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Abstract

Conversational agents are typically made up
of domain (DC) and intent classifiers (IC) that
identify the general subject an utterance be-
longs to and the specific action a user wishes to
achieve. In addition, named entity recognition
(NER) performs per token labeling to identify
specific entities of interest in a spoken utterance.
We investigate improving joint IC and NER
models using entity contrastive learning that
attempts to cluster similar entities together in
a learned representation space. We compare a
full virtual assistant system trained using entity
contrastive learning to a baseline system that
does not use contrastive learning. We present
both offline results, using retrospective test sets,
as well as online results from an A/B test that
compared the two systems. In both the offline
and online settings, entity contrastive training
improved overall performance against baseline
systems. Furthermore, we provide a detailed
analysis of learned entity embeddings, includ-
ing both qualitative analysis via dimensionality-
reduced visualizations and quantitative analysis
by computing alignment and uniformity met-
rics. We show that entity contrastive learning
improves alignment metrics and produces well-
formed embedding clusters in representation
space.

1 Introduction

Named Entity Recognition (NER) is a well-studied
and fundamental task within Natural Language Un-
derstanding (NLU). The performance of a virtual
assistant is heavily dependent upon how well NER
tasks are handled. Mistaken slot predictions re-
sult in propagating incorrect information to down-
stream modules, causing sub-optimal interactions
with users of the system. Contrastive learning can
be used to improve NER model training. Con-
trastive learning attempts to cluster similar inputs
closer together in their representation space and
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Figure 1: A schematic overview of a jointly trained IC
and NER model with a gazetteer feature and optional
entity contrastive learning.

repel dissimilar inputs apart. Token contrastive
learning attracts and repels representations at the
token level and was introduced in (Das et al., 2022)
for improving performance in few-shot NER tasks.

In this work, we apply contrastive learning to im-
prove the performance of a ubiquitous virtual assis-
tant system. We first train a common encoder using
contrastive sentence embedding (Gao et al., 2021).
Next, we incorporate entity contrastive learning,
based on (Das et al., 2022), to better cluster similar
entities together in representation space. We train
and evaluate joint IC and NER models in 11 do-
mains. For each domain, we evaluate performance
with and without an additional entity contrastive
loss. We further provide results of an online A/B
test that measures user satisfaction and show im-
proved performance when using entity contrastive
training. Furthermore, we perform a detailed em-
beddings analysis to determine the effect that the
entity contrastive loss function has on entity rep-
resentations. In particular, we compute alignment
and uniformity metrics (Wang and Isola, 2020) of
learned entity representations. Finally, we also
present qualitative results in the form of t-SNE
visualizations comparing models with entity con-
trastive training vs. without. We show that entity
contrastive learning improves alignment metrics as
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well as clustering behavior in representation space.

2 Virtual Assistant System Overview

Fig. 1 shows a schematic overview of a
jointly trained IC and NER model that makes
up part of the NLU component of a full
virtual assistant system. Joint IC-NER mod-
els are trained separately for each domain.
The IC-NER model encodes a sequence of
(sub-word) utterance tokens, x1, x2, . . . , xn,
through a transformer encoder architecture,
[h1, h2, . . . , hn] = TEncoder ([x1, x2, . . . , xn]).
In addition to sub-words that are fed
to the encoder, each input token is also
flagged as either being recognized or un-
recognized via lookup in a large gazetteer,
ϕ(·) ∈ {0, 1}, which further undergoes a separate
gazetteer-based embedding, [g1, g2, . . . , gn] =
GEmbedding ([ϕ(x1), ϕ(x2), . . . , ϕ(xn)]).
Gazetteer embeddings are then combined
with the output embeddings of the encoder,
[t1, t2, . . . , tn] = [h1 ⊗ g1, h2 ⊗ g2, . . . , hn ⊗ gn],
where ⊗ is the element-wise product. These
embeddings are then used by both the IC and NER
model heads.

2.1 Joint IC and NER Training

The intent classification head accepts a single ag-
gregated embedding that it processes through a
collection of linear layers. Its loss function is the
standard categorical cross entropy loss, ℓCE =
−∑K

k y(k) log ŷ(k), where K is the total number
of intent classes per domain, y(k) is 0 or 1 ground
truth for intent class, k, and ŷ(k) is the predicted
value for that intent.

The NER head accepts all embeddings and per-
forms per token classification. Our NER model
employs a conditional random field (CRF) to opti-
mize the sequence labeling task:

p(s1 . . . sn | t1 . . . tn;w) =

exp(w · Φ(t1 . . . tn, s1 . . . sn))∑
s′1...s

′
n∈Sm exp (w · Φ(t1 . . . tn, s′1 . . . s′n)

ℓCRF = −
M∑

i=1

log pi(s1 . . . sn | t1 . . . tn;w)

where w are learnable weights, M is the num-
ber of utterances, Sm is the space of all possible
sequences and Φ(ti..., si...) is the product of se-
lected potential functions that reflects the plausi-

bility score of a given labeling, see (Lafferty et al.,
2001) for further details.

2.2 Entity Contrastive Training
When employing entity contrastive training, a
third loss component is added to model train-
ing, as described in (Das et al., 2022). Diag-
onal Gaussian embeddings, N (µi,Σi), are cre-
ated by passing each encoded token representation,
ti, through separate networks, µi = fµ(ti) and
Σi = ELU(fΣ(ti)) + (1 + ϵ). These networks re-
spectively infer the mean and variance of the Gaus-
sian embeddings. Here, ELU is the Exponential
Linear Unit and ϵ is added for numerical stabil-
ity. Gaussian embeddings map tokens to densities
rather than point vectors and have been shown to
better capture representation uncertainty (Vilnis
and McCallum, 2015). As the KL divergence be-
tween two diagonal Gaussian distributions has a
closed form solution, a pair of tokens from a col-
lection of utterances can be evaluated as follows
(note that l is the embedding dimension):

DKL [N (µq,Σq) || N (µp,Σp)]

=
1

2

(
Tr

(
Σ−1
p Σq

)
− l + log

|Σp|
|Σq|

+(µp − µq)
T Σ−1

p (µp − µq)
)

(1)

Further, as the KL divergence is not symmetric,
both forward and reverse directions are considered:
d(p, q) = 1

2 (DKL [Nq∥Np] +DKL [Np∥Nq]).
Given a collection of entities and their labels

within a batch, (xq, yq) ∈ X , a set of in-batch
matching entities, Xp, can be constructed by lo-
cating different tokens that share the same entity
label (yp = yq, where p ̸= q). The final ℓENT loss
is constructed for each entity, p, in a batch, X , as
follows:

ℓENT = − 1

|X |
∑

p∈X
log

∑
(xq ,yq)∈Xp

exp(−d(p, q))/ |Xp|∑
(xq ,yq)∈X ,p ̸=q exp(−d(p, q))

(2)

2.3 Overall Loss Function
The final loss function is a linear combination of
the cross entropy loss of the intent classifier, the
CRF loss given by the NER output and the entity
contrastive loss:

Loverall = w1 · ℓCE +w2 · ℓCRF +w3 · ℓENT (3)

where w1 . . . w3 are hyper-parameters that weight
each of the individual loss components. In our
experiments we set each wi = 1.
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↓ Lower is better Profile 1 Profile 2
Contrastive
Encoder (%)

Entity
Contrastive (%)

Contrastive
Encoder (%)

Entity
Contrastive (%)Domain

Global -19.43 -19.91 -17.55 -18.19
Music -7.79 -11.77 -8.11 -11.71
Notifications -14.38 -17.20 -12.37 -16.32
Video -14.18 -17.02 -6.23 -9.24
Shopping -14.29 -7.19 -11.63 -8.08
Local Search -15.34 -23.94 -16.42 -25.17
General Media -17.30 -17.63 -18.23 -18.28
Calendar -3.21 -0.96 -6.76 -4.50
Books -11.93 -17.19 -8.34 -14.76
Cinema Show Times -1.78 +17.08 -13.87 +13.87
Sports -0.02 -0.02 -12.00 -11.97

Table 1: Relative improvement (SEMER) results compared to a baseline model. ↓ Lower is better. Contrastive
Encoder contrastively fine-tunes a common encoder. Entity Contrastive further adds an entity contrastive loss
function. Results are shown for two virtual assistant profiles.

2.4 Implementation Details

We use a BERT (Devlin et al., 2019) style en-
coder with embedding dimension 768 and Gaus-
sian embedding dimension 128. The encoder is
made up of 4 hidden layers with 16 attention heads.
The encoder’s weights are first initialized via a
task-specific model distillation procedure (Cita-
tion anonymized due to self-reference). Encoder
weights are further fine-tuned using contrastive sen-
tence embedding (Gao et al., 2021), where a single
positive utterance is contrasted with 10 negative
utterances. The fine-tuned encoder is common and
shared between domains. Each domain’s IC-NER
model is then further trained for a maximum of
60 epochs and early stopping was invoked if there
was no improvement in validation error rate for 4
epochs.

3 Experimental Results

We provide experimental results in the following
three settings:
Offline (per domain): We compare 11 domain
models trained using entity contrastive learning
vs. baseline models without entity contrastive train-
ing. All domains that utilize gazetteers are in-
cluded.
Offline (full system): We compare a full virtual
assistant system trained using entity contrastive
learning against a baseline system on a collection
of static test-sets.
Online: We conduct an A/B test using live traffic to
compare a full virtual assistant system trained using

entity contrastive learning vs. a baseline model that
does not.
Full descriptions of each error metric used for (of-
fline) evaluation are given in Appendix A. We pro-
vide brief summaries here:
SEMER: Semantic Error Rate reflects the propor-
tion of incorrectly labeled entities and intents.
ICER: Intent Classification Error Rate measures
the proportion of misclassified intents
IRER: Intent Recognition Error Rate measures
how often predictions contain any mistakes in ei-
ther entities or intent.

3.1 Offline (per domain) Results
Table 1 shows per domain relative improvement SE-
MER results compared to a live baseline model that
doesn’t utilize entity contrastive training. Lower
results are better. Two candidate models are com-
pared: 1) Contrastive Encoder, where only the
encoder was pre-trained using supervised sentence
contrastive learning based on (Gao et al., 2021) and
2) Entity Contrastive, which builds on top of 1),
and further trains using the entity contrastive loss
function from Section 2.2. Results are shown for
two virtual assistant profiles. Profile 1 is a voice
only system, whereas Profile 2 is an assistant that
has a display monitor.

Cinema Show Times was the only domain that
did worse than the baseline when using entity con-
trastive training. This may be due to the relatively
large number of entity types (33) and the smaller
training and validation dataset size (30,311 and
3,368, respectively). Appendix B lists the total
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Profile 1 SEMER ↓ ICER ↓ IRER ↓
Contrastive Encoder -10.7% -16.2% 7.9%
Entity Contrastive Training -12.7% -17.5% -10.7%
Profile 2 SEMER ↓ ICER ↓ IRER ↓
Contrastive Encoder -9.2% 14.6% 6.6%
Entity Contrastive Training -11.0% -16.2% -9.0%

Table 2: Error results compared to a baseline model. ↓ Lower is better. Contrastive encoder only training is
compared to full entity contrastive learning.

Drules ↓ Dstat ↓ Dstat-tail ↓
Global 0.03 1.97 1.10
Music -1.85† -0.01† -0.06†

Shopping -13.09† -8.27† -8.72†

Video 7.48† 1.89† 2.40†

Overall -0.79† -0.55 -0.68†

Table 3: A/B test results on live traffic comparing an ex-
perimental virtual assistant system that employs entity
contrastive learning against a baseline control system.
Measurements show relative percentage change of user
dissatisfaction against the control inferred using behav-
ioral rules (Drules), a statistical model applied to all
traffic (Dstat) and tail-distribution traffic only (Dstat-tail).
↓ Lower is better. †Indicates statistically significant re-
sults at a 95% confidence level.

number of utterances in both training and validation
datasets, as well as the number of entities labels
for all 11 domains. All other domains improved
against the baseline. Overall, entity contrastive
training out-performed contrastive encoder train-
ing in 8 out of 11 domains for Profile 1 and 7 out
of 11 domains for Profile 2. Furthermore, entity
contrastive training achieved the best results for
the top four highest-traffic domains in both profiles.

3.2 Offline (full system) Results

Table 2 shows overall relative improvement against
a baseline system measured using SEMER, ICER
and IRER metrics. Once again we compare a vir-
tual assistant system that trained a contrastive en-
coder only vs. full entity contrastive training. We
see that entity contrastive training leads to larger
relative improvement, compared to contrastive en-
coder training only, for all metrics.

3.3 Online (A/B test) Results

The final set of results we present were collected
from an A/B test using an experimentation platform
to evaluate full virtual assistant systems on live cus-

tomer traffic. Once again we compare a system that
uses entity contrastive training against a baseline
model that does not. The experimental (contrastive)
and control (baseline) model each received 10% of
customer traffic and the A/B test ran for two weeks.
As no ground truth is available for online data, we
rely on a rule based system (Drules), and a statistical
model (Dstat) that infers user dissatisfaction given
a virtual assistant’s response. We also measure user
dissatisfaction specifically for tail traffic, i.e. the
bottom 40% of frequent utterances (Dstat-tail).

Results are presented as relative comparisons to
the baseline system in Table 3. Per-domain results
are included for domains of special interest, includ-
ing those with higher traffic volumes. The overall
results, in the final row, evaluate the full virtual
assistant system on all domains. Lower results are
better. Overall the experimental contrastive model
improved all user dissatisfaction metrics. Results
are statistically significant at the 95% confidence
level (p < 0.05) for Drules and Dstat-tail and just out-
side the range for Dstat (p = 0.058). Per-domain
results show that the baseline model outperformed
the experimental model for Global (however not
statistically significantly, p > 0.05), and Video
(p < 0.05). Further analysis showed that the ex-
perimental model likely incorrectly predicted the
Video domain on device profiles that didn’t have
display capability. The largest improvements were
observed in the Shopping domain (p < 0.05) and
there are also improvements in Music (although
not statistically significant, p > 0.05).

4 Embeddings Analysis

We further provide qualitative and quantitative anal-
ysis of the entity representations learned by a base-
line and contrastive model. The baseline model dif-
fers to the contrastive model only by removing the
ℓENT component of the loss function in Eqn. (3).
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Domain Baseline ↓ Contrastive ↓
Video 0.95 0.28
Sports 0.41 0.54
Shopping 0.85 0.14
Notifications 0.84 0.21
Music 1.03 0.27
Local Search 1.00 0.30
Global 0.77 0.28
General Media 0.89 0.18
Cinema Show Times 0.71 0.28
Calendar 0.83 0.15
Books 0.85 0.15
Average 0.83 0.25

Table 4: Alignment scores per domain comparing base-
line vs. contrastive NER learning. ↓ Lower is better.

4.1 Qualitative: Dimensionality Reduction
Visualization

For each domain, we derived t-distributed stochas-
tic neighbor embedding (t-SNE) (Van der Maaten
and Hinton, 2008) plots to visualize entity repre-
sentations learned by the baseline and contrastive
model. Embeddings were pulled from a random-
ized subset of validation data. Dimensionality re-
duction took place on the µi representations learned
by each model, R128 → R2. Fig. 2 shows a com-
parison between the baseline and contrastive model
for four domains (a) Calendar, (b) Music, (c) No-
tifications and (d) Video. Appendix D displays
t-SNE plots for the remaining domains. Looking at
Fig. 2(a) for the Calendar domain, we can see that
points for the most frequent entity type (Date) don’t
appear to cluster at all and are quite dispersed in the
t-SNE plot on the left (baseline). However, in the
plot on the right (contrastive) we see a well-formed
cluster for Date in the top right. We also notice in
Fig. 2(b) for the Music domain, the most frequent
entity type (SongName) exhibits some clustering
behavior in the baseline, but forms multiple distinct
clusters in the contrastive model. We can also eas-
ily see points that did not have the SongName label
within these clusters. In particular, there are many
overlapping points for AlbumName, ArtistName
and Lyrics. AlbumName and Lyrics can likely over-
lap with SongName and cause confusion for the
model. Given that the data-set is very large, annota-
tion errors are also frequent and it is possible these
overlapping points could potentially identify errors
in the labeling process.

4.2 Quantitative: Alignment and Uniformity
We further analyze representation quality using the
quantitative metrics of alignment and uniformity
introduced in (Wang and Isola, 2020). The align-
ment metric assumes a distribution of positive pairs
and calculates expected distance between repre-
sentations of these pairs. Positive pairs should lie
closer together in representation space and produce
lower values. Conversely, uniformity measures
how well learned representations are distributed
uniformly on a unit hyper-sphere for instances from
all classes.

Given that we do not rely on positive pairs, but
instead wish to align token representations belong-
ing to the same class (i.e. has the same entity label),
we slightly alter the original alignment metric to
consider all non self-referential, pairwise compar-
isons between instances that belong to the same
class, pcls|x ̸=y. The uniformity metric remains the
same as in (Wang and Isola, 2020). We set hyper-
parameters as follows, α = 2 and t = 2.

Malign(f ;α) = Ex,y∼pcls|x ̸=y
[∥f(x)− f(y)∥α2 ]

(4)

Muniform (f ; t) = logEx,y∼pdata

[
e−t∥f(x)−f(y)∥22

]

(5)

Table 4 shows alignment values per domain. The
values in Table 4 are computed by taking the av-
erage alignment scores for all entities within each
domain. Alignment values for each entity type are
given in Appendix C. A weighted average is taken
that considers the number of tokens with a given
entity label. Lower values imply better alignment
between representations within the same class.

We can see in Table 4 that all domains have lower
alignment values with entity contrastive training,
except for the Sports domain. The Sports domain
has the least amount of training data and entity
types (see Appendix B), which may be the reason
that entity contrastive training does not result in
improvement over the baseline model.

Finally, we compute uniformity metrics. To re-
duce computational cost, we randomly sample 10%
of the entity embeddings. The uniformity scores
for the baseline and contrastive models were −3.54
and −3.11, respectively, indicating that the base-
line model produced embeddings that are likely
more uniformly distributed than the contrastive
model.
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Figure 2: A collection of t-SNE plots comparing embeddings from a baseline (left figure) and contrastive model
(right figure) in four domains (a) Calendar, (b) Music, (c) Notifications, (d) Video. Legend entries are restricted to
the top 20 most frequent slot labels with counts shown in parentheses. Alignment scores are also shown.

5 Related Work

Contrastive learning has been applied with tremen-
dous success over the last few years in tasks that
process data such as audio (Oord et al., 2018),
vision (Chen et al., 2020) and natural language
(Fang et al., 2020). Contrastive losses, such as
InfoNCE (Oord et al., 2018; Hénaff et al., 2019),
build on the original idea of noise contrastive esti-
mation (Gutmann and Hyvärinen, 2010; Mnih and
Kavukcuoglu, 2013) that learns a data distribution
by comparing it against a chosen noise distribu-
tion. Contrastive representation learning can ei-
ther be unsupervised (Chen et al., 2020; He et al.,
2020) or supervised (Khosla et al., 2020). Unsu-
pervised or self-supervised approaches have relied
upon techniques such as data augmentation (Chen
et al., 2020; He et al., 2020) and future self pre-
diction (Oord et al., 2018) as a way of ignoring
superfluous information to learn better class repre-
sentations. Supervised approaches (Khosla et al.,
2020) incorporate class label information during
learning and were introduced to avoid problems
with in-batch false positives. In natural language
tasks, contrastive learning approaches based on
data augmentation techniques have not fared as
well compared to their vision counterparts. Sim-
CSE (Gao et al., 2021) introduced both unsuper-

vised and supervised approaches for learning con-
trastive sentence embeddings. The unsupervised
approach relies solely on varying dropout masks
to achieve different representations of the same
input sentence, whereas the supervised task uses
examples from natural language inference datasets
(Conneau et al., 2017). Rather than learning sen-
tence embeddings, (Das et al., 2022) introduced
token contrastive learning in the context of improv-
ing few-shot learning. Our work does not focus
on few-shot learning, but instead seeks to evaluate
joint IC-NER models trained with entity contrastive
learning for the purpose of improving a large-scale
virtual assistant system.

6 Conclusion

We presented jointly trained IC and NER models
augmented with entity contrastive learning via an
additional loss function that attempts to pull sim-
ilar entities together in representation space, and
repel dissimilar entities apart. We provided a com-
prehensive evaluation of entity contrastive learning
within a full virtual assistant system by compar-
ing to baselines in both offline and online (A/B
test) experiments. Results show that employing
entity contrastive learning improves overall error
and alignment metrics and produces well-formed
embedding clusters in representation space.
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A Performance (Error) Metrics

The error metrics used to assess offline perfor-
mance are as follows:

SEMER: Semantic Error Rate evaluates slot-filling
and intent classification performance jointly, as
follows:

# Deletion + # Insertion + # Substitution
# Correct + # Deletion + # Substitution

Deletion occurs when the slot name is present in
ground truth but not in the prediction. Insertion is
the opposite when extra slot names are included
in the prediction. Substitution errors occur when
predictions do match ground truth slot labels, but
for an incorrect slot value. Correct slots are when
both the slot name and slot value match. Intent
classification errors are also counted as substitution
errors above.

ICER: Intent Classification Error Rate measures
the rate at which the intent of utterances are incor-
rectly predicted:

ICER =
# Incorrect Intents
# Total Utterances
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IRER: Intent Recognition Error Rate measures
how often predictions contain any mistake in either
slots or intent.

IRER =
# Incorrect (Slot or Intent)

# Total Utterances

B Dataset Sizes

Table 5 shows the dataset sizes (training and vali-
dation) for 11 gazetteer based domains. Also de-
picted are the total number of entities per domain.
Domains are listed in descending order based on
number of utterances. Global is the largest domain
and Sports is the smallest.

C Alignment Tables Per Domain

Alignment scores per slot are shown for each do-
main in Tables 6 to 16. The baseline model includes
no entity contrastive training. Results are restricted
to the top ten most frequent slots due to display pur-
poses. The missing remaining slots exhibit similar
trends to those shown. Size refers to the number
of tokens with a given slot label and Score is the
alignment score. Lower is better. The final column
shows relative change as a percentage. Negative
values show improvement of the contrastive model
over the baseline.

D t-SNE Visualizations

Figs. 3 and 4 depict the remaining t-SNE plots not
shown in the main body of the text. Once again, for
each domain, the baseline embeddings are on the
left and the contrastive model embeddings are on
the right. As in the figures in the main body, non-
entity (O) tokens are removed as they are not sub-
ject to contrastive training and legend entries are re-
stricted to the top 20 most frequent slot labels with
counts shown in parentheses. Alignment scores
are also shown. As with the figures in the main
body, we see improved clustering behavior in the
contrastive embeddings compared to the baseline
embeddings in all domains, except for the Sports
domain, which is quite sparse. It is also possible
that the perplexity value (which depends on dataset
size) is not optimal for the sports domain due to the
smaller dataset size.
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Domain Training instances Validation instances Number of entities
Global 3,165,309 351,702 117
Music 2,160,488 240,055 119
Notifications 818,963 90,996 62
Video 686,520 76,280 63
Shopping 602,748 66,972 54
Local Search 294,098 32,678 75
General Media 167,776 18,642 30
Calendar 137,313 15,258 46
Books 125,139 13,905 50
Cinema Show Times 30,311 3,368 33
Sports 21,347 2,372 13
Total 8,210,012 912,228 662

Table 5: Total number of training and validation utterances for 11 domains that utilize entity contrastive learning in
a large-scale virtual assistant system.

Calendar Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
Date 22860 1.08 27165 0.23 -78.21
EventName 21047 0.99 24815 0.14 -85.61
Time 12304 0.72 14510 0.06 -91.89
DataSource 8704 0.37 10415 0.01 -96.92
OrigTime 4087 0.20 4774 0.03 -83.13
EventType 3571 0.77 4212 0.17 -77.91
OrigDate 2096 0.62 2434 0.06 -89.63
ActiveUserTrigger 2017 0.79 2380 0.18 -77.19
VisualModeTrigger 743 0.61 903 0.10 -82.95
CalendarName 674 1.03 795 0.56 -45.65

Table 6: Alignment scores per slot for Calendar domain – baseline vs. contrastive. Results are restricted to the top
ten most frequent slots due to display purposes.

Music Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
SongName 20743 1.10 20637 0.26 -76.18
ArtistName 16567 0.98 16469 0.21 -78.55
MediaType 12730 1.08 12690 0.14 -87.52
GenreName 7119 1.08 7080 0.43 -59.86
AlbumName 4709 1.13 4696 0.53 -53.33
AppName 2015 1.21 2013 0.28 -77.14
PauseTrigger 2000 0.55 1994 0.10 -82.58
PlaylistName 1749 1.15 1744 0.46 -59.87
OnType 1459 0.84 1455 0.02 -98.10
Time 1335 0.74 1331 0.03 -96.18

Table 7: Alignment scores per slot for Music domain – baseline vs. contrastive. Results are restricted to the top ten
most frequent slots due to display purposes.
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Notifications Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
OnType 42129 0.92 41911 0.19 -79.61
Time 13185 0.76 13159 0.18 -76.72
Duration 11145 0.72 11082 0.19 -73.28
NotificationLabel 4706 0.96 4680 0.18 -81.83
Date 2989 0.86 2975 0.57 -33.90
NotificationStatus 1303 0.72 1303 0.01 -98.13
EndTime 1112 0.53 1107 0.21 -60.03
ActiveUserTrigger 866 0.45 862 0.02 -96.29
Quantifier 601 0.66 599 0.30 -54.46
EndDate 418 0.39 416 0.13 -66.83

Table 8: Alignment scores per slot for Notifications domain – baseline vs. contrastive. Results are restricted to the
top ten most frequent slots due to display purposes.

Video Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
VideoName 44095 0.94 43840 0.27 -71.26
ChannelName 8298 0.87 8268 0.16 -81.68
GenreName 7118 1.19 7103 0.63 -47.49
MediaType 5986 1.02 5945 0.09 -90.99
AppName 5151 0.96 5146 0.03 -96.84
VisualModeTrigger 3906 0.88 3891 0.11 -87.14
CharacterName 3302 0.86 3292 0.65 -24.85
ActorName 1968 0.87 1954 0.24 -72.31
PersonName 1841 0.98 1838 0.54 -44.64
Device 1114 0.95 1111 0.28 -70.81

Table 9: Alignment scores per slot for Video domain – baseline vs. contrastive. Note that the number slots has been
truncated for display purposes.

Shopping Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
ItemName 51246 0.91 53039 0.10 -88.83
ShoppingListType 5685 0.71 5876 0.28 -61.31
ProductSortType 4632 0.91 4797 0.30 -66.96
VisualModeTrigger 2430 0.46 2527 0.04 -92.11
ShoppingServiceName 1179 0.70 1210 0.06 -91.54
RecommendTrigger 1118 0.41 1158 0.23 -44.14
DealType 628 0.54 650 0.25 -54.14
Anaphor 471 0.64 481 0.39 -38.35
Quantifier 451 0.70 470 0.27 -61.93
PurchaseDate 388 0.64 450 0.47 -27.03

Table 10: Alignment scores per slot for Shopping domain – baseline vs. contrastive. Results are restricted to the top
ten most frequent slots due to display purposes.
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Local Search Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
PlaceName 42865 1.08 39231 0.22 -79.71
PlaceType 10667 1.12 9756 0.35 -68.90
DestinationPlaceName 10162 0.92 9315 0.19 -79.43
LocationSortType 6723 1.11 6196 0.24 -78.34
City 6082 1.09 5594 0.30 -72.69
Location 3745 1.06 3402 0.77 -27.54
DestinationLocation 3575 0.93 3233 0.30 -67.28
Anaphor 2611 0.98 2400 0.71 -27.91
Date 2292 0.91 2137 0.36 -60.37
PlaceFeature 2282 1.20 1999 0.64 -46.65

Table 11: Alignment scores per slot for Local Search domain – baseline vs. contrastive. Results are restricted to the
top ten most frequent slots due to display purposes.

General Media Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
AppName 48421 0.91 48231 0.17 -81.31
MediaType 4697 0.88 4685 0.14 -84.14
VisualModeTrigger 1548 0.55 1548 0.05 -90.17
GenreName 657 1.04 651 0.91 -12.72
SettingValue 560 0.68 555 0.43 -36.53
SortType 392 0.69 392 0.12 -83.22
Anaphor 219 0.85 219 0.44 -48.91
DeviceBrand 218 0.75 218 0.20 -72.92
ListPosition 192 0.73 192 0.24 -67.19
DeviceType 89 0.71 89 0.49 -31.13

Table 12: Alignment scores per slot for General Media domain – baseline vs. contrastive. Results are restricted to
the top ten most frequent slots due to display purposes.

Global Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
Setting 3591 0.82 2819 0.12 -85.10
MediaType 2536 0.78 2091 0.11 -85.87
DeviceType 2125 0.80 1765 0.22 -71.97
DeviceBrand 1971 0.70 1597 0.06 -91.48
ChannelName 1230 0.73 1072 0.15 -80.21
SearchContent 1038 0.84 858 0.21 -75.25
SettingValue 927 0.85 751 0.54 -36.92
DeviceLocation 558 0.81 471 0.38 -52.94
VisualModeTrigger 544 0.66 420 0.04 -93.17
ServiceName 535 0.82 411 0.33 -60.40

Table 13: Alignment scores per slot for Global domain – baseline vs. contrastive. Note that the number slots has
been truncated for display purposes.
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Books Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
BookName 34890 1.02 37703 0.16 -84.24
MediaType 23127 0.80 24870 0.08 -89.76
ServiceName 18965 0.77 20496 0.04 -94.93
AuthorName 4714 0.94 5075 0.42 -54.84
ActiveUserTrigger 3837 0.44 4170 0.03 -93.59
GenreName 3056 0.97 3313 0.61 -36.46
SortType 2994 0.56 3271 0.20 -64.82
SectionType 2078 0.90 2321 0.04 -95.76
Narrator 2057 0.60 2265 0.29 -51.25
Anaphor 1728 1.01 1861 0.29 -71.08

Table 14: Alignment scores per slot for Books domain – baseline vs. contrastive. Results are restricted to the top ten
most frequent slots due to display purposes.

Cinema Show Times Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
MovieTitle 25800 1.06 7134 0.36 -66.04
EndTime 18795 0.19 5206 0.02 -90.80
MediaType 17210 0.66 4749 0.17 -73.88
PlaceName 9413 0.97 2594 0.31 -67.74
Time 8733 0.25 2413 0.04 -82.28
Date 4810 0.88 1314 0.71 -19.28
PlaceType 2679 0.88 751 0.23 -73.53
SortType 2190 0.92 602 0.30 -67.00
City 1828 0.86 502 0.96 10.82
PostalCode 1708 0.69 478 0.07 -89.20

Table 15: Alignment scores per slot for Cinema Show Times domain – baseline vs. contrastive. Results are restricted
to the top ten most frequent slots due to display purposes.

Sports Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
Date 739 0.37 721 0.57 55.33
SortType 130 0.62 124 0.43 -31.23
VisualModeTrigger 61 0.42 58 0.63 52.68
SportsRole 19 0.61 19 0.82 34.47
Time 18 0.37 18 0.02 -93.37
Sport 10 0.49 10 0.01 -98.04
League 4 0.04 4 0.00 -98.81
Anaphor 2 0.03 2 0.00 -97.17

Table 16: Alignment scores per slot for Sports domain – baseline vs. contrastive.
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Figure 3: Remaining t-SNE plots for domains: Shopping (top left), Local Search (top right), General Media (bottom
left) and Global (bottom right).

Figure 4: Remaining t-SNE plots for domains: Books (top left), Cinema Show Times (top right) and Sports (bottom
middle).
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