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Abstract

We demonstrate an interactive system to help
operations research (OR) practitioners convert
the mathematical formulation of optimization
problems from LaTeX document format into
the solver modeling language. In practice, a
manual translation is cumbersome and time-
consuming. Moreover, it requires an in-depth
understanding of the problem description and
a technical expertise to produce the modeling
code. Thus, our proposed system LATEX-
SOLVER helps partially automate this conver-
sion and help the users build optimization mod-
els more efficiently. In this paper, we describe
its interface and the components of the hier-
archical parsing system. A video demo walk-
through is available online.1

1 Introduction

Operations Research (OR) is a useful yet complex
framework for optimal decision-making. For in-
stance, OR has been used to increase bike-share
ridership and efficiency (Beairsto et al., 2021), or
to optimize wastewater collection and treatment
(Tao et al., 2020) in cities. Despite its impor-
tance in many fields, the OR process is both time-
consuming and knowledge-intensive. First, the
problem specifications provided by domain experts
must be formulated in mathematical form (Carter
and Price, 2017). Then, the formulation needs to
be converted into a model code that optimization
solvers can interpret. Next, data parameters must
be collected and used to instantiate the optimization
model. Finally, a proper solver needs to be selected
to solve the given problem and find an optimal solu-
tion. Traditionally, the domain expert hires an OR
expert to handle these strenuous tasks and build the
right model for the problem of interest.

There are two shortcomings in the above process,
which increases the project cost and duration.

1https://bit.ly/3kuOm3x

1. First, the formulation needs to be written
twice. OR experts typically write the problem
formulation as a LaTeX document contain-
ing both natural language (NL) descriptions
and math formulas. Then, they translate it
into code using a solver-specific modeling lan-
guage. This manual work creates a bottleneck
and a mental overhead for the OR experts.

2. Second, the optimization models are saved
in two different formats namely the LaTeX
document format and the modeling code for-
mat. This makes it difficult to manage, edit or
share the optimization models. Even if soft-
ware versioning systems can be used to track
the document or code changes, they are quite
limited and cumbersome for this purpose.

To address these shortcomings, we introduce LA-
TEXSOLVER, an interactive system that takes as
input the problem description of a model in LaTeX
and partially automates its translation into model-
ing code. To the best of our knowledge, this is the
first modeling tool that accepts an unstructured and
multi-modal LaTeX document as input format.

Moreover, we introduce a unified symbolic
model representation, which decouples the transla-
tion procedure into two stages. First, our system
combines information extraction methods (i.e., text
segmentation, entity recognition, relation extrac-
tion) with grammar-based parsing to extract the
symbolic model. In the second stage, our system
uses the actual data parameters to instantiate the
symbolic model and generate the modeling code.

Finally, our intuitive user interface displays the
symbolic model as a graph of the model elements
as shown in Figure 1. Each node shows the formula
and metadata of an element and allows the user to
review and edit it before it is turned into modeling
code. This added flexibility puts the user in control.
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Figure 1: Screenshot of the LATEXSOLVER interactive application. The system displays the parsed symbolic
model graphically where the user can interact with the cards representing different modeling components. The
right panel empowers the user to revise each component efficiently and with ease.

2 Related Work

Modeling aid tools for operations research.
Past efforts to improve the experience of model
builders has centered around creating better mod-
eling languages. While they can enable rapid pro-
totyping (Koch, 2004), the modeler still needs to
learn these languages and manually convert the
mathematical formulation into an equivalent code.

To alleviate the technical barriers and make
solvers more accessible, alternative input formats
have also been proposed such as Excel spreadsheets
(Lin and Schrage, 2009), web forms (Triantafyllidis
and Papageorgiou, 2018; Esche et al., 2017), and
natural language (IBM, 2022). In comparison, our
system is the first to accept a multi-modal markup
document that contains natural language descrip-
tions as well as mathematical equations.

Information extraction from scientific docu-
ments. Recently, information extraction from sci-
entific documents has received increasing research
interests. In fact, scientific documents are different
from natural language texts due to the syntactic
difference and to the presence of symbols and for-
mulas (Lai et al., 2022). (Beltagy et al., 2019)
proposed SciBERT is an example of a pre-trained
language model on corpora for different scientific
domains. SciBERT was used in Lee and Na (2022)
and Popovic et al. (2022) as the backbone for entity
recognition and relation extraction tasks. Moreover,
Lee and Na (2022) reframed entity recognition and
relation extraction tasks as machine reading com-
prehension to leverage the mathematical knowl-

edge learned by SciBERT. For our system, we also
adopt SciBERT and fine-tune it using our labeled
dataset for the information extraction tasks. In addi-
tion, we use a neural text segmentation and labeling
model as the first step to divide the input markup
document into declaration segments.

Program synthesis and math word problems.
Language models pretrained on source code have
shown some promising performance in generating
or summarizing computer programs (et al., 2021).
These models have also been used to generate pro-
grams that solve math problems (Drori et al., 2022).
Nonetheless, recent studies have shown that even
the largest models such as Codex can still halluci-
nate and produce erroneous code (Xu et al., 2022).
Direct translation from an unstructured markup lan-
guage to code is an under-explored task and current
techniques does not deliver consistently accurate
results. Instead, we divide it into smaller tasks and
simplify the parsing by leveraging grammar-based
parsers.

3 System Overview

Figure 1 showcases the graphical user interface of
our LATEXSOLVER web application built using
the Vue frontend framework (Vue.js, 2014).

This interface enables users to upload an opti-
mization problem description in LaTeX, composed
of both natural language and mathematical formu-
las. After going through the parsing process, the
input LaTeX document will be transformed into
a symbolic model that serves as a united repre-
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Figure 2: System diagram for LATEXSOLVER.

sentation of the input optimization problem. As
an example shown in the main panel of Figure 1,
a symbolic model comprises model elements ex-
tracted from the document and each element is
categorized as one of {Set, Parameter, Objective,
Variable, Constraint, Objective} (listed on top of
the interface). All parameters and variables in the
symbolic model are represented by symbols rather
than actual values. Our user interface is designed
to display the extracted symbolic model as a graph,
in which each node contains the formula and meta-
data of a model element and dynamic links are used
to highlight the relationships between symbolic el-
ements. To enhance user engagement and system
flexibility, we allow users to review and edit the
displayed model elements. Users can click on each
model element card to reveal its detailed properties
in the right-side panel of the interface, where they
can edit the properties as desired. Furthermore,
users have the ability to add or delete elements as
needed. Once the user is satisfied with the updated
symbolic model, our system will guide the user
to upload data values to instantiate the symbolic
model and generate the corresponding model code
instance for the optimization solver to compute for

solutions.

The backend workflow of LATEXSOLVER is
illustrated in Figure 2. The system’s pipeline con-
sists of three major stages, namely hierarchical
declaration extraction, symbolic model parsing and
model code generation. Given a problem descrip-
tion in LaTex as input, the system first segments it
into a set of declarations, each of which describes
a specific model element and includes declaration
entities linked by corresponding relations. This
stage employs three neural models that were ini-
tially introduced for three NLP tasks: text segmen-
tation and labeling, entity recognition, and relation
extraction respectively. In the subsequent stage,
the extracted declarations are transformed into a
symbolic optimization model using a context-free
grammar-based parser, which leverages the meta-
data obtained in the previous stage as supplemen-
tary information. The resulting symbolic model is
then passed into a solver API-specified model code
instance generator, together with user-specified
data values, to generate the model code that is ready
to be processed by optimization solvers.
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Figure 3: The illustration of Hierarchical Declaration Extraction.

4 Hierarchical Declaration Extraction

A declaration in this paper is, by definition, a multi-
modal segment consisting of one or more sentences
written in a mixture of text and math content, as
exemplified in Figure 3. Each declaration typically
describes one particular model element, such as an
objective, constraint, decision variable, parameter
or set. As the first stage of LATEXSOLVER, the
system takes a LaTeX document as input and ex-
tracts declarations from it in a hierarchical manner.
Specifically, the system first performs document-
level declaration identification to extract and label
all the text segments in the document, each asso-
ciated with one declaration (§4.1). Next, our sys-
tem performs entity recognition and entity linking
within each extracted declaration segment (§4.2).

4.1 Document-Level Declaration
Identification

In order to identify all declarations contained in
the document, as well as assign each identified
declaration a label indicating the model element it
contributes to, we propose to re-purpose a neural
model originally proposed in Barrow et al. (2020)
for text segmentation and labeling. In this work,
we employ this model for declaration segmentation
and labeling.

Figure 4 illustrates the high-level architecture of
the neural model we used for declaration segmen-
tation and labeling. In practice, the system accepts
the input document formalized as a sequence of
consecutive sentences2. However, the structure of
a LaTeX document is usually not flat but contains
nested content blocks organized as bullet lists, or
covered in captions of figures and tables. Therefore,

2We applied nltk.sent_tokenize for sentence seg-
mentation.

Figure 4: The model architecture for declaration seg-
mentation and labeling.

we initially carry out a rule-based pre-processing
step to detect and eliminate these structures by con-
verting the content in the nested form to the flat
form before passing them into the model. As the
first layer of the neural model, a sentence encoder
is in place to yield low-level features (embeddings)
for the input sentences. Taking into considera-
tion that (1) documents in LaTex are more likely
in the scientific domain, and (2) sentences within
these documents are likely to have both text and
mathematical content, we choose SciBERT (Belt-
agy et al., 2019) as our sentence encoder, which
is equipped with a rule-based symbol tokenizer
proposed in Lee and Na (2022) to alleviate the
limitation of SciBERT’s tokenizer in detecting the
boundaries of mathematical symbols.

Given the sentence embeddings obtained from
the SciBERT sentence encoder, a document-level
contextualization layer (Bi-LSTM) returns an or-
dered set of sentence hidden states for two objec-
tives: (1) declaration segment boundary prediction
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Figure 5: The model architecture for entity recognition.

and (2) declaration labeling. Concretely, a multi-
layer perceptron (MLP) followed by softmax acti-
vation serves as a binary boundary predictor, where
label "1" means the corresponding sentence is the
end of a segment, and "0" otherwise. After seg-
menting the document, we further apply mean pool-
ing over the sentence hidden states within each pre-
dicted segment to predict the declaration label for
the segment. Another MLP+softmax layer is uti-
lized to classify each declaration segment into one
of the following classes: {Objective, Constraint,
Decision Variable, Parameter, Set, Others}. This
framework is optimized by minimizing the cross-
entropy losses for both objectives of declaration
segmentation and labeling.

4.2 Entity Recognition and Relation
Extraction

Once the underlying declarations have been ex-
tracted from the input LaTeX document, the next
step entails extracting entities within each declara-
tion, as well as the relations linking up these enti-
ties. To achieve this, we leverage the entity recog-
nition and relation extraction models proposed in
Lee and Na (2022), initially devised for machine
reading comprehension on documents containing
mathematical symbols.

The entity recognition model formulates the pro-
cess of extracting entities as a machine reading
comprehension task by providing an entity type as
a question and utilizing SciBERT as the backbone
to extract mentions of this entity type in a declara-
tion segment as answers. As shown in Figure 5, a

given input declaration is deemed as context and
concatenated with each of the three pre-defined en-
tities types (i.e., Metadata Tag, Math Span, Seman-
tic Metadata) in our labeled corpus. Subsequently,
the Question+Context concatenation is passed into
SciBERT, and the output hidden representations of
the tokens covered by the declaration (context) are
used to estimate the probability of each token be-
ing the start or end (i.e., istart or iend) of a mention
(answer) of the concatenated entity type (question).
Next, for any span of (istart, iend), another binary
classifier is applied to predict whether the span is
the answer to extract.

Similar to the entity recognition model described
above, we also leverage SciBERT to perform re-
lation extraction between pairs of entities within
each declaration segment by simply encoding en-
tities and doing relation prediction based on the
concatenation of entity representations (mean of
token embeddings covered in the text span of enti-
ties) obtained from SciBERT (Lee and Na, 2022).
We pre-define four types of relations, namely Meta-
data Tag, Semantic Metadata and Supplementary
Math Content and NIL, where NIL indicates that
no relation exists between the two entities.

For both entity recognition and relation extrac-
tion, we set some heuristic rules to refine models’
predictions by cleaning up the entities which are
unlikely to co-occur within a declaration, as well
as relations with the type unlikely to appear to link
two certain entities.

5 Symbolic Model Parsing and Model
Code Generation

This section describes the process of converting the
detected entities and their relations into a symbolic
model which is eventually generated into modeling
code, as shown in Figure 6. The symbolic model
and concrete data values, such as sets and param-
eter values, are passed to the model instance code
generator which converts them into code based on
the target modeling language or solver API. The
generated code consists of the model components
and their corresponding data values. By decoupling
the symbolic model and data values, we allow the
users to evaluate their model and problem more
efficiently. They can modify the model to evaluate
variants of the model or easily change data values
to examine different scenarios of the problem.
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Figure 6: The illustration of symbolic model parsing and model code generation process.

5.1 Symbolic Model Parsing

As part of LATEXSOLVER, we have implemented a
symbolic model, which is an intermediate represen-
tation of the problem that lies between the natural
language & math problem description and model
code. This symbolic representation of the model
maps the math formulas into a nested structure of
symbolic elements before data instantiation. The
symbolic model parsing is performed by two mod-
ules: (1) a math content parser, and (2) a tree-to-
definition converter. An example of both modules
is shown in Figure 6.

First, the math content parser converts the math
content spans of each model component declara-
tion detected by the declaration extraction stage
into a parse tree. To do so, the LaTeX math for-
mulas are parsed using the grammar-based parser
generator ANTLR4 (Parr, 2013). ANTLR4 detects
the required attributes of modeling components.
Specifically, indexed parameters and variables are
parsed along with the set that the indices are bound
to. The parser also parses constraint math formulas
into the constraint expression, comparison opera-
tor (<, <=, >, >=, ==), and the right-hand-
side equation. Finally, the objective math formula
would contain the objective sense and the objective
function. These math formulas are processed into
a parse tree where the leaves contain the impor-
tant fields required to populate the symbolic model.
Figure 6 shows a graphical representation of the

output parse tree of the grammar-based parser.
Next, the tree-to-definition converter loops

through the parse tree, it processes the detected
model components, and creates a new model com-
ponent in the symbolic model class. As these el-
ements are detected, they populate the attributes
of the corresponding components in the symbolic
model class in a nested manner.

5.2 Model Code Generation

The model instance code generator leverages
Python’s metaprogramming mechanism to gener-
ate the modeling code during runtime. The pipeline
begins with a template code string that imports the
required Python libraries for the solver API. The
model code generator adds to the model based on
the specifications of the API. In our implementa-
tion, we used the Huawei OptVerse solver and its
Grassland API (Li et al., 2021). The model in-
stance code generator reads in the data values from
spreadsheet files using predefined sheet references
and adds the data initialization commands in the
generated code. Then, it will loop through the el-
ements of the symbolic model to translate it into
the solver API code to declare the sets, variables,
objective and constraints.

6 Limitations and Future Works

The LATEXSOLVER system is a useful tool that
partially automates the conversion of a problem
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description into an optimization model, but some
limitations highlight potential areas for improve-
ment. First, it was assumed that each declaration
contains all complete information that needs to
be parsed into a model element. While our pro-
posed system can handle unstructured text at the
declaration-level, it is a more challenging problem
if information about one model component is scat-
tered across declarations. We believe that in most
cases, the input documents would satisfy this as-
sumption. Second, this system requires the LaTeX
document input to be accurate and errors may cause
issues that cascade through the steps of the system
(e.g., an error in segmenting and labeling the dec-
larations may yield errors in the entity recognition
and relation extraction tasks). The interactive ap-
plication addresses this by keeping the human in
the loop allowing the user to interact with the de-
tected components and their relations. Finally, with
the rapid advancements in LLMs (Li et al., 2023;
OpenAI, 2023), domain-specific tools such as LA-
TEXSOLVER could be used in conjunction with
general-purpose language models.

7 Conclusion

In this paper, we introduce LATEXSOLVER, an
interactive system to help operations research prac-
titioners efficiently convert the mathematical for-
mulation of optimization problems from the un-
structured and multi-modal LaTeX document for-
mat into the solver modeling language. The system
follows a two-step process of converting the La-
TeX document to a symbolic model and then to
model code. Users can easily review and edit the
symbolic model automatically extracted from the
LaTeX document with an intuitive interface to en-
sure the system’s reliability.

Ethics Statement

The LATEXSOLVER system presented in this pa-
per aims to partially automate the process of con-
verting problem descriptions in LaTeX to model
codes, thereby helping OR experts build optimiza-
tion models more efficiently. As the system’s input
and output are transparent to users and users can
control the model-building procedure by interact-
ing with the system, the harm to users resulting
from the errors produced by the system is limited.
However, our system may be used in certain cir-
cumstances considered sensitive or critical, such as
power grid or flights scheduling. In such cases, the

system should be used with caution and the mod-
eling process should be investigated by domain
experts. Additionally, given the historic applica-
tion of operations research in tactical military op-
erations, it is critical to understand the potential
negative impact of misapplying this technology to
society. Therefore, users of our system must be
aware of any ethical concern come with military
applications of this technology.
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