2021) and
Latent Diffusion (Rombach et al., 2022). This ap-
proach also enables user-generated visual styles
and personalization of visualizations to fit user pref-
erences such as color palettes, visual styles, fonts
etc.

3 The LIDA System

LIDA comprises of 4 core modules - a SUMMA-
RIZER, a GOAL EXPLORER, a VISGENERATOR

and an INFOGRAPHER (see Fig 1). Each module is
implemented in the LIDA github repo as a python li-
brary with an optional user interface (see Appendix
A).

3.1 SUMMARIZER

Atomic type, field
statistics, samples ..

LLM / User Enrichment
(description, semantic type)

{" ":"cars.json"," ":"cars.json","dataset_description":"A dataset
containing information about cars."," ":[{" ":"Name","properties":
{" ":"string"," ":["amc concord dl","amc ambassador
dpl","plymouth cricket"], " " : 311, " ":
" ", " ":"The make and model of the car."}} ...

name file_name
fields column

dtype samples
num_unique_values semantic_type

car_model description

Stage 1 Stage 2

Cars.csv

Figure 3: The SUMMARIZER module constructs a NL
summary from extracted data properties (atomic types,
field statistics) and an optional LLM enrichment (pre-
dicted field descriptions, semantic types).

LLMs are capable zero shot predictors, able to solve
multiple tasks with little or no guiding examples.
However, they can suffer from hallucination e.g.,
generating text that is not grounded in training data

116

https://github.com/microsoft/lida

or the current task. One way to address this is to
augment (Mialon et al., 2023) the LLM with ground-
ing context. Thus, the goal of the summarizer is to
produce an information dense but compact 3 sum-
mary for a given dataset that is useful as grounding
context for visualization tasks. A useful context is
defined as one that contains information an ana-
lyst would need to understand the dataset and the
tasks that can be performed on it. The summary is
implemented in two stages (see Fig 3)
Stage 1 - Base summary generation: We ap-
ply rules in extracting dataset properties includ-
ing atomic types (e.g., integer, string, boolean) us-
ing the pandas library (McKinney, 2010), general
statistics (min, max, # unique values) and a random
non-null list of n samples for each column.
Stage 2 - Summary enrichment: The base sum-
mary is optionally enriched by an LLM or a user
via the LIDA ui to include semantic description of
the dataset (e.g., a dataset on the technical specifi-
cation of cars), and fields (e.g., miles per gallon for
each car) as well as field semantic type prediction
(Zhang et al., 2019).

3.2 GOAL EXPLORER

This module generates data exploration goals,
given a summary generated by the SUMMARIZER.
We express goal generation as a multitask genera-
tion problem where the LLM must generate a ques-
tion (hypothesis), a visualization that addresses the
question and rationale (see Fig 4). We find that
requiring the LLM to produce a rationale leads to
more semantically meaningful goals.

{ " ": "What is the distribution of Miles_per_Gallon?",

" ": "Histogram of Miles_per_Gallon",

" ": "This tells us about the fuel efficiency of the cars in the
dataset and how it is distributed." }

question
visualization
rationale

Figure 4: A goal generated by LIDA is a JSON data
structure that contains a question, a visualization and a
rationale.

3.2.1 VISGENERATOR

The VISGENERATOR generates visualization speci-
fications and is comprised of 3 submodules - a code
scaffold constructor, a code generator and a code
executor.
Code scaffold constructor: Implements a library
of code scaffolds that correspond to programming

3Note: the summary must be compact in order to maximize
the limited context token budget of LLMs.

code scaffold constructor code generator code executor

Implement a library of “code scaffolds” for
languages and grammars e.g., Python, Vega-Lite.

1

2

3

4

5

import as
def

return

 altair alt

 (data):

 chart =
alt.Chart(data).mark_point()
.encode(x=
,y=)

 chart

chart = plot(data)

plot

'Miles_per_Gallon'
'Cylinders'

1

2

3

4

5

import as
def

return

 altair alt

 (data):

 chart =
 chart

chart = plot(data)

plot
'''<stub>'''

Complete code scaffolds based
on summary and goal.

Execute generated code,
parse results.

Figure 5: The VISGENERATOR module constructs vi-
sualization code scaffolds, fills a constrained section
(< stub >) and executes the scaffold.

languages and visualization grammars e.g., python
scaffolds support grammars such as Matplotlib,
GGPlot, Plotly, Altair, Seaborn, and Bokeh. Each
scaffold is an executable program that i.) imports
relevant dependencies ii.) defines an empty func-
tion stub which returns a visualization specification
(see Fig 5a).
Code generator: Takes a scaffold, a dataset sum-
mary, a visualization goal, and builds a prompt. An
LLM (applied in fill-in-the-middle mode (Bavarian
et al., 2022)) is then used to generate n candidate
visualization code specifications.
Code executor: Post-processes and executes4 the
code specifications as well as filters the results.
LIDA implements several filtering mechanisms to
detect errors, each with latency tradeoffs: (i) gener-
ates a large sample for n with high temperature, dis-
card candidates that do not compile. (ii) apply self
consistency (Wang et al., 2022a) in LLMs where
multiple candidates are generated and the solution
with the highest consensus is selected. (iii) gener-
ate correctness probabilities (Kadavath et al., 2022)
for all candidates and selects the one with the high-
est probability. Note that the last two approaches
are computationally expensive (require multiple
forward passes through an LLM) and are not suit-
able for real time applications. The final output
is a list of visualization specifications (code) and
associated raster images.

3.2.2 VIZOPS - Operations on Generated
Visualizations

Given that LIDA represents visualizations as code,
the VISGENERATOR also implements submodules
to perform operations on this representation.
Natural language based visualization refine-
ment: Provides a conversational api to iteratively

4Execution in a sandbox environment is recommended.

117

refine generated code (e.g., translate chart t hindi
. . . zoom in by 50% etc) which can then be exe-
cuted to generate new visualizations.
Visualization explanations and accessibility:
Generates natural language explanations (valuable
for debugging and sensemaking) as well as acces-
sibility descriptions (valuable for supporting users
with visual impairments).
Visualization code self-evaluation and repair:
Applies an LLM to self-evaluate generated code on
multiple dimensions (see section 4.1.2).
Visualization recommendation: Given some con-
text (goals, or an existing visualization), recom-
mend additional visualizations to the user (e.g., for
comparison, or to provide additional perspectives).

3.3 INFOGRAPHER

This module is tasked with generating stylized
graphics based on output from the VISGENERATOR

module (see Fig 2). It implements a library of vi-
sual styles described in NL that are applied directly
to visualization images. Note that the style library
is editable by the user. These styles are applied in
generating infographics using the text-conditioned
image-to-image generation capabilities of diffusion
models (Rombach et al., 2022), implemented using
the Peacasso library api (Dibia, 2022). An optional
post processing step is then applied to improve the
resulting image (e.g., replace axis with correct val-
ues from visualization, removing grid lines, and
sharpening edges).

3.4 USER INTERFACE

LIDA implements a user interface that communi-
cates with the core modules over a REST and Web-
socket api. The user interface implements several
views.
Data upload and summarization: This view al-
lows the user to upload a dataset and explore a
sample of rows in the dataset via a table view. A
data upload event triggers a call to the SUMMA-
RIZER and GOAL EXPLORER module and displays
a summary of the dataset and a list of potential
goals. This view also allows the user to option-
ally annotate and refine the generated summary or
curate fields used in the dataset.
Visualization view: This view allows the user to
optionally provide a visualization goal in NL (e.g.,
"what is the fuel efficiency per country?") or se-
lect a generated goal and then displays a generated
visualization . For each visualization, intermedi-
ate output from the models (underlying data sum-

mary, visualization specification, code scaffold) are
shown as explanations to aid in sensemaking, and
debugging(see Fig 9). This view also implements
the VIZOPS capabilities described in Section 3.2.2
(e.g., See the interface for visualization evaluation
in Fig 10). Note that the NL interface inherits the
multilingual language capabilities of the underly-
ing LLM, enabling multilingual NL interaction.

Overall, the combination of these modules result
in a system that is able to implicitly address an
array of data visualization operations such as data
transformation, encoding, mark selection, styling,
layout, and annotation (Wang et al., 2022b).

4 Evaluation

4.1 Evaluation Metrics
Our initial evaluation of LIDA focuses on two high
level metrics - visualization error rates (VER) to pro-
vide signals on the reliability of the LIDA pipeline,
and self-evaluated visualization quality (SEVQ) to
assess the quality of generated visualizations.

4.1.1 Visualization Error Rate (VER)
Visualization error rate is computed as the percent-
age of generated visualizations that result in code
compilation errors. This metric provides critical
insights into the reliability of the LIDA pipeline
and impact of changes to the system (e.g., prompt
engineering or scaffold update).

VER =
E
T
∗100

Where: - E = Number of generated visualiza-
tions with code compilation errors, and - T = Total
number of generated visualizations.

4.1.2 Self-Evaluated Visualization Quality
(SEVQ)

Recent work shows LLMs like GPT-4 encode broad
world knowledge (OpenAI, 2023), can assess the
quality of their output (Kadavath et al., 2022; Lin
et al., 2022) and can approximate human judge-
ments for tasks such as summarization (Liu et al.,
2023). Our observations applying GPT3.5/GPT-
4 to visualization tasks suggest similar results.
Specifically, GPT-4 has learned to encode some
visualization best practices and can apply these in
generating critiques of visualization code across
multiple dimensions. Thus, to evaluate visualiza-
tion quality, we compute an SEVQ metric by ap-
plying GPT-4 in assessing the quality of gener-
ated visualizations. Specifically, we task GPT-4

118

with scoring generated visualization code (a nu-
meric value from 1-10 and a rationale) across 6
dimensions - code accuracy, data transformation,
goal compliance, visualization type, data encoding,
and aesthetics. These dimensions are informed by
existing literature on visualization generation/rec-
ommendation e.g., Wang et al. (2022b) outline 6
visualization tasks including data transformation,
encoding, marks, styling, layout and annotation,
while (Moritz et al., 2018) codify constraints for
visualization quality across expressivity (does it
convey the facts of the data) and effectiveness (is
the information more readily perceived compared
to other visualizations) criteria. Additional details
on prompts used for each dimension are provided
in Appendix B.

4.2 Evaluation Benchmark Settings

Our initial benchmark is based on 57 datasets
sourced from the vega datasets repository5. For
each dataset, LIDA is tasked with generating 5 goals
and 1 visualization per goal across multiple gram-
mars6. For reproducibility, we set temperature = 0
and number of samples n = 1 for the LLM. A
gallery of the generated evaluation visualizations
can be viewed on the LIDA project page.

4.3 Evaluation and Ablation Study Results

no_enrich enrich schema no_summary
Summary Type

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

5.61% 7.72% 7.02%

95.79%

3.51% 3.51%
9.47%

99.30%
Visualization Error Rate | GPT-3.5, n=2280
lib

matplotlib
seaborn

Figure 6: Results from an ablation study on the impact
of data summarization strategies on visualization error
rate (VER) metric.

Overall, we find that LIDA is able to generate
visualizations with a low error rate (VER = 3.5%).
We also conduct an ablation study to inform on
the impact of the SUMMARIZER across the fol-

5https://github.com/vega/vega-datasets
6LIDA is given a single try for each step. In theory, the

error rates can be driven to zero, by recursively applying the
visualization self-evaluation and self-repair modules.

lowing conditions - (i) no_enrich: a base sum-
mary with no enrichment (see Section 3.1), (ii) en-
rich: summary with LLM enrichment, (iii) schema:
only field names, i.e., schema as summary, and
(iv) no_summary: no summary. Results show that
including a summary leads to reduced error rate
compared to simply adding field names (schema)
as summary. We also find that enriching the base
summary with an LLM has less of an effect on
VER (with variations across visualization grammar),
and an expressive, well-represented grammar like
Seaborn having lower VER. These results are sum-
marized in Figure 6. We also find that the SEVQ

metric is valuable in identifying semantic quality
issues with generated visualizations. For example,
Fig 10 shows an example where the user has re-
quested a pie chart, and the LIDA self-evaluation
module critiques this visualization using the SEVQ

metric, providing a rationale for why a bar chart
is more effective (see Fig 10), with the option to
automatically repair the visualization.

5 Conclusion

In this work, we formulate visualization generation
as a multi-stage text (and code) generation problem
that can be addressed using large language mod-
els. We present LIDA - a tool for the automatic
generation of grammar-agnostic visualizations and
infographics. LIDA addresses limitations of cur-
rent automatic visualization systems - automatic
generation of hypothesis/goals given datasets, con-
versational interface for controllable visualization
generation and refinement, support for multiple vi-
sualization grammars using the same pipeline and
the ability to generate infographics. LIDA is effec-
tive compared to state of the art systems (see ex-
ample gallery of generated visualizations); it offers
a simplified system implementation and leverages
the immense language modeling and code genera-
tion capabilities of LLMs in implicitly solving com-
plex visualization subtasks. Finally, we introduce
metrics for assessing reliability (visualization error
rate - VER) and visualization quality (self-evaluated
visualization quality -SEVQ) for LLM-enabled vi-
sualization tools. We hope modules implemented
in LIDA will serve as useful building blocks in en-
abling complex creative workflows such as visual-
ization translation, chart question answering(with
applications in accessibility of charts), automated
data exploration and automated storytelling.

119

https://microsoft.github.io/lida/gallery
https://github.com/vega/vega-datasets
https://microsoft.github.io/lida/gallery

6 Limitations

While LIDA demonstrates clear advances in how
we can support users in authoring visualizations
and infographics, there are several limitations that
offer a natural avenue for future research.
Low Resource Grammars: The problem formu-
lation introduced in LIDA depends on the under-
lying LLMs having some knowledge of visualiza-
tion grammars as represented in text and code
in its training dataset (e.g., examples of Altair,
Vega, Vega-Lite, GGPLot, Matplotlib, represented
in Github, Stackoverflow, etc.). For visualization
grammars not well represented in these datasets
(e.g., tools like Tableau, PowerBI, etc., that have
graphical user interfaces as opposed to code repre-
sentations), the performance of LIDA may be lim-
ited without additional model fine-tuning or transla-
tion. Furthermore, performance may be limited for
complex tasks (e.g., tasks requiring complex data
transformations) beyond the expressive capabilities
of specific grammars. Further research is needed
to: i.) study effects of strategies like task disam-
biguation ii.) impact of task complexity and choice
of programing language/grammar on performance.
Deployment and Latency: Large language mod-
els (e.g., GPT3.5 used in this work) are computa-
tionally expensive and require significant compute
resources to deploy at low latency. These costs can
prove to be impractical for real-world application.
In addition, the current setup includes a code ex-
ecution step which is valuable for verification but
increases deployment complexity (requires a sand-
box). Thus, there is opportunity to: i.) train smaller
capable LLMs (Touvron et al., 2023) finetuned on
a curated dataset of programming languages and
visualization grammars .ii) design vulnerability mit-
igation approaches such as limiting program scope
or generating only input parameters for visualiza-
tion grammar compilers.
Explaining System Behavior: The approach dis-
cussed in this paper simplifies the design of vi-
sualization authoring systems, but also inherits
interpretability challenges associated with large
language models. While LIDA offers intermedi-
ate outputs of the model (e.g., generated code and
specifications) as explanations, as well as post-hoc
explanations of generated code (see section 3.2.2),
there is a need for further research in explaining
system behavior (conditions when they are needed)
and providing actionable feedback to the user.
System Evaluation: Benchmarking LLM’s on cre-

ativity tasks can be challenging. While the current
study introduces metrics for evaluating reliability
(VER) and visualization quality (SEVQ) (see section
4), there is a need for more comprehensive bench-
marks on a variety of datasets and visualization
grammars. Furthermore, there are research oppor-
tunities to i.) study and quantify the capabilities of
LLMs in encoding and applying visualization best
practices ii.) conduct empirical studies that evalu-
ate model behavior, mapping out failure cases and
proposing mitigations iii.) qualitatively study the
impact of tools like LIDA on user creativity while
authoring visualizations.

Acknowledgements

This manuscript has benefited from comments
and discussions with members of the HAX group
(Saleema Amershi, Adam Fourney, Gagan Bansal),
VIDA group (Steven Drucker, Dan Marshall),
Bongshing Lee, Rick Barraza and others at Mi-
crosoft Research.

References
Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,

John Schulman, Christine McLeavey, Jerry Tworek,
and Mark Chen. 2022. Efficient training of lan-
guage models to fill in the middle. arXiv preprint
arXiv:2207.14255.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Qiaochu Chen, Shankara Pailoor, Celeste Barnaby,
Abby Criswell, Chenglong Wang, Greg Durrett, and
Işil Dillig. 2022. Type-directed synthesis of vi-
sualizations from natural language queries. Pro-
ceedings of the ACM on Programming Languages,
6(OOPSLA2):532–559.

120

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Aaron Daniel Cohen, Adam Roberts, Alejandra Molina,
Alena Butryna, Alicia Jin, Apoorv Kulshreshtha,
Ben Hutchinson, Ben Zevenbergen, Blaise Hilary
Aguera-Arcas, Chung ching Chang, Claire Cui,
Cosmo Du, Daniel De Freitas Adiwardana, De-
hao Chen, Dmitry (Dima) Lepikhin, Ed H. Chi,
Erin Hoffman-John, Heng-Tze Cheng, Hongrae Lee,
Igor Krivokon, James Qin, Jamie Hall, Joe Fen-
ton, Johnny Soraker, Kathy Meier-Hellstern, Kris-
ten Olson, Lora Mois Aroyo, Maarten Paul Bosma,
Marc Joseph Pickett, Marcelo Amorim Menegali,
Marian Croak, Mark Díaz, Matthew Lamm, Maxim
Krikun, Meredith Ringel Morris, Noam Shazeer,
Quoc V. Le, Rachel Bernstein, Ravi Rajakumar, Ray
Kurzweil, Romal Thoppilan, Steven Zheng, Taylor
Bos, Toju Duke, Tulsee Doshi, Vincent Y. Zhao,
Vinodkumar Prabhakaran, Will Rusch, YaGuang Li,
Yanping Huang, Yanqi Zhou, Yuanzhong Xu, and
Zhifeng Chen. 2022. Lamda: Language models for
dialog applications. In arXiv.

Victor Dibia. 2022. Interaction design for systems that
integrate image generation models: A case study with
peacasso.

Victor Dibia and Çağatay Demiralp. 2019. Data2vis:
Automatic generation of data visualizations us-
ing sequence-to-sequence recurrent neural networks.
IEEE computer graphics and applications, 39(5):33–
46.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Steve Haroz, Robert Kosara, and Steven L Franconeri.
2015. Isotype visualization: Working memory, per-
formance, and engagement with pictographs. In Pro-
ceedings of the 33rd annual ACM conference on hu-
man factors in computing systems, pages 1191–1200.

Lane Harrison, Katharina Reinecke, and Remco Chang.
2015. Infographic aesthetics: Designing for the first
impression. In Proceedings of the 33rd Annual ACM
conference on human factors in computing systems,
pages 1187–1190.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield Dodds, Nova DasSarma,
Eli Tran-Johnson, et al. 2022. Language models

(mostly) know what they know. arXiv preprint
arXiv:2207.05221.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. arXiv preprint arXiv:2203.07814.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Teaching models to express their uncertainty in
words. arXiv preprint arXiv:2205.14334.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. Gpteval:
Nlg evaluation using gpt-4 with better human align-
ment. arXiv preprint arXiv:2303.16634.

Yuyu Luo, Xuedi Qin, Nan Tang, Guoliang Li, and
Xinran Wang. 2018. Deepeye: Creating good data
visualizations by keyword search. In Proceedings of
the 2018 International Conference on Management
of Data, SIGMOD, pages 1733–1736.

Wes McKinney. 2010. Data structures for statistical
computing in python. In Proceedings of the 9th
Python in Science Conference, pages 51 – 56.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented language
models: a survey. arXiv preprint arXiv:2302.07842.

Rishab Mitra, Arpit Narechania, Alex Endert, and John
Stasko. 2022. Facilitating conversational interaction
in natural language interfaces for visualization. In
2022 IEEE Visualization and Visual Analytics (VIS),
pages 6–10. IEEE.

Dominik Moritz, Chenglong Wang, Greg L Nelson,
Halden Lin, Adam M Smith, Bill Howe, and Jef-
frey Heer. 2018. Formalizing visualization design
knowledge as constraints: Actionable and extensible
models in draco. IEEE transactions on visualization
and computer graphics, 25(1):438–448.

Arpit Narechania, Arjun Srinivasan, and John Stasko.
2020. Nl4dv: A toolkit for generating analytic speci-
fications for data visualization from natural language
queries. IEEE Transactions on Visualization and
Computer Graphics, 27(2):369–379.

OpenAI. 2023. Gpt-4 technical report.

Luca Podo, Bardh Prenkaj, and Paola Velardi. 2023. Ma-
chine learning for visualization recommendation sys-
tems: Open challenges and future directions. arXiv
preprint arXiv:2302.00569.

121

https://github.com/victordibia/peacasso
https://github.com/victordibia/peacasso
https://github.com/victordibia/peacasso
http://arxiv.org/abs/2303.08774

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. 2022. Hierarchical text-
conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gen-
eration. In International Conference on Machine
Learning, pages 8821–8831. PMLR.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. 2022 ieee. In CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10674–
10685.

Arvind Satyanarayan, Dominik Moritz, Kanit Wong-
suphasawat, and Jeffrey Heer. 2017. Vega-lite: A
grammar of interactive graphics. IEEE TVCG (Proc.
InfoVis).

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, et al. 2022a.
Language models are multilingual chain-of-thought
reasoners. arXiv preprint arXiv:2210.03057.

Yang Shi, Pei Liu, Siji Chen, Mengdi Sun, and Nan
Cao. 2022b. Supporting expressive and faithful pic-
torial visualization design with visual style transfer.
IEEE Transactions on Visualization and Computer
Graphics, 29(1):236–246.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Anjul Tyagi, Jian Zhao, Pushkar Patel, Swasti Khu-
rana, and Klaus Mueller. 2021. User-centric semi-
automated infographics authoring and recommenda-
tion. arXiv preprint arXiv:2108.11914.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022a. Self-consistency
improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171.

Yun Wang, Zhitao Hou, Leixian Shen, Tongshuang Wu,
Jiaqi Wang, He Huang, Haidong Zhang, and Dong-
mei Zhang. 2022b. Towards natural language-based
visualization authoring. IEEE Transactions on Visu-
alization and Computer Graphics, 29(1):1222–1232.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Kanit Wongsuphasawat, Zening Qu, Dominik Moritz,
Riley Chang, Felix Ouk, Anushka Anand, Jock
Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voy-
ager 2: Augmenting visual analysis with partial view
specifications. In ACM CHI.

Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon
Hulsebos, Çağatay Demiralp, and Wang-Chiew Tan.
2019. Sato: Contextual semantic type detection in
tables. arXiv preprint arXiv:1911.06311.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

A The LIDA Library

LIDA is implemented as a python library with mod-
ules for each of the components described in Sec-
tion 3. The library is available on github7 and can
be installed using pip - pip install lida. The library
provides a python api, web api for integration into
other applications, and a command line interface. It
also provides a web-based user interface for users
to interact with LIDA (Fig 10, 9).

1

2

3

4

5

6

7

8

9

10

11

pip install lida

from lida.modules Manager

lida = ()

summary = lida. ()

goals = lida. (summary, n=)

vis_specs = manager. (summary=summary,
goal=goals[i])

charts = manager. (code_specs=vis_specs,
data=manager.data, summary=summary)

(charts)

import

Manager
summarize

generate_goals

generate_viz

execute_viz

print

"data/cars.csv"
1

Figure 7: Example usage of LIDA shows how to generate
a summary, visualization goals, code specifications and
execute the code to generate visualizations.

B Self-Evaluated Visualization Quality
(SEVQ) Prompts

For the SEVQ metric, we use GPT-4 to assess visu-
alization quality by scoring generated visualization

7https://github.com/microsoft/lida

122

https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://github.com/microsoft/lida

Figure 8: In the data upload section of the LIDA UI, users can select a grammar of choice and upload a dataset. A
dataset upload event triggers a goal generation as well as visualization generation tasks.

Figure 9: The visualization generation section of the LIDA UI enables the user to i.) specify their overall goal in
natural language and generate visualizations ii.) inspect, edit and execute generated code iii.) view the generated
visualization. iv.) perform operations on generated code e.g., refine, explain, evaluate and recommend visualizations.

123

Figure 10: The self-evaluation module in LIDA is used to evaluate/critique a generated visualization, providing
scores across 6 dimensions with rationale. In this case, the visualization contains a pie chart, and a bar chart is
recommended as an alternative.

code across the 6 task dimensions - code accuracy,
data transformation, goal compliance, visualization
type, data encoding, and aesthetics. These dimen-
sions are implemented as prompts to an LLM 8,
which then generates a score between 1-10 for each
dimension. The final SEVQ score is the average of
the 6 scores. A sketch of the prompts used for each
dimension are enumerated in table 1.

C Design Reflections

Building a system that leverages foundation models
(text and images) involves engineering decisions
across a wide design space. In this section, we
briefly reflect on some of the design choices we
made for LIDA components and the tradeoffs we
considered.

C.1 Prompt Engineering
We explored multiple approaches to building
prompts that maximized the probability of the LLM

solving each subtask.

• SUMMARIZER: We found that improving the
richness of the summary (qualitative NL de-
scription, including semantic types) was criti-
cal to improved quality of generated goals and

8Exact prompts can be found at the project repository
https://github.com/microsoft/lida.

Dimension Prompt

Code accu-
racy

Does the code contain bugs, logic errors,
syntax error or typos? How serious are the
bugs? How should it be fixed?

Data trans-
formation

Is the data transformed appropriately for
the visualization type?

Goal com-
pliance

How well the code meets the specified visu-
alization goals?

Visualization
type

Considering best practices, is the visualiza-
tion type appropriate for the data and intent?
Is there a visualization type that would be
more effective in conveying insights?

Data encod-
ing

Is the data encoded appropriately for the
visualization type?

Aesthetics Are the aesthetics of the visualization ap-
propriate and effective for the visualization
type and the data?

Table 1: Summary of the evaluation dimensions and the
corresponding prompt sketches.

visualization code. Implementation wise, we
began with a manually crafted summary of the
data (see Section 3.1), and then enriched it via
calls to an LLM and optional user refinement
of the summary.

• GOAL EXPLORER: Providing few shot exam-
ples in the prompts where fields and rationale

124

https://github.com/microsoft/lida

are linked via symbols (e.g., plot a histogram
of field X vs Y to show relationship between X
and Y) nudges the model to use exact dataset
field names, and minimizes the occurrence of
hallucinated fields. Prompt engineering also
provides mechanisms to bake in visualization
best practices e.g. avoid pie charts, apply vi-
sualization best practices, Imagine you are
a highly experienced visualization specialist
and data analyst.

• VISGENERATOR: Casting visualization code
generation as a fill-in-the-middle problem (as
opposed to free-from completion) ensures the
model to generates executable code focused
on the task. For example, in Fig 5, the model
is instructed to generate only the < stub >
portion of the code scaffold. We also note that
the degrees of freedom alloted to the model
(e.g., specifying how much of the scaffold
to complete) can influence its ability to add
tasks with varied complexity. For example, a
scaffold that allows the model generate data
preprocessing code (and includes libraries like
statsmodels etc) allows the model to address
tasks that require steps such as data transfor-
mation, sampling and statistical analysis be-
fore generating visualizations etc.

• Overall, we found that setting a low temper-
ature (t = 0; generating the most likely visu-
alization) coupled with a per-grammar code
scaffold provided the best results in terms
of yielding code that correctly compiles into
visualization specifications and faithfully ad-
dresses the subtask. We also explored prompt
formulations that addressed multiple tasks to
minimize costs (latency and compute). For
example, summary enrichment is a single call
where the LLM must generate dataset descrip-
tions, field descriptions and semantic types.

C.2 Infographic Generation
We found that setting a low strength parameter
(0.25 < strength < 0.45) for the latent diffusion
model (image-to-image mode) and using parsimo-
nious style prompts resulted in stylized images that
were faithful to the general structure of the origi-
nal visualization, minimizing distorted or irrelevant
imagery. This sort of controlled generation is nec-
essary to avoid the distraction (Haroz et al., 2015)
that can arise from superfluous imagery in info-
graphics.

C.3 Natural Language Interaction
(i) HYBRID INTERFACE: Providing a hybrid in-
terface that allows traditional direct manipulation
steps in creating visualizations (e.g., selecting
which fields to use), paired with a NL interface
allows users to leverage existing mental models
with traditional visualization tools as well as the
NL affordances of LIDA. (ii) NL INTERACTION

MODES: Beyond generating a base visualization,
we also enable operations on generated visualiza-
tion code (e.g., refinement, explanation, evaluation,
recommendation). This builds on insights from
Mitra et al. (2022) who propose multi-turn dialog
interfaces for visualization authoring towards re-
solving ambiguities.

125

Figure 11: The LIDA infographer module supports the generation of data-faithful infographics. Each infographic is
conditioned on a generated visualization as well as natural language style tags which can be used to customize the
appearance of the chart.

126

