@inproceedings{priniski-etal-2023-pipeline,
title = "Pipeline for modeling causal beliefs from natural language",
author = "Priniski, John and
Verma, Ishaan and
Morstatter, Fred",
editor = "Bollegala, Danushka and
Huang, Ruihong and
Ritter, Alan",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-demo.41/",
doi = "10.18653/v1/2023.acl-demo.41",
pages = "436--443",
abstract = "We present a causal language analysis pipeline that leverages a Large Language Model to identify causal claims made in natural language documents, and aggregates claims across a corpus to produce a causal claim network. The pipeline then applies a clustering algorithm that groups causal claims based on their semantic topics. We demonstrate the pipeline by modeling causal belief systems surrounding the Covid-19 vaccine from tweets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="priniski-etal-2023-pipeline">
<titleInfo>
<title>Pipeline for modeling causal beliefs from natural language</title>
</titleInfo>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Priniski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ishaan</namePart>
<namePart type="family">Verma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fred</namePart>
<namePart type="family">Morstatter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Danushka</namePart>
<namePart type="family">Bollegala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruihong</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a causal language analysis pipeline that leverages a Large Language Model to identify causal claims made in natural language documents, and aggregates claims across a corpus to produce a causal claim network. The pipeline then applies a clustering algorithm that groups causal claims based on their semantic topics. We demonstrate the pipeline by modeling causal belief systems surrounding the Covid-19 vaccine from tweets.</abstract>
<identifier type="citekey">priniski-etal-2023-pipeline</identifier>
<identifier type="doi">10.18653/v1/2023.acl-demo.41</identifier>
<location>
<url>https://aclanthology.org/2023.acl-demo.41/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>436</start>
<end>443</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pipeline for modeling causal beliefs from natural language
%A Priniski, John
%A Verma, Ishaan
%A Morstatter, Fred
%Y Bollegala, Danushka
%Y Huang, Ruihong
%Y Ritter, Alan
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F priniski-etal-2023-pipeline
%X We present a causal language analysis pipeline that leverages a Large Language Model to identify causal claims made in natural language documents, and aggregates claims across a corpus to produce a causal claim network. The pipeline then applies a clustering algorithm that groups causal claims based on their semantic topics. We demonstrate the pipeline by modeling causal belief systems surrounding the Covid-19 vaccine from tweets.
%R 10.18653/v1/2023.acl-demo.41
%U https://aclanthology.org/2023.acl-demo.41/
%U https://doi.org/10.18653/v1/2023.acl-demo.41
%P 436-443
Markdown (Informal)
[Pipeline for modeling causal beliefs from natural language](https://aclanthology.org/2023.acl-demo.41/) (Priniski et al., ACL 2023)
ACL
- John Priniski, Ishaan Verma, and Fred Morstatter. 2023. Pipeline for modeling causal beliefs from natural language. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 436–443, Toronto, Canada. Association for Computational Linguistics.