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Abstract

In this work, we report our efforts in advanc-
ing Chinese Word Segmentation for the pur-
pose of rapid deployment in different applica-
tions. The pre-trained language model (PLM)
based segmentation methods have achieved
state-of-the-art (SOTA) performance, whereas
this paradigm also poses challenges in the de-
ployment. It includes the balance between
performance and cost, segmentation ambigu-
ity due to domain diversity and vague words
boundary, and multi-grained segmentation. In
this context, we propose a simple yet effective
approach, namely CWSeg, to augment PLM-
based schemes by developing cohort training
and versatile decoding strategies. Extensive
experiments on benchmark datasets demon-
strate the efficiency and generalization of our
approach. The corresponding segmentation sys-
tem is also implemented for practical usage and
the demo is recorded.

1 Introduction

Chinese word segmentation (CWS) is a prelimi-
nary but essential procedure for Chinese language
processing tasks, and has been applied in various
scenarios (Yang et al., 2018; Zhang et al., 2019; Cui
et al., 2020; Han et al., 2020; Zhang et al., 2020;
Tan et al., 2020; Lu et al., 2023). Especially for fast
complete recall and accurate semantic understand-
ing in search and recommendation scenarios (Bao
et al., 2022), CWS is still indispensable. In addi-
tion, experiments on Chinese LLaMA and Alpaca
show that the token throughput of the model that
expands the vocabulary through word segmentation
has greatly improved the processing of Chinese text
compared with the original model (Cui et al., 2023).
Recent deep learning methods have achieved re-
markable results on publicly available datasets in
this regard (Qiu et al., 2019). Also, the pre-trained
language model (PLM) (Liu et al., 2019) further
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emerges as the paramount foundation of text rep-
resentation for CWS as seen in other tasks (Tian
et al., 2020b; Huang et al., 2020a; Maimaiti et al.,
2021).

Current PLM-based approaches, however, pose
three hurdles to the production deployment we need
to cross: (1) One dilemma is the trade-off between
the model performance and inference speed. (2)
The lexical diversity and domain gap also jeop-
ardize the fast deployment of a generic model to
customized scenarios. (Maimaiti et al., 2021). (3)
PLM-based schemes with single granularity are
less likely to meet multi-granularity demands of
practical relevance.

To tackle these issues, we propose an efficient
and general approach to augmenting PLM-based
Chinese Word Segmentation methods, namely
CWSeg. It can extrapolate to different sequence la-
beling scenarios. Recent studies showed that small
models also have the potential to be comparable to
large models (Ba and Caruana, 2014; Zhang et al.,
2018). We thus introduce a new cohort training
strategy to co-train a cohort of multi-scale model
artifacts to meet the performance and real-time de-
mands. Specifically, we employ Wasserstein dis-
tance (WD) (Rüschendorf, 1985) to orchestrate dis-
tributions of model cohorts to enable more robust
learning. In addition, we propose to construct the
tailored domain-specific lexicon Trie (Liu et al.,
2002) and build up a versatile decoding scheme to
augment the optimal segmentation path searching
on the fly for diverse practical scenarios. It can flex-
ibly adjust the segmentation granularity and benefit
customized domains.

In summary, our primary goal is to build a versa-
tile framework for strengthening different models
simultaneously and then rapidly deploying them
into multiple practical scenarios of CWS, which
is fundamentally different from existing research
works. Essentially, the output models of this frame-
work can be regarded as complements to, not re-
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placements for, existing SOTA methods.
Experimental results on multiple benchmark

datasets demonstrate the effectiveness of our ap-
proach. Ablation studies confirm the necessity of
cohort training strategy and lexicon Trie aided ver-
satile decoding solution. The cross-domain appli-
cation experiments demonstrate the generalization
capacity of our holistic approach.

2 Related Work

Early work in Chinese word segmentation builds
upon the statistical assumption (Li and Sun, 2009;
Sun et al., 2012a) by modeling rules into the learn-
ing process. Recently, PLMs have been introduced
(Tian et al., 2020b,a; Maimaiti et al., 2021) and
made significant advances in this regard. Our work,
however, aims to alleviate their potential challenges
involved in the industrial applications as mentioned
in Section 1.

Recent works (Huang et al., 2020b, 2021) distill
knowledge from the well-trained teacher model
into a student model to balance the model scale and
performance. However, it requires multiple fine-
tuning rounds and models can’t learn from each
other collaboratively. In this work, we introduce a
cohort training based learning strategy to address
these two problems for CWS. Different from the
pioneering mutual learning (Zhang et al., 2018) in
computer vision, we propose Wasserstein distance
to better enable the learning as studied in Sec. 4.3.
It’s a more carbon-footprint-friendly solution as
compared to recent research threads.

To mitigate the effects of Chinese lexical diver-
sity, Qiu et al. (Qiu et al., 2019) proposed a concise
unified model to extract the criterion-aware repre-
sentation for multi-criteria corpus, which requires
training from scratch on the entire corpus for new
criteria or domains. Gong et al. (Gong et al., 2017,
2020) proposed a multi-grained word segmentation
by training with large-scale pseudo labels, which
is relatively lagging for rapid deployment to new
domains. Our work approaches this issue by a
lightweight versatile decoding scheme to sidestep
heavy training loads.

3 Methodology

As shown in Fig. 1 (a), we formulate CWS as a
classical sequence labeling problem as with exist-
ing compelling schemes. Concretely, given a text
sequence of n characters X = {x1, . . . , xn}, CWS
is to tag involved characters sequentially with the

Figure 1: Overview of the CWSeg framework. (a) In the
training phase, we set several SOTA models as training
cohorts and initial weights from PLM. (b) In the infer-
ence stage, we select the most suitable artifacts from
the cohort for the actual scenario and apply the versatile
decoding strategy for the multi-granularity demands.

Figure 2: The cohort training strategy.

BIO encoding by maximizing their joint probability
p(y1, . . . , yn|X ) where yi ∈ T = {B, I,O}, short
for beginning, inside and outside respectively.

3.1 Cohort Training

The cohort training strategy enables multiple stu-
dent models to teach and learn from each other. The
objective function contains supervised loss Lc and
mimicry loss Lm. As exemplified by two models
in Fig. 2, the overall loss function is:

L = Lc1 + Lc2 + λ · Lm (1)

where λ ∈ [0, 1] is a hyper-parameter. Lc1 and Lc2

guide the model learning under the supervision of
real segmentation tags while Lm can encourage
different models to learn from each other collabo-
ratively.

Specifically, Lc1 and Lc2 refer to the cross en-
tropy (CE) loss. Without loss of generality, Lc1 =

−∑N
i=1

∑|T |
t=1 I(yi, t)log(p

t
1(xi)) and pt1(xi) =

exp(zt1)∑|T |
t=1 exp(z

t
1)

where I(·) is an indicator function,

pt1(xi) is the prediction probability, zt1 is the output
logit of the model F1. For Lm, Kullback-Leibler
(KL) divergence is a naive metric to quantify the
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distance between two distributions KL(p2||p1) =∑N
i=1

∑|T |
t=1 p

t
2(xi)

pt2(xi)

pt1(xi)
. However, KL diver-

gence is asymmetric and possibly infinite when two
distributions are disjoint or there are points such
that p1(xi) = 0 and p2(xi) > 0, which is fragile
in training (Arjovsky et al., 2017). The symmetric
Jensen-Shannon (JS) divergence, suffers from the
same problem (See A.1 for more details). Given
the above concerns, we introduce the Wasserstein-1
distance (a.k.a. earth mover’s distance):

W (p2,p1) = inf
γ∈∏(p2,p1)

E(x,y)∼γ [∥x− y∥] (2)

where
∏
(p2,p1) is the set of all joint distributions

γ(x,y) whose marginals are p2 and p1, respec-
tively. As shown in Appendix A.1, Wasserstein
distance can provide a meaningful and smooth rep-
resentation of the in-between distance for two dis-
tributions in lower dimensional manifolds without
overlaps. Eq. (2), however, is highly intractable.
We thus resort to Kantorovich-Rubinstein duality:

W (p2,p1) = sup
∥f∥≤1

Ex∼p2 [f(x)]− Ey∼p1 [f(y)]

(3)
where the supremum is over all the 1-Lipschitz
* function f : RK → R, which maps each K-
dimensional feature vector in the semantic space
to a real number. In practice, f is implemented
as a two-layer feed-forward neural network with
parameters Θf clipped to [−c, c], where c > 0.
Therefore, the mimicry loss Lm can be derived as
the dual form of Wasserstein distance:

Lm = max
Θf

∑

(x,y)

[f(x)− f(y)] (4)

Extension to Larger Cohort The cohort training
strategy can be easily extended to larger cohorts.
For example, given K models (K ≥ 2), the overall
loss function L can be formulated as:

L =

K∑

i=1

Lci +
2 · λ

K(K − 1)

K∑

i=1

K∑

j=i+1

W (pj ,pi)

(5)
Obviously, Eq. (1) is a special case of Eq. (5)

when K = 2.

3.2 Versatile Decoding
However, the PLM-based segmentation capacity of
single-granularity barely meets diverse real-world

*f is 1-Lipschitz ⇔ |f(x)− f(x′)| ≤ |x− x′| for all x
and x′

Figure 3: The versatile decoding strategy. (a) The bot-
tom left shows the fine-tuned model prediction, which is
largely affected by the training corpus. (b) The top left
shows phrases matched by the lexicon Trie built from a
user-defined vocabulary set. (c) The right part integrates
matching results by constructing CWSGraph and uses
the Viterbi algorithm for dynamic decoding according
to granularity requirements.

applications. As illustrated in Fig. 3 (a), the model
tends to decode the input text as “中国 (China) /科
学技术 (Science and Technology) /大学 (Univer-
sity)”, whereas only the input as a whole “中国科
学技术大学 (University of Science and Technol-
ogy of China, USTC)” refers to a meaningful entity.
Additionally, for large-scale content recommenda-
tions, rapidly acquiring as much relevant content
as possible is an essential step towards quality can-
didates on which more sophisticated methods can
function. Thus, reasonably splitting the whole en-
tity of “中国科学技术大学 (USTC)” into smaller
relevant semantic units “中国 (China) /科学 (Sci-
ence) /技术 (Technology) /大学 (University)” is
crucial in this regard.

In this context, we focus on adapting generic
models trained on annotated corpora to specific
domains and supporting diverse granularity. It in-
cludes the construction of lexicon Trie (Liu et al.,
2002) and versatile decoding.

Lexicon Trie: The lexicon Trie is designed to
store vocabulary in a compressed Trie structure
and search for each word efficiently. As illustrated
in Fig. 3 (b), the solid node denotes the root node,
and each circle denotes a Trie node, which contains
a value containing a Chinese token and a label
representing whether it is a complete word from the
root node so far. Here the red circle indicates that
the label is equal to True. Thus, given a collected
vocabulary set, we can initialize a lexicon Trie.

In the matching stage, given an input text such
as “中国科学技术大学”, we apply the matching
algorithm to search for all complete words in the
input text that can be matched on the lexicon Trie.
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The matched word list is shown in Fig. 3 (b).

Diverse Modes: The granularity crite-
rion criteria is roughly determined by the
RouteScore, which is the number of chunks
in the segmented path regularized by semantic
completeness. In total, we have the following four
modes:

Normal Mode: High-probability segmentation
that conforms to the statistics of the data.

Fine Mode: RouteScore larger than normal,
collecting more semantic units.

Coarse Mode: RouteScore smaller than nor-
mal, perceiving more complete semantics.

Index Mode: A segmentation result that com-
bines the above three modes.

The whole process can be formulated as Fig. 3
and Algorithm 1 (refer to A.1 for more function
details). In addition to the prediction from the fine-
tuned model F , we create a lexicon Trie D from
the pre-processed vocabulary set V to capture all
candidate phrases C without training. We merge
predictions P into candidates set C to construct
CWSGraph G, where each node represents a token.
Viterbi algorithm is adopted for decoding according
to the granularity criteria. In this way, we can
flexibly tailor model-based segmentation results to
multiple domain-specific scenarios while meeting
the multi-granularity requirements.

Algorithm 1 Versatile Decoding

Input: Text sequence X , fine-tuned model F , lex-
icon Trie D, granularity mode m.

Output: Text sequence label: Y .
1: P = F(X ); C = Matching(X ,D)|P;
2: G = CWSGraph(C);
3: borders = ExtractBorders(P);
4: if m = "normal" then
5: Y = P
6: else if m = "fine" then
7: cands = CutBorders(G, borders);
8: Y = Viterbi(G, cands, criteriam);
9: else if m = "coarse" then

10: cands = LinkBorders(G, borders);
11: Y = Viterbi(G, cands, criteriam);
12: else if m = "index" then
13: for m:["normal", "fine", "coarse"] do
14: Y |= VersatileDecoding(X ,F ,D,m);
15: end for
16: end if
17: return Y

4 Experiments

4.1 Setup

Dataset We experiment with six widely-used
datasets AS, CityU, CTB6, MSR, PKU, Weibo,
from SIGHAN 2005 Bakeoff, Chinese Treebank
and NLPCC2016 (SIGHAN2005Bakeoff; Emer-
son, 2005; Xue et al., 2005; Qiu et al., 2016). The
basic statistics and train/dev/test settings are de-
tailed in Table 1.

Corpus Vocab.
Size

Word Len. Dataset Size
50% 75% Train Dev. Test

AS 144.5k 3 3 698.9k 10.0k 14.4k
CityU 70.7k 2 3 47.7k 5.3k 1.5k
CTB6 47.5k 2 3 23.4k 2.0k 2.7k
MSR 90.1k 3 5 78.2k 8.7k 3.9k
PKU 58.1k 2 3 17.1k 1.9k 1.9k
Weibo 56.1k 2 3 20.1k 2.0k 8.5k

Table 1: The statistics of the datasets.

Baselines We select baselines both from tradi-
tional methods and the well-executed or SOTA
methods, such as Jieba (jieba) (Fast CWS tool
based on HMM), HanLP (pyhanlp) (CRF-based
method), THU (THULAC) (Perceptron-based
method), PKU (PKUSeg) (CRF-based CWS tool
uses a new training method, namely, the adaptive
online gradient descent method based on feature
frequency (Sun et al., 2012b)). Since the major ar-
chitecture of recent competing methods is CRF on
top of Transformers (e.g., BERT and its variants),
and as mentioned earlier, our flexible framework
CWSeg is a complement to, not a replacement for,
existing compelling methods, we experiment with
our method on BERT-CRF (refer to A.1 for more
details), which can be easily applied to other vari-
ants. WMSeg (Tian et al., 2020b), another most
recent SOTA method based on this architecture
utilizing memory networks to incorporate word-
hood information, is also used for comparison. To
be noted here, the PLMs implemented in BERT-
CRF and WMSeg are the BERT base model. Since
CWSeg adopts the cohort training strategy, we set
base versions of BERT and NEZHA as cohorts.

Experiment Settings The PLMs used in this
work are readily available, and are the widely rec-
ognized SOTA backbones in the Chinese commu-
nity. Such as ‘BERT’ for bert-base-chinese (Devlin
et al., 2019; bert-base chinese), ‘RoBERTa’ for
chinese_roberta_wwm (Liu et al., 2019; chinese-
roberta wwm), ‘NEZHA’ for NEZHA-Base-WWM
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(Junqiu Wei, 2019; NEZHA-Base-WWM). They
are based on Chinese characters (similar to sub-
words in English). We choose Adam optimizer
(Kingma and Ba, 2014) with an initial learning rate
as 2e-5 and tuned amongst {1e-4, 5e-5, 2e-5, 1e-5}.
We use the early stopping mechanism (Yao et al.,
2007) in the model training. The batch size was
tuned amongst {32, 64, 128}. The hyper-parameter
λ was set as 0.5 and tuned from [0.01, 1], and
the clipping threshold c was set as 0.5 and tuned
from [0.1, 0.5]. All experiments were run on In-
tel(R) Core(TM) i7-8700 CPU @ 3.20GHz and
NVIDIA V100-32g GPUs. Note here that all these
time-cost comparison experiments are tested on the
same CPU device, while deep methods run faster
on CUDA devices.

Adapt w/o
Retraining

Multi-
granularity F1 Latency

(s/k)
Jieba ! ! 80.67 0.17
HanLP ! ! 82.34 0.33
THU ! - 88.09 0.57
PKU - - 91.29 0.63
BERT-CRF - - 96.59 12.7
WMSeg - - 97.06 14.5
CWSeg ! ! 97.65 12.9

Table 2: Overall model comparison. ‘s/k’ refers to
seconds spent per thousand requests on the same CPU
device.

4.2 Main Results

Overall Performance Table 2 reports the overall
performance. For the sake of fairness, we utilize a
unified model and average F1 scores of six individ-
ual test sets (Luo et al., 2019). BERT-CRF stands
out as compared to traditional methods due to the
powerful representation capacity of the pre-trained
language model. Following the PLM paradigm,
(Tian et al., 2020b,a) further fuses wordhood in-
formation into the network, and achieves better
performance compared to BERT-CRF. For simplic-
ity, we set the BERT-CRF architecture as the cohort
in our implementation to verify the gain effect of
our framework. As shown in Table 2, our approach
further advances BERT-CRF with cohort training
and versatile decoding without reshaping model
architecture, which also defeats the most recent
SOTA method WMSeg (Tian et al., 2020b).

Multi-grained Segmentation We evaluate
CWSeg on four different segmentation modes. As
shown in Table 3, compared to the model without

Examples Modes Outputs

新型冠状病毒
COVID-19

Normal 新型/冠状/病毒
New Type/ Crown/ Virus

Fine 新型/冠状/病毒

Coarse 新型冠状病毒
COVID-19

Index

新型/冠状/病毒/
新型冠状病毒/
冠状病毒
Coronavirus

上海中心大厦
Shanghai
Tower

Normal 上海/中心/大厦
Shanghai/ Center/ Building

Fine 上海/中心/大厦

Coarse 上海中心大厦
Shanghai Tower

Index

上海/中心/大厦/
上海中心/
Shanghai Tower
中心大厦/
Centre
上海中心大厦

欧洲联盟
European Union

Normal 欧洲/联盟
Europe/ Union

Fine 欧洲/联盟

Coarse 欧洲联盟
European Union

Index 欧洲/联盟/欧洲联盟

中国科学技术大学
USTC

Normal 中国/科学技术/大学
China/ Sci. n Tech/ University

Fine 中国/科学/技术/大学
China/ Sci./ Tech/ University

Coarse 中国科学技术大学
USTC

Index 中国/科学技术/大学/科学/
技术/中国科学技术大学

Table 3: The multi-granularity case study.

versatile decoding, CWSeg can better capture the
whole words of the entity. This also illustrates the
granularity gap between annotated corpora and
the application scenarios. With versatile decoding,
CWSeg can generate both fine-grained and coarse-
grained labels. And multi-granularity results
provide more knowledge and indexing, which is
crucial for multiple scenarios such as retrieval,
content recommendation, and advertisement.

4.3 Ablation Study

We investigate the impact of versatile decoding,
cohort training, and different losses on CWSeg.

Effect of Versatile Decoding Table 4 details the
performance gain of our approach in the domain
adaption. It enables models to be readily applied
to new domains without training. Take MSR for
instance, our approach lifts the model performance
by a large margin of 7%. This is reasonable as MSR
has significantly different distributions compared
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Train Test Methods F1

All w/o AS AS CWSeg 96.91
w/o Versatile 96.88 (-0.03)

All w/o CityU CityU CWSeg 92.48
w/o Versatile 91.41 (-1.07)

All w/o CTB6 CTB6 CWSeg 89.21
w/o Versatile 89.17 (-0.04)

All w/o MSR MSR CWSeg 92.26
w/o Versatile 85.26 (-7.00)

All w/o PKU PKU CWSeg 92.58
w/o Versatile 90.56 (-2.02)

All w/o Weibo Weibo CWSeg 87.73
w/o Versatile 86.01 (-1.72)

Table 4: The effect of versatile decoding by cross-
domain experiments. ‘All w/o AS’ means all datasets
after removing AS. ‘w/o Versatile’ refers to the CWSeg
model without the versatile decoding module.

to others as shown in Table 1, and thus requires the
domain-adaptive decoding strategy.

PLM Settings SN MD CH
Net1 Net2 Net1 Net2 Net2 Net1 Net2

BERT-4 BERT-1 96.31 93.85 94.04 96.9 94.84
NEZHA-4 NEZHA-1 96.83 94.39 94.87 97.03 95.37

Table 5: The effect of cohort training experiments on
CTB6 (F1). ‘MD’ for model distillation of Net1 distills
Net2, ‘SN’ for single training, and ‘CH’ for cohort
training. ‘BERT-4’ means the first 4 layers of the BERT
base model.

Effect of Cohort Training Overall, the cohort
training outperforms the classical model distillation
approach in terms of small models as evidenced
by Net2 (94.84 vs 94.04 and 95.37 vs 94.87) in Ta-
ble 5. It’s worthwhile to note that big models also
benefit from the cohort training as compared to the
independent training (e.g., Net1: 96.9 vs 96.31 and
97.03 vs 96.83). In this setting, the CH training
policy, which is trained only once and converges
faster, is about 3 times faster than MD, which re-
quires 3 stages of training (Train Net1, train Net2,
Net1 distills Net2).

Effect of Cohort Settings To study the effect of
the cohort settings, we conducted a detailed analy-
sis. As shown in Table 6, we can easily find that:
(1) The cohort setting stands out in all trials, and
the small model improves more significantly. (2)
Larger models improve small models better. (3)
Diversity in cohort settings promotes performance.

Effect of Wasserstein Distance For the cohort
training, we further study the impact of mimicry
loss. Specifically, we compare WD with KL and

BERT-1 BERT-4 BERT-8 NZ-1 NZ-4
F1 93.85 96.31 96.97 94.39 96.83

(a) Single model training settings. ‘NZ’ for NEZHA.

BERT Cohort NZ Cohort
PLM BERT-1 BERT-4 BERT-1 BERT-8 NZ-1 NZ-4

F1 94.84
(+0.99)

96.9
(+0.59)

94.88
(+1.03)

97.31
(+0.34)

95.37
(+0.98)

97.03
(+0.20)

(b) Cohort training settings with the same backbone.

BERT and NEZHA Cohort
PLM BERT-1 BERT-4 NZ-1 NZ-4
F1 94.85 (+1.00) 96.91 (+0.60) 95.51 (+1.12) 97.16 (+0.33)

(c) Cohort training settings with different backbones.

Table 6: The effect of cohort setting experiments.

KL JS WD
BERT-1 94.39 94.48 94.56
BERT-2 95.81 95.82 96.02

Table 7: The effect of Wasserstein distance loss. ‘WD’
for Wasserstein distance.

JS as detailed in Table 7 and Fig. 4. WD is slightly
better than both KL and JS in large part due to the
performance ceiling, whereas it can significantly
accelerate cohort training by multiple folds. This
is appealing, especially for multiple large-scale
model learning.

4.4 Trade-off between Performance and
Speed

We experiment with cohort training (CH) of BERT-
1, BERT-4, BERT-8, and BERT-12. As a compar-
ison, these 4 single networks (SN) are also fine-
tuned independently. The latency for CH and SN is
the same, and the units of latency are defined in Sec-
tion 4.2. As shown in Fig. 5, overall, CH produces
a batch of different model artifacts simultaneously
as designed, which outperforms counterparts of SN
without inference latency penalty. For example,
CH-4 setting has almost the same segmentation
performance as SN-12. These artifacts can serve
different inference scenarios. Specifically, CH-1
can be used for real-time demanding applications
and CH-12 works well on the offline inference sce-
narios with more tolerance of latency.

5 Discussion

Our latency comparisons are benchmarked on the
same CPU device, while deep methods run faster
on CUDA devices. Besides, we can resort to a fast-
compiling language (e.g., C++) backed platform
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Figure 4: Loss convergence comparison for BERT-1 and
BERT-2 in cohort settings.

Figure 5: The trade-off of performance and speed.

or tailored toolchain (e.g., ONNX) to optimize the
serving speed. How to apply diversity modes to
different scenarios? Generally speaking, the coarse
mode is to perceive complete semantics, and the
fine mode is to perceive more extensive concepts.
For example, in the scenarios of search and recom-
mendation, the normal or coarse mode is employed
to process web pages to build inverted indexes. In-
dex mode is often used for query expansion, where
we disassemble queries into multiple granularities
to maximize recall of relevant documents.

6 Conclusion

In this work, we develop an efficient and general
framework, CWSeg, which enables the state-of-the-
art schemes of Chinese word segmentation better
prepared for industrial deployment scenarios. We
present Wasserstein distance-based cohort learn-
ing method and versatile decoding to facilitate the
trade-off between segmentation performance and
serving latency as well as the fast cross-domain
adaption. Comprehensive experiments are per-
formed to justify the efficiency and generalization
of CWSeg. We believe that our work can be extrap-
olated to other sequence labeling problems straight-
forwardly.

Limitations

This study has potential limitations. When the
CWSeg model is applied to a new domain, we
assume that words and phrases solely related to the
domain are available.
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A Appendix

A.1 Model Details

Cohort Model We set the SOTA CWS model ar-
chitecture BERT-CRF as cohort model implemen-
tations to exploit the PLM strength and transition
patterns of the labeling system.

For each character xi is mapped to xi ∈ Rde ,
where de is the embedding size. The PLM encoder

extract the contextual features hi ∈ Rdh automati-
cally for each character xi by

[h1,h2, ...,h|X |] = Encoder(X), (6)

where X ∈ Rde×|X | is the embedding matrix of
X , dh is the size of hidden features. There are
several prevalent choices for Encoder model, such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019).

There are rules in the labeling systems, such as
the I can only be after the B label. We thus utilize
the conditional random fields (CRF) (Lafferty et al.,
2001) to model the transition patterns, which can
be formulated as:

p(yi|xi) =
exp(WcW

⊤
o hi + bc)∑

yi−1yi
exp(WcW⊤

o hi + bc)
, (7)

where Wo ∈ Rdh×|T |, Wc ∈ R|T |×|T |, and bc ∈
R|T | are training parameters to model the transition
from yi−1 to yi.

Figure 6: Suppose two probability distributions P and
Q. ∀(x, y) ∈ P, x = 0, y ∼ U(0, 1); ∀(x, y) ∈ Q, x =
θ, 0 ≤ θ ≤ 1, y ∼ U(0, 1).

Wasserstein Distance As shown in Fig. 6, there
is no overlap between P and Q when θ ̸= 0, and:

KL(P ||Q) =
∑

x=0,y∼U(0,1)

1 · log1
0
= +∞,

KL(Q||P ) =
∑

x=θ,y∼U(0,1)

1 · log1
0
= +∞,

JS(P,Q) =

1

2
(

∑

x=0,y∼U(0,1)

1 · log 11
2

+
∑

x=0,y∼U(0,1)

1 · log 11
2

)

= log2,

W (P,Q) = |θ|,
(8)
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when θ = 0:

KL(P ||Q) = KL(Q||P ) = JS(P,Q) = 0,

W (P,Q) = 0 = |θ|, (9)

where KL(·) gives infinity when two distributions
are disjoint, and JS(·) is always a constant. And
they are both equal to 0 when θ = 0, so they both
have a sudden jump at θ = 0. While the Wasser-
stein distance provides a smooth measure, which
contributes to stable gradient descents.

Versatile Decoding Pseudocode ExtractBorders
aims to obtain the border indices of the prediction,
such as the borders of “中国 /科学技术 /大学” is
[0, 2, 6, 8]. CutBorders is designed to filter out the
candidates in C that cross the borders, such as “中
国科学技术大学” will be filtered out, and “科学”
“技术” will be preserved. LinkBorders is designed
to obtain all candidates in C that match one-skip or
multi-skip borders, such as “中国科学技术大学”
will be preserved for it skip two borders [2, 6].

# extract borders of the segmented token_list
def extract_borders(token_list):

borders = set()
for token in token_list:

borders.add(token.start_offset)
borders.add(token.end_offset+1)

return borders

# find candidates that no-cross borders
def cut_borders(token_list, borders):

cut_borders = []
cross_border = False
for token in token_list:

cross_border = False
for idx in range(token.start_offset+1,

token.end_offset+1):
if idx in borders:

cross_border = True
break

if not cross_border:
cut_borders.append(token)

return cut_borders

# find all candidates in token_list that match
one-skip or multi-skip borders

def link_borders(token_list, borders):
link_borders = []
for token in token_list:

if token.start_offset in borders and
(token.end_offset+1) in borders:
link_borders.append(token)

return link_borders
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