
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 136–143

July 10-12, 2023 ©2023 Association for Computational Linguistics

DIAGRAPH: An Open-Source Graphic Interface for Dialog Flow Design

Dirk Väth* Lindsey Vanderlyn*
University of Stuttgart, Germany

{vaethdk|vanderly|thang.vu}@ims.uni-stuttgart.de

Ngoc Thang Vu

Abstract

In this work, we present DIAGRAPH, an open-
source 1 graphical dialog flow editor built on
the ADVISER toolkit. Our goal for this tool
is threefold: 1) To support subject-experts to
intuitively create complex and flexible dialog
systems, 2) To support rapid prototyping of di-
alog system behavior, e.g., for research, and
3) To provide a hands-on test bed for students
learning about dialog systems. To facilitate
this, DIAGRAPH aims to provide a clean and
intuitive graphical interface for creating dialog
systems without requiring any coding knowl-
edge. Once a dialog graph has been created,
it is automatically turned into a dialog system
using state of the art language models. This al-
lows for rapid prototyping and testing. Dialog
designers can then distribute a link to their fin-
ished dialog system or embed it into a website.
Additionally, to support scientific experiments
and data collection, dialog designers can ac-
cess chat logs. Finally, to verify the usability
of DIAGRAPH, we performed evaluation with
subject-experts who extensively worked with
the tool and users testing it for the first time, re-
ceiving above average System Usability Scale
(SUS) scores from both (82 out 100 and 75 out
of 100, respectively). In this way, we hope DI-
AGRAPH helps reduce the barrier to entry for
creating dialog interactions.

1 Introduction

Dialog systems have gained much attention in re-
cent years as they offer a convenient way for users
to access information in a more personalized man-
ner, or accomplish tasks through an intuitive nat-
ural language interface. Traditionally, they need
to understand user input, track information across
multiple dialog turns and choose a system response.
These tasks can either be performed in a modular
manner or as an end-to-end approach where user

*Both authors contributed equally
1https://github.com/DigitalPhonetics/diagraph

Figure 1: Left: Dialog editor with tutorial graph; Right:
Debugging window with chat and variable explorer.

input is directly mapped to system output. How-
ever, regardless of approach, state-of-the-art ap-
proaches to dialog systems largely rely on neural
methods (Chen et al., 2017). While these meth-
ods have generally shown improvements to dialog
performance and generalizability across multiple
dialog domains, they rely on the availability of suffi-
cient training data which can be work-intensive and
expensive to collect. Additionally, their decision-
making often remains a black-box, which can make
them unsuitable for highly sensitive domains, e.g.,
medical or legal contexts, where it is critical that
dialog designers can maintain careful control over
the system’s behavior.

Although multiple toolkits have been developed
to speed up the creation of dialog systems (Bohus
and Rudnicky, 2009; Lison and Kennington, 2016;
Ultes et al., 2017; Zhu et al., 2020; Li et al., 2020),
and this has accelerated progress in the field, to the
best of our knowledge all toolkits currently used
for research require users to be able to write code
in order to customize pre-implemented models for
new domains or datasets.

However, this overlooks the fact that technical
experts are not the only parties interested in creat-
ing dialog systems. Domain experts, or researchers
from other disciplines, who may not have a tech-
nical background, may also be interested in using

136

https://github.com/DigitalPhonetics/diagraph

dialog systems for a variety of goals. For example,
domain experts might want to design a controlled
production system. Researchers, e.g. psychologists
or linguists, might want to design pilot studies or
easily conduct research on interactions with a di-
alog system. Additionally, an interface to quickly
setup data collection, e.g., to bootstrap an AI based
dialog system or quickly iterate on user feedback,
can accelerate dialog research or deployment.

To this end, we propose DIAGRAPH (figure 1):
an open-source, graphical software for designing di-
alog flow graphs which are automatically converted
into dialog systems. In this way, we hope it will
serve as a good alternative to closed-source com-
mercial options. Our goal for this tool is threefold:
1) To support subject-area experts to intuitively cre-
ate and deploy complex and flexible dialog systems,
2) To support users, e.g., researchers, to easily and
rapidly prototype and evaluate dialog systems or
user behaviour, and 3) To provide a hands-on test
bed for students learning about dialog systems. We
evaluate DIAGRAPH with all three user groups and
demonstrate its usability and practical usefulness
by 1) Working with the department for business
travel a University, 2) Performing a usability study
where participants were asked to design or alter
a dialog system in less than 30 minutes, and 3)
Teaching a workshop on dialog systems and pro-
gramming concepts to high school students.

2 Related Work

2.1 Dialog System Toolkits

In recent years, several toolkits have been devel-
oped to aid in the creation of dialog systems. Toolk-
its like RavenClaw (Bohus and Rudnicky, 2009),
provide basic functionality, letting developers focus
solely on describing the dialog task control logic.
More recent toolkits include OpenDial (Lison and
Kennington, 2016) – incorporating probabilistic
rules and integration of external modules – and Py-
Dial (Ultes et al., 2017) – a multi-domain dialog
toolkit, for building modular dialog systems. Ad-
ditionally, ConvLab (Lee et al., 2019; Zhu et al.,
2020) and ADVISER (Ortega et al., 2019; Li et al.,
2020) are modern toolkits, incorporating state of
the art models in their implementations. In its re-
cent update (Zhu et al., 2020), the developers also
integrated evaluation and analysis tools to help de-
velopers debug dialog systems.

However, while these toolkits have accelerated
dialog system research, their code-based interfaces

can be prohibitively complex for non-technical
users and do not lend themselves to quick prototyp-
ing or education. While the ADVISER toolkit still
uses a code-based interface for designing dialog
systems, we chose to use it as the backend for DI-
AGRAPH due to the low overhead and flexibility
of the toolkit.

2.2 Dialog Flow Designers

Recently, there has been research into efficiently
navigating dialogs based on flow diagrams, such as
work by Raghu et al. (2021), who investigate learn-
ing dialog policies from troubleshooting flowcharts
and Shukla et al. (2020) who learn a dialog policy
from a dialog flow tree designed using Microsoft’s
graphic design tool. However, we are not aware of
any well-fleshed out open-source tools for creating
such graphs. Even though such dialog designer
tools have become popular in industry with compa-
nies including Microsoft2, Google3 and Amazon4

offering such services, the lack of open source alter-
natives impedes research around such graph/flow-
based systems. Therefore, by providing a freely
available alternative, we hope to make dialog sys-
tem creation easier for researchers, domain experts,
and educators.

To the best of our knowledge, the only open-
source graphic-based dialog designer was created
by Koller et al. (2018) as an educational tool to
interface with Lego Mindstorms robots. While the
authors show that it was well received by school
and university students, its narrow scope does not
address the needs of users such as subject-area ex-
perts or researchers. To this end, we create and pub-
lish DIAGRAPH: a general-purpose, open-source,
graphical dialog designer built on the ADVISER
toolkit.

3 Design Principles

The goal of the dialog designer is to allow for the
intuitive creation of dialog systems with any level
of technical knowledge. To this end, we design
DIAGRAPH around the following principles:

User Friendliness To accommodate all three
user groups, the software needs to be intuitive to
operate without any previous programming expe-
rience. Thus, we try to keep interactions simple,

2https://powervirtualagents.microsoft.com
3https://cloud.google.com/dialogflow?hl=de
4https://aws.amazon.com/de/lex/

chatbot-designer/

137

https://powervirtualagents.microsoft.com
https://aws.amazon.com/de/lex/chatbot-designer/
https://aws.amazon.com/de/lex/chatbot-designer/

Figure 2: Example of each type of node. From left to right Variable Node (purple outline), User Response Nodes
(black outline) Logic Node (orange outline), Variable Update Nodes (green outline), and Information Node (blue
outline). The information node displays an example of the template syntax, using two variables in a mathematical
expression to output a personalized message

e.g., dragging a connection from one node to the
next to define dialog flow. We additionally try to
only use icons and keyboard/mouse shortcuts com-
monly used in other programs, e.g., right clicking
to get a context menu or typing ctrl+f to search.
Finally, we include several features to help keep an
overview even in complex graphs, e.g., a mini-map,
text search and tags.

Flexibility To meet the needs of all user groups,
we provide features for designing arbitrarily com-
plex dialog systems. To personalize dialog outputs,
we provide a template language which can be used
to generate expressions based on previous user in-
puts and/or external data tables. To control dialog
flow, we allow the storage of user inputs in vari-
ables, the creation of hidden variables, e.g. for loop
counters, and blocks to split the dialog flow based
on conditional logic.

Transparency Finally, we design DIAGRAPH
to be transparent for all user groups, making it
easy to understand the dialog structure and debug
unintended behaviors. To this end, we provide a
debugging view (figure 1) which can be opened in
parallel to the dialog graph. Here, users can test
out the different branches of their dialog as well
as verify that the content of variables is correct at
every turn. In this way, students can gain a deeper
understanding of how the dialog system processes
and researchers/subject-area experts can ensure that
their dialog systems provide the correct outputs to
end-users.

4 DIAGRAPH Software

DIAGRAPH is an open-source graphical software
for designing dialog systems. The software con-
sists of a web frontend and a python backend built
on the ADVISER (Li et al., 2020) dialog system
toolkit. DIAGRAPH enables users to design dialog
systems by representing each turn as a node in a
graph of the dialog flow. For each node, the dialog

designer can define the text which the dialog sys-
tem will give to the end-user and where applicable,
the possible end-user responses. Nodes can then
be connected to form complex dialog flows. Each
node or answer can only be connected to a single
follow-up node, but a single follow-up node may
be reached by multiple previous nodes. Addition-
ally, cycles (loops) can be created by connecting
a node to a node earlier in the graph, allowing for
more complex dialog logic.

4.1 Nodes

The dialogs created with DIAGRAPH are built us-
ing five types of nodes (see Fig. 2), which can
define even complex system behavior, such as stor-
ing variables, accessing data tables, and performing
logical operations.

User Response Nodes are the fundamental build-
ing blocks of the dialog graph and allow branching
dialog flow. These nodes provide a dialog system
utterance and a finite set of possible end-user an-
swer prototypes. During runtime, a node of this
type expects end-user input, which will then be
matched against the list of its answer prototypes.
The prototype most similar to the end-user’s in-
put will then be selected as the user intent, and
the dialog will progress to the node connected to
that answer. In case the intent recognition fails for
some end-user inputs, designers may update a user
response node to include answer synonyms that
connect to the same follow-up node as the original
answer prototype.

Information Nodes give information to the end-
user without asking for input, acting as linear dia-
log flow. They are useful for presenting informa-
tion, such as hints, to end-users when a decision
from the end-user is not necessary. In this way,
they can be used to split up long system answers
into shorter, easier to read chunks to avoid over-
whelming the end-user. Since Information Nodes

138

do not require end-user input, they can be directly
connected to a single follow-up node.

Variable Nodes allow asking for user input and
storing it in variables. They are similar to User Re-
sponse Nodes in that they allow a dialog designer
to define a system utterance and that they expect a
response from the end-user. However, in contrast
to User Response Nodes, the dialog designer does
not define a set of prototypical end-user responses,
but rather the general type of expected answer and
the name of the variable which will store the value.
Supported types include number, text, and Boolean.
The user response is then stored inside this vari-
able and can be used either to fill a template (see
4.1.1) or as part of more complex logical control.
Variable nodes, like Information Nodes, can only
be connected to a single follow-up node, but the
values stored within the variable can be accessed
at any point later in the dialog.

Variable Update Nodes are a way for dialog
designers to either update the value of existing vari-
ables or create hidden variables which can be used
to control the dialog flow, e.g., as loop counters.
They do not provide output to the end-user.

Logic Nodes are purely used for dialog flow con-
trol, allowing to branch to follow-up nodes based
on the values of variables, e.g. a number exceeding
a certain threshold. This node does not provide
any output to the end-user. Given a variable, Logic
Nodes allow dialog designers to define a series of
logical conditions based on the value of a variable.
Each of the conditions can then be connected to
a different follow-up node, personalizing the dia-
log based on previous end-user input. For more
complex logic, Logic Nodes can also be connected
to each other to define branches that require more
than one condition or more than one variable.

4.1.1 Node Editor and Template System
In order to allow dialog designers to change the di-
alog system output, we incorporated the TinyMCE
editor5. This allows dialog designers to visually
format dialog system text, and include tables, links,
or images. Additionally, the interface of TinyMCE
is similar to that of common word processing soft-
ware, reducing the barrier of such formatting.

We also provide a minimal template syntax (see
Fig. 3) which can be used within a node to personal-
ize system output based on previous input from an

5https://www.tiny.cloud

Figure 3: An example of the node editor, using the tem-
plate syntax, which can be used to personalize output.

end-user and/or values from external tables which
can be re-uploaded as information changes. Using
the template syntax, for example, could allow dia-
log designers to create a single node, linked to an
uploaded table which returns the per diam for a user
based on the length of stay and the country of travel
they have given. This can greatly simplify dialog
graphs, both in terms of reducing the total number
of nodes and answers needed (a single node instead
of one for each country and duration) as well as in
the ease of updating the graph as policies change
(uploading a new table instead of editing nodes).
The template syntax allows for the following op-
erations, which can combined together to create
arbitrarily complex templates: 1) referencing the
value of a variable, 2) performing mathematical
operations, and 3) referencing a value from an up-
loaded table.

4.2 Navigation Features
As dialog graphs can become quite large for com-
plicated domains, one important aspect of our tool
is helping users to maintain an overview of the
whole graph as well as to find individual nodes.

Mini-Map To keep track of how the section of
graph they are working on at the moment fits into
the bigger picture of the entire dialog, we provide
a mini-map of the whole graph in the bottom right
corner of the editor, highlighting the portion cur-
rently visible.

Search We provide a search panel with fuzzy
matching to help find and update specific nodes in
the graph. The user can click on a result to jump to
the corresponding node, which will be highlighted
and placed at the center of their screen. Addition-
ally, as weblinks may change or need updating
with more frequency than other types of informa-
tion, we provide a similar panel where all weblinks
are listed alphabetically.

Tags and Filtering Additionally, dialog design-
ers can create tags and add them to any node in
the dialog graph. Each tag will be assigned a color
text and displayed as text at the bottom of the node

139

https://www.tiny.cloud

Figure 4: Graph management dashboard. Users can
create/delete, edit, and share their dialog systems.

(see figure 2). The color coding helps to visually
tell what category or categories a node belongs
to which can help with grouping. Users can filter
which tags are visible in the graph at a time, allow-
ing them to hide graph sections not relevant to what
they are currently working on.

4.3 Debugging
To test a dialog graph before releasing it, we pro-
vide a parallel debug window next to the dialog
graph editor with an interactive instance of the
corresponding dialog system. Dialog designers
can then directly try out different inputs and verify
whether the dialog flow works as intended. To sim-
plify understanding of the dialog flow, the editor
window will pan to and focus on the node currently
displayed in the chat window. Any changes to the
dialog flow in the editor will be immediately avail-
able in the chat, starting from the next dialog turn.
Additionally, dialog designers can use the debug
panel to view the values of all variables active in the
dialog and ensure their correctness at every turn.

4.4 Managing Graphs
Dialog designers can manage their graphs from a
central page 4. Here they can choose create new di-
alog systems or edit/delete existing ones. Addition-
ally, they can download user interaction log data or
get a link to their finished dialog system. This link,
which can be distributed or embedded, points to
a non-editable chat window (figure 5) where end-
users can interact with the current version of the
dialog system.

5 Implementation Details

5.1 Dialog System
Once the dialog graph has been defined, it can
instantly be used as a fully functioning dialog sys-
tem. The dialog system communication backend
is based on the ADVISER toolkit (Li et al., 2020),
which defines an abstract service class from which
dialog modules can inherit. All modules which in-
herit from this service class can communicate with
each other using a publish-subscribe framework. In

Figure 5: Embeddable/shareable chat window.

comparison to the communication protocol imple-
mented in ADVISER, the backend of DIAGRAPH
has been modified by attaching a user id to each
message sent. In this way, the dialog systems cre-
ated with DIAGRAPH can support an arbitrary
number of end-users concurrently. The full system
consists of two new modules: a policy and a natu-
ral language understanding unit (NLU). The policy
navigates users through a dialog graph, choosing
a next step based on the NLU output, which maps
user input to one of the pre-defined answer can-
didates. As the dialog nodes themselves define
the system output, there is no need for a natural
language generation unit.

Currently, DIAGRAPH was designed for cre-
ating text-based dialogs. However, it would also
be possible to create a spoken dialog system, e.g.
by incorporating ADVISER’s text-to-speech and
automatic speech recognition modules, which can
communicate with the other DIAGRAPH services.
This functionality is not included in the default
DIAGRAPH distribution.

5.1.1 Natural Language Understanding

The natural langauge understanding unit (NLU) is
based on a state-of-the-art, multilingual similarity
model (Reimers and Gurevych, 2019) for User Re-
sponse Nodes and regular expressions for Variable
Nodes. As User Response Nodes have a fixed set
of prototypical answers and the goal is to match the
user input to one of these answers, a large language
model performs well. For variable nodes, however,
the input space must be restricted according to the
variable’s type: e.g., a boolean variable should not
be allowed to assume values other than true or false.
Therefore, we use regular expressions to guarantee

140

that variable values conform to their specified type.

5.1.2 Dialog Policy
The dialog system’s behaviour, the policy, is pri-
marily defined by the dialog designer based on how
they construct their dialog graph. DIAGRAPH is
by default configured to use a rules-based policy
that will traverse the provided graph turn-wise, be-
ginning from the start and taking the following
actions depending on the current node type:

• User Response Nodes: The policy will output
the system utterance, wait for user input, and
then consider which prototypical answer best
matches the user input(as determined by the
NLU module). Finally, it will proceed to the
node connected to that answer.

• Information Node: The policy will output the
system utterance and transition to the con-
nected node.

• Variable Node: The system will output the
system utterance, wait for user input, store it
in the associated variable, and then traverse to
the connected node.

• Variable Update Node: The system will not
output any text, but update the associated vari-
able according to the specified rule. Then, it
will move on to the connected node.

• Logic Node: The system will not output any
text, but evaluate each logical condition based
on the value of the associated variable. The
system will then proceed to the node con-
nected to the matched condition.

As an alternative to the handcrafted policy, the
graphs generated from DIAGRAPH could be ex-
ported and directly used to train a reinforcement
learning (RL) policy, as proposed in our earlier
work (Väth et al., 2023). In comparison to the
handcrafted policy included in the standard distri-
bution of DIAGRAPH, the RL policy adapts to the
amount of information in a given user query to ei-
ther navigate the end-user through the dialog tree
node by node or skip extraneous nodes once the
user intent can be inferred.

5.2 Editor
The DIAGRAPH frontend is implemented in React,
using the React Flow 6 library to help smoothly ren-
der nodes and edges as they are moved around the

6https://reactflow.dev

screen. As graphs can be quite large, we focused
on efficiency of rendering for the frontend, trying
to keep both the amount of memory needed to run
the editor and the amount of external libraries to a
minimum. In this way, the editor can seamlessly
support graphs with hundreds of nodes, in terms of
creating or updating nodes, as well as in terms of
fluid navigation. The dialog nodes created in the
frontend are automatically stored in the backend
database, which is updated every time informa-
tion about the node (position, text, connections,
associated answers, etc.) is changed. Keeping the
frontend store and the backend database synced
ensures that the handcrafted policy is always up
to date with the state of the graph displayed in the
editor. For handling the database connections, user
authentication, (re)starting the dialog system, and
serving a compiled version of the front end, we use
the python toolkit Django 7.

6 Evaluation

To evaluate the usefulness of our software, we
tested its usability in three different scenarios 1)
to create a real-world dialog system in a complex
domain, 2) to rapidly prototype dialog systems, 3)
to teach students about programming and dialog
systems.

6.1 Complex Real-World Domain

As a first test, we worked with three subject-area
experts from a university travel reimbursement de-
partment, to create a dialog system to help employ-
ees navigate travel planning and reimbursement.
None of the experts had previous experience with
chatbots, but hoped to offload common questions to
the chatbot in order to have more time for complex
cases and processing reimbursements.

Given the complexity of the domain and the im-
portance of providing legally correct information, it
served as a good test of DIAGRAPH’s full function-
ality. To create the dialog system, the subject-area
experts first generated a set of frequently asked
questions and then worked with us to sort them
into categories and dialog sequences. Once they
had a clear picture of how they wanted to group
information, they were provided with an interactive
tutorial and user manual for the system. After a col-
laborative phase to implement the first version of
the dialog graph, the experts were left alone to ex-
pand and update it, resulting in a final version with

7https://www.djangoproject.com

141

https://reactflow.dev
https://www.djangoproject.com

194 nodes and a maximum depth of 32. The dia-
log system defined by this graph was then released
for university employees as an additional option
for answering travel related questions. During the
initial test phase, approximately 2000 dialogs were
conducted by university employees, each lasting
roughly 5.9 turns

At the end of the collaboration, the experts were
asked provide feedback about the experience via
the System Usability Scale (Brooke, 1996), a ten
item Likert scale for measuring user interfaces.
They were also asked to give free-form feedback
about their positive and negative impressions. DI-
AGRAPH received largely positive feedback with
an average SUS score of 82 (highest possible 100;
average 69 (Bangor et al., 2009)). Experts appreci-
ated its user friendliness, how well dialogs could
be specified, and the freedom for creative design
the tool promoted.

This use-case highlights that the dialog designer
can provide the level of control needed for highly
complex and sensitive domains and be deployed in
real-world scenarios.

6.2 Rapid Dialog System Design

In a second test, we investigated DIAGRAPH as
a tool for rapidly creating dialog systems. We col-
lected 19 participants and asked them to take 15-30
minutes to create and test a new dialog system of
their own design. Participants were provided with
a tutorial in the form of an interactive dialog graph
and an example dialog of a digital ice cream seller.
In contrast to the previous scenario, participants
were not provided any in person instruction. De-
spite the lack of additional instruction and short
interaction time, all participants were able to suc-
cessfully develop a variety of dialog systems.

After interacting with DIAGRAPH, participants
were also asked to fill out the 10 item SUS ques-
tionnaire and provide free-form feedback on things
they liked or disliked about the tool. When eval-
uating the survey results, DIAGRAPH was given
an average SUS score of 75 (out of a possible 100)
indicating above average usability. This was also
reflected in the comments, where the software was
described as “fun!" and “intuitive to use", although
the tutorial dialog was generally seen as too long.

As results from the SUS can be considered to
generalize when tested with at least 12 partici-
pants(Brooke, 2013), and because all users were
able to create dialog systems in such a short time,

our results confirm that DIAGRAPH provides an in-
tuitive interface which allows for rapid prototyping
of dialog systems.

6.3 Educational Tool

Finally, we held a workshop on dialog systems with
a group of six high school aged students to explore
how DIAGRAPH could be used in an educational
setting. Students were given a 45 minute long in-
troduction to dialog systems and programming con-
cepts. Following the theoretical introduction, they
were given a 30 minute interactive tutorial – on
how to create a chatbot for selling icecream with
the DIAGRAPH tool – and then allowed to create
and test their own dialog systems. The experience
was rated fun and engaging by all participants (1.5
on a six-point Likert scale from very engaging to
not at all engaging). All participants who left free-
form feedback further indicated that they enjoyed
the experience and/or felt that they learned a lot
from it. Although not all participants had previous
coding experience, all students were able to suc-
cessfully create their own dialog graphs by the end
of the half hour, each of which involved some type
of logical operation or loop condition.

This experiment suggests that in addition to be-
ing easy to use, DIAGRAPH has potential as a
teaching tool for dialog systems and for program-
ming concepts.

7 Conclusion and Future Work

In this paper we have presented DIAGRAPH: an
open-source graphic interface for designing dialog
systems supporting either rules-based or RL-based
dialog graph navigation. DIAGRAPH provides an
intuitive way for subject-area experts to create com-
plex dialog systems, users to rapidly prototype dia-
log interactions, and students to learn about dialog
systems – regardless of the user’s level of technical
background. Our user evaluation shows that DIA-
GRAPH was considered easy to use for all three
use cases and users generally considered working
with the tool an intuitive and fun experience.

In the future, we hope to extend our tool with
the ability to query web APIs and to allow dialog
designers to define expected inputs for variable
nodes using custom regular expressions in order to
increase flexibility even further. By releasing this
software as open-source, we hope to make dialog
design more accessible and to spark more research
in controllable dialog policies.

142

References
Aaron Bangor, Philip Kortum, and James Miller.

2009. Determining what individual sus scores mean:
Adding an adjective rating scale. Journal of usability
studies, 4(3):114–123.

Dan Bohus and Alexander I. Rudnicky. 2009. The
ravenclaw dialog management framework: Archi-
tecture and systems. Computer Speech & Language,
23(3):332–361.

John Brooke. 1996. Sus-a quick and dirty usability scale.
Usability evaluation in industry, 189(194):4–7.

John Brooke. 2013. Sus: a retrospective. Journal of
usability studies, 8(2):29–40.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Recent
advances and new frontiers. SIGKDD Explor. Newsl.,
19(2):25–35.

Alexander Koller, Timo Baumann, and Arne Köhn.
2018. DialogOS: Simple and Extensible Dialogue
Modeling. In Proc. Interspeech 2018, pages 167–
168.

Sungjin Lee, Qi Zhu, Ryuichi Takanobu, Zheng Zhang,
Yaoqin Zhang, Xiang Li, Jinchao Li, Baolin Peng,
Xiujun Li, Minlie Huang, and Jianfeng Gao. 2019.
ConvLab: Multi-domain end-to-end dialog system
platform. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 64–69, Florence, Italy.
Association for Computational Linguistics.

Chia-Yu Li, Daniel Ortega, Dirk Väth, Florian Lux,
Lindsey Vanderlyn, Maximilian Schmidt, Michael
Neumann, Moritz Völkel, Pavel Denisov, Sabrina
Jenne, Zorica Kacarevic, and Ngoc Thang Vu. 2020.
ADVISER: A toolkit for developing multi-modal,
multi-domain and socially-engaged conversational
agents. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 279–286, Online. As-
sociation for Computational Linguistics.

Pierre Lison and Casey Kennington. 2016. OpenDial: A
toolkit for developing spoken dialogue systems with
probabilistic rules. In Proceedings of ACL-2016 Sys-
tem Demonstrations, pages 67–72, Berlin, Germany.
Association for Computational Linguistics.

Daniel Ortega, Dirk Väth, Gianna Weber, Lindsey Van-
derlyn, Maximilian Schmidt, Moritz Völkel, Zorica
Karacevic, and Ngoc Thang Vu. 2019. ADVISER: A
dialog system framework for education & research.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 93–98, Florence, Italy. Asso-
ciation for Computational Linguistics.

Dinesh Raghu, Shantanu Agarwal, Sachindra Joshi, and
Mausam. 2021. End-to-end learning of flowchart
grounded task-oriented dialogs. In Proceedings of

the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 4348–4366, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 3980–3990.
Association for Computational Linguistics.

Swadheen Shukla, Lars Liden, Shahin Shayandeh, Es-
lam Kamal, Jinchao Li, Matt Mazzola, Thomas Park,
Baolin Peng, and Jianfeng Gao. 2020. Conversa-
tion Learner - a machine teaching tool for building
dialog managers for task-oriented dialog systems.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 343–349, Online. Association
for Computational Linguistics.

Stefan Ultes, Lina M. Rojas-Barahona, Pei-Hao Su,
David Vandyke, Dongho Kim, Iñigo Casanueva,
Paweł Budzianowski, Nikola Mrkšić, Tsung-Hsien
Wen, Milica Gašić, and Steve Young. 2017. PyDial:
A multi-domain statistical dialogue system toolkit. In
Proceedings of ACL 2017, System Demonstrations,
pages 73–78, Vancouver, Canada. Association for
Computational Linguistics.

Dirk Väth, Lindsey Vanderlyn, and Thang Vu Ngoc.
2023. Conversational tree search: A new hybrid di-
alog task. In [forthcoming]Proceedings of the 17th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume.
ACL Anthology.

Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi
Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao,
Xiaoyan Zhu, and Minlie Huang. 2020. ConvLab-2:
An open-source toolkit for building, evaluating, and
diagnosing dialogue systems. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
142–149, Online. Association for Computational Lin-
guistics.

143

https://doi.org/https://doi.org/10.1016/j.csl.2008.10.001
https://doi.org/https://doi.org/10.1016/j.csl.2008.10.001
https://doi.org/https://doi.org/10.1016/j.csl.2008.10.001
https://doi.org/10.1145/3166054.3166058
https://doi.org/10.1145/3166054.3166058
https://doi.org/10.18653/v1/P19-3011
https://doi.org/10.18653/v1/P19-3011
https://doi.org/10.18653/v1/2020.acl-demos.31
https://doi.org/10.18653/v1/2020.acl-demos.31
https://doi.org/10.18653/v1/2020.acl-demos.31
https://doi.org/10.18653/v1/P16-4012
https://doi.org/10.18653/v1/P16-4012
https://doi.org/10.18653/v1/P16-4012
https://doi.org/10.18653/v1/P19-3016
https://doi.org/10.18653/v1/P19-3016
https://doi.org/10.18653/v1/2021.emnlp-main.357
https://doi.org/10.18653/v1/2021.emnlp-main.357
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.acl-demos.39
https://doi.org/10.18653/v1/2020.acl-demos.39
https://doi.org/10.18653/v1/2020.acl-demos.39
https://aclanthology.org/P17-4013
https://aclanthology.org/P17-4013
https://doi.org/10.18653/v1/2020.acl-demos.19
https://doi.org/10.18653/v1/2020.acl-demos.19
https://doi.org/10.18653/v1/2020.acl-demos.19

