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Abstract

In this paper, we present our open-source neu-
ral machine translation (NMT) toolkit called
“Yet Another Neural Machine Translation
Toolkit” abbreviated as YANMTT1 which is
built on top of the HuggingFace Transformers
library. YANMTT aims to enable pre-training
and fine-tuning of sequence-to-sequence mod-
els with ease. It can be used for training
parameter-heavy models with minimal param-
eter sharing and efficient, lightweight mod-
els via heavy parameter sharing. Addition-
ally, efficient fine-tuning can be done via fine-
grained tuning parameter selection, adapter
and prompt tuning. Our toolkit also comes
with a user interface that can be used to demon-
strate these models and visualize the attention
and embedding representations. Apart from
these core features, our toolkit also provides
other advanced functionalities such as but not
limited to document/multi-source NMT, simul-
taneous NMT, mixtures-of-experts and model
compression.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2015) is an end-to-end machine transla-
tion (MT) approach known for obtaining state-
of-the-art results for a variety of language pairs.
Thanks to publicly available toolkits such as Open-
NMT, Fairseq, Tensor2tensor, etc.; For NMT, and
Natural Language Generation (NLG) in general,
model training has become easier. Additionally,
fine-tuning of large pre-trained models such as
mBART (Liu et al., 2020) and mT5 (Xue et al.,
2021) have led to significant advances for low-
resource languages. Recently, the Transformers
library from HuggingFace has made fine-tuning
an accessible option. Parameter-efficient fine-
tuning via adapters and prompts has recently gained
popularity. This has led to the development of

1https://github.com/prajdabre/yanmtt

AdapterHub, which allows people to use pre-
trained adapters for many tasks or easily train their
custom adapters.

However, when it comes to pre-training
sequence-to-sequence models from scratch, we no-
ticed that there is very little support2. This is, pre-
sumably, because pre-training is computationally
intensive, especially when the number of parame-
ters is large, and not everyone can do this. How-
ever, not all situations need large models, and with
the advancements in low-precision training and
parameter-efficient architectures, we feel that de-
mocratizing pre-training is necessary. Additionally,
relying on separate libraries for pre-training and
fine-tuning can be quite exhausting. To this end,
we decided to develop a publicly available toolkit
to bring both into one place while simultaneously
focusing on parameter efficiency.

We call our toolkit YANMTT which stands for
“Yet Another Neural Machine Translation Toolkit”
which is built on top of the Transformers library.
YANMTT relies on a substantially modified version
of the mBART model’s code and contains simple
scripts for NMT pre-training and fine-tuning. Our
modifications revolve around parameter efficiency
by implementing heavy parameter sharing and in-
corporating adapters and prompts into the model.
In order to enable users to better understand, and
modify if needed, the flow of pre-training and fine-
tuning, we heavily annotate our code with com-
ments. YANMTT also comes with a user interface
that can be used to demo any developed models
as well as analyze them by visualizing their atten-
tions and embedding representations. We hope that
YANMTT will help entice more researchers into ad-
vancing the field of efficient sequence-to-sequence
pre-training and fine-tuning. While the main focus
is on NMT, readers should note that this toolkit can
also be used for general purpose NLG.

2At the time of creating this toolkit in 2021, there was no
easily available script for sequence-to-sequence pre-training.
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Figure 1: An architecture overview of the YANMTT.

2 Related Work

Tensor2tensor3 is a deprecated library for train-
ing recurrent, convolutional as well as transformer
models for a variety of sequence-to-sequence appli-
cations. It has been replaced by Trax4. While Ten-
sor2tensor uses TensorFlow as a backend, Fairseq5

is based on PyTorch and it also allows one to train
a variety of NMT models. Unlike Tensor2tensor,
Fairseq contains all necessary functionality for pre-
training NMT models, but there is a severe lack
of instructions for the same. OpenNMT (Klein
et al., 2017), originally developed for recurrent
NMT models, is based on TensorFlow as well as
PyTorch. THUMT6 is an NMT training toolkit
based on TensorFlow, PyTorch and Theano.

Most recently, the Transformers (Wolf et al.,
2020) library by HuggingFace, based on PyTorch
and TensorFlow has become popular as it allows
users to share trained models easily. In Transform-
ers, the instructions for fine-tuning pre-trained mod-
els are abundant, but at the time of YANMTT’s
development (early 2021), there was no complete
script for pre-training. On the HuggingFace hub,
the central repository for all models trained with
Transformers, it is possible to load and run models,
but enabling users to locally demo and inspect their

3https://github.com/tensorflow/
tensor2tensor

4https://github.com/google/trax
5https://github.com/facebookresearch/

fairseq
6https://github.com/THUNLP-MT/THUMT

own models is also important from the perspective
of privacy. Finally, for parameter-efficient fine-
tuning, AdapterHub (Pfeiffer et al., 2020) builds on
top of Transformers and enables users to leverage
existing or custom-trained adapters.

All of the above toolkits and libraries are invalu-
able, but none appear to be a complete solution
for sequence-to-sequence pre-training, parameter
efficient fine-tuning and model demoing and in-
spection, a gap which YANMTT aims to fill.

3 The Toolkit: YANMTT

YANMTT, Yet Another Neural Machine Trans-
lation Toolkit, relies on the Transformers library
and uses PyTorch. We use only the mBART im-
plementation (for now) from Transformers and
write several wrapper scripts enabling multilin-
gual sequence-to-sequence pre-training, parame-
ter efficient fine-tuning, decoding and attention
and representation extraction. To enable users to
quickly demonstrate and visually inspect trained
models, we provide a user interface. We also mod-
ify the mBART modelling code to provide several
advanced features. We provide the modified code
along with our toolkit. We also provide example
data and usage instructions in the form of exam-
ple scripts. We encourage the reader to look at
our toolkit7 and watch the demo video8. Figure 1
contains an overview of YANMTT architecture.

7https://github.com/prajdabre/yanmtt
8https://youtu.be/ee38gda5qnc
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Figure 2: Screenshot obtained after fine-tuning mBART-50 for English-Telugu NMT where the model training was
performed over 1 x A40 GPU over ∼1 day and 13 hours.

3.1 Training

YANMTT enables multilingual training of
sequence-to-sequence models; while also support-
ing full or mixed-precision training on a single
GPU or on multiple GPUs9 across machines.
Tokenization: While mBART uses BPE, mT5 uses
sentencepiece for subword segmentation. YAN-
MTT allows users to train and use both types of
subword segmenters.
Pre-training: We currently support mBART style
text-infilling and sentence shuffling, as well as mT5
and MASS style masked span-prediction for pre-
training from scratch. Note that sentence shuffling
is optional since it is useful only when the pre-
training data is in the form of documents. We also
support continued pre-training of existing mBART-
25, mBART-50, BART and IndicBART (Dabre
et al., 2022) models10. This should enable users to
adapt pre-trained models using monolingual cor-
pora on a downstream NLG task such as NMT.
Fine-tuning: Users may train their own sequence-
to-sequence models from scratch or fine-tune pre-
trained models. Fine-tuning can be done on the
user’s own models or official pre-trained mod-
els like mBART-25, mBART-50, BART and In-
dicBART. Users have fine-grained control over
what parts of the pre-trained models they want to
use for partial initialization. This way, the fine-
tuned11 models can be shrunk or grown as required.

9We directly use the distributed data-parallel functionality
of PyTorch instead of the Accelerate library so users better
can understand and control how distribution is done.

10Any models based on the BART or mBART architecture
will work. We plan to support the adaptation of other sequence-
to-sequence models soon.

11not just for fine-tuning on a downstream task, but also
when doing continued pre-training. Additionally, this func-
tionality may be used if one wishes to expand the model’s
capacity step by step.

Logging: Figure 2 shows the logs generated dur-
ing model training depicting model loss, evaluation
set scores, timings and memory consumption. Al-
though we do not show it here, this, along with gra-
dient information, is also logged on TensorBoard.

3.2 Parameter Efficiency

Using YANMTT, parameter efficiency can be
achieved when fine-tuning or training from scratch.
Lightweight Fine-Tuning: We enable fine-tuning
of adapters and prompts to enable users to fine-tune
minimal number of parameters. We implement var-
ious adapters mentioned in He et al. (2022) such
as Houlsby adapter, FFN-only adapter, parallel
adapter, hypercomplex adapter (Le et al., 2021) and
IA3 adapter (Liu et al., 2022). Regarding prompts,
currently prefix tuning is supported. It is also possi-
ble to mix-and-match adapters and prompts. Users
may also specify a list of parameters which they
want to fine-tune for more control over the process.
Parameter Sharing: When training models
from scratch, we enable recurrently stacked lay-
ers (Dabre and Fujita, 2019) involving tying param-
eters of layers and the resultant models, which we
call ALBERT, tend to be 50-70% smaller.

3.3 Decoding

Users can decode the models, extract encoder or
decoder representations, generate heatmaps of at-
tentions and score translation pairs.

3.4 User Interface (UI)

To enable users to locally test or demo their models
and inspect them, we provide a web-based UI based
on Flask. This interface can be hosted online by
using software such as ngrok12 or an Apache server.

12https://ngrok.com
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Figure 3: YANMTT User Interface for inspecting the IndicBART model by masking random words from the input
sentence in the Hindi language. IndicBART was trained using YANMTT.

Figure 4: Visualization of cross-attention, where masked words are predicted for a sentence in Hindi.

Model Decoding: Using the GUI, the user may
load models and decode sentences. Models sup-
ported are those trained locally or official based
on the mBART code. If the model to be used is a
denoising model, then users may use decoding for
MASK prediction as in Figure 3. If the model to
be used was fine-tuned for a downstream task such
as NMT, then it can be used for generating relevant
outputs for that task input.
Attention Visualization: To enable users to in-
spect their model attentions, we use the bertviz13

library to visualize multi-head, self- or cross-
attention across all layers in the encoder and de-
coder. As shown in Figure 4, users can select the
type of attention, the desired layer and attention
head and get more detailed information.
Representation Visualization: We also integrate
TensorBoard embedding projector visualization

13https://github.com/jessevig/bertviz

into our user interface to visualize the model layer
representations14 as shown in Figure 5. This can
be especially useful for understanding model repre-
sentations in multilingual settings.

3.5 Advanced Features

In addition to the core features above, we also en-
able YANMTT users to perform the following:
Model Compression: We enable users to com-
press models by distillation (Kim and Rush, 2016)
of models using either or all of 3 different ways:
teacher-student cross-entropy minimization , min-
imizing the mean squared difference between the
hidden layer representations of the teachers and
students and minimizing the cross entropy between
the self/cross-attentions of the teacher and students.

14For now, we support the encoder’s final layer’s average
representation. Additional flexibility in terms of layer choice
as well as decoder representations will be provided in future
versions of YANMTT.

260

https://github.com/jessevig/bertviz


Figure 5: Sentence representations visualization via TensorBoard integrated into the YANMTT user interface.

Mixtures-of-Experts: Mixtures-of-expert (MoE)
layers can replace standard feed-forward layers and
enable the user to train large models with a billion
parameters or more. Model parallel training is
currently unavailable, so the largest trainable model
is limited by computing resources available15. A
similar approach was used by Facebook to train the
largest known multilingual NMT model supporting
over 200 language pairs (Costa-jussà et al., 2022).
Document and Multi-source Translation: Pre-
trained models often use document-level data,
and we considered it prudent to support explicit
document-level translation approaches. Since doc-
ument context is often treated as an additional input,
our document translation implementation can be
used for multi-source MT (Dabre et al., 2017).
Simultaneous Translation: In a real-time setting,
simultaneous MT can be useful. To enable users
to test their models in simultaneous MT settings,
we implement ‘wait-k’ training and decoding (Ma
et al., 2019) which can also be combined with doc-
ument and multi-source MT. Apart from this, there
are several other features which are listed on the
YANMTT’s GitHub repository.

3.6 YANMTT Adoption & Future Plans

YANMTT has 93 stars on GitHub, indicating
that it is being noticed and used. In particu-
lar, IndicBART16, its variants and fine-tuned ver-
sion (Dabre et al., 2022) were developed with YAN-
MTT and have seen around 8500 downloads thus

15With A100 80 GB GPUs, it is possible to train models
with 10-20 billion parameters given reasonable batch size.

16https://huggingface.co/ai4bharat/
IndicBART

far from HuggingFace hub. We have the following
future plans for our toolkit:
1. Supporting additional pre-training approaches
like PEGASUS and CSP.
2. Low-precision model parallel training for better
scaling of large models.
3. Comprehensive support for all types of adapters
and prompt tuning.
4. An improved user interface to enable better
visualization of model internals.
5. Integration of existing post-hoc model explain-
ability techniques.

4 Conclusion

We have presented our open-source toolkit called
"Yet Another Neural Machine Translation Toolkit",
also known as YANMTT. YANMTT allows users
to pre-train and fine-tune their own multilingual
sequence to sequence models. Our toolkit can be
used for training models at a reasonable scale, as
well as to perform parameter efficient fine-tuning
via adapters and prompts. We provide a convenient
user interface for model demonstration and inspec-
tion, as well as the ability to visualize attention
and model representations. We also implemented
functionalities for compressing large models via
selective parameter transfer and knowledge dis-
tillation approaches. Additionally, we have pro-
vided basic functionalities for simultaneous and
document/multi-source NMT. YANMTT appears
to be modestly adopted by researchers, and we plan
to further specialize it for better at-scale training
and efficient fine-tuning.
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5 Limitations

Although YANMTT can be used to train models
at scale, the lack of model-parallel training limits
the size of models to those that can fit on single
GPUs. YANMTT tokenizes sentences on the fly
and does not pre-process them, so the overall train-
ing speed is slightly slower than that of Fairseq or
Tensor2tensor; however, we plan to fix this soon.
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