
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 161–168

July 10-12, 2023 ©2023 Association for Computational Linguistics

A Hyperparameter Optimization Toolkit
for Neural Machine Translation Research

Xuan Zhang and Kevin Duh and Paul McNamee
Johns Hopkins University
Baltimore, Maryland, USA

xuanzhang@jhu.edu; kevinduh@cs.jhu.edu; mcnamee@jhu.edu

Abstract

Hyperparameter optimization is an important
but often overlooked process in the research of
deep learning technologies. To obtain a good
model, one must carefully tune hyperparame-
ters that determine the architecture and train-
ing algorithm. Insufficient tuning may result
in poor results, while inequitable tuning may
lead to exaggerated differences between mod-
els. We present a hyperparameter optimization
toolkit for neural machine translation (NMT)
to help researchers focus their time on the cre-
ative rather than the mundane. The toolkit
is implemented as a wrapper on top of the
open-source Sockeye NMT software. Using
the Asynchronous Successive Halving Algo-
rithm (ASHA), we demonstrate that it is pos-
sible to discover near-optimal models under a
computational budget with little effort.1

1 Introduction

Deep learning models are difficult to train. Al-
though they achieve impressive results on many
tasks, non-trivial amounts of effort are required
for selecting appropriate hyperparameters, such as
the number of layers, vocabulary size, embedding
dimension, and optimization algorithm. This trial-
and-error process is necessary for each task, do-
main, or language. Further, the rapid development
of new neural network architectures implies that
this hyperparameter optimization process will only
become more expensive.

Currently, hyperparameter optimization tends to
be performed manually by researchers in an ad hoc
fashion, using scripts put together independently.
The lack of open-source support tools means that
the level of rigor in hyperparameter optimization
may vary widely. This poses two risks:

1https://github.com/kevinduh/sockeye-recipes3
(code), https://cs.jhu.edu/~kevinduh/j/demo.mp4
(video demo)

1. Insufficient exploration of the hyperparame-
ter space may lead to poor results, killing an
otherwise promising research idea.

2. Inequitable allocation of compute resources
for hyperparameter optimization of one model
over another may lead to exaggerated results
differences and misleading conclusions.

The importance of documenting the hyperparam-
eter optimization process in research has already
been widely recognized and is included as an item
under the “Responsible NLP Checklist"2 required
for paper submissions in the field. To support these
efforts, we believe it will be beneficial to develop
open-source tools to improve the hyperparameter
optimization process itself.

This paper presents a hyperparameter opti-
mization toolkit for NMT research. It enables
researchers to easily explore the hyperparame-
ter space of various NMT models based on the
PyTorch codebase of AWS Sockeye framework
(Hieber et al., 2022). One simply specifies (1) the
desired set of hyperparameter options to search,
(2) the compute resource constraints, and (3) the
training data paths, then the toolkit will plan and
execute an automatic hyperparameter optimization
and return the best model discovered. The toolkit
implements the Asynchronous Successive Halv-
ing Algorithm (ASHA) (Li et al., 2020), which is
well-suited for commodity off-the-shelf distributed
grids.

In the following, we first give an overview of the
toolkit (Section 2) and hyperparameter optimiza-
tion algorithm (Section 3). Then, the case study in
Section 4 illustrates how the toolkit can help a re-
searcher search over thousands of hyperparameter
configurations with ease. Finally, Section 5 dis-
cusses our design choices, hopefully serving as a

2https://aclrollingreview.org/
responsibleNLPresearch/

161

https://github.com/kevinduh/sockeye-recipes3
https://cs.jhu.edu/~kevinduh/j/demo.mp4
https://aclrollingreview.org/responsibleNLPresearch/
https://aclrollingreview.org/responsibleNLPresearch/


Figure 1: An overview of the sockeye-recipes3 hyperparameter optimization toolkit

reference for those who want to implement similar
toolkits for different NLP software.

2 Usage Overview

Our hyperparameter optimization toolkit is named
sockeye-recipes3, since it cooks up different
models by training models with the AWS Sock-
eye NMT framework, version 3. An overview is
shown in Figure 1. For concreteness, let us sup-
pose the researcher in Figure 1 wants to run a rigor-
ous hyperparameter optimization to obtain a strong
Transformer baseline for a new dataset.

Step 1: The researcher designs a hyperparameter
search space for his/her model. Table 1 shows some
common hyperparameters for Transformers, but the
toolkit is flexible to incorporate any user-defined
hyperparameter. This hyperparameter space is ex-
pressed as a YAML file, e.g. space.yaml:
transformer_model_size: [256, 512, 1024]
transformer_attention_heads: 8
transformer_feed_forward_num_hidden: [1024, 2048]
...

The snippet above indicates that the researcher
wishes to explore three choices for model size, one
choice for attention head, and two choices for a
feed-forward number of hidden units. The Carte-
sian product of all these choices forms the full
hyperparameter space.

Step 2: sockeye-recipes3 samples from the
full hyperparameter space to generate a set of bash
files called hpm files. Each hpm file represents a
specific hyperparameter configuration and encap-
sulates all the information needed to train a model.
This includes not only hyperparameter settings but
also paths to training and validation data. For ex-
ample, config1.hpm might train a model with:
transformer_model_size=256

transformer_attention_heads=8
transformer_feed_forward_num_hidden=1024
train_data=~/data/wmt.train.de-en.bitext
validation_data=~/data/wmt.dev.de-en.bitext

The set of hpm files represents all the hyperpa-
rameter configurations to be explored by the hy-
perparameter optimization algorithm. Rather than
randomly sampling a subspace, one can also gener-
ate the full Cartesian product or manually edit some
hpm files based on prior knowledge. Depending on
the researcher’s usage scenario, this set typically
numbers from tens to thousands.

Step 3: Once the researcher is ready, he/she starts
the ASHA program with resource specifications
such as the number of concurrent GPUs to use and
the number of checkpoints per training run. This
Python code dispatches the training processes as
standard Sockeye jobs to a distributed grid.3 ASHA
will attempt to efficiently train as many models as
possible given the computational constraints. It is
a bandit learning method that automatically learns
when to stop a not-so-promising training run in
order to allocate resources to other hyperparameter
configurations. Details are in Section 3.

Step 4: The results of all Sockeye training runs
dispatched by ASHA are stored on disk. Each
hpm file will have a corresponding subdirectory
with the output log of a Sockeye training pro-
cess. This makes it easy to replicate or continue
any training runs in the future, with or without
the sockeye-recipes3 toolkit. Ultimately, the re-
searcher can pick out the best model from the set
for further experimentation.

3The dispatch in sockeye-recipes3 is currently imple-
mented for the Univa Grid Engine (UGE) but is easily extend-
able to other similar grid management software like SLURM.

162



Figure 2: Illustration of Successive Halving

Additional features: (a) Metric: The toolkit’s
default is to find models with high BLEU on the
validation set. This can be changed to any user-
specified metric. Also, we have devised a multi-
objective version of ASHA to enable joint opti-
mization of accuracy and inference speed based on
Pareto optimality (Marler and Arora, 2004).

(b) Analysis: After an ASHA run, one may wish
to see if there are certain trends in hyperparameters,
e.g. are some more important than others? This
introspection can be helpful in understanding the
model or designing future hyperparameter spaces.
We have included a tool for posthoc analysis using
Explainable Boosting Machines (Deb et al., 2022).

3 Hyperparameter Opt. with ASHA

Problem: Suppose we have N hyperparameter
configurations (hpm files) and a max compute bud-
get of B, measured in terms of the total number
of training checkpoints available. Let us select n
configurations for actual training, where n ≤ N .
If each configuration is allocated the same budget,
then each would be trained up to B/n checkpoints.
When N is large, we have an untenable problem:

• If we choose n to be large (close to N ), then
B/n will be small, indicating that each config-
uration is only trained for a few checkpoints.
Most models likely will not have converged.

• If we choose n to be small (despite N being
large), then configurations that are chosen are
trained well (large B/n) but the majority of
configurations are not even trained at all.

The only solution is to allocate each configura-
tion with a variable budget: i.e. train promising

configurations for more checkpoints and terminate
the not-so-promising ones prior to convergence.
This is an intuitive idea that has probably been per-
formed countless times by researchers by tracking
learning curves in a manual fashion.

Successive Halving: The Successive Halving Al-
gorithm (Jamieson and Talwalkar, 2016) imple-
ments this intuition algorithmically, and is illus-
trated in Figure 2. Suppose we choose n = 4
hyperparameter configurations to explore and the
total budget is B = 7 checkpoints. We begin by
first training each configuration up to checkpoint
1 and measuring their validation accuracy. The
configurations with lower accuracies at this point
(config3, config4) are deemed not-so-promising
and are terminated. The remaining half (config1,
config2) are trained longer, and validation accuracy
is measured again at checkpoint 2. Again, half of
the configurations are terminated and the other half
is “promoted" to be trained longer; this is done
successively until the total budget is reached.

The main assumption of Successive Halving is
that learning curves of different configurations are
comparable and that the relative ranking of vali-
dation accuracy at intermediate checkpoints corre-
lates to that at convergence. This is an assumption
that cannot be proved but is likely reasonable in
most cases with the proper setting of checkpoint
intervals.

ASHA: In practice, the Successive Halving Al-
gorithm as described above has a bottleneck at each
checkpoint: we need to wait for all configurations
to return their validation score before deciding the
best half to promote. The actual time that a con-
figuration needs to reach a checkpoint depends on
many factors such as GPU device type and model
size. So we may end up waiting for the slowest
training run, causing poor grid utilization.

To address this, an Asynchronous Successive
Halving Algorithm (ASHA) is introduced (Li et al.,
2020). The idea is to promote a configuration as
soon as it is guaranteed to be in the top half, without
waiting for all configurations to return with their
checkpoints’ validation accuracy. For example in
Figure 2, suppose three configurations (e.g. config2,
config3, config4) have already returned an accuracy
for checkpoint 1. We are then safe to promote the
best one out of the group (config2) without waiting
for config1 to return since config2 will be among
the top half regardless of config1’s accuracy.

163



Name & Description Settings
Architecture Hyperparameters
transformer_model_size - size of model/embeddings {256, 512, 1024}
transformer_attention_heads - # of heads 8
transformer_feed_forward_num_hidden - # units in feedforward layer {1024, 2048}
num_layers - for "encoder:decoder" {6:6, 8:4, 4:4, 6:2}
Data Pre-processing Hyperparameters
bpe_symbols_src - # of BPE symbols on source side {5k, 10k, 30k}
bpe_symbols_trg - # of BPE symbols on target side {5k, 10k, 30k}
Training Hyperparameters
optimized_metric perplexity
initial_learning_rate: initial rate for ADAM optimizer {0.0002, 0.001, 0.002}
embed_dropout - dropout rate for source:target embeddings .0:.0
label_smoothing 0.1
seed - random initialization seed {1, 2}
Hardware-related Hyperparameters
batch_size - # of words in batch 4096
checkpoint_interval - #batches before saving checkpoint to disk 4000

Table 1: Hyperparameter space used in the case study. The settings in red font are searched over, while others are
held fixed. In total, we will explore 3× 2× 4× 3× 3× 3× 2 = 1296 configurations.

Please refer to the original papers on ASHA, Suc-
cessive Halving, and a variant called Hyperband
(Li et al., 2016) for more detailed analyses. We
focus on ASHA in sockeye-recipes3.

4 Case Study

Goal: To illustrate how sockeye-recipes3
works in practice, we show a case study on building
a strong Transformer baseline for a new Telugu-to-
English dataset. Our initial training set consists of
900k lines of bitext obtained from public sources
via the OPUS portal (Tiedemann, 2012). This is
augmented with 7 million lines of back-translated
data obtained by running a reverse system (English-
to-Telugu NMT trained on 900k) on web-scraped
news from the Leipzig corpus (Goldhahn et al.,
2012). 3000 lines are held out from the initial train-
ing set to serve as the validation set.

Given this setup, our goal is to run hyperparame-
ter optimization on a standard Transformer archi-
tecture to obtain the best possible model according
to validation BLEU. This model can serve as a
strong baseline for any future NMT experiment
based on the same dataset. Since this is a low-
resource language pair that is relatively unexplored
in the research community, we opt to search a large
hyperparameter space.

Hyperparameter space: Our space.yaml file is
defined according to the options listed in Table 1.
While any user-defined hyperparameter is possible,
sockeye-recipes3 exposes the most common op-
tions. We explore a total of 1296 configurations.

ASHA run: We run ASHA using the resource
settings in Table 2. The reduction rate decides
the fraction of configurations that are promoted
each time: a factor p=2 reduction rate corresponds
to “halving", but in practice, one can choose to
be more or less aggressive. We also specify the
number of GPUs that can be used concurrently by
ASHA: here, it will dispatch jobs asynchronously
up to that limit of G=40.

Finally, the settings for a min, max, and per-
rung checkpoints are NMT-specific modifications
we found useful for ASHA. In Figure 2, halv-
ing is performed at each checkpoint, or at each
“rung" in ASHA terminology. It is convenient to
give NMT researchers the flexibility to choose the
exact schedule: here, we decide that each con-
figuration is trained for at least r=5 checkpoints
(corresponding to 5 × 4000 batches due to the
checkpoint_interval in Table 1) before we per-
form successive halving at the first rung. Thereafter,
each configuration is trained for u=2 checkpoints
before successive halving is performed. Finally, no
configurations will be trained with more than R=25

164



Reduction rate. Top 1/p promoted p=2
# of GPUs available G=40
min checkpoints per model r=5
#checkpoints per config per rung u=2
max checkpoints per model R=25

Table 2: ASHA settings for case study

checkpoints regardless of other ASHA settings; this
small number of maximum checkpoints will proba-
bly not obtain state-of-the-art results but is suitable
for the purpose of discovering several good configu-
rations. The researcher may first inspect the ASHA
results to identify several promising configurations,
then manually train them for longer.4

Figure 3 samples a few learning curves (out of
the 1296 configurations in total) to demonstrate
how ASHA works in practice. The top figure is
analogous to Successive Halving in Figure 2, while
the bottom figure shows how the asynchronous
dispatch occurs over time.

Comparison with grid search: To confirm
whether ASHA finds good models, we also run a
grid search on the same 1296 configurations, train-
ing each with up to 25 checkpoints. This corre-
sponds to a total cost of 25× 1296 = 32, 400. In
comparison, the ASHA run in our case study costs
60% less at 9066 checkpoints in total.

Table 3 confirms that ASHA can find good mod-
els that are found by an exhaustive grid search. For
example, the maximum BLEU score by grid search
is 20.3, and while this model is terminated at rung 4,
the final model discovered by ASHA has a competi-
tive BLEU score of 20.1. In our experience, ASHA
is effective at finding a set of reasonable models at
a fraction of the computational cost; if we desire
the best possible model, nothing can replace the
manual effort of an experienced researcher.

5 Design

sockeye-recipes3 is designed with two princi-
ples: (1) All NMT codes, such as a researcher’s
proposed extension of the Sockeye framework, are
encapsulated in separate conda environments. (2)
All hyperparameters and data paths (for baseline
and proposed methods) are explicitly specified in
hpm files, and stored together with each sockeye

4The best model discovered has 8 encoder layers, 4 decoder
layers, 1024 model size, 2048 feedforward size, 10k source
subwords, 30k target subwords, and achieves 35.6 spBLEU
on the FLORES101 devtest (Goyal et al., 2022).

rung ckpt config budget med max
0 5 1296 6480 0.3 20.3
1 7 648 7776 17.2 20.3
2 9 324 8424 18.9 20.3
3 11 162 8748 19.4 20.3
4 13 81 8910 19.7 20.3
5 15 40 8990 19.7 20.1
6 17 20 9030 19.7 20.1
7 19 10 9050 19.8 20.1
8 21 5 9060 19.8 20.1
9 23 2 9064 20.0 20.1
10 25 1 9066 20.1 20.1

Table 3: ASHA vs. Grid search: Each row lists the # of
configurations explored in each rung, # of checkpoints
(ckpt) trained so far per configuration, and accumulated
budget (total checkpoints). The med/max columns are
median/max BLEU scores among the configurations
explored if they were trained to completion in a grid
search. For example, in rung 2, 324 configurations were
explored by ASHA and trained up to 9 checkpoints. If
they were trained up to the full 25 checkpoints and their
BLEU scores were collected, the median would be 18.9
and the max would be 20.3. ASHA preserves many
of the top configurations that would be found by grid
search.

training run. This means that it is easy to replicate
or continue any training run by referring to (1) and
(2). ASHA dispatches will run Sockeye training for
u checkpoints at a time, so a job will automatically
return the GPU resource at the end of each rung.

The ASHA implementation is a Python script
that sits on a single server and regularly checks the
status of Sockeye training runs on the distributed
grid setup. The pseudocode is shown in Algo-
rithm 1. The script keeps track of configurations
that are training or paused at a checkpoint. When
there is an idle GPU, it will decide whether to ex-
plore a new hpm or promote an existing one. The
dispatch is a job submission command that starts a
Sockeye train process on a GPU node. It depends
only on the conda-environment provided, so it is
easy to optimize different NMT implementations
by exchanging the environment while keeping sim-
ilar space.yaml, leading to equitable tuning.

6 Related Work

ASHA and variants can be viewed as bandit algo-
rithms that balance exploration (trying new con-
figurations) with exploitation (training the current
configurations for longer). They obtain efficiency

165



Figure 3: Learning curves for a random sample of configurations in ASHA. The y-axis is the validation BLEU
score. The top figure, where the x-axis represents # of checkpoints, is analogous to Figure 2 and shows which
configurations are promoted. The bottom figure represents the same configurations plotted against wallclock time
on the x-axis; this illustrates the asynchronous nature of ASHA. Observe that configurations are not started in sync,
and long plateaus indicate when ASHA decided to pause the configuration at a checkpoint to allocate GPUs for
other ones.

Algorithm 1 ASHA pseudocode

while budget remains do
for all c ∈ configs do

s = check_state(c) ▷ Still training or at checkpoint?

end for
for all g ∈ idle GPU do

h = get_hpm(configs) ▷ Explore new or promote?

dispatch(h, g, conda-env) ▷ Sockeye train()

end for
pause for m minutes

end while

by early stopping. Another class of methods are
“blackbox" optimizers, e.g. Bayesian Optimiza-
tion and Evolutionary Methods (Feurer and Hutter,
2019): they treat hyperparameters as input features,
observed accuracy as output targets, and train a
proxy model to predict new hyperparameters that
are worth sampling. These two classes of methods
can be combined (Falkner et al., 2018); this is po-
tentially future work. Several benchmarks provide
comparisons of state-of-the-art (Zhang and Duh,
2020; Zöller and Huber, 2021).

Neural Architecture Search (Elsken et al., 2019)
is related to hyperparameter optimization but fo-
cuses more on fine-grained choices (e.g. changing
skip connections at different layers). This is an
active area of research, but out-of-scope for our
purpose of improving NMT experimentation.

There are some existing toolkits like Vizier
(Song et al., 2022) and Ray Tune (Liaw et al., 2018),
which are suitable for those wanting general rather
than application-specific solutions.

7 Conclusions

There is a progression of toolkit development that
enables researchers to do better work. Deep learn-
ing toolkits like PyTorch and Tensorflow made
it easy to exploit GPU hardware. Application-
specific toolkits like Sockeye and Fairseq build on
top of that, and enabled researchers to quickly pro-
totype new ideas. Further on top, we believe that
hyperparameter optimization toolkits and experi-
ment management toolkits in general will further
help advance the speed and rigor of research.

We presented sockeye-recipes3, an open-

166



source hyperparameter optimization toolkit for
NMT research. Our hope is this will relieve some
of the mundane aspects of manual hyperparame-
ter tuning so that researchers can focus on more
creative activities. A rigorous and automated hy-
perparameter optimization process will also lead to
more trustworthy experiment results.

Limitations

Scope of support: The sockeye-recipes3
toolkit only supports the AWS Sockeye NMT
framework. It is suitable for researchers who plan
to implement and test out different NMT models in
PyTorch using Sockeye’s codebase. It is not meant
to be extensible to hyperparameter optimization
methods for other frameworks in NLP. The reason
is that each toolkit has its own nuanced error mes-
sages and hyperparameter definitions, so it is easier
to do design a focused toolkit.

No guarantees: In general, hyperparameter opti-
mization methods give no theoretical guarantees;
there is always an aspect of uncertainty. For exam-
ple, there is no guarantee that ASHA will keep the
top configurations if the learning curves do not fol-
low our assumptions. One may be more conserva-
tive by setting more checkpoints per rung in ASHA,
but this decreases the potential for efficiency.

Manual design: sockeye-recipes3 does not
fully automate the entire model-building process.
The researcher still needs to design the hyperpa-
rameter space for each task. This search space is
critical for the success of ASHA that follows. One
may imagine a transfer learning (or meta-learning)
approach where hyperparameter spaces from simi-
lar tasks are borrowed, but this is currently an open
problem.

Ethics Statement

Automated hyperparameter optimization can lead
to efficiencies in model building, but we need to
be cognizant that there is also a risk of excessive
optimization. The user needs to design what is a
reasonable search space: for example, would it be
worthwhile to optimize over many different ran-
dom initialization seeds or over small differences
between model sizes?

Excessive optimization poses three risks: First,
one may select models that “overfit", though this
can be ameliorated by proper choices of validation
sets. Second, hyperparameter optimization gives an

advantage to research teams with large compute re-
sources; ASHA and similar methods are not useful
on grids with less than e.g. 10 GPUs.

Third and perhaps more important, the computa-
tion may be wasteful. “Green AI" is an important
call-to-arms for the research community: hyperpa-
rameter optimization is a double-edged sword in
that proper usage leads to efficiency while exces-
sive usage leads to wastefulness.

For example, to quantify the CO2e emissions in
our case study, we estimate that ASHA and grid
search spent a total of 3050 hours on GPU compute
node. Our grid contains a mix of NVIDIA TITAN
RTX, GeForce RTX 2080 Ti, and Tesla V100. In
future versions of sockeye-recipes3, we plan to
track power use individually for all jobs but let
us assume an average power consumption of 250
watts, for a total of 0.762MWh. If we assume
carbon efficiency5 is at 432 kg CO2e per MWh,
data center power usage effectiveness (PUE) is 1.5,
and there are no additional offsets for renewable
energy, we end up with:

0.762 MWh
1

× 432 kg
MWh

× 1.5

1
= 494 kg CO2e (1)

This corresponds to the CO2e of driving a car for
2000km or burning 247kg of coal. Ideally, we will
eventually reach an understanding as a community
of what amount of use is appropriate or excessive.

References
Kiron Deb, Xuan Zhang, and Kevin Duh. 2022. Post-

hoc interpretation of transformer hyperparameters
with explainable boosting machines. In Proceedings
of the Fifth BlackboxNLP Workshop on Analyzing
and Interpreting Neural Networks for NLP, pages
51–61, Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
2019. Neural architecture search: A survey. Journal
of Machine Learning Research, 20(55):1–21.

Stefan Falkner, Aaron Klein, and Frank Hutter. 2018.
Bohb: Robust and efficient hyperparameter optimiza-
tion at scale. In International Conference on Machine
Learning.

Matthias Feurer and Frank Hutter. 2019. Hyperparam-
eter optimization. In Automated Machine Learning,
pages 3–33. Springer.

Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building large monolingual dictionaries at the

5https://mlco2.github.io/impact/

167

https://aclanthology.org/2022.blackboxnlp-1.5
https://aclanthology.org/2022.blackboxnlp-1.5
https://aclanthology.org/2022.blackboxnlp-1.5
http://jmlr.org/papers/v20/18-598.html
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
https://mlco2.github.io/impact/


Leipzig corpora collection: From 100 to 200 lan-
guages. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12), pages 759–765, Istanbul, Turkey. Euro-
pean Language Resources Association (ELRA).

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

Felix Hieber, Michael Denkowski, Tobias Domhan, Bar-
bara Darques Barros, Celina Dong Ye, Xing Niu,
Cuong Hoang, Ke Tran, Benjamin Hsu, Maria Nade-
jde, Surafel Lakew, Prashant Mathur, Anna Currey,
and Marcello Federico. 2022. Sockeye 3: Fast neural
machine translation with pytorch.

Kevin Jamieson and Ameet Talwalkar. 2016. Non-
stochastic best arm identification and hyperparameter
optimization. In Artificial intelligence and statistics,
pages 240–248. PMLR.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekate-
rina Gonina, Jonathan Ben-tzur, Moritz Hardt, Ben-
jamin Recht, and Ameet Talwalkar. 2020. A system
for massively parallel hyperparameter tuning. In
Proceedings of Machine Learning and Systems, vol-
ume 2, pages 230–246.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin
Rostamizadeh, and Ameet S. Talwalkar. 2016. Hyper-
band: A novel bandit-based approach to hyperparam-
eter optimization. J. Mach. Learn. Res., 18:185:1–
185:52.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E Gonzalez, and Ion Stoica.
2018. Tune: A research platform for distributed
model selection and training. arXiv preprint
arXiv:1807.05118.

R. Marler and Jasbir Arora. 2004. Survey of
multi-objective optimization methods for engineer-
ing. Structural and Multidisciplinary Optimization,
26:369–395.

Xingyou Song, Sagi Perel, Chan Lee Lee, Greg Kochan-
ski, and Daniel Golovin. 2022. Open source vizier:
Distributed infrastructure and api for reliable and flex-
ible blackbox optimization. ArXiv, abs/2207.13676.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Xuan Zhang and Kevin Duh. 2020. Reproducible and
efficient benchmarks for hyperparameter optimiza-
tion of neural machine translation systems. Transac-
tions of the Association for Computational Linguis-
tics, 8:393–408.

Marc-André Zöller and Marco F. Huber. 2021. Bench-
mark and survey of automated machine learning
frameworks. J. Artif. Int. Res., 70:409–472.

168

http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.48550/ARXIV.2207.05851
https://doi.org/10.48550/ARXIV.2207.05851
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://doi.org/10.1162/tacl_a_00322
https://doi.org/10.1162/tacl_a_00322
https://doi.org/10.1162/tacl_a_00322
https://doi.org/10.1613/jair.1.11854
https://doi.org/10.1613/jair.1.11854
https://doi.org/10.1613/jair.1.11854

