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Abstract

We present Disease Network Constructor
(DNC)1, a system that extracts and visualizes a
disease network, in which nodes are entities
such as diseases, proteins, and genes, and
edges represent regulation relation. We
focused on the disease network derived
through regulation events found in scientific
articles on idiopathic pulmonary fibrosis
(IPF). The front-end web-base user interface
of DNC includes two-dimensional (2D) and
3D visualizations of the constructed disease
network. The back-end system of DNC
includes several natural language processing
(NLP) techniques to process biomedical text
including BERT-based tokenization on the
basis of Bidirectional Encoder Representations
from Transformers (BERT), flat and nested
named entity recognition (NER), candidate
generation and candidate ranking for entity
linking (EL) or, relation extraction (RE), and
event extraction (EE) tasks. We evaluated
the end-to-end EL and end-to-end nested EE
systems to determine the DNC’s back-end
implementation performance. To the best of
our knowledge, this is the first attempt that
addresses neural NER, EL, RE, and EE tasks
in an end-to-end manner that constructs a path-
way visualization from events, which we name
Disease Network Constructor.
The demonstration video can be ac-
cessed from https://youtu.be/
rFhWwAgcXE8. We release an online system
for end users and the source code is available
at https://github.com/aistairc/
PRISM-APIs/.

1 Introduction

In the human body, various substances (entities)
such as proteins and compounds interact and reg-
ulate each other, forming huge pathway networks.

1DNC is publicly available at https://
biomed-text.airc.aist.go.jp/disease_
network/

Such interactions and regulations can be consid-
ered as biochemical events. In a disease state, the
status of such biochemical events are considered
different from those in the healthy state. In or-
der to identify specific substances that can be drug
targets in the disease, automatic extraction and vi-
sualization of a disease network from scientific
articles will be beneficial. The visualization of phe-
nomena and inter-molecular relationships can, for
example, make it easier to notice central regula-
tory molecules, leading to the discovery of drug
targets. In this work, we present a system called
disease network constructor (DNC) that extracts
and visiualizes a disease netowrk. We focus on id-
iopathic pulmonary fibrosis (IPF), which is a severe
chronic fibrosis interstitial lung disease, the causes
of which remain unclear (Raghu et al., 2011); thus,
a deeper understanding of the disease network is
urgently needed. DNC is capable of 3D network
drawing, and such 3D visualization can help in un-
derstanding diseases such as IPF, where complex
factors are entangled and multi-level phenomena
are involved.

The task formulation of DNC involves sev-
eral natural language processinbg (NLP) tech-
niques. DNC is mainly composed of five core mod-
els: a Bidirectional Encoder Represenatation from
Transformers (BERT)-based masked language
model (Devlin et al., 2019), named entity recogni-
tion (NER) model (Sohrab and Miwa, 2018) that
enumerates all possible spans as potential entity
mentions and classifies them into entity types, en-
tity linking (EL) model (Sohrab et al., 2020a) that
executes candidate generation and candidate rank-
ing, relation extraction (RE) model (Sohrab et al.,
2020b), and event extraction (EE) model (Trieu
et al., 2020). DNC provides a web-based user inter-
face to facilitate the end-to-end process of neural
EL and deep EE on the basis of these five models
without any training required by end users. The
interface visualizes the 2D and 3D networks on the
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basis of output of EL to EE.

2 DNC: Back-end System

The BERT-based back-end system of DNC is built
upon four layers:

• NER that uses a contextual neural exhaustive
approach to extract mentions, entities, and
triggers in text.

• EL that normalizes every detected mention
by assigning it an ID in the target knowledge
base2.

• RE that extracts all possible role pairs (trig-
ger–trigger and trigger–entity pairs) given de-
tected triggers and entities and assigns a role
type to each pair.

• EE that enumerates all legal combinations of
role pairs to construct event candidates for
each trigger.

We employ the modeling of deep EE (Trieu et al.,
2020) on the basis of entity, relation, and event over
the IPF dataset (Nagano et al., 2023), which is a
manually annotated corpus of IPF-related literature.
We further extend the end-to-end deep EE model
by leveraging the EL (Sohrab et al., 2020a) model
to construct a disease network. Figure 1 shows an
overview of DNC workflow.

2.1 BERT Layer

To preprocess a given text, we use BERT’s tok-
enizer to remove special characters and redundant
whitespaces, and then split the text into sub-words.
A BERT-based pre-trained language model is then
used to assign contextual representations to each
sub-word.

2.2 Named-entity-recognition Layer

The NER layer assigns entity or trigger types to
overlapping text spans by enumerating all possible
mention spans on the basis of the same idea as
the span-based model (Sohrab and Miwa, 2018;
Sohrab et al., 2020b).

2.3 Entity-linking Layer

The EL, or entity normalization, layer, receives the
detected mentions M = {m1,m2, . . . ,mn} from

2https://www.nlm.nih.gov/research/
umls/index.html

the above NER, where mi denotes the i-th men-
tion and n denotes the total number of extracted
mentions. We address the EL in which detected
mentions are mapped to the corresponding concept
unique identifiers (CUIs) C = {c1, c2, . . . , cn}
by leveraging candidate generation and candidate
ranking. We use the output of mention extraction as
an input to the candidate generation model where
we generate a list of k potential CUI candidates for
each extracted mention (k = 50 in this study). The
potential candidates are then fed to the candidate
ranking model to select the best candidate for each
extracted mention. Our EL layer is based on the
EL system of Sohrab et al. (2020a).

2.4 Relation-extraction Layer

The detected mentions and triggers from the NER
layer are then fed into the RE layer to assign a role
type such as Cause, Cue, Participant, Theme, etc.
or no role type to the trigger-argument pairs. The
RE layer enumerates all trigger-arguments (trigger-
trigger and trigger-entity) to assign a role type.

2.5 Event-extraction Layer

The EE layer receives the detected entities/triggers
and the predicted role pairs from the previous layers
and enumerates all legal combinations of role pairs
to construct event candidates for each trigger. The
event candidates include those with and without
arguments. Each event candidate is then classified
on the basis of whether it is an valid event. Ex-
tracting event modifications, such as speculation or
negation, is also included in this layer. We describe
the event structure to construct event candidates in
Section 3.

3 Disease Network Constructor

DNC provides a graph of disease network from the
event statistics of IPF. The graph is generated by
first applying EL and EE to each input text, then
repeatedly collapsing regulation events and their
consequents, marking the resultant event with the
sign of the regulation event (positive or negative).
The resulting graph represents entities as nodes,
and regulated events as edges.

We define a “regulation events” as
any events with one of the follow-
ing types: Positive_regulation,
Negative_regulation, or Regulation.
Regulation describes a regulation event for
which it is not clear whether its effect is positive
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Figure 1: Workflow of DNC.

Figure 2: Web-based user interface of DNC.

or negative, and a regulation sign R is defined
as +1, −1, and 0, respectively. A regulation
event’s Disorder or Cause roles are considered
antecedents, and denoted as A; Theme roles
are consequents, denoted as C. The application
collapses regulation events in the following
manner.

For each non-negated event E0 of type T0 and
regulation sign R0, for each antecedent-consequent
pair (A0, C0) where A0 is an entity (or (null), if
E0 has no antecedents): If C0 is also an entity, we
generate a Direct_regulation(A0, C0, R0)
edge for E0. If C0 is a non-regulation event of
type T1, for each of its Theme arguments C1, we
generate a T1(A0, C1, R0) edge for E0. If C0 is
a regulation event, the data (A0, E0, C0) will be
remembered as an uncollapsed regulation link.

After each event is processed as above, we iter-
atively collapse uncollapsed regulation links until
it is no longer possible. We look for an uncol-
lapsed regulation link (A0, E0, C0), such that there
exist edges Te(Ae, Ce, Re) generated for event
C0. Those edges are deleted, and new edges
Te(A0, Ce, R0 ∗ Re) is generated for E0. Finally,

any edges with a null source is removed.

Intuitively speaking, each regulation event is
“folded into” its consequent as its sign. For exam-
ple, a “negative regulation” of a “gene expression”
becomes a “negatively regulated gene expression”
edge, connecting the cause of the “negative regu-
lation” with the theme of the “gene expression”.
If there is a chain of multiple regulation events,
their signs interact: a “negative regulation” of a
“negative regulation” of a “gene expression”, for
example, becomes a “positively regulated gene ex-
pression” edge.

This algorithm results in many events not being
included on the graph. Since nodes are entities,
any regulation event the antecedents of which are
not entities are ignored. Similarly, any regulation
events that lacks an antecedent or a consequent, as
well as any events that do not have a Theme, will
not be included, as there cannot be an edge with-
out both a source and a target node. Any negated
events, and any entities that do not participate in at
least one edge are also left out.

3.1 DNC: User Interface

Figure 2 shows a user input interface of DNC. For
a given text or single or multiple documents from
users or a sample text from the provided list, DNC
constructs the graph of regulated events on the basis
of EL and EE results and visualizes it in 2D and
3D. The user interface also enables visualization
of an already pre-computed disease network by
uploading an exported .json or .tgz file.
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Figure 3: 2D graph produced with DNC.

Figure 4: 3D graph produced with DNC.

Information IPF Dataset
#Documents 150
#Entity types 15
#Event types 13
#Mentions 12868
#Mentions linked to UMLS CUIs 12148
#Mentions linked to NULL 720
#Entities + Triggers 13049
#Relations 6685
#Events 4899
#Modalities 707

Table 1: Statistics of IPF dataset (Nagano et al., 2023).

Data P R F1 (%)
MD 86.12±1.35 87.13±1.71 86.61±1.11

EL 72.54±2.34 59.44±3.83 65.30±2.98

Table 2: EL performance across 10-fold CV on IPF
dataset.

3.2 2D Disease Network

The 2D network based on Cytoscape.js3 is used to
visualize the 2D network graph. Figure 3 shows a
2D graph of a disease network produced with DNC
where ten documents or PubMed abstracts on IPF
datae are loaded through the user input interface.

3.2.1 2D Graph Features
In the 2D graph, the edges are colored on the basis
of whether they represent a positive or negative reg-
ulation, or if the regulation type is unknown. Node
colors show their types. Node names are normal-
ized where possible; where EL has not succeeded,
mentions are grouped into nodes by literal text of
the mention, displayed in quotes. In case the men-
tions represented by an edge or a node do not all
have the same type, the color and/or label reflect
that of the majority of mentions.

Besides the standard features of zooming and
panning, any edge or node can be selected both for
better visibility in the graph and displaying more
detailed information in a side panel. Nodes can
also be selected from an alphabetical list displayed
in the info panel when no selection is made. The
info panel also enables the selection of edges and
nodes in the neighborhood of the selected element
and shows the list of all text mentions that the se-
lected element represents. Clicking on a mention
displays the EE result in a brat (Stenetorp et al.,
2012) visualization panel, enabling easy checking
of the context (see the bottom part of Figure 3).

The graph can be filtered by event and entity
types, regulation sign, and by the minimum size of
connected subgraphs to be displayed. The zoom
button enables quick focus on the selected element
as well as an overview of the entire graph. The
graph can be exported in several formats: tarball
(containing the Cytoscape.js JSON representation
of the graph as well as input texts and their EE re-
sults, which can be later uploaded to the web app to
view without having to re-analyze the documents),
JSON only (which can also be uploaded to view,
though some features will not be available) of both
the full graph and its current filtered state, as well
as PNG and SVG images.

3.3 3D Disease Network

The web-base user interface also has a 3D graph
function, the main advantage of which is that the
nodes are split into layers, representing phenotypes,

3https://js.cytoscape.org
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Task 10-fold Cross-Validation of End-to-End Entity Linking
(%) Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10

P 87.84 87.29 84.19 85.47 87.64 85.54 84.87 85.08 85.57 87.67
MD R 88.56 89.17 85.62 86.02 86.57 87.11 87.03 87.94 89.38 83.87

F 88.21 88.22 84.90 85.75 87.10 86.31 85.93 86.49 87.44 85.73
P 71.96 71.47 75.29 74.31 70.40 68.59 71.52 75.78 74.57 71.48

EL R 63.86 61.68 62.84 60.17 53.11 56.66 57.12 59.55 64.29 55.14
F 67.67 66.22 68.51 66.50 60.54 62.06 63.51 66.69 69.05 62.26

Table 3: EL performances across 10-fold CV. MD indicates mention detection.

Task P R F (%)
NER 84.77±1.56 82.05±2.65 83.37±1.73

RE 58.62±4.20 59.49±3.97 58.95±3.09

EE 51.55±4.17 40.10±4.17 45.08±4.12

ME 51.59±14.97 26.09±10.72 34.24±12.06

Table 4: EE performances across 10-fold of CV on IPF
dataset. ME indicates modality extraction.

organs, cells, organelles, and molecules. Figure 4
shows a 3D graph of a disease network produced
with DNC.

4 Experimental Settings

In this section, we evaluate the DNC system based
on the IPF dataset (Nagano et al., 2023).

4.1 Datasets

We conduct experiments on the IPF dataset which
includes 150 abstracts of IPF-related scientific liter-
ature where entity, relation, and event information
are manually annotated (Nagano et al., 2023). Ta-
ble 1 shows the statistics of the IPF dataset, which
is split into training set and test set for 10-fold
cross-validation (CV) in this work. The IPF dataset
is randomly divided into 10 folds, each turn, one
data fold is used for testing and the remaining folds
are used for training.

Moreover, to address IPF-related networks, this
dataset includes entity normalization with concept
unique identifiers (CUIs) assigned to entities. The
UMLS version 2017AA 4 is used to assign the
CUIs of entities. It contains 2.1M unique CUIs
which covers 100% of entities in the IPF dataset.
As shown in Table 1, the IPF dataset includes
12,319 mentions among which 12,148 and 720

4https://www.nlm.nih.gov/pubs/
techbull/mj17/mj17_umls_2017aa_release.
html

mentions are respectively present and absent in
the UMLS. Therefore, the entity coverage ratio of
the IPF dataset over the UMLS is around 94.3%.

4.2 Implementation Details
We train the EL and EE models on the pre-trained
BERT model and use the pre-trained PubMed-
BERT(Gu et al., 2020) for end-to-end EL task.
We employ the pre-trained SciBERT(Beltagy et al.,
2019) model to address the end-to-end event ex-
traction task. We optimize the end-to-end EL and
end-to-end EE models using AdamW (Loshchilov
and Hutter, 2019) with a learning rate of 3e-5. We
train our EL and EE models with 100 epochs and a
mini-batch size of 16 on a single graphics process-
ing unit (GPU) with half precision enabled.

5 Results

Table 2 shows the end-to-end EL performances
based on the IPF dataset, with the mean scores
of precision (P), recall (R), and F-score (F) over
the 10-fold CV. The ±(.) subscript indicates the
standard deviation of variation of a set of 10-fold
CV scores. Table 3 shows the 10-fold CV end-to-
end EL performances over the IPF dataset. The
overall performances in Table 2 and the consistent
performances over each fold in Table 3, suggest
that MD and EL perform well on the IPF dataset.

Table 4 shows the end-to-end EE performances
based on the IPF dataset where the end-to-end deep
event extraction model is simultaneously trained
for entity/trigger, role, and event detection. Since
the EE model follows the end-to-end manner, there-
fore it is noticeable that the model performances
are decreased from the NER layer to the modal-
ity extraction (ME) layer where each layer error is
propagated to the next layer, making the task chal-
lenging for the following layers. Table 5 shows the
results of the 10-fold CV of the end-to-end deep
EE. ME does not perform well compared with the
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10-fold Cross-Validation of End-to-End Deep Event Extraction
(%) Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10

P 85.46 84.97 82.74 84.94 88.28 85.82 84.05 84.47 83.49 83.48
NER R 84.01 83.04 81.29 80.71 82.20 82.73 82.55 84.19 84.42 75.35

F 84.72 83.99 82.01 82.77 85.13 84.25 83.29 84.33 83.95 79.21
P 61.13 56.76 60.64 61.10 55.77 62.54 64.53 58.75 54.18 50.83

RE R 62.05 59.95 57.26 57.23 59.61 60.55 60.06 58.83 67.54 51.86
F 61.59 58.31 58.91 59.10 57.63 61.53 62.21 58.79 60.12 51.34
P 52.99 52.19 54.80 50.11 50.93 41.48 52.55 51.42 57.74 51.25

EE R 41.03 39.49 43.51 35.82 39.25 32.56 41.26 43.56 47.01 37.47
F 46.24 44.96 48.51 41.78 44.34 36.48 46.22 47.16 51.82 43.29
P 48.65 64.86 73.08 43.75 58.33 43.75 50.01 19.35 64.10 50.01

ME R 32.14 33.80 32.26 17.28 25.61 18.75 27.85 10.01 46.55 16.67
F 38.71 44.44 44.76 24.78 35.59 26.25 35.77 13.19 53.94 25.01

Table 5: 10-fold cross validation (CV) of end-to-end deep event extraction. ME indicates modality extraction.

other extractions due to insufficient gold data as in
Table 1.

6 Related Work

Recent successes in neural networks have shown
impressive performance gains on many NLP ap-
plications including NER (Lu and Roth, 2015; Ma
and Hovy, 2016; Muis and Lu, 2017; Katiyar and
Cardie, 2018; Sohrab et al., 2019b; Sohrab and
Bhuiyan, 2021), EL (Gupta et al., 2017; Sohrab
et al., 2019a), RE (Christopoulou et al., 2019; Jia
et al., 2019), and EE (Feng et al., 2016). In con-
trast, other approaches have emphasized end-to-end
EL (Kolitsas et al., 2018), end-to-end RE (Miwa
and Bansal, 2016) or even end-to-end EE (Trieu
et al., 2020) to facilitate biomedical information
extraction tasks. There have been no studies on
an all-in-one neural end-to-end approach to facil-
itate biomedical research, especially to construct
disease network pathways that visualize the events
along with entity normalization. We addressed this
gap by introducing two end-to-end approaches: EL
and deep EE to construct a disease network based
on IPF, hoping that the DNC can bring insights in
making scientific discovery.

Current NLP techniques often use an event rep-
resentation data format called the “standoff format”
to represent their results. Spranger et al. (2015) pro-
posed and discussed a software scheme to convert
NLP event representations to standard biomedical
pathway data formats (SBML and BioPAX). Apart
from neural end-to-end modeling, we integrated
brat visualization panels for event representation
of the context.

There are several web-based tools exist that sup-
port the retrieval of biomedical information using
text mining. Sohrab et al. (2020a) introduced BEN-
NERD a web-based workflow of NER and EL for
NLP research that addresses COVID-19 research.
Huang et al. (2021) addressed document-level EE,
for extracting entity-centric information such as
entity types and entity relations, which is a key to
automatic knowledge acquisition from text corpora
for various domains. Sohrab et al. (2022) presented
an effective web application by addressing entity
detection, EL without context using knowledge
base application programming interfaces (API),
generative RE, and text classification approaches
in a pipeline manner for automatic data curation
in the biomedical domain. The advantage of this
approach is that it can output important fields in a
data format that is needed by intended users.

Li et al. (2022) proposed pubmedKB, a web
server designed to extract and visualize seman-
tic relationships between four biomedical entity
types: variants, genes, diseases, and chemicals.
pubmedKB uses state-of-the-art NLP techniques
to extract semantic relations from a large number
of PubMed abstracts. Deng et al. (2021) addressed
an extraction of gene-disease association using a
BERT-based language model. Xing et al. (2018)
proposed a pipeline based approach to extract the
relation between gene-phenotype from biomedical
literature.

Many works have shown considerable atten-
tion to boost the EE performances. Previous neu-
ral models on flat or non-nested EE have been
mainly focused on event trigger and argument de-
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tection (Chen et al., 2015; Nguyen et al., 2016;
Liu et al., 2018; Sha et al., 2018). Besides, deep
neural networks including recurrent and convolu-
tional neural networks (CNNs) have boosted EE
performance (Björne and Salakoski, 2018; Nguyen
and Nguyen, 2019). These models show better
performance than traditional hand-crafted feature-
based approaches (Björne and Salakoski, 2013;
Miwa and Ananiadou, 2013; Yang and Mitchell,
2016). In addition, there are a few end-to-end mod-
els (Yang and Mitchell, 2016; Nguyen and Nguyen,
2019) to extract flat events on flat entities; none
of these models can treat nested events on nested
entities that may further overlap with event trig-
gers. In contrast, Trieu et al. (2020) introduced an
end-to-end neural nested EE model which detects
nested entities and triggers, roles, nested events;
and achieved the new state-of-the-art performance
on seven biomedical nested event extraction tasks.
In our DNC, we employ the modeling of Deep
EE (Trieu et al., 2020) to detect the flat and nested
events over the IPF dataset.

7 Conclusion

We present Disease Network Constructor (DNC)
to address end-to-end EL and end-to-end deep EE
in order to identify and visualize the specific sub-
stances (such as proteins) that work differently
from those in the healthy state of human bodies.
DNC provides an interactive web-based user inter-
face https://biomed-text.airc.aist.
go.jp/disease_network/ for enabling real-
time visualization and extracting graph information
in different formats for end users. We will con-
tinue to improve DNC as well as implement new
2D and 3D graph functions to facilitate biomed-
ical research. Moreover, the applicability of this
system can be extended to lung diseases such as
COVID-19 because some entities and events of the
IPF dataset are also related to such diseases.
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