
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 412–420

July 10-12, 2023 ©2023 Association for Computational Linguistics

CB2: Collaborative Natural Language Interaction Research Platform

Jacob Sharf, Mustafa Omer Gul, and Yoav Artzi
Department of Computer Science and Cornell Tech, Cornell University
jacobsharf@gmail.com {momergul, yoav}@cs.cornell.edu

Abstract
CB2 is a multi-agent platform to study col-
laborative natural language interaction in a
grounded task-oriented scenario. It includes
a 3D game environment, a backend server
designed to serve trained models to human
agents, and various tools and processes to
enable scalable studies. We deploy CB2 at
https://cb2.ai as a system demonstration
with a learned instruction following model.

1 Introduction

Collaborative grounded natural language interac-
tions involve multiple agents, either human or ma-
chine, working together to complete tasks while
coordinating using natural language. A key ob-
stacle in studying such scenarios is building the
research interaction platform, a significant design
and engineering undertaking. This requires build-
ing and designing the interaction environment, the
task the agents collaborate on, an interface for both
machine learning models and human agents, and a
process to onboard human agents. Each aspect dra-
matically influences the interaction and language
elicited, and is critical to get right.

We introduce CB2, a platform for the study of
collaborative grounded natural language interac-
tion, and demonstrate its use through the deploy-
ment of a learned collaborative natural language
agent. CB2 largely instantiates the CEREALBAR

scenario (Suhr et al., 2019),1 but is implemented
from scratch to emphasize research accessibility.
CB2 is a customizable, scalable, and complete re-
search platform, including server and clients for
multi-agent human-machine interactions, tools for
real-time data management, and processes to on-
board crowdsourcing workers.

The CB2 scenario poses learning and reasoning
challenges, as well as opportunities. Comprehend-
ing and producing instructions in CB2 requires

1CB2 introduces several optional modifications to CERE-
ALBAR aimed at richer language and tighter collaboration.

addressing the symbol grounding problem (Harnad,
1990), which is studied extensively in the instruc-
tion following (e.g., Chen and Mooney, 2011; Artzi
and Zettlemoyer, 2013; Misra et al., 2017; Fried
et al., 2018) and generation (e.g., Mei et al., 2016;
Wang et al., 2021) literature. However, the collab-
orative scenario remains relatively understudied.
Collaboration is not simply an added complication,
but dramatically alters both interaction and learn-
ing through joint presence and action. It allows the
instructor to ad-hoc modify the tasks they delegate
based on the follower behavior, potentially recov-
ering from system failures. At the same time, this
adaptation creates constant distribution shift, a sig-
nificant generalization challenge. Learning is also
drastically transformed through collaboration. The
constant engagement of other agents (including
humans), the ability to modify delegation strate-
gies, and the shared task-based incentives bring
about within-interaction signals that can be used
for continual learning, reducing the dependency on
annotated data and enabling model adaptation.

We deploy a demonstration of CB2 with a
learned baseline instruction following agent (Sec-
tion 7). Players can connect to CB2 and collab-
orate with our agent or other human agents at
https://cb2.ai/.2 The CB2 platform is avail-
able at https://github.com/lil-lab/cb2. A
video demonstration of CB2 is available at https:
//youtu.be/tALpX_KKmIw.

2 Related Work

CB2 is a re-implementation and extension of CE-
REALBAR, a scalable platform to study natural lan-
guage instruction collaboration (Suhr et al., 2019).
CEREALBAR was used to study instruction fol-
lowing (Suhr et al., 2019; Suhr and Artzi, 2022),
instruction generation (Kojima et al., 2021), and
linguistic change (Effenberger et al., 2021).

2Our deployment has received IRB exemption. All
recorded data is anonymized.

412

https://cb2.ai
https://cb2.ai/
https://github.com/lil-lab/cb2
https://youtu.be/tALpX_KKmIw
https://youtu.be/tALpX_KKmIw

CB2 is related to instruction following environ-
ments, such as SAIL (MacMahon et al., 2006),
R2R (Anderson et al., 2018), RxR (Ku et al., 2020),
and ALFRED (Shridhar et al., 2020). In contrast,
CB2 is focused on embodied multi-agent collabo-
rations, including with human agents.

Symbol grounding (Harnad, 1990), a core chal-
lenge in CB2, was studied extensively in the single-
agent context of instruction following (e.g., Chen
and Mooney, 2011; Artzi and Zettlemoyer, 2013;
Fried et al., 2018; Blukis et al., 2018) and gen-
eration (e.g., Daniele et al., 2016; Kojima et al.,
2021; Wang et al., 2021). The CB2 scenario em-
phasizes multi-agent collaboration, an aspect that
is significantly less studied with natural language
instruction. The Cards corpus (Djalali et al., 2012;
Potts, 2012) presents a related scenario, which has
been used for linguistic analysis. A related prob-
lem is studied by the emergent communication
literature (Lazaridou et al., 2017; Andreas et al.,
2017; Lazaridou and Baroni, 2020), but with less
focus on collaboration with human agents. Nat-
ural language collaboration between agents with
asymmetric capabilities has also been studied with
Minecraft-based scenarios (Narayan-Chen et al.,
2019; Jayannavar et al., 2020; Kiseleva et al., 2022).
CB2 differs from these in allowing both agents to
effect changes on the environment, enabling ad-hoc
modification and delegation of tasks.

3 Interaction Scenario

CB2 largely implements the interaction scenario
introduced by (Suhr et al., 2019) in the CEREAL-
BAR environment with several modifications. The
interaction takes place in a procedurally generated
spatial environment and includes two agents that
collaborate together to complete card collection
tasks and coordinate using natural language. Fig-
ure 1a shows an instance of the environment.

The environment is a procedurally generated 3D
map made of a grid of hexagons (Figure 1a). It
includes lakes, mountains (Figure 1c), paths, open
spaces, and landmarks. A new environment is gen-
erated for each game. CB2 includes improved visu-
als and generation compared to CEREALBAR. For
example, CB2 map generation includes semantic
biases: houses are generated to cluster together and
form towns (Figure 1b) and paths are generated
to connect between meaningful areas in the map,
such as towns and mountains. Landmark instances
vary visually to elicit richer language. For example,

houses are generated with different roof colors and
number of floors (Figure 1b). The environment also
includes randomly placed cards (Figure 1d). Each
card shows 1–3 copies of one of a few possible
shapes in one of a few possible colors.

The interaction involves two agents, a leader
(Figure 1f) and a follower (Figure 1g), that col-
laborate together to complete tasks, but differ in
their observations of the environments and abil-
ities. Both the leader and the follower move in
the environment, by moving between neighboring
hexagons or by turning in place to change orien-
tation. The agents select and deselect cards by
moving over them (Figure 1e).

The goal of the agents is to select valid sets of
cards. A valid set includes three cards, where each
color, shape, and count are unique (Figure 1i). The
agents select sets together. When the currently se-
lected cards form a valid set, they disappear, the
agents together receive one point, three new ran-
domly selected cards appear in random positions,
and the agents receive additional turns. The number
of turns added diminishes with each set comple-
tion. Asymmetries between the two agents make
collaboration critical for success.

The leader sees a complete overhead view of
the environment (Figure 1a), while the follower
only sees what is ahead from a first-person view
(Figure 1h). CB2 introduces two optional observ-
ability features not present in CEREALBAR. First,
the patterns on unselected cards may be hidden
from the follower, instead displaying a quesiton
mark on all cards. Second, CB2 allows to control
how far the follower sees ahead of them with a
fog that is present only in the follower view. The
observability gap means the leader is in charge of
planning how the agents operate. If the follower
acts independently of the leader plans, the interac-
tion will be suboptimal, because follower actions
are likely to conflict with leader actions and the
partial view of the environment does not allow for
optimal planning of goals and movement.

The agents move in turns, with a limited number
of steps per turn. Each movement (forward, left,
right, or backward) consumes a single step. Turns
are time limited to keep the interaction moving and
avoid long wait periods for the inactive agent. The
exact time budget is customizable, but we gener-
ally provide significantly more time for the leader
turns, so they can plan as needed. Turns alternate
between the follower and leader. The follower has

413

(a) An overhead view of a complete environment with the leader user interface.

(b) A cluster of houses. (c) A mountain with ramps. (d) Cards in the environment. (e) The leader selecting a card.

(f) The leader character. (g) The follower character. (h) The follower point of view.

(i) Valid (left) and invalid (right) sets of selected cards.

Figure 1: Images of the game environment and UI. All images are taken from the same environment state.

significantly more steps than the leader per turn.
This means the follower is able to move further in
each turn, and potentially accomplish much more

in each turn. This ability gap makes it critical for
the leader to collaborate with the follower, rather
than ignore the follower and attempt to accomplish

414

tasks on their own, a suboptimal strategy.
The agents coordinate via uni-directional natural

language instruction, the only form of coordina-
tion available. During a leader turn, in addition
to moving in the environment, the leader can send
text instructions to the follower. The follower ex-
ecutes the leader instructions and indicates when
an instruction is complete. The leader can queue
multiple instructions, but the follower only sees
past instructions and the one they are currently exe-
cuting. Because the follower does not see future in-
structions, alignment between the actions recorded
and the instruction displayed is guaranteed. The
leader can also cancel the instruction the follower
is executing alongside all future instructions in the
queue during the follower turn. This is intended
to halt very bad executions, and reduce their over-
all cost, for example by having to correct drastic
departures from the leader plan.

Instruction writing and sending by the leader,
and marking them as complete by the follower do
not consume steps. Leaders may write as many in-
structions as they wish during a single turn, and fol-
lowers are not taxed if the tasks are given in multi-
ple instructions that they need to mark as complete.
Exempting the language channel from the budget of
actions per turn aims to reduce the influence of the
turn systems on the language produced. The com-
bination of collaboration incentives (i.e., because
of the capability differences between the agents)
and the exclusivity of the language channel for
communication makes effective natural language
instruction essential for successful interactions.3

4 Framework Implementation

The CB2 framework has three main components: a
Python server, a Unity client, and a Python head-
less client. The game logic is orchestrated from the
server, allowing to customize the interaction with-
out modifying Unity code. The Python client sim-
plifies the interaction between learning processes
and the system, for example during reinforcement
learning. Figure 2 visualizes the architecture.

CB2’s design emphasizes customizability, as
much as possible, without modifying Unity code, a
skill that is less common among researchers. This
motivates placing the game logic on the Python

3Depending on the environment configuration, it is possi-
ble for one of the agents to operate alone if the cards forming
a set are really close and the other agents does not move.
This can allow 1–2 set completions. A higher score without
collaboration via language coordination is extremely unlikely.

server, a decision that dictates the client-server
communication design. However, modifications
that require updating the client user interface, such
as adding bi-directional communication or translat-
ing the UI to other languages, do require modifying
Unity coding.

4.1 Server

The server architecture is split into modules by
logical function. We use asynchronous coroutines
to reduce latency efficiently and keep the compute
needs small. The platform is parameterized via a
configuration file that is loaded by the server.

Map Generation Map generation is relatively ex-
pensive compared to other processes on the server,
mainly because we may use multiple search itera-
tions for routing paths between landmarks and to
prevent the leader or follower from spawning in
closed-off regions. We mitigate potential lag be-
cause of server load by preparing a pool of maps
in advance, which we refill during idle periods.

Player Lobbies The server supports multiple lob-
bies concurrently. Separate lobbies provide differ-
ent player pairing strategies, such as for human-
human and human-model games. Players wait in
a lobby until they are paired for a game. Each
lobby maintains multiple queues for pairing play-
ers and assigning roles according to their experi-
ence or other information. For example, by default,
we distinguish between expert and novice play-
ers, and prioritize pairing experts as leaders with
novices as followers. Each lobby maintains active
game rooms of different types, such as for stan-
dard games, tutorials, game replays, and custom
scenarios. Each game room contains a game state
machine and websocket connections to the clients.

Data Storage Game events are recorded into an
sqlite3 database, which allows for efficient inter-
action with game data. Each game is represented
as a linear list of events, which can be replayed to
recreate game state at a particular moment in time.

Data Portal The data portal provides an interface
to view game records and statistics. The web data
browser shows game-specific recordings, including
turns, instructions, and individual player actions.
Each game record also includes a link to launch a
game replay using the web client. There is also a
web page with live statistics, such as the mean and
median scores, and a page to download an archive
of all server data. The data portal also provides an

415

Figure 2: The CB2 system architecture.

HTTP API for programmatic data access.

Map and Scenario Editor Maps are generated
procedurally by default. CB2 also provides a map
editor for researchers to place users in controlled
scenarios. A real-time API allows attaching to an
interaction and update the map in response to the
game state, enabling dynamic interactions.

4.2 Web Client

The web client is developed using the Unity game
engine, and is packaged as a WebAssembly binary.
The client receives game states, actions, and in-
structions from the server. We design the client to
be thin, putting as much of the game logic and con-
figuration on the server as possible, so that changes
to game logic can be made purely in Python. We
designed the gameplay user interface (UI) to be
accessible and easy to learn by incorporating feed-
back from players. All UI elements are clustered
together, and have keyboard shortcuts. Figure 1a
shows the leader interface during a leader turn.

Beyond gameplay, the web client provides a tu-
torial to onboard players to the game by stepping
them through a game interaction accompanied by
prompts and tooltips. The tutorial flow is specified
on the server, and can be modified easily. For ex-
ample, rephrasing the tutorial instructions or trans-
lating them to other languages is relatively simple
and can be achieved by updating the specifications
in the server code. The web client also provides
game replay, which is activated by adding URL
parameters when the HTML page is loaded. The
parameters are added automatically to links in the
web data browser (Section 4.1).

def PlayGameAsFollower(game):

game_state = game.initial_state()

The game starts with the leader's turn.

Wait for follower's turn by executing a noop.

game_state = game.step(Action.NoopAction())

while not game.over():

action = get_action(game_state)

game_state = game.step(action)

(_, _, turn_state, _, _, _) = game_state

print(f"Game over. Score: {turn_state.score}")

Figure 3: Example code using the Python API.

4.3 Python Client

The programmatic Python client API supports fast
lightweight interaction with the game. It is de-
signed for machine learning processes that require
interacting with the game environment, such as
reinforcement learning (Sutton and Barto, 1998),
and can be used to deploy agents interacting with
human players or agent-agent interactions. Inter-
action through this API are similar to interactions
with the Unity client, except that recording is op-
tional to reduce overhead. When recorded, they can
be replayed using the Unity client. We also provide
an OpenAI Gym-style wrapper for the Python API.
Figure 3 shows example code.

5 Example Task Formulations

CB2 is well suited to study a variety of tasks, with
emphasis on learning and evaluation in collabora-
tive interactions with human agents, such as:

Instruction Following The task of instruction
following is to map a start state observation from
the follower perspective and a leader instruction
to a sequence of actions. After each action, the
agent receives a new observation. Suhr et al. (2019)

416

studied this problem with CEREALBAR by learn-
ing from recorded human-human interactions, and
Suhr and Artzi (2022) studied it within a contin-
ual learning from human feedback scenario. Both
approaches were evaluated by deploying follower
agents to interact with human leaders.

Instruction Generation The task of instruction
generation is to generate a leader instruction for
the follower to execute given an observation of the
world state from the leader perspective. This re-
quires planning the cards the two agents should
select, divide the tasks, plan trajectories, and ex-
press the intended follower trajectory in a natural
language instruction. Kojima et al. (2021) focused
on the problem of mapping deterministically gen-
erated plans to natural language instructions, and
proposed a continual learning approach for learning
by observing human follower behavior.

Emergent Communication CB2 is particularly
well suited to study emergent communication in
multi-agent systems (Lazaridou and Baroni, 2020).
The goal is to jointly learn separate models for
the leader and follower. The two models generate
actions to move in the world. The leader model
additionally generates instructions, which the fol-
lower model is conditioned on. The learning can
be driven by performance in the game. CB2 easily
allows to integrate human agents into the learning
and evaluation processes, bringing natural human
language into the process. Alternating between
interaction between agent-agent and agent-human
interactions has the potential to address the lan-
guage drift problem (Lee et al., 2019).

6 Crowdsourcing Process

CB2 poses several relatively demanding crowd-
sourcing tasks. Human-human interactions require
pairing two workers for real-time play over ex-
tended time. We design a process to collect CB2
interactions via crowdsourcing, either for games
where both roles are controlled by human play-
ers, or where one of the sides is controlled by a
learned model. The task-focused design of CB2
naturally allows an effective incentive structure by
tying game performance with compensation.

The key to our process is gradual training of
workers. A new worker first starts with a tutorial
and a qualifier quiz that covers the relatively sim-
ple role of the follower. The follower role requires
following the leader instructions by controlling the
character in the game. The worker is then qualified

to the follower role only, and is paired by joining a
dedicated follower-only queue in the lobby. Focus-
ing on the follower role only simplifies the learning
curve, and much of the learning required for the
leader role takes place on the job, as the worker
collaborates with more experienced leaders.

Once the worker displays sufficient level of per-
formance for several games, they are invited to
qualify as a leader by taking a leader tutorial and a
quiz. The second tutorial is both longer and more
complex than the follower tutorial, and includes
both planning and instruction writing. Once the
worker completes the tutorial and passes the quiz,
they are qualified to the leader role, and can then
participate in tasks as both leader or follower.

We design the lobby to pair workers based on
experience. Because the leader role is significantly
more critical to the effectiveness of the interac-
tion and the quality of language data, we priori-
tize workers with better performance for it. We
measure worker performance, keeping track of the
mean game score in the most recent games. If two
leader-qualified players are waiting in the lobby
for matching, we will assign the leader role to the
higher performing of the two.

The pay structure includes a base pay for con-
necting to the game, and an increasing bonus for
each point. Both workers, the leader and follower,
get the base pay and the additional bonus per point,
tightly connecting compensation to their collabora-
tive performance. Because the leader role is more
complex, we provide an additional relative bonus
to the worker in the leader role.

7 CB2 Demonstration Deployment

We demonstrate the functionality and potential of
CB2 via deployment, including collecting a corpus
of human-human interaction that we release, train-
ing a follower baseline model, and evaluating it in
interaction with human leaders.

Human Games Data We follow the crowdsourc-
ing process outlined in Section 6 to collect games
between human leaders and followers. We collect
185 games containing 3,439 instructions. Table 1
provides data statistics.

Model and Learning We train an instruction fol-
lowing model with a behavior cloning objective
using the collected human-human data. We fil-
ter out poor games to improve training data qual-
ity, applying heuristics such as removing games
where over 20% of instructions are cancelled. Our

417

Dataset # Games # Instructions Mean Score Vocabulary Mean Instruction Length

Training Data 185 3,439 6.42 ± 4.88 714 10.95 ± 5.29
Human-Human Deployment 187 3,404 6.69 ± 4.51 728 11.73 ± 6.09
Human-Model Deployment 188 2,869 3.15 ± 3.29 542 9.62 ± 5.28

Table 1: Data and interaction statistics for the human-human training data, and the two side-by-side deployments.

model architecture is based on the Decision Trans-
former (Chen et al., 2021; Putterman et al., 2022).
Follower observations are embedded using HEX-
ACONV (Hoogeboom et al., 2018) because of the
hexagonal structure of the map. The observations
are centered on the follower’s position and rotated
such that the follower is always facing the same
direction. This baseline model conditions only on
the current instruction for simplicity, similar to the
model in Suhr et al. (2019). In contrast though, it
does not assume full observability.

Results We deploy our baseline model as a sys-
tem demonstration on Amazon Mechanical Turk.
We evaluate it with 188 human-model interactions,
conducted side-by-side in a randomized experiment
with 187 human-human interactions. Human lead-
ers are told that they can be matched with a human
or a bot follower in the task description, but are
not made aware of who they are interacting with
in a specific interaction. Table 1 shows data and
interaction statistics for our training data and fi-
nal deployments. Overall, our models enable ef-
fective human-model collaboration in CB2, but at
significantly lower performance than observed in
human-human games. This is similar to the results
of Suhr et al. (2019), although the numbers are not
comparable because of the different environment.

Human leaders were able to infer relatively con-
sistently the type of their partner in each interac-
tion. This is indicated by differences in the human
leader behavior when comparing human-human
and human-model interactions. For instance, the
vocabulary human leaders use in interactions with
the model is smaller compared to when interact-
ing with human followers and the instructions are
shorter. Qualitatively, we observe that instructions
in human-human interactions more often use ex-
clamations (e.g., “oh,” “shoot,” and “oops”) and
informal speech, with abbreviations such as “btw”
and “lol” or words such as “chill” and “kay.” We
also found that human leaders in human-human
games tend to praise their partners, with words such
as “awesome,” “wonderful,” “perfect” or “great”
appearing uniquely in instructions from human-
human games. The difference is also seen in game

statistics. For instance, 16.54% and 12.70% of
the times followers and leaders selected a card in
human-model games, it was to deselect an already
selected card, compared to 8.68% and 8.78% for
human-human games. Our results illustrate the
challenge posed by CB2, and the importance of the
kind of deployment CB2 enables.

8 Conclusion

CB2 is a multi-agent research platform to study
natural language instruction in collaborative, em-
bodied environments. A core objective of CB2 is
to enable scaleable studies where human agents
interact with learned models, potentially over long
periods of time. CB2 is designed to be easy to use
and customize, with emphasis on accessibility for
researchers with limited game development experi-
ence. It is designed from the ground up for machine
learning, and includes a headless fast Python client
API to support learning processes and to deploy
learned models to interact with human users.

Acknowledgements

This research was supported by NSF under grant
No. 1750499, ARO W911NF21-1-0106. We thank
Alane Suhr and Noriyuki Kojima for technical dis-
cussions and utility code, and the participating
MTurk workers for their work and feedback.

Ethical Considerations

CB2 is a research environment. The focus on a
relatively restricted 3D environment reduces the
potential for ethical risks. Our use of CB2 has re-
ceived exemption status by our institution’s IRB
office. We recommend that researchers using CB2
obtain IRB approval or exemption for their studies
from their institution’s IRB office, or an equivalent
body. More broadly, systems that learn from inter-
action with users raise risks of adopting negative
behavior patterns from their users. This is espe-
cially an issue in certain contexts, such as open
ended conversational interfaces or chatbots. This
is an important direction for future work. CB2 can
be used to study such adversarial usage scenarios
in a relatively safe way.

418

References
Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,

Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton van den Hengel. 2018. Vision-and-
language navigation: Interpreting visually-grounded
navigation instructions in real environments. In The
IEEE Conference on Computer Vision and Pattern
Recognition.

Jacob Andreas, Anca Dragan, and Dan Klein. 2017.
Translating neuralese. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion of Computational Linguistics, 1.

Valts Blukis, Nataly Brukhim, Andrew Bennett, Ross A.
Knepper, and Yoav Artzi. 2018. Following high-
level navigation instructions on a simulated quad-
copter with imitation learning. In Proceedings of the
Robotics: Science and Systems Conference.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the Na-
tional Conference on Artificial Intelligence.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. 2021. Decision trans-
former: Reinforcement learning via sequence mod-
eling. Advances in Neural Information Processing
Systems.

Andrea F Daniele, Mohit Bansal, and Matthew R Walter.
2016. Natural language generation in the context of
providing indoor route instructions. In Proceedings
Robotics: Science and Systems Workshop on Model
Learning for Human-Robot Communication.

Alex Djalali, Sven Lauer, and Christopher Potts. 2012.
Corpus evidence for preference-driven interpretation.
In Logic, Language and Meaning.

Anna Effenberger, Rhia Singh, Eva Yan, Alane Suhr,
and Yoav Artzi. 2021. Analysis of language change
in collaborative instruction following. In Findings
of the Association for Computational Linguistics:
EMNLP.

Daniel Fried, Jacob Andreas, and Dan Klein. 2018. Uni-
fied pragmatic models for generating and following
instructions. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Stevan Harnad. 1990. The symbol grounding problem.
Physica D: Nonlinear Phenomena, 42.

Emiel Hoogeboom, Jorn W.T. Peters, Taco S. Cohen,
and Max Welling. 2018. Hexaconv. In International
Conference on Learning Representations.

Prashant Jayannavar, Anjali Narayan-Chen, and Julia
Hockenmaier. 2020. Learning to execute instructions
in a Minecraft dialogue. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics.

Julia Kiseleva, Alexey Skrynnik, Artem Zholus,
Shrestha Mohanty, Negar Arabzadeh, Marc-
Alexandre Côté, Mohammad Aliannejadi, Milagro
Teruel, Ziming Li, Mikhail Burtsev, et al. 2022. Iglu
2022: Interactive grounded language understanding
in a collaborative environment at neurips 2022.
arXiv preprint arXiv:2205.13771.

Noriyuki Kojima, Alane Suhr, and Yoav Artzi. 2021.
Continual learning for grounded instruction genera-
tion by observing human following behavior. Trans-
actions of the Association for Computational Linguis-
tics, 9.

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie,
and Jason Baldridge. 2020. Room-across-room: Mul-
tilingual vision-and-language navigation with dense
spatiotemporal grounding. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing.

Angeliki Lazaridou and Marco Baroni. 2020. Emergent
multi-agent communication in the deep learning era.
ArXiv, abs/2006.02419.

Angeliki Lazaridou, Alexander Peysakhovich, and
Marco Baroni. 2017. Multi-agent cooperation and
the emergence of (natural) language. In International
Conference on Learning Representations.

Jason Lee, Kyunghyun Cho, and Douwe Kiela. 2019.
Countering language drift via visual grounding. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing.

Matthew MacMahon, Brian Stankiewics, and Benjamin
Kuipers. 2006. Walk the talk: Connecting language,
knowledge, action in route instructions. In Proceed-
ings of the National Conference on Artificial Intelli-
gence.

Hongyuan Mei, Mohit Bansal, and R. Matthew Walter.
2016. What to talk about and how? Selective gener-
ation using lstms with coarse-to-fine alignment. In
Proceedings of the Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies.

Dipendra Misra, John Langford, and Yoav Artzi. 2017.
Mapping instructions and visual observations to ac-
tions with reinforcement learning. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

Anjali Narayan-Chen, Prashant Jayannavar, and Ju-
lia Hockenmaier. 2019. Collaborative dialogue in
Minecraft. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics.

419

https://doi.org/10.18653/v1/P17-1022
http://aclweb.org/anthology/Q13-1005
http://aclweb.org/anthology/Q13-1005
http://aclweb.org/anthology/Q13-1005
https://doi.org/10.18653/v1/N18-1177
https://doi.org/10.18653/v1/N18-1177
https://doi.org/10.18653/v1/N18-1177
https://openreview.net/forum?id=r1vuQG-CW
https://doi.org/10.18653/v1/2020.acl-main.232
https://doi.org/10.18653/v1/2020.acl-main.232
https://doi.org/10.1162/tacl_a_00428
https://doi.org/10.1162/tacl_a_00428
https://doi.org/10.18653/v1/2020.emnlp-main.356
https://doi.org/10.18653/v1/2020.emnlp-main.356
https://doi.org/10.18653/v1/2020.emnlp-main.356
https://doi.org/10.18653/v1/N16-1086
https://doi.org/10.18653/v1/N16-1086
https://doi.org/10.18653/v1/P19-1537
https://doi.org/10.18653/v1/P19-1537

Christopher Potts. 2012. Goal-driven answers in the
Cards dialogue corpus. In Proceedings of the West
Coast Conference on Formal Linguistics.

Aaron L Putterman, Kevin Lu, Igor Mordatch, and
Pieter Abbeel. 2022. Pretraining for language con-
ditioned imitation with transformers. Offline Rein-
forcement Learning Workshop at Neural Information
Processing Systems.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. ALFRED: A
benchmark for interpreting grounded instructions for
everyday tasks. In IEEE Conference on Computer
Vision and Pattern Recognition.

Alane Suhr and Yoav Artzi. 2022. Continual learn-
ing for instruction following from realtime feedback.
arXiv preprint arXiv:2212.09710.

Alane Suhr, Claudia Yan, Jack Schluger, Stanley Yu,
Hadi Khader, Marwa Mouallem, Iris Zhang, and
Yoav Artzi. 2019. Executing instructions in situated
collaborative interactions. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Richard S. Sutton and Andrew G. Barto. 1998. Rein-
forcement learning: An introduction. MIT press.

Su Wang, Ceslee Montgomery, Jordi Orbay, Vighnesh
Birodkar, Aleksandra Faust, Izzeddin Gur, Natasha
Jaques, Austin Waters, Jason Baldridge, and Peter
Anderson. 2021. Less is more: Generating grounded
navigation instructions from landmarks. In Proceed-
ings of the Conference on Computer Vision and Pat-
tern Recognition.

420

https://openreview.net/forum?id=eCPCn25gat
https://openreview.net/forum?id=eCPCn25gat
https://doi.org/10.18653/v1/D19-1218
https://doi.org/10.18653/v1/D19-1218

