
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 282–290

July 10-12, 2023 ©2023 Association for Computational Linguistics

Hierarchy Builder:
Organizing Textual Spans into a Hierarchy to Facilitate Navigation

Itay Yair† and Hillel Taub-Tabib‡ and Yoav Goldberg†,‡
†Computer Science Department, Bar Ilan University

‡Allen Institute for Artificial Intelligence

Abstract

Information extraction systems often produce
hundreds to thousands of strings on a specific
topic. We present a method that facilitates
better consumption of these strings, in an ex-
ploratory setting in which a user wants to both
get a broad overview of what’s available, and a
chance to dive deeper on some aspects. The sys-
tem works by grouping similar items together,
and arranging the remaining items into a hierar-
chical navigable DAG structure. We apply the
method to medical information extraction.

1 Introduction

We are dealing with the question of organising
and displaying a large collection of related textual
strings. The need arises, for example, in informa-
tion extraction or text mining applications, that ex-
tract strings from text. Consider a system that scans
the scientific literature and extracts possible causes
for a given medical condition. Such a system may
extract thousands of different strings, some of them
relate to each other in various ways,1 and some are
distinct. Users consume the list in an exploratory
mode (Agarwal and Sahu, 2021)(White and Roth,
2008), in which they do not have a clear picture of
what they are looking for, and would like to get an
overview of the different facets in the results, as
well as to dig deeper into some of them.

For example, distinct strings extracted as causes
for sciatica include “herniated disc”, “herniated
disk”, “lumbar disk herniation” , “posterior in-
terverbal disc herniation” and “endometriosis”,
among hundreds of others. The user of this system
likes to go over the returned list to learn about pos-
sible causes, but going over hundreds to thousands
of results is mentally taxing, and we would like to
reduce this effort. In the current case, we would
certainly like to treat the first two items (herniated
disc and herniated disk) as equivalent and show

1Figure 1 lists the kinds of relations between strings.

them as one unified entry. But we would also like
to induce an additional hierarchy. For example, it
could be useful to separate all the herniated disc
related items (or even all the disc related items) in
one branch, and the endometriosis case in another.
This will allow the user to more efficiently get a
high level overview of the high-level represented
topics (disc herniation and endometriosis) and to
navigate the results and focus on the cases that in-
terest them in the context of the query (for example,
they may feel they know a lot about disc-related
causes, and choose to ignore this branch).

An additional complication is that the hierarchy
we are considering is often not a tree: a single
item may have two different parents, resulting in a
direct acyclic graph (DAG). For example, arguably
a condition like leg pain should be indexed both
under leg (together with other leg related items)
and under pain (together with pain related items).
The hierarchy structure is contextual, and depends
on the data: if there are not many other leg related
items, it may not be beneficial to introduce this
category into the hierarchy.

Additionally, note that some items in the hierar-
chy may not directly correspond to input strings:
first, for the “leg pain” example above, if the in-
put list does not include stand-alone leg or pain
items, we may still introduce them in our hierarchy.
We may also introduce additional abstraction, for
example we may want to group “heart disease”,
“ischemia”, “hypotension”, and “bleeding” under
“cardiovascular disease”.

In this work we introduce a system that takes
such a flat list of related strings, and arranges them
in a navigable DAG structure, allowing users to get
a high level overview as well as to navigate from
general topics or concepts to more specific content
by drilling down through the graph. Ideally, the
graph would allow the user to:
(1) get a comprehensive overview of the the various
facets reflected in the results;

282



Figure 1: Kinds of possible relations between input strings

(2) quickly get an overview of main aspects in the
results;
(3) efficiently navigate the results, finding items in
the sub-graph in which they expect to find them.

At a high level, the system works by finding lex-
ically equivalent terms, arranging them in a DAG
structure reflecting the specificity relation between
terms, further merging equivalent nodes based on
a neural similarity model, add additional potential
intermediary hierarchy nodes based on taxonomic
information and other heuristics, and then pruning
it back into a smaller sub-DAG that contains all the
initial nodes (input strings) but only a subset of the
additional hierarchy nodes. Finally, we select the
top-k “entry points” to this graph: high level nodes
that span as many of the input nodes as possible.
This process is described in section §3. While the
DAG extended with potential hierarchies is very
permissive and contains a lot of potentially redun-
dant information, the DAG pruning stage aims to
ensure the final graph is as compact and informa-
tive as possible.

We focus on causes-for-medical-conditions
queries, and provide a demo in which a user can
select a medical condition, and browse its causes
in a compact DAG structure.

To evaluate the resulting DAGs, we perform au-
tomatic and manual evaluation. The automatic eval-
uation is based on measuring various graph metrics.
The human evaluation is performed by human do-
main experts. Our results show that the DAG struc-
ture is significantly more informative and effective

than a frequency-ranked flat list of results.

2 Requirements

As discussed in the introduction, our input is a list
of strings that reflect answers to a particular ques-
tion, as extracted for a large text collection (we
focus in this paper on the biomedical domain, and
more specifically in causes for medical conditions).
This list can be the output of an Open-IE system
(Fader et al., 2011; Stanovsky et al., 2015; Kolluru
et al., 2020), the results of running extractive QA
(Rajpurkar et al., 2016) with the same question over
many paragraphs, or extracted using an extractive
query in a system like SPIKE (Shlain et al., 2020;
Taub Tabib et al., 2020; Ravfogel et al., 2021). The
lists we consider typically contain from hundreds
to thousands of unique items. We identified a set of
relations that can hold between strings in our inputs,
which are summarized in Table 1. We would like
to arrange these items in a hierarchical structure
to facilitate exploration of the result list by a user,
and allow them to effectively consume the results.
Concretely, the user needs to:
a. not see redundant information.

b. be able to get a high-level overview of the vari-
ous answers that reflected from the results.

c. be able to get a quick access to the main an-
swers.

d. be able to dig-in into a specific phenomenon or
concept that is of interest to them.

283



e. be able to locate concepts they suspect that exist.
This suggests a hierarchy that respects the fol-

lowing conditions:
Paraphrased spans should be combined into a sin-
gle group, and close-meaning spans should be com-
bined into the same group; Elaboration relations
should be expressed hierarchically; Co-mention
spans should be both descendants of the shared con-
cept; Taxonomic relations should (in some cases)
be descendants of the taxonomical parent.

Additionally, we would like each node in the
hierarchy to have relatively few children (to reduce
the need to scan irrelevant items), yet keep the hier-
archy relatively shallow (to save expansion clicks
if possible). The hierarchical structure should also
be informative: we should be able to guess from a
given node which kinds of items to expect to find
under it, and which kinds of items not to expect to
find under it. This means a single item should be
lockable in different ways, in case it can be cate-
gorized under different keys (we would sometimes
like “brain tumor” to be listed under brain and
sometimes under tumors).2

3 Method

Expanding the initial list. We assume that the
strings in the initial list are maximal, meaning that
the string captures the extracted noun-phrase in-
cluding all of its possible modifiers. We further
expand the list by considering also potential sub-
strings of each maximal string, reflecting different
granularities. For example, from the string “severe
pain in the lower right leg” we would extract “pain”,
“severe pain” , “severe pain in the leg”, “severe pain
in the lower right leg”, among others.3 We then con-
sider the union of the initial set of input strings and
the set of additional sub-strings. Different users
would be interested in different granularities de-
pending on their information need. We rely on
the DAG-pruning stage to properly organize these
strings and prune away non-informative ones in the
context of the entire set.

Initial grouping into equivalence sets. The in-
put of this stage is a set of strings (the union of the
input set and the extended set), and the output is a

2Arranging information as graphs to facilitate navigation
and exploration is, of course, not a novel concept. A notable
examples is entailment graphs (Kotlerman et al., 2015; Adler
et al., 2012).

3This is done using a rules-based algorithm that operated
on the parse tree, which extracted all the distinct modification
spans derived from the head token.

list of sets, such that the sets are distinct, and their
union covers the initial set. For example, after this
stage, the items “herniated disk”, “herniated disc”,
“disc herniation”, “herniation of the disc” will be
in the same equivalence set.

The grouping in this stage is inspired by (Gash-
teovski et al., 2017) and is based on considering
each string as a bag of lemmas, discarding stop
words, modal words, and quantity words, and con-
sidering items as equivalent if their bags are equiv-
alent. The lemma matching is relaxed, and allows,
beyond exact string match, also matches with small
edit distance and matches based on UMLS (Boden-
reider, 2004) and WordNet (Miller, 1992) spelling
variants and synonyms.

Initial DAG construction. We now take the list
of sets from the previous stage, and arrange them
into a DAG, where each set is a DAG node. We
add a directed edge between two nodes A and B if
B is more specific than A, and no other node C is
more specific than A and less specific than B.

The specificity relation at this stage is deter-
mined based on the bags of lemmas that were used
to create the equivalence sets: a set B is more spe-
cific than a set A if A and B are not equivalent and
the bag of B contains the bag of A.

Adding heads as nodes For all spans, we take
their head-word (either a single adjective or a single
noun) and add them as roots of the DAG. We then
add an additional root node above them, so that the
DAG has a single root. This handles the co-mention
relation.

Merging semantically equivalent graph nodes.
We now take the DAG and merge equivalent nodes,
as determined by a trained statistical model (we use
SAP-BERT (Liu et al., 2020))4. For example, this
stage will merge “administration of streptozotocin”
and “streptozotocin injection”. When merging two
graph nodes, we handle the corresponding edges in
the expected way (the children of the two individual
nodes become children of the merged node, and the
parents of the individual nodes become the parents
of the merged node).5

4We chose SAP-BERT for its entity-linking specialization,
and since it outperformed other models we tried, such as Sci-
Bert(Beltagy et al., 2019), in detecting semantic similarity for
our specific case.

5We perform this stage after the DAG construction and not
prior to it, as it makes the specificity relation between nodes
significantly harder to define. In the current order, we first
define specificity based on lexical containment, and then add
further merge the groups.

284



For a pair of graph nodes A and B, we encode
each string in A and in B into a vector using SAP-
BERT, and represent each node as the average vec-
tor of the strings within it. We go over the nodes in
the DAG in DFS order starting from the root nodes,
and for each node consider all of its children for po-
tential merging among them. We merge two nodes
if the cosine similarity score between their vectors
passes the threshold t1 = 0.9 and their merging
does not create a cycle. We then do another pass
and merge nodes to direct child nodes if their sim-
ilarity score is above t2 = 0.95, again avoiding
creating circles.

After this stage, we attempt to further merge
nodes based on the UMLS ontology (Bodenreider,
2004). Two nodes A and B are considered UMLS-
equivalent, if there is at least one string in node A
that is listed in UMLS as a synonym of at least one
string in node B. Such cases are merged.6

Adding taxonomic nodes. So far the relation-
ships between nodes in the DAG were solely based
on lexical relations. In order to enrich the graph, we
introduce additional nodes based on taxonomical
relations, which are not reliant on lexical informa-
tion. For instance, “heart disease”, “ischemia”, “hy-
potension”, and “bleeding” are under the broader
term “cardiovascular disease”. We add many nodes
here, relying on many of them to be pruned in the
next stage.

We map each node to the UMLS hierarchy, and
look for UMLS concepts that govern at least two
DAG nodes (“descendent DAG nodes”). These
are potential abstractions over graph nodes. For
each such UMLS concepts that is already part of
the DAG, it is connected by an edge to all its de-
scendant DAG nodes that do not already have a
path to them, if adding such an edge does not cre-
ate a cycle. For UMLS concepts that are not al-
ready in the DAG, they are added as new nodes
governing the descendant graph nodes. UMLS con-
cepts have multiple synonyms. When adding them
as nodes, we choose the synonym with the high-
est SAP-BERT cosine similarity to the descendent
DAG nodes this concept governs.

DAG Pruning. The DAG at this stage is quite
large and messy, containing both nodes contain-
ing input strings, as well as additional hierarchy
nodes based on linguistically motivated substrings
of the input strings, and on taxonomic relations.

6If this merging creates a cycle, this cycle is removed.

We prune it to create a smaller graph which is more
amenable to navigation. The smaller DAG should
contain all the nodes corresponding to input strings,
and an effective set of additional hierarchy nodes.
Some of the hierarchy nodes are more important
than others, as they provide a better differential
diagnosis among the answers. Our goal is to high-
light these and filter out the less important ones.
Operatively, we would like for each node in the
graph to have the minimal number of children, such
that all the input strings that were reachable from
it, remain reachable from it. This focuses on hi-
erarchy nodes that are shared among many input
concepts. We first prune graph edges according
to this criteria. This process result in nodes that
have a single child. Such nodes are removed, and
their children are attached to their parent.7 Select-
ing the minimal number of children according to
this criteria is NP-hard. As an alternative, we use
an approximation algorithm called the greedy set
cover algorithm (Johnson, 1973), which works by
selecting in each step the node with the highest
number of non-covered answers, covering them,
and proceeding. This helps in choosing the most
important concepts and with the highest differential
diagnosis.

Entry-point selection. Finally, we seek k nodes
that will serve as the “entry nodes” to the graph.
These should be k nodes that fulfill the following
criteria:
a. allow reaching as many input strings as possible.
b. the semantic affinity between a node and the
input string reachable by it, is high.

The users will initially see these nodes as well as
an additional “other” node, from which all the other
input strings can be reached. The entry node labels
provide an overview of the k main concepts in the
list, and allow the user to both get an overview of
the result as well as to drill down into parts that
interest them. Criteria (b) is important to ensure
that the user not only can reach the input string by
navigating from an entry point, but also that it will
expect to find this input string there.

This selection is done by a heuristic algorithm
which we adapted from the Greedy+ DAG-node-
selection algorithm in (Zhu et al., 2020). It first
assigns each node C with a score that combines the

7Selecting the smallest group of concepts at each hierarchy
level is important for user navigation, who quickly become
overwhelmed by too many nodes, making it difficult to orient
themselves within the DAG.

285



Figure 2: Input-Output Example. See section §4.

number of the input nodes reachable from it, and
the semantic affinity (based on SAP-BERT cosine
similarity) of C to each of these reachable nodes. It
then iteratively adds the highest scoring candidate
C to the set of entry points, and adjusts the scores
of each remaining node N by subtracting from the
score of N the affinity scores between C and the
input nodes reachable from N. We do this until we
reach k entry points.

Visualization. We are now finally ready to show
the DAG to the user. For nodes that correspond to
multiple (semantic equivalent but lexically differ-
ent) input strings, we choose one of them as the
representative for display purposes.

4 Input-output Example

We demonstrate with a minified example. Given
the set of spans in Figure (2a), representing causes
of chest pain, Hierarchy Builder expands the set by
adding the spans "rib fracture" (this is a substring
of two existing spans) and "respiratory diseases" (a
new taxonomic node). Based on the expanded set
of spans in Figure (2b), Hierarchy builder identifies
synonymous spans and merges them into the con-
cepts. In Figure (2c) we see these concepts, where
each concept includes aliases in parenthesis where
applicable. Hierarchy Builder then places the en-
tries in a DAG based on a hierarchy of specificity,
as depicted in Figure (2d).

5 Experiments and Evaluation

Scope We focus on the medical domain and eval-
uate our system on etiologies (causes) of two medi-
cal symptoms (“jaundice” and “chest pain”). These
symptoms were chosen because their are common
and each contain many different etiologies men-
tioned in the literature.

The input lists for the system were the result of
running a set of 33 syntactic patterns over PubMed
abstracts, looking for patterns such as “COND due
to ___” or “patients with COND after ___”
where COND is either jaundice or chest pain. The
results were extracted using the SPIKE system
(Shlain et al., 2020; Taub Tabib et al., 2020) and
each matched head-word was expanded to the en-
tire syntactic subgraph below it. This resulted in
3389 overall extracted strings and 2623 unique
strings for jaundice and 2464 overall and 2037
unique for chest pain. After merging strings into
synonym sets as described in §3, we remain with
2227 concepts for jaundice and 1783 for chest pain.

For each of the symptoms there are established
and widely accepted lists of common etiologies,
which we rely on in our evaluation.8 We take 38
established etiologies for jaundice and 33 for chest

8We take the established etiologies for jaun-
dice from https://www.ncbi.nlm.nih.gov/
books/NBK544252/ and for chest pain from
https://www.webmd.com/pain-management/guide/
whats-causing-my-chest-pain.

286

https://www.ncbi.nlm.nih.gov/books/NBK544252/
https://www.ncbi.nlm.nih.gov/books/NBK544252/
https://www.webmd.com/pain-management/guide/whats-causing-my-chest-pain
https://www.webmd.com/pain-management/guide/whats-causing-my-chest-pain


pain, and check their accessability in the flat list of
extracted symptoms, as well as in the hierarchical
DAG we create.

Coverage and Entry-point Selection For jaun-
dice, our input list contains 28 out of the 38 known
etiologies, and for chest pain 26/33. With k = 50,
25 of 28 concepts are reachable from an entry
point for jaundice and 21/26 for chest pain. With
k = 100 the numbers are 28/28 (jaundice) and
24/26 (chest pain).

Assessing the contribution of the different com-
ponents The different components in our algo-
rithm contribute by adding nodes, combining nodes,
adding edges, and removing edges. Table 1 de-
scribes the kind of contribution of each component
and quantifies its impact, for each of the two tested
conditions.

We now look at the case where we select 50
entry-point nodes, and focus on the effect on the
top-level nodes. We see that for Chest-pain, a total
of 20 of the 50 selected entry-points were not in
the original input, but were added by the various
components (12 from expanding the initial list, 5
from adding head words, and 3 from taxonomic
words). Similarly, for Jaundice, these components
added a total of 29 root nodes (out of the selected
50) that were not in the original input (17 from
expanding initial list, 5 from head words and 6
from taxonomic nodes).

The “Expanding the initial list” component plays
a significant role in shaping the DAG structure. In
Chest Pain, 161 out of 224 internal nodes originate
from the expanded list (146 from Expanding the ini-
tial list and 15 from co-mention). In Jaundice, 347
out of 423 internal nodes stem from the expanded
list (333 from Expanding the initial list and 14 from
co-mention). This highlights the substantial impact
of this component on the DAG’s structure.

The number of merges performed indicates the
usefulness of the employed merging methods.

Furthermore, the set cover pruning algorithm ef-
fectively reduces the number of edges in the DAG.

Qualitative Measures For jaundice, our final
DAG contains 2620 nodes overall and has a maxi-
mum depth of 11. With k = 50 The average num-
ber of leaves per entry point is 22.68 (min 0, max
600), and the average depth is 2.86 (min 0, max
9). Most importantly, each internal node has an
average of 9.12 children (min 1, max 56, variance
34.91), making them highly browsable.

For chest pain, the trends are overall similar: our
final DAG contains 2124 nodes overall and has a
maximum depth of 9. With k = 50 The average
number of leaves per entry point is 14.14 (min 1,
max 175), and the average depth is 2.8 (min 0,
max 7). Each internal node has an average of 4.94
children (min 1, max 53, variance 27.53).

Human evaluation. Our main evaluation centers
around the effort for an expert9 to locate the known
etiologies in the resulting DAG, compared to a flat
list sorted by frequency. For each of the etiologies,
we ask how many entries need to be considered
before finding the etiologies. For the flat list, this
means how many items are read when scanning the
list in order before reaching the etiology. For the
DAG, we count the number of clicks (expansions
of a node) starting from k = 50 entry points (a
quantity that aligns with a reasonable threshold of
entry nodes perceivable by a user) , while summing
also the number of items before the expanded node
in each level. Note that since we look for common
etiologies rather than rare ones, we would assume
a frequency-ranked list based on literature men-
tions would compare favorably in these measures.
Nonetheless, we see a clear benefit of the DAG. We
compare to conditions: an ideal condition where
the user knows exactly which nodes to expand (blue
in the graph), and a realistic scenario, in which the
user searches for the etiologies by expanding nodes
(gray in the graph).

We also perform another evaluation in which we
ask the experts to rank each path to an etiology
based on its quality, given the question “to what
extent is this a logical path to follow in order to
find the etiology”, on a scale of 1 (very bad) to 5
(very good).

Results Figure 3 shows the main results for the
two conditions. Despite the frequency-based rank-
ing, many of the etiologies appear relatively low in
the flat list, making them very hard to come by in
this condition (orange). On the other hand, when
considering the DAG, the vast majority of items a
are significantly easier to locate, requiring scanning
significantly fewer items. Only 3 items for jaundice
and 2 for chest pain were significantly harder to
locate in the DAG than in the flat list. In terms of
the quality of the DAG paths associated with each

9We use two experts, each evaluating a different condition.
The expert evaluating jaundice is an expert MD specializing
in children’s medicine. The expert evaluating chest pain is a
PhD in biology with 38 years of biomedical research.

287



Component Contribution Chest-pain Jaundice
Expanding the initial list (for full DAG) Add nodes 504 893
Expanding the initial list (for DAG with
50 entry nodes)

Add nodes 158
(12 top level)

350
(17 top level)

Adding heads as nodes (Full DAG) Add nodes 457 379
Adding heads as nodes (50 entry nodes) Add nodes 20 (5 top level) 19 (6 top level)
Merging semantically equivalent nodes Merge nodes 93 (out of 2556) 266 (out of

3330)
UMLS merging of synonym nodes Merge nodes 62 (out of 2504) 99 (out of 3167)
UMLS taxonomic nodes (full DAG) Add nodes 113 169
UMLS taxonomic nodes (50 entry nodes) Add nodes 3 6
UMLS taxonomic edges Add edges 140 (5 top level) 153 (3 top level)
DAG Pruning Remove edges 2363 3209

Table 1: Quantifying the contribution of the different components.

Figure 3: Effort to reach a set of common etiology
items using our created DAG vs. a frequency ranked list.
X axes coordinates correspond to different etiologies
sorted by their frequency in the input list, and Y axes
corresponds to effort. Orange: frequency-ranked flat
list. Blue: DAG + oracle locating of items. Gray: DAG
+ human locating of items.

etiology, the jaundice annotator ranked 23 out of
25 as 5, 1 as a 2, and 1 as a 1. For chest pain, the
numbers are 19 out of 21 ranked as 5, 1 as 2, and
1 as 1. Overall, our hierarchy building algorithm
works well for the vast majority of the cases, and
offers significant benefits over the flat list.

6 Conclusions

We presented an automatic method to organize
large lists of extracted terms (here, of medical eti-
ologies) into a navigable, DAG-based hierarchy,
where the initial layer provides a good overview

of the different facets in the data, and each inter-
nal node is has relatively few items. The code
together with a video and an online demonstration
are available at https://github.com/itayair/
hierarchybuilder.

7 Limitations

While our method is aimed at organizing any flat-
list of extractions, we evaluated it here only on
the medical domain, only on a single kind of in-
formation need (etiologies), and only for common
conditions (jaundice and chest pain). More exten-
sive evaluation over additional conditions is needed
in order to establish general-purpose utility. How-
ever, we do find the system useful for navigating in
automatically-extracted etiology lists, and encour-
age the readers to experiment with the system also
on other conditions, to assess its utility.

There are also some candidates for improving
the method also in the biomedical domain, which
are not currently handled: (a) abstraction over sub-
strings. e.g., for the spans “administration of peni-
cillin”, “administration of aspirin”, “administra-
tion of augmentin”, it could be useful to introduce
an shared parent level of “administration of antibi-
otic/drug”. Our system can currently identify peni-
cillin, augmentin, aspirin as an antibiiotic/drug,
but cannot handle abstraction over sub-strings. (b)
Linking to UMLS currently relies on exact lexical
matches, and can be improved.

8 Ethical Considerations

We present a system for organizing large result lists
into a browsable hierarchy. In general, consuming
a hierarchy is more effective than consuming a very

288

https://github.com/itayair/hierarchybuilder
https://github.com/itayair/hierarchybuilder


long list. However, hierarchies can hide items, es-
pecially if the items are misplaced in an unexpected
branch—which our system sometimes does (albeit
rarely). In situations where consuming the entire
information is crucial and the cost of missing an
item is prohibitive or dangerous, a flat list would
be the safer choice.

Acknowledgements This project has received
funding from the European Research Council
(ERC) under the European Union’s Horizon 2020
research and innovation programme, grant agree-
ment No. 802774 (iEXTRACT).

References
Meni Adler, Jonathan Berant, and Ido Dagan. 2012.

Entailment-based text exploration with application
to the health-care domain. In Proceedings of the
ACL 2012 System Demonstrations, pages 79–84, Jeju
Island, Korea. Association for Computational Lin-
guistics.

Manoj K Agarwal and Tezan Sahu. 2021. Lookup or ex-
ploratory: What is your search intent? arXiv preprint
arXiv:2110.04640.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic Acids Research, pages D267–D270.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 1535–1545, Edinburgh, Scotland, UK. Associ-
ation for Computational Linguistics.

Kiril Gashteovski, Rainer Gemulla, and Luciano del
Corro. 2017. MinIE: Minimizing facts in open in-
formation extraction. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2630–2640, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

David S Johnson. 1973. Approximation algorithms for
combinatorial problems. In Proceedings of the fifth
annual ACM symposium on Theory of computing,
pages 38–49.

Keshav Kolluru, Vaibhav Adlakha, Samarth Aggarwal,
Mausam, and Soumen Chakrabarti. 2020. OpenIE6:

Iterative Grid Labeling and Coordination Analysis for
Open Information Extraction. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3748–3761,
Online. Association for Computational Linguistics.

Lili Kotlerman, Ido Dagan, Bernardo Magnini, and
Luisa Bentivogli. 2015. Textual entailment graphs.
Natural Language Engineering, 21(5):699–724.

Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco
Basaldella, and Nigel Collier. 2020. Self-alignment
pretraining for biomedical entity representations.
arXiv preprint arXiv:2010.11784.

George A. Miller. 1992. WordNet: A lexical database
for English. In Speech and Natural Language: Pro-
ceedings of a Workshop Held at Harriman, New York,
February 23-26, 1992.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Shauli Ravfogel, Hillel Taub-Tabib, and Yoav Goldberg.
2021. Neural extractive search. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing: System
Demonstrations, pages 210–217, Online. Association
for Computational Linguistics.

Micah Shlain, Hillel Taub-Tabib, Shoval Sadde, and
Yoav Goldberg. 2020. Syntactic search by example.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 17–23, Online. Association
for Computational Linguistics.

Gabriel Stanovsky, Ido Dagan, and Mausam. 2015.
Open IE as an intermediate structure for semantic
tasks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguis-
tics and the 7th International Joint Conference on
Natural Language Processing (Volume 2: Short Pa-
pers), pages 303–308, Beijing, China. Association
for Computational Linguistics.

Hillel Taub Tabib, Micah Shlain, Shoval Sadde, Dan
Lahav, Matan Eyal, Yaara Cohen, and Yoav Gold-
berg. 2020. Interactive extractive search over biomed-
ical corpora. In Proceedings of the 19th SIG-
BioMed Workshop on Biomedical Language Process-
ing, pages 28–37, Online. Association for Computa-
tional Linguistics.

Ryen W White and Resa A Roth. 2008. Evaluation of
exploratory search systems. In Exploratory Search:
Beyond the Query—Response Paradigm, pages 61–
69. Springer.

289

https://aclanthology.org/P12-3014
https://aclanthology.org/P12-3014
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://aclanthology.org/D11-1142
https://aclanthology.org/D11-1142
https://doi.org/10.18653/v1/D17-1278
https://doi.org/10.18653/v1/D17-1278
https://doi.org/10.18653/v1/2020.emnlp-main.306
https://doi.org/10.18653/v1/2020.emnlp-main.306
https://doi.org/10.18653/v1/2020.emnlp-main.306
https://aclanthology.org/H92-1116
https://aclanthology.org/H92-1116
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2021.acl-demo.25
https://doi.org/10.18653/v1/2020.acl-demos.3
https://doi.org/10.3115/v1/P15-2050
https://doi.org/10.3115/v1/P15-2050
https://doi.org/10.18653/v1/2020.bionlp-1.3
https://doi.org/10.18653/v1/2020.bionlp-1.3


Xuliang Zhu, Xin Huang, Byron Choi, and Jianliang Xu.
2020. Top-k graph summarization on hierarchical
dags. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Manage-
ment, pages 1903–1912.

290


