
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 126–133

July 10-12, 2023 ©2023 Association for Computational Linguistics

AVEN-GR: Attribute Value Extraction and Normalization using product
GRaphs

Donato Crisostomi (∗)

Amazon
Sapienza University Of Rome
crisostomi@di.uniroma1.it

Thomas Ricatte (∗)

Amazon
tricatte@amazon.com

Abstract

Getting a good understanding of the user intent
is vital for e-commerce applications to surface
the right product to a given customer query.
Query Understanding (QU) systems are essen-
tial for this purpose, and many e-commerce
providers are working on complex solutions
that need to be data efficient and able to capture
early emerging market trends. Query Attribute
Understanding (QAU) is a sub-component of
QU that involves extracting named attributes
from user queries and linking them to exist-
ing e-commerce entities such as brand, mate-
rial, color, etc. While extracting named entities
from text has been extensively explored in the
literature, QAU requires specific attention due
to the nature of the queries, which are often
short, noisy, ambiguous, and constantly evolv-
ing. This paper makes three contributions to
QAU. First, we propose a novel end-to-end ap-
proach that jointly solves Named Entity Recog-
nition (NER) and Entity Linking (NEL) and
enables open-world reasoning for QAU. Sec-
ond, we introduce a novel method for utilizing
product graphs to enhance the representation
of query entities. Finally, we present a new
dataset constructed from public sources that
can be used to evaluate the performance of fu-
ture QAU systems.

1 Introduction

Search queries are the main point of interaction
between the customer and the search system. As
such, extracting information from the queries is
pivotal in surfacing the relevant products, making
the task directly responsible for the quality of the
overall customer experience. Query Understand-
ing (QU) not only inherits all the challenges of
standard natural language understanding but poses
additional difficulties: queries are short and lack
context, which makes them challenging to under-
stand. They often contain implicit knowledge that

*These authors contributed equally to this work

is difficult to capture without external reference.
For example, the query "M2 laptop" refers to Ap-
ple laptops since M2 processors are only sold by
Apple. Furthermore, customers do not have techni-
cal writing skills, which can result in queries that
are noisy or use inappropriate search terms.

In this work, we focus on the task of Query At-
tribute Understanding (QAU), which aims to ex-
tract the attribute values from the queries and make
them usable for other downstream applications in
the Search Engine (see fig. 1). QAU is related to
another important task, Document Attribute Under-
standing (DAU), which aims to extract attributes
from product descriptions. DAU has received sig-
nificant attention from the community in the past
years ((Zheng et al., 2018; Xu et al., 2019; Dong
et al., 2020; Karamanolakis et al., 2020)) and does
not suffer from the difficulties mentioned above and
that are specific to queries. Both QAU and DAU are
specific instances of Named Entity Recognition and
Linking (NER/NEL), which aims to extract typed
mentions from text. However, in contrast to classic
NER, which usually handles fewer attribute types
(such as Person, Location, and Organization), QAU
and DAU deal with a larger number of attribute
types (which can reach thousands in e-commerce
as noted in (Xu et al., 2019)).

We claim that three critical elements need to
be addressed to get a practical solution to QAU.
Firstly, named entity recognition should be per-
formed jointly with entity linking, in order to map
the detected entities to our knowledge base. Solv-
ing these tasks separately is not practical in an
industrial context, as it leads to error propagation
(linking module cannot make up for a wrong at-
tribute prediction by the NER module) and more
generally hidden technical debt (see (Sculley et al.,
2015)). Furthermore, separating the tasks precludes
the possibility of inductive transfer, which has been
shown to be crucial in related tasks (Zhang and
Yang, 2021; Caruana, 1997; Ruder, 2017).

126



Figure 1: Overview of the task. We ultimately want to
detect that this query contains three mentions: (brown
chocolate), (boot) and (suede). The first annotation row
shows the ground truth for the attribute value extraction
task, while the second one shows that of the normaliza-
tion step, which may be understood as entity linking
over the detected mentions.

Secondly, product graphs (PG) are becoming a
new standard to represent e-commerce concepts
and the relations between searchable products.
Therefore, QAU systems should be able to lever-
age this new source of knowledge to improve their
performance. Finally, QAU systems should always
be designed with an "open-world" setup in mind
to deal dynamically with new concepts. For in-
stance, if we consider the query ‘Sony A95K TV’,
we should be able to detect that ‘A95K’ is a men-
tion representing a product line even if this product
does not exist in our knowledge base.

Note that extreme classification (Jain et al., 2016)
is a possible alternative to classic NER/NER stack-
ing, but it does not consider the coarse-grained
nature of attributes (entities belong to different at-
tribute types) and does not easily take into account
the open-world nature of the task. Users can search
for attribute values that are not yet in the knowledge
base or not associated with any known product,
making it difficult to predict normalized attribute
values directly.

Overview of our approach

To overcome the aforementioned limitations of ex-
isting approaches, we propose an end-to-end multi-
task approach that jointly predicts mentions, at-
tribute types and entities. We build a shared repre-
sentation of the text spans via a pre-trained trans-
former architecture (Liu et al., 2019). The shared
span representation is used to determine the prob-
ability of the span being a mention, containing a
particular attribute type, and representing a spe-
cific entity instance of that attribute. Our method
can handle an open-world scenario where an at-
tribute value does not have a matching entity in
the knowledge base. In such cases, the model can
still predict the attribute type of the value. Note

that this approach is also data-efficient and can
effectively utilize weakly labeled data points with-
out entity annotations. Importantly, the end-to-end
approach avoids error propagation since the entity-
level prediction is conditioned but not solely reliant
on the attribute-level information. Additionally,
our approach can handle overlapping spans with-
out requiring additional adjustments. Finally, if the
entities are structured in a knowledge graph, our
approach can leverage its topology to enrich the
entity embeddings.

In order for our approach to be tested in scenar-
ios with varying difficulties we need a dataset of
queries of controllable complexity, along with a
knowledge graph involving the entities there men-
tioned. To this end, we propose leveraging the
products in the Amazon Berkeley Objects dataset
(Collins et al., 2022) to construct a knowledge
graph consisting of products related to their at-
tribute values by relations encoding the attribute
type. The product graph is used both as knowl-
edge base for the approach and as starting artifact
to generate a dataset of public synthetic queries.
As public, non-confidential resources, we aim to
release both artifacts for reproducibility and to en-
courage research in the field. Summarizing, our
contributions are three-fold:

1. we propose AVEN, a novel end-to-end method
that can effectively solve QAU in an open world
setting;

2. we propose a way to use Product Graph to enrich
the representation of the entities

3. we present a novel evaluation that combines
a public product graph with a set of synthetic
queries involving associated entities, aimed at
promoting research on knowledge-based meth-
ods for QAU.

2 Related work

Document Attribute Understanding As previ-
ously noted, Query Attribute Understanding (QAU)
shares similarities with Document Attribute Under-
standing (DAU), which has been previously ad-
dressed in the literature. (Zheng et al., 2018) pro-
posed an early solution based on a classic NER
pipeline that assigns each attribute type with a set
of BIO (Beginning, Inside, Outside) tags. However,
this approach suffers from scalability issues when
dealing with a large number of attributes, and also

127



hinders data sharing between head attributes (such
as color) and tail attributes (such as glass color).

To solve this issue, several approaches (Xu
et al., 2019; Dong et al., 2020) based on Question
Answering were pushed in the subsequent years.
These approaches consider each attribute as a sepa-
rate question to be answered leveraging the product
description. The main advantage of Question An-
swering approaches is that they do not require a
specific set of BIO tags for each attribute and are
therefore more scalable. However, they are also
harder to train and highly depend on the semantic
representations of the attribute types. In practical
cases in which the detected entity mentions must
also be linked to normalized entities, Entity Link-
ing is performed independently over the output of
the NER step. While all these works consider an
attribute value to be just a span of unstructured text,
we aim to directly obtain normalized entities as
attribute values, hence requiring performing Entity
Linking over the detected spans.

Entity Linking Entity Linking has been mostly
studied in scenarios involving long documents with
lot of context, while only few works exist for short
sentences like queries. Most relevant to our work is
ELQ (Li et al., 2020), in which a bi-encoder is em-
ployed to jointly perform mention detection and EL
in a multi-task setup. Analogously, in Oliya et al.
(2021) mention detection and entity linking are
coupled with question answering in an end-to-end
pipeline. We take inspiration from both works to
tackle AVEN by injecting a new stage in the end-to-
end mention detection and entity linking pipeline,
responsible for classifying the span attribute.

Query Attribute Understanding While it may
be tempting to view Query Attribute Understand-
ing (QAU) as a simplified version of Document
Attribute Understanding (DAU), this assumption
overlooks the unique challenges posed by queries,
such as their inherent noisiness, lack of context,
and ambiguity. To the best of our knowledge, the
only existing work that deals with both attribute
value extraction and subsequent entity linking is
QUEACO (Zhang et al., 2021). Differently from
our approach, QUEACO is a fragmented model that
stacks a user-behavior based normalization module
over a NER pipeline. While we use user behavior
in the data collection, we don’t require it for the
training and inference pipelines.

3 Data

In order to have a controlled ground for experimen-
tation, we need (i) a dataset of user queries, and
(ii) a Knowledge Graph containing most entities
involved in the user queries. Knowledge Graphs
involving products and relative information are usu-
ally called product graphs.

3.1 Product Graphs

A Product Graph is a Knowledge Graph involving
a set of products and their corresponding attributes.
Formally, it is a bipartite graph consisting of a
vertex set V = (P ∪ A) containing products P
and attribute values A connected by edges E =
R1 ∪ R2 ∪ · · · ∪ Rm, where R1, R2, . . . , Rm are
set of edges for the different m attribute types. In
practice, a triple (p, r, a) relates a product p with
an attribute value a through an attribute relation r.

3.2 Synthetic data

Given the lack of a public Product Graph, we con-
structed one by leveraging the Amazon Berkeley
Objects (ABO)1 dataset (Collins et al., 2022). The
constructed graph not only lends itself to the overall
inference pipeline, but can also be used to generate
a set of synthetic queries that involve the entities
of interest by construction. The generation proce-
dure simply constructs queries as bag of attributes
by starting from product nodes and walking the
relations related to the attributes of interest, then
discarding the product node in the final query and
only keeping its attribute values along with the at-
tribute type annotations. The generation pipeline is
formalized in appendix C. To increase the complex-
ity of the dataset, we also replace product types
with synonyms found in the same WordNet synsets
(Fellbaum, 1998).

3.3 Real user queries

Given the huge number of possible attribute values,
manual annotation of user queries with attribute
and entity-level labels is unfeasible. For this rea-
son, we leverage a pre-trained NER model to obtain
the attribute-level labels and employ a determin-
istic heuristic to label the corresponding attribute
values with entity-level annotations. Let P be a set
of purchased items, and Q be the queries that led to
the purchase. First, we create a Product Graph PG

1https://amazon-berkeley-
objects.s3.amazonaws.com/index.html

128



from P by creating a triple (p, r, a) for each prod-
uct p connected to an attribute value a through at-
tribute type r. Then, for each query q ∈ Q, we iter-
ate over each NER-annotated span (r, v, s), where
span s holds value v for attribute type r. We now
want to annotate the span s with two annotations,
one at the attribute level and one at the entity level.
For the former, we can keep the one detected from
NER r. For the entity-level annotation instead, we
choose to annotate s with the entity a such that
(p, r, a) ∈ PG. In other words, given that NER has
predicted the span to refer to an attribute type r, we
annotate the span with the entity corresponding to
the attribute value for r of the product that the user
bought after searching for the query q. Assume for
instance that an user looked for ‘red Nike shoes’
and eventually bought some product p referring to
a specific pair of shoes that are, in fact, red. In this
case, the span s0,1 with value ‘red’ can be anno-
tated to be a color as predicted by NER, while the
entity label will be that of the value for p for the
attribute color, which is the node corresponding to
the value ‘red’ in the knowledge base. Of course,
the user may also have eventually bought a black
pair of shoes instead: in this case, the heuristic
makes a mistake, and therefore the annotation is
expected to be noisy. Nevertheless, assuming the
query keywords to encode strong preferences when
present, these cases are expected to be rare enough
for the model to eventually learn to discard them
as noise.

4 Approach

The overall architecture of AVEN contains three
different sub-modules, each responsible for a dif-
ferent task: (i) a mention detection module; (ii) an
attribute classification module; (iii) an entity dis-
ambiguation module.

The three modules are learnt jointly as shown
in fig. 2 and each of them contributes to the final
loss. The latter is obtained as a weighted sum of the
three losses. While the coefficients are currently
set to 1 for all the three tasks, we aim to eventually
use GradNorm (Chen et al., 2018) to tune the loss
weights.

More formally, let us define q = q1, . . . , qn as
an input query with n tokens/words. We denote by
s[i,j] the sub-span qiqi+1 . . . qj . We are interested
in three different quantities: Mij refers to span
s[i,j] being a mention, Aa

ij refers to the same span
being an attribute value for attribute a, and finally

Ee
ij refers to s[i,j] being an instance of entity e. In

the next sections, we will review the three different
components.

Mention Detection
For a span s[i,j], we denote the span embedding by
sij = fθ(s[i,j]). A simple version of fθ(s[i,j]) is
the mean of the RoBERTa (Liu et al., 2019) em-
beddings of the tokens in s[i,j]. We can define the
probability of span s[i,j] being an actual mention to
be

P (Mij) = σ (gµ(sij)) ,

where σ is the sigmoid function and gµ(·) is a para-
metric function taking in input the span representa-
tion and returning an unnormalized score. In our
current implementation, this is realized as a Multi-
Layer Perceptron (MLP). Note that we employ the
sigmoid as we assume that the probability of a span
s[i,j] to be a mention does not depend on the proba-
bility of another span s[k,l] to be a mention. Note
that, this assumption is questionable, especially as
soon as s[i,j] and s[k,l] have a non-null intersection.
Nevertheless, this choice allows the model to detect
overlapping spans when faced with cases such as
those exemplified in section 1. Note that it’s al-
ways possible to add a Non-Maximum Suppression
(NMS) step if we want to avoid producing overlap-
ping annotations. The mention detector is trained
by minimizing a Binary Cross Entropy loss ℓMD.

Attribute classification
We are now interested in the probability that a span
s[i,j] has attribute type a knowing that it is a men-
tion

P
(
A

(a)
i,j |Mij

)
=

exp
(
h
(a)
ν (si,j)

)

∑
a′∈A exp

(
h
(a′)
ν (si,j)

) ,

where h
(·)
ν () is a parametric function taking into

input the span representation. As for the mention
detector, we employ a MLP. Note that we adopt a
multi-task approach where we use the exact same
span representation for the three different tasks,
fostering information transfer among the latter. The
attribute classifier is trained with a simple cross
entropy loss ℓAC and only considers actual ground-
truth mentions at train time.

Entity disambiguation
In the entity disambiguation module, our goal is to
estimate the probability P

(
E

(e)
ij |Mij

)
. Given the

129



s[1,3]

x

threshold
0.73

argmax

d
x,e(1)

d
x,e(n)

argmax

is_mention

ℓMD

product_type

ℓAC

CARRYBAG

ℓED

Figure 2: Our multi-task architecture with the three corresponding losses ℓMD, ℓAC and ℓED

fact that each entity e is associated with an unique
attribute type a = type (e), we can argue that this
is actually equivalent to estimating the joint prob-
ability P

(
E

(e)
ij , A

(a)
ij |Mij

)
Since the probability

of a span to be type a is already given by the at-
tribute classifier, we can just estimate for each pos-
sible attribute a

P
(
E

(e)
ij | A

(a)
ij ,Mij

)
=

exp
(
v
(a)
ξ (si,j , e)

)

∑

e′∈E
exp

(
v
(a)
ξ (si,j , e

′)
) ,

where v
(a)
ξ (·) is a parametric function taking into

input the span representation and the entity e to be
scored. The main advantage of this last expression
is that it allows us to adopt a divide-and-conquer
approach since for each attribute a, we only have
to consider its compatible entities. Similarly to
the attribute classifier, the entity disambiguator is
learnt with a simple cross entropy loss ℓED on ac-
tual groundtruth mentions. Our first implemen-
tation of v

(a)
ξ (·) is a simple similarity scorer be-

tween the span representation and the embedding
of the considered entity. Entity embeddings are
computed by embedding a textual representation
of their neighborhood in the knowledge graph, as
illustrated in Figure 3.

Inference

To compute the probability of each span s[i,j] being
a mention of entity e at inference time, we simply
multiply the mention probability by the entity clas-
sification score. To improve efficiency, we exclude
all spans s[i,j] with a mention probability P (Mij)
lower than a pre-defined threshold pmin, such as
0.5 in our experiments.

Advantages
Our approach shares the span representation across
all three tasks: mention detection, attribute clas-
sification, and entity disambiguation, benefiting
from the effectiveness of multi-task learning (Caru-
ana, 1997; Ruder, 2017) in transferring knowledge
between similar tasks. This is particularly rele-
vant for our method as the tasks require differ-
ent levels of label details: mention detection only
requires weak labeling, while the attribute/entity
tasks rely on associations between mentions and
knowledge graph entities. Sharing the representa-
tion allows the entity disambiguation module to
leverage weakly-labeled mention data, leading to a
more data-efficient approach.

5 Experimental Results

In this section, we present experimental results
on two datasets described in section 3.2 and sec-
tion 3.3. We provide a brief overview of the proto-
col used in both cases.

5.1 Considered metrics
Mention Detection
We report both (micro) Precision and Recall for
the mention detection task to validate the perfor-
mance of the mention detector. The percentage
of recalled mention will be a natural upper bound
for the following metrics on attribute classification.
Indeed, if we are not able to retrieve a mention, we
will consider that we cannot be right at the subse-
quent tasks.

Attribute Classification
We report the multiclass Accuracy for the attribute
classification task; This metric is computed on the
set of ground-truths mentions and thus ignoring

130



s1

s2

x
(1)
e

x
(2)
e

xe
e

Figure 3: We use predefined templates to format encoded relations in the graph into natural language sentences
for each entity. These sentences are then embedded using RoBERTa (Liu et al., 2019) to obtain an in-sentence
representation, which is further averaged to obtain an overall entity representation.

wrongly detected mentions (for which no attribute
exists). We also present a complementary version
of this metric, which focuses exclusively on ground-
truth mentions that contain previously unseen "un-
known" entities. This metric is only applicable
to the second, more realistic dataset that includes
novel entities in the test set.

Entity Disambiguation
We report the multiclass Accuracy for the entity
disambiguation task; This one is computed only
on the subset of ground-truth mentions containing
entities seen at train time.

5.2 Baselines
We consider the following models (i) NER+Dict:
A RoBERTa-based NER baseline with dic-
tionary lookup over the detected attributes.
(ii) NER+NN: A RoBERTa-based NER base-
line with nearest neighbor between detected
attribute embeddings and entity embeddings.
(iii) AVEN/AVEN-NC/AVEN-GR: Our end–
to-end approach in three different flavours: with
plain entity embedding, with plain entity embed-
ding and no contextual span embedding and with
product-graph based embeddings.

5.3 Results
We report in fig. 4 (resp. fig. 5) the results from the
synthetic dataset described in section 3.2 (resp. the
actual user queries described in section 3.3). Over-
all, our AVEN- methods outperform the "stacked"
methods (NER + separate entity linker), partic-
ularly on the task of known entity classification.
Among our methods, AVEN-NC has a lower men-
tion recall due to the lack of contextual span em-
bedding. However, our methods are effective in
predicting the attribute type of unseen entities, as

Model
Mention Attribute Entity

Precision Recall Accuracy Accuracy

NER+Dict 98.5 97.9 97.6 68.3
NER+NN 98.1 97.7 97.5 64.3
AVEN 95.2 93.5 93.3 83.2
AVEN-NC 69.8 96.2 95.3 89.5
AVEN-GR 97.8 97.4 97.2 76.3

Figure 4: Results on synthetic data (see section 3.2)

Model
Mention Attribute Entity

Precision Recall Acc. Acc. (unseen) Acc.

NER+Dict 89.9 93.6 93.2 88.1 81.5
NER+NN 91.6 92.5 92.3 86.6 81.9
AVEN 96.3 94.0 90.2 89.4 93.0
AVEN-NC 88.2 93.8 91.5 82.4 95.3
AVEN-GR 96.0 95.4 93.0 89.7 93.9

Figure 5: Results on real user queries (see section 3.3)

evidenced by their performance on this task. It is
worth noting that the attribute classification per-
formance is lower for unseen attributes, which is
expected.

6 Conclusions and future directions

In this paper, we introduced a novel approach to
tackle QAU in a multi-task fashion. We demon-
strated its effectiveness on two datasets, compared
to some simple baselines. However, further abla-
tion studies on more datasets / baselines (e.g. Ay-
oola et al. 2022) are necessary to assess its general-
ization power. Additionally, future work will focus
on improving the multitasking efficiency of AVEN,
for instance by implementing (Chen et al., 2018).

131



References
Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos

Christodoulopoulos, and Andrea Pierleoni. 2022. Re-
FinED: An efficient zero-shot-capable approach to
end-to-end entity linking. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Track, pages 209–
220, Hybrid: Seattle, Washington + Online. Associa-
tion for Computational Linguistics.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. GradNorm: Gradient nor-
malization for adaptive loss balancing in deep mul-
titask networks. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
794–803. PMLR.

Jasmine Collins, Shubham Goel, Kenan Deng, Achlesh-
war Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang,
Tomas F Yago Vicente, Thomas Dideriksen, Himan-
shu Arora, Matthieu Guillaumin, and Jitendra Malik.
2022. Abo: Dataset and benchmarks for real-world
3d object understanding. CVPR.

Xin Luna Dong, Xiang He, Andrey Kan, Xian Li, Yan
Liang, Jun Ma, Yifan Ethan Xu, Chenwei Zhang,
Tong Zhao, Gabriel Blanco Saldana, et al. 2020. Au-
toknow: Self-driving knowledge collection for prod-
ucts of thousands of types. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2724–2734.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Himanshu Jain, Yashoteja Prabhu, and Manik Varma.
2016. Extreme multi-label loss functions for recom-
mendation, tagging, ranking & other missing label ap-
plications. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’16, page 935–944, New
York, NY, USA. Association for Computing Machin-
ery.

Giannis Karamanolakis, Jun Ma, and Xin Luna Dong.
2020. Txtract: Taxonomy-aware knowledge ex-
traction for thousands of product categories. arXiv
preprint arXiv:2004.13852.

Belinda Z Li, Sewon Min, Srinivasan Iyer, Yashar
Mehdad, and Wen-tau Yih. 2020. Efficient one-
pass end-to-end entity linking for questions. arXiv
preprint arXiv:2010.02413.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Armin Oliya, Amir Saffari, Priyanka Sen, and Tom Ay-
oola. 2021. End-to-end entity resolution and question
answering using differentiable knowledge graphs.
arXiv preprint arXiv:2109.05817.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

David Sculley, Gary Holt, Daniel Golovin, Eugene
Davydov, Todd Phillips, Dietmar Ebner, Vinay
Chaudhary, Michael Young, Jean-Francois Crespo,
and Dan Dennison. 2015. Hidden technical debt in
machine learning systems. Advances in neural infor-
mation processing systems, 28.

Huimin Xu, Wenting Wang, Xinnian Mao, Xinyu Jiang,
and Man Lan. 2019. Scaling up open tagging from
tens to thousands: Comprehension empowered at-
tribute value extraction from product title. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5214–
5223.

Danqing Zhang, Zheng Li, Tianyu Cao, Chen Luo, Tony
Wu, Hanqing Lu, Yiwei Song, Bing Yin, Tuo Zhao,
and Qiang Yang. 2021. Queaco: Borrowing treasures
from weakly-labeled behavior data for query attribute
value extraction. In Proceedings of the 30th ACM In-
ternational Conference on Information & Knowledge
Management, pages 4362–4372.

Yu Zhang and Qiang Yang. 2021. A survey on multi-
task learning. IEEE Transactions on Knowledge and
Data Engineering, pages 1–1.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. Opentag: Open attribute
value extraction from product profiles. In Proceed-
ings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pages
1049–1058.

132

https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://proceedings.mlr.press/v80/chen18a.html
https://proceedings.mlr.press/v80/chen18a.html
https://proceedings.mlr.press/v80/chen18a.html
https://doi.org/10.1145/2939672.2939756
https://doi.org/10.1145/2939672.2939756
https://doi.org/10.1145/2939672.2939756
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/TKDE.2021.3070203


A Limitations

Despite the promising results achieved by our ap-
proach, some limitations must be acknowledged.
First, the use of product graphs as a knowledge
source is a double-edged sword. Indeed, while it
provides a valuable resource to exploit, the constant
evolution of product graphs may create a strong
coupling between the algorithm and the knowledge
source, thus reducing the method’s robustness over
time. Second, our method’s span-based approach
makes it computationally expensive, requiring set-
ting a maximum span size to circumvent this issue

B Ethics Statement

Our approach aims to boost the effectiveness of e-
commerce search engines. However, by jointly op-
timizing multiple tasks, we run the risk of creating
a less transparent system that could be susceptible
to biases. These biases may lead to certain less fre-
quent entities being overlooked or misclassified as
more common ones, thereby reducing the overall
fairness and accuracy of the system.

C Synthetic queries generation

Algorithm 1 outlines the synthetic query generation
procedure.

Algorithm 1 Synthetic queries generation.

1: procedure GENERATE QUERIES(pg: Product-
Graph)

2: P ← pg.products
3: Acons ← considered attributes
4: Q← [] ▷ queries
5: for all product p in P do
6: Ap ← [] ▷ attributes for the product
7: T ← all triples (p, ∗, ∗) in pg
8: for all triple (p, a, r) in T do
9: if a in Acons then

10: Ap ← Ap ∪ a ▷ attribute
values

11: Rp ← Rp ∪ r ▷ attribute types
12: end if
13: end for
14: shuffle Ap and Rp accordingly
15: qtext = str(Ap) ▷ query is a bag of

attribute values
16: qann = Rp ▷ annotations
17: end for
18: return Q
19: end procedure

D Prediction inspection

We present in fig. 6, an example of our qualitative
evaluation within the QAU framework we have
presented.

Groundtruth Attributes

Groundtruth Entities

Predicted Attributes

Predicted Entities

Figure 6: Predictions over one sample, with each row
consisting of query text and corresponding annotations.
The first two rows represent ground truth attributes and
entities, while the last two represent predicted attributes
and entities.

133


