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Abstract

Causal reasoning is a core cognitive function
and is central to how people learn and update
their beliefs. Causal information is also cen-
tral to how people represent and use language.
Natural Language Processing algorithms that
detect people’s causal representations can illu-
minate the considerations shaping their beliefs
and reasoning. We present a causal language
analysis pipeline that leverages a Large Lan-
guage Model to identify causal claims in natu-
ral language documents, and aggregates claims
across a corpus to produce a causal claim net-
work. The pipeline then applies a clustering
algorithm that groups causal claims according
to their semantic topics. We demonstrate the
pipeline by modeling causal belief systems sur-
rounding the Covid-19 vaccine from tweets.

1 Introduction

Causal information facilitates learning (Holyoak
and Cheng, 2011; Waldmann, 2007, 2017), and
is crucial to how humans use and represent lan-
guage (Mackie, 1980; Wolff et al., 2005; Lupyan,
2016). Causal relations are also ubiquitous in
higher-level reasoning: they underlie our rich and
flexible categories (Gelman and Legare, 2011),
shape our explanatory preferences (Lombrozo and
Vasilyeva, 2017), and structure our memories of
events (Bower and Morrow, 1990).

Beliefs about causal relations can also have per-
nicious outcomes. For example, beliefs that vac-
cines cause autism are central to antivaccination at-
titudes (Horne et al., 2015; Powell et al., 2022), and
the belief that liberal politicians have causal influ-
ence over the outcome of climate science research
motivates climate change denialism (Cook and
Lewandowsky, 2016). Because misinformation in
online environments can spread rapidly to encour-
age these attitudes (Priniski et al., 2021; Priniski
and Holyoak, 2022), new data science methods are
necessary to combat these trends. However, data

science algorithms generally struggle to advance
a rigorous scientific understanding of psycholog-
ical processes, as they provide correlational evi-
dence that does not isolate cognitive mechanisms.
Methodologists should aim to develop Natural Lan-
guage Processing (NLP) algorithms that produce
cognitively plausible data representations that re-
searchers can utilize to guide explanatory under-
standing and motivate future interventions.

Because causal relations are the backbone of
most higher-level reasoning processes in humans
and are central to how we use language, developing
systems that can isolate people’s causal representa-
tions from language data is a natural place to start.
However, NLP has historically struggled to iden-
tify instances of psychological causality (what a
speaker thinks causes what) (Dunietz et al., 2017).
This is because the variety of ways people commu-
nicate causality is immense (Talmy, 2000, 2011;
Wolff, 2007), with most causal information latent
in language inputs (Khoo et al., 2002; Blanco et al.,
2008). Previously, methods that relied on hand
labeling causal constructions to relate linguistic
features to components of causal relations were
extremely brittle and struggled to generalize to out-
of-sample data (Yang et al., 2022). However, Large
Language Models may help overcome this short-
coming as these models utilize rich semantic repre-
sentations of language and sub-word tokenization
that can help them identify instances of causal lan-
guage not expressed in training (Devlin et al., 2018;
Liu et al., 2019; Dunietz et al., 2017).

In addition to simply identifying instances of
causal language, data representations should ac-
count for the breadth of people’s conceptual sys-
tems in which a causal claim is made. For example,
causal beliefs are not held in isolation; instead,
people have rich interlocking belief systems that
span multiple topics that shape the integration of
evidence (Quine and Ullian, 1978; Priniski and
Holyoak, 2022; Gelman and Legare, 2011). Previ-
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ous methods for producing representations of peo-
ple’s belief systems rely on experiments and are
slow to develop and may not generalize outside the
lab (Powell, 2023; Powell et al., 2022). Because it
is important to understand the full context of peo-
ple’s belief systems to reliably predict how people
will interpret evidence and make decisions, tools
must be designed that can identify the vast web
of beliefs that people use to interpret information
in the wild. NLP tools can take advantage of the
proliferation of social data online to build these
representations (Goldstone and Lupyan, 2016).

To this end, we introduce a pipeline based on
the Large Language Model, RoBERTA-XL (Liu
et al., 2019), that detects causal claims in text docu-
ments, and aggregates claims made across a corpus
to produce a network of interlocking causal claims,
or a causal claim network 1. Causal claim net-
works can be used to approximate the beliefs and
causal relations composing people’s conceptual un-
derstanding of the entities and events discussed in a
corpus. To guide future research, we host a pipeline
that produces interactive visualizations of people’s
causal belief networks. We demonstrate this soft-
ware by building causal belief systems surrounding
Covid-19 vaccines from tweets.

2 How to build causal claim networks
using our pipeline

The pipeline for extracting causal claim networks
follows three main steps (see Figure 1). First, text
documents are fed to a Large Language Model, a
RoBERTa-XL transformer model (Liu et al., 2019),
trained to extract causal claims made in a document
(sentence to a paragraph in length). Second, the
entities that compose causal claims are clustered ac-
cording to their embeddings, clusters proxy causal
topics (Grootendorst, 2022). Third, claims made
across the corpus are coreferenced and strung to-
gether to make a network of cause and effect claims
to be displayed in an interactive visualization.

We will now describe how a user could use our
pipeline to build a causal claim network to visu-
alize the causal claims made in a corpus of text
documents. As shown in Figure 2, this follows two
steps. First, a user uploads a .csv file containing
the documents they wish to analyze. Documents
should be a sentence to a paragraph in length and

1We host the pipeline at the following link:
https://mindsgpu02.isi.edu:5020. The code is available
on GitHub: https://github.com/ishaanverma/causal-claims-
pipeline.

can range from tweets, journal entries, or news
headlines. Next, the user selects which column in
the dataframe contains the texts to be analyzed. A
user can also specify if they want the pipeline to
preprocess the documents and cluster the entities.
It is worth noting that entity clustering works best
when there are an abundance of causal claims about
semantically distinct entities. If a user chooses to
cluster claims and the pipeline does not produce
an output, it does not mean that there are no causal
claims present, but rather that there are no clear
semantic clusters. In these cases, the users should
deselected ‘Cluster entities’ and rerun the pipeline.

As seen in Figure 2, we analyze a data set of
tweets about the Covid-19 vaccine with the file
name covid_tweets.csv, and the column containing
the tweet texts is titled tweets. We provide access
to this dataset on the tool interface, which can be
downloaded to replicate this tutorial.

Once the document file is uploaded and the user
presses submit, the job is queued and causal claims
will be extracted. As shown in Figure 3, a job status
window will be populated and the user will be up-
dated on the degree of completion. As a rough ref-
erence, extracting causal claims from about 6000
tweets takes about a minute to complete once the
job begins.

Once the job is completed, the screen will be
populated with the causal claim network, like the
one in Figure 4. There are a few things worth
highlighting here. First, each edge represents a
single extracted causal claim in the corpus, and
nodes are colored by their causal cluster, or topic
(see Figure 5). Clusters proxy topics in the data set
and can be interpreted as central causal topics in
the data set. In the next section, we describe how
we calculate clusters.

The causal claim network produced by the
pipeline is interactive. A user can click on an edge
to see the document and extracted causal claim that
constitutes that edge (see Figure 6). Furthermore,
as shown in Figure 7, a user can simplify the net-
work by selecting to collapse the edges between
the nodes. The edge thickness is proportional to
the number of documents between those two clus-
ters. To facilitate downstream analysis of causal
claims (e.g., by analyzing sentiment or stance of
causal claims), a user can download the edge list
that produced the network as a .csv file. Columns
in this .csv file include: cause word span, cause
cluster, effect word span, effect cluster, text, and
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"I am getting the 
Covid-19 vaccine 
because I want 

immunity."
…

"The Covid-19 vaccine 
gave my child a skin 

rash."

Fine-tuned 
RoBERTa-XL 

with BIO 
tagging

(Covid-19 Vaccine, Immunity)
…

(Covid-19 Vaccine, Skin rash)

Covid-19 
Vaccine

Immunity Skin rash

Figure 1: High-level schematic describing how text documents become a causal claim network. Raw text documents
are first fed to a RoBERTa-XL transformer fine-tuned on causal language, which follows a BIO tagging scheme
(see Section 3.1) to return a list of tuples encoding the expressed cause and effect relationships. These tuples are
co-referenced across the corpus to produce a causal claim network.

Figure 2: Uploading text data for causal claim analysis
follows two steps. First select the .csv file you wish
to analyze, then select which column in the dataframe
contains the text documents to be analyzed.

Figure 3: Job queue status window.

document id.

The pipeline allows users to specify different
parameters for the model (see Figure 8). While the
pipeline uncovers clusters automatically, users can
specify the number of clusters to uncover in the
corpus (this will equate to the number of nodes in
the causal claim network). Users can also specify
the N_gram range to be used during preprocessing
and can specify the number of top words used to
describe each causal cluster/topic.

3 What’s happening under the hood

In this section, we describe how the pipeline builds
causal claim networks. This follows three steps:
(1) causal claims are extracted using a RoBERTa-
XL transformer model that identifies which words
belong to cause and effect events (Li et al., 2021),
(2) claims are clustered based on their semantic
topics, and (3) a causal claim network is built by
combining the claims stated in the corpus.

Figure 4: A causal claim network built from tweets
about the Covid-19 vaccine. Individual nodes denote
broad causal topics (i.e., clusters of cause and effect
word spans based on their semantic embeddings), and
edges signify a document containing a causal claim
linking entities belonging to those two clusters.

3.1 Step 1: Extracting causal claims

Documents are first fed to a RoBERTa-XL trans-
former network fine-tuned to identify the cause and
effect pairs of nominals in natural language doc-
uments (Hendrickx et al., 2010; Li et al., 2021).
The training set consists of 4, 450 sentences and
contains 1, 570 causal relations, and the test set
consists of 804 sentences with 296 causal relations.
Following the SCITE architecture (Li et al., 2021),
we set up training as a token classification task,
where we utilize the before-inside-outside (BIO)
labeling scheme to identify which words belong to
a cause-span, effect-span, or embedded-causality-
span (tokens belonging to a causal event in the
middle of a causal chain). As seen in Table 1,
RoBERTa-XL has a higher performance than pre-
vious state-of-the-art models on this task (Li et al.,
2021), and performs better than the smaller BERT
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Figure 5: Causal clusters, or causal topics, are shown to
the right of the produced causal claim network. Each
topic consists of a set of keywords that describes the
cluster.

Figure 6: Hovering over an edge in the causal claim
network displays the document and extracted causal
claim that constitutes that edge. The document is shown
at the top of the box, and the extracted cause claim is at
the bottom.

Figure 7: Causal claim network with merged edges,
where edge weights equates to the number of documents
linking two clusters. Merging edges is useful to quickly
assess degree of linkage between causal clusters (nodes)
in the network.

Figure 8: A user can specify parameters when running
the pipeline to engage with exploratory data analysis.
Users can specify the number of clusters, the n-gram
range used during processing, and set the number of
words to describe each topic.
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Precision Recall F1
SCITE 0.833 0.858 0.845
BERT 0.824 0.858 0.841

RoBERTa-XL 0.883 0.865 0.874

Table 1: Model performance on the causal relation iden-
tification task (Hendrickx et al., 2010). The RoBERTa-
XL model demonstrates increased performance over the
smaller transformer BERT and previously reported state-
of-the-art implementations (Li et al., 2021)

transformer (Devlin et al., 2018). We therefore
used the RoBERTa-XL transformer in our pipeline.

Once the sentences have been tagged using the
causality tagging scheme, we run the tag2triplet
algorithm proposed by Li et al., 2021 to extract the
cause-effect tuples from the tagged sequence. The
algorithm operates by first identifying the in-degree
and out-degree of causality in the tagged sequence.
Here, if the entity is labeled as a “cause”, then the
out-degree is increased by 1; if the entity is labeled
as an “effect” then the in-degree is incremented
by 1; and if the entity is labeled as “embedded
causality” then both the in-degree and out-degree
are incremented by 1. The algorithm then tries to
align the identified entities such that each entity
that has an outgoing edge (i.e., the cause) is joined
with the entity that has an incoming edge (i.e., the
effect) while taking into consideration the distance
between the entities in the document and whether
they contain a coordinating conjunction.

3.2 Step 2: Finding causal topics by clustering
embeddings

Clusters of causes and effects proxy topics in the
causal claim network. We cluster the embeddings
of the nodes by extending the tf-idf measure of the
embeddings (Grootendorst, 2022). This method
was originally developed to cluster BERT repre-
sentations to uncover topics in a corpus, but we
implemented the algorithm to cluster RoBERTa-
XL embeddings. This allows users to assess latent
structure in the causal claims expressed in a corpus
and simplifies the resulting causal claim graph by
mapping semantically similar claims to a common
node.

3.3 Constructing a causal claim network

Extracted cause-effect tuples serve as directed
edges in the causal claim network, which are strung
together throughout the corpus to form a causal
claim network. Nodes are the identified cause and

effect wordspans and the weighted edges encode
the number of instances in the corpus where node
i was said to cause node j. The edge direction en-
codes the direction of the causal relation and can
be supplied with additional semantic content (e.g.,
relational vectors, sentiment).

4 Case study: Building a network of
causal claims about the Covid-19
vaccine from tweets

4.1 Data set of tweets
To test this pipeline, we build a causal claim net-
work using a set of 6000 tweets about the Covid-19
vaccine (Poddar et al., 2022). The original dataset
was curated by subsetting a larger sample of tweets
from before and after the release of the Covid-19
vaccines.

4.2 Pipeline results
The pipeline returns 408 extracted causal claims be-
longing to nine distinct clusters (see Figure 5). The
clusters are, as expected, about the various Covid-
19 vaccines and their anticipated consequences.
By aggregating the keywords for each cluster, we
can define the set of causal topics returned by the
pipeline. More specifically, cluster 0 contains key-
words related to Death; 1: Oxford vaccines, 2:
Covid-19 pandemic; 3: Pfizer vaccine, 4: Side-
effects, 5: Pfizer shot, 6: Immunity and antibodies,
7: Coronavirus, and 8: Covid vaccine. As shown
in Table 2, we see that the clusters are about a
range of topics with varying semantics and valence,
which suggests that the pipeline can help us under-
stand the breadth of considerations guiding Twitter
discussions about the Covid-19 vaccine.

4.3 Secondary analyses of extracted causal
claims

By analyzing the causal claims returned by the
pipeline (which is also available for download as a
.csv file), we can explore how these causal clusters
are linked to one another. For example, as shown
in 2, some of the clusters are more commonly com-
posed of word spans denoting cause events, while
others are more composed of word spans denoting
effect events.

5 Related work

Although our approach is domain-general (doc-
uments do not need to belong to a single issue
or topic for the pipeline to return a set of causal
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Cluster Topic Causes Effects
0 Death 154 299
1 Oxford vaccine 108 15
2 Pandemic 56 16
3 Pfizer vaccine 25 1
4 Side-effects 1 25
5 Pfzier shot 22 2
6 Immunity 4 29
7 Coronavirus 13 8
8 Covid vaccine 17 0

Table 2: Number of identified word spans per each
causal cluster. The topic label is determined by assess-
ing the top keywords in each causal cluster. Each cluster
has a different distribution of cause and effect spans.

claims), we demonstrate the use of our pipeline
modeling causal claims about the Covid-19 vaccine.
Previous work has developed systems specifically
designed to analyze claims about Covid-19. For
example, Li et al. (2022) built a system specifically
designed to monitor claims made about Covid-19.
This system identifies claims and arguments made
in the corpus, and sources additional Wikidata in-
formation to put the claims in a richer content.

Mining causal claim networks requires isolat-
ing causal claims which oftentimes constitute ar-
guments expressed in a text document: a reasoner
makes a causal claim when explaining a mecha-
nism (Lombrozo and Vasilyeva, 2017) or argument.
Claim detection is an active area of research (Palau
and Moens, 2009; Goudas et al., 2014), as is the
detection of the components of arguments in text
(Sardianos et al., 2015). Because causal reasoning
is central to the way people construct arguments
(Abend et al., 2013), understanding how people
posit causal claims can shed light on the types of
arguments people will endorse related to that issue.

Most claim detection algorithms work on the
level of single documents, but approaches such as
those of Levy et al. 2014 propose corpus-wide
claim detection. Our pipeline utilizes a mixing of
the two: claims are detected within a document and
then aggregated across the documents in the corpus
to provide a corpus-level representation.

6 Conclusions and future work

Interactive data visualization is an effective way
for people to make sense of complex data (Janvrin
et al., 2014) and can be an effective tool to guide
scientific thinking (Franconeri et al., 2021). Our

pipeline is designed to help researchers explore
the causal claims expressed in a corpus through
interactive exploration.

There are therefore many applications of this
tool to the study of human reasoning and belief
change, and future work will test the efficacy of
these use cases. For example, researchers in cog-
nitive science have worked on developing meth-
ods to measure people’s rich conceptual systems
about vaccines (Powell, 2023). These methods
often require the development of surveys that mea-
sure people’s attitudes toward a variety of related
issues. Causal claim networks can give researchers
a starting place to know what measures they should
include in these surveys.

In future work, we will work on expanding the
visualization tool to include features that allow for
richer forms of interaction. For example, by allow-
ing users to build subnetworks based on another
data attribute (e.g., stance of the document, ex-
pressed sentiment), to allow for comparisons across
networks. Related to this, future work will also de-
velop quantitative measures of divergence across
networks.
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