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Abstract

In conventional radiology practice, the radiolo-
gist dictates the diagnosis to the transcription-
ist, who then prepares a preliminary formatted
report referring to the notes, after which the
radiologist reviews the report, corrects the er-
rors, and signs off. This workflow is prone to
delay and error. In this paper, we report our
work on automatic radiology report generation
from radiologists’ dictation, which is in col-
laboration with a startup about to become Uni-
corn. A major contribution of our work is the
set of knowledge graphs (KGs) of ten abdomi-
nal organs- Liver, Kidney, Gallbladder, Uterus,
Urinary bladder, Ovary, Pancreas, Prostate,
Biliary Tree, and Bowel. Our method for con-
structing these KGs relies on extracting entity1-
relation-entity2 triplets from a large collection
(about 10,000) of free-text radiology reports.
The quality and coverage of the KGs are veri-
fied by two experienced radiologists (practicing
for the last 30 years and 8 years, respectively).
The dictation of the radiologist is automatically
converted to what is called a pathological de-
scription which is the clinical description of the
findings of the radiologist during ultrasonog-
raphy (USG). Our knowledge-enhanced deep
learning model improves the reported BLEU-3,
ROUGE-L, METEOR, and CIDEr scores of
the pathological description generation by 2%,
4%, 2% and 2% respectively. To the best of
our knowledge, this is the first attempt at rep-
resenting the abdominal organs in the form of
knowledge graphs and utilising these graphs
for the automatic generation of USG reports.
A Minimum Viable Product (MVP) has been
made available to the beta users, i.e., radiolo-
gists of reputed hospitals, for testing and evalua-
tion. Our solution guarantees report generation
within 30 seconds of running a scan.

1 Introduction

Radiology is an integral part of medical care. Radi-
ological imaging-based evidence (X-ray, MRI, CT,

USG, etc.) is crucial for determining the nature
of the treatment. The usual radiology process is
as follows: A patient gets scanned. Then the ra-
diologist prepares the diagnosis notes (referred to
as radiologist’s dictation) and handing them over
to a transcriptionist. The transcriptionist opens a
scan-specific standardised template (referred to as
normal report template) and edits it refering to
the notes in a more descriptive form (referred to as
pathological description).

Radiologists are in huge demand since the ra-
tio of radiologists to patients is very low. These
ratios in India, the US, and China are 1:100,000,
1:10000, and 1:14772, respectively (Arora, 2014).
These low ratios results in a very high patient in-
flow per radiologist volume, making radiologists
incredibly busy and stressed out. The currently
adopted transcriptionist-based workflow causes (i)
significant delays in report turnaround time, (ii) er-
rors in the reports, and (iii) burnout. To automate
the report generation process, domain knowledge
is necessary. Domain knowledge can be acquired
from already existing radiology free-text reports.
We need a structured format for knowledge to be
able to use it on a computer. Our research aims
to use Natural Language Processing (NLP) (a) to
construct abdominal-organ KG and (b) use these
KGs for automatically generating radiology reports.
Our work is in collaboration with a industry partner.
On this project, two experienced radiologists are
contributing their domain expertise to our work.

Our contributions are:

1. Knowledge graphs of ten abdominal organs-
Liver, Kidney, Gallbladder, Uterus, Urinary
bladder, Ovary, Pancreas, Prostate, Biliary
Tree, and Bowel. We will release these con-
structed KGs and the code for KG construc-
tion from free-text reports, for wide use.

2. A radiology dictionary containing 43,304 en-
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tries that are adapted from the Radlex-lexicon1

and enriched with terminology from all forms
of scans, viz., USG, CT, MRI, and X-ray.

3. A generic methodology2 to construct KGs
from reports of all kinds of scans, viz., CT,
MRI, and X-ray.

4. A fine-tuned KG-BART that is fine-tuned on
a parallel corpus of dictations and correspond-
ing pathological descriptions.

5. A radiology report generation pipeline that
identifies in a "normal" report the candidate
text span for replacement and the patient-
specific text that will replace the span.

2 Fundamental Definitions

Paulheim (2017) defines Knowledge Graph (KG)
as "A knowledge graph (i) mainly describes real-
world entities and their interrelations, organized in
a graph, (ii) defines possible classes and relations of
entities in a schema, (iii) allows for potentially in-
terrelating arbitrary entities with each other and (iv)
covers various topical domains." KGs are designed
with suitable ontology to store domain knowledge.
Ontologies are semantic data models that define the
types of things in a specific domain and the proper-
ties used to describe those types. Ontologies does
not include the details about specific individuals in
domain. Three main components of ontology are
Classes, Relationships, and Attributes. Domain
ontology and individual information together form
a Knowledge Base (KB). We have defined eight
logical relations as follows:

1. PartOf: It represents the relation between
anatomy and sub-anatomy. For example, right
lobe is part of liver.

2. TypeOf: It represents the relation between sim-
ilar type of entities. For example, cystic lesion
is TypeOf lesion.

3. ModifierOf: It denotes the descriptors of find-
ings, anatomical locations, property, etc. For
example, small is descriptor of size.

4. ObservationOf: It denotes the clinical obser-
vations observed for particular finding. For
example, acute pancreatitis denotes the pres-
ence of fluid collection.

5. DefaultObservationOf: It denotes the observa-
tion that associated by default with particular

1http://radlex.org/
RadLex is licenced freely for commercial and non-commercial
use.

2Our code to construct radiology KGs is located at https:
//github.com/kaverikale/RadiologyKGConstruction.

anatomical location or particular finding. For
example, peripancreatic fluid is observation
associated with acute pancreatitis by default.

6. PropertyOf: It denotes the relation between
entities (anatomical entities, finding entities,
observation entities, etc.) and their properties.
For example, echotexture is property of the
liver, size is the property of lesion, shape is
the property of kidney etc.

7. DefaultPropertyOf: It denotes the property that
exist by default with particular anatomical
location or particular finding. For example,
shrunken size is the property associated with
chronic pancreatitis.

8. FoundIn: It denotes the relation between find-
ings and corresponding anatomical location.
For example, lesion found in segment ii.

3 Related Work

Research is done for automatic radiology report
generation based on scanned images. Yuan et
al. (Yuan et al., 2019) propose an automated
structured-radiology report generation system us-
ing extracted features from images. Loveymi et
al. (Loveymi et al., 2021) proposed a system that
generates descriptions for natural images by image
captioning.

There is a wealth of research done on build-
ing medical KG from Electronic Medical Records
(EMR). Finlayson et al. (Finlayson et al., 2014)
builds a graph from medical text, clinical notes
etc. Graph nodes represents diseases, drugs, proce-
dures, and devices. Rotmensch et al. (Rotmensch
et al., 2017) uses the EMR to construct the graph
of diseases and symptoms. Researchers worked on
creating medical KG from EMR, but no one has
built a KG for the radiology domain except Zhang
et al. (Zhang et al., 2020). Graph embedding mod-
ule is proposed by Zhang et al. (Zhang et al., 2020)
that helps to generate radiology reports from image
reports. Each node in their KG represents disease.
Taira et al. (Taira et al., 2001) developed an NLP
pipeline to structure critical medical information.
Extracted information includes the existence, lo-
cation, properties, and diagnostic interpretation of
findings from radiology free-text documents. Infor-
mation is not integrated since they store the struc-
tured information for each report separately. Also,
this system does not accept reports with different
reporting styles. However, this is not always the
case. Every radiologist has his or her own dictation
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style and reporting style.
IE systems that are based on IE patterns are

surveyed by Muslea et al. (Muslea et al., 1999).
Ghoulam et al. (Ghoulam et al., 2015) extract
signs of lung cancer, their anatomical location, and
the relation between the signs and the locations
expressed in the radiology reports. Embarek &
Ferret (Embarek and Ferret, 2008) used a morpho-
syntactic patterns in their rule-based method to find
medical entities like symptoms, disease, exams,
medicaments, and treatment. Xu et al. (Xu et al.,
2009) explains that a pattern is a sub dependency
tree that indicates a relation instance. Pons et al.
(Pons et al., 2016) give an overview of NLP tech-
niques that can be used in radiology.

4 Methodology

As shown in figure 1, we first construct the KGs
for each abdominal organ from the ultrasound re-
port corpus. Then we use these constructed KGs
to generate ultrasound radiology reports from the
radiologist’s dictation. KGs are constructed from
anonymized radiology reports provided by our com-
pany collaborator. The anonymized report collec-
tion consists of approximately 10,000 reports of
ultrasound scans.

Triplets Extractor
Word or Phrase Processor

Dependency Parser

Semantic Analyser

Radiology 
Reports 
Corpus

Triplets to KGRadiology 
Ontology

Radiologist’s 
dictation

Report Generation
Generate 

Pathological 
Description

Replace in 
Normal Report 

Template

Normal 
Report 

Template

Patient 
Specific 
Report

KG

Figure 1: The architecture of our system. KG construc-
tion and patient-specific report generation are the two
main modules in our system.

4.1 Ontology Creation

We refer to the RadLex lexicon to create our
ontology, which we call "Radiology Ontology"
(Langlotz, 2006). Though called a "lexicon," the
RadLex is actually an ontology since it has a hierar-
chical structure. For example, "Solid Organ← Lob-
ular Organ← Liver" is a part of the RadLex term

and concept hierarchy. We will use "RadlLex Lexi-
con" to mean RadLex Ontology. The RadLex lexi-
con includes a total of 46,761 classes and 24,075
individuals. However, there are limitations in the
structure. Classes are defined at a very fine-grain
level. In our work, we do not need such fine granu-
larity. For example, liver is defined as one of the
classes in RadLex. Instead of treating it as a sep-
arate class, we can define it as an instance of the
anatomy class.

We have created our own ontology by integrating
several RadLex Lexicon class entities. We main-
tain a coarse level of granularity to ensure a generic
ontology. We have defined 8 logical relations as fol-
lows: PartOf, TypeOf, ModifierOf, ObservationOf,
DefaultObservationOf, PropertyOf, DefaultProp-
ertyOf, and FoundIn. Definitions and examples of
all these logical relations are given in appendix
2. Figure 2 shows the class hierarchy of radiology
ontology.

Figure 2: The class hierarchy of radiology ontology
that we have created.

4.2 Radiology Dictionary Creator:

Radiology reports contain a large number of medi-
cal terms like abbreviations, synonyms, and proper
names. The RadLex lexicon is used to create the ra-
diology dictionary. However, we cannot use radiol-
ogy terms from the RadLex lexicon as it is because
the RadLex lexicon contains long phrases, e.g., fat
homogeneous background echotexture which are
not at the right level of granularity for a knowledge
graph. Also, there are some radiological terms
that frequently appear in radiology reports but are

13



not present in the RadLex lexicon (e.g., reflectiv-
ity and echopattern). Entities that are missing in
the Radlex lexicon have been added from the cor-
pus. Table 1 shows the examples of entities and
categories in our dictionary.

Entity Category
lesion observation
cirrhosis pathologic-finding
hepatitis inflammation
size property

Entity Category
small size-modifier
left lobe anatomy
ankle fracture injury
chronic liver disease disease

Table 1: Examples of entities and corresponding cate-
gories in our radiology dictionary.

4.3 Triplets Extraction

The Triplets-Extraction module extracts entities
and relations. For example, for the corpus sentence
Right kidney is normal in size, shape, location and
cortical echogenicity, Cortical and echogenicity are
linked by the relation ModifierOf. Also normal is
a modifier of size, shape, location, and echogenic-
ity. However, the state-of-the-art Open Information
Extraction tools like OpenIE3 are not capable of
extracting these relations from free-text (Etzioni
et al., 2008). Examples of triplets extracted using
OpenIE are given in the table 9 in appendix A.3.

Our triplet extraction method combines the
dictionary-match, rules and patterns to extract enti-
ties and relations. This methodology necessitates
the use of (i) Word and Phrase Level Processor, (ii)
Dependency Parser, and (iii) Semantic Analyser.

4.3.1 Word and Phrase Level Processor
The input to this stage is a sentence from the cor-
pus, and the output is the sentence-wise syntactic
and semantic features of each word and phrase in
the sentence. Features include POS tags, lemmas,
supersenses, and the root of a noun chunk.

Lexical Semantic Supersense Tagger: To ex-
tract the relation between two entities connected
by a preposition, the machine should understand
the meaning of that preposition. As shown in the
figure 3, the intuition of the in preposition in the
first sentence is characteristic and in the second
sentence is locus. Supersenses (Schneider et al.,
2015) help get disambiguated senses of these prepo-
sitions. We have integrated the pre-written code of
a Lexical Semantic Supersense Tagger (LSR)4 (Liu

3https://nlp.stanford.edu/software/openie.html
4https://github.com/nelson-liu/

lexical-semantic-recognition

et al., 2020) to assign supersense tags to preposi-
tions. Figure 3 shows the sentences that contain the
prepositions and their corresponding tags.

Figure 3: Lexical Semantic supersense Tagger tags all
words with the supersense tags. Supersenses of prepo-
sitions are highlighted in red. We see in tagged with
different supersenses.

We have mapped preposition supersenses to their
corresponding logical relations. Table 2 shows
the examples of supersense classes and their corre-
sponding logical relations.

Supersense Relation
Locus FoundIn
Gestalt PartOf
PartPortion PartOf

Supersense Relation
Whole PartOf
Manner PropertyOf
Purpose PropertyOf

Table 2: Examples of supersenses and their correspond-
ing logical relations.

Noun phrases are chunked to get the candidate
entity phrases. Table 3 shows the combined out-
put of the supersense tagger and the noun phrase
chunker.

4.3.2 Dependency Parser
The dependency parser links the entity phrases di-
rectly or indirectly. We write rules based on de-
pendency and POS-tags to extract the relations
between entities. Spacy5 APIs are used for de-
pendency parsing. Dependencies are established
between phrases instead of words. An example of
a dependency tree is given in figure 4.

4.3.3 Entities and Relations Extractor
Dictionary-matching-based Entity Extractor:
The noun chunker gives us noun phrases that are
candidate entity phrases. However, not all noun
phrases are radiological entities. Hence, to extract
proper entities from noun phrases, we search the
dictionary for matching entities. If a word or phrase
matches multiple dictionary entries through more
than one text span, we consider the longest text

5https://spacy.io/api/dependencyparser
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Noun Phrases/Words Token List Root Token POS Tags Lemmas Supersences

Non-enhancing hypo-
dense lesion

[Non, -, enhancing, hy-
podense, lesion]

lesion [ADJ, ADJ, VERB,
ADJ, NOUN]

[non, , enhance, hypo-
dense, lesion]

[B-ADV, I_, I ADJ, O-
ADJ, COGNITION]

noted [noted] noted [VERB] [note] [cognition]
in [in] in [ADP] [in] [Locus]
right lobe [right, lobe] lobe [ADJ, NOUN] [right, lobe] [OADJ, LOCATION]
of [of] of [ADP] [of] [Whole]
liver. [liver, .] liver [NOUN, PUNCT] [liver] [BODY, OPUNCT ]

Table 3: Output of the word and phrase level processing for the input Non-enhancing hypodense lesion noted in
right lobe of liver.

Figure 4: Dependency tree of input sentence Non-enhancing hypodense lesion noted in right lobe of liver.

span as the matched entry for entity extraction. For
example, in the phrase right lobe, although the indi-
vidual terms right and lobe exist in our dictionaries,
only the longest match, right lobe, is used for entity
extraction.

Pattern-based Relation Extractor: A single
noun phrase contains multiple entities. Table 4
shows the patterns to extract these entities. For
example, consider the noun phrase non-enhancing
hypodense lesion. As non-enhancing present in the
dictionary, it applies the pattern Modifier Observa-
tion and extracts the triplet (non-enhancing, Mod-
ifierOf, lesion). Hypodense does not exist in our
dictionary; hence, it applies the ADJ NOUN pat-
tern and extracts a triplet (hypodense, ModifierOf,
lesion).

Relation Extraction Using Preposition Super-
senses: If two entities are connected with the
preposition, then we consider its supersense to find
the relation. For example, lesion in right lobe, here
in represents the locus supersense and as shown
in the table 2, the locus is mapped to the FoundIn
relation. We add a new triplet ( lesion, FoundIn,
right lobe).

Relation Extraction Between Different Noun
Phrases: We have discussed how to extract en-
tities and relations between the entities present in
the single noun phrase. However, a relation exists
between the entities present in the two different
noun phrases. In the example shown in the figure 4,
there exists a relation between the lesion and right
lobe. We have written rules over the dependency

tree to get the candidate pair of noun phrases. A
list of patterns used to extract relations between
two entities is listed in the table 5.

4.3.4 Evaluation: Triplets Extraction Module
For each extracted triplet in a sentence, domain
experts manually check whether it is correct or not.
We calculate precision and recall for each sentence,
then calculate the average precision, recall, and F1-
Score. Figure 6 shows the evaluation results of our
IE and OpenIE systems.

4.4 From Extracted Triplets to the KG

Domain experts create preliminary KGs for each
organ containing higher-level entities (i.e., basic
hierarchical anatomy, merely 2-3 levels.), keeping
the organ name as the root node, e.g., liver for the
Liver KG. Figure 8 shows the liver preliminary
KG. We enhance preliminary KGs by adding ex-
tracted triplets to them. The file contains sentence-
wise triplets. KG augmentation algorithm steps are
below: i) Create a hierarchical graph representa-
tion for each sentence’s triplets. ii) Find matched
pathways in our preliminary KG for each sentence
graph path. iii) Add nodes and arcs that are missing
in static KG. Figure 5 shows the augmented KG of
the liver.

We build ontology using the Protégé6 (Musen,
2015) the well-known terminology and ontology
building and maintenance tool. Using transforma-
tion rules7 we load augmented KG triplets as indi-

6https://protege.stanford.edu/
7https://github.com/protegeproject/

cellfie-plugin
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Pattern Triplet Format Example Triplets
ADJ* NOUN/root (ADJ, ModifierOf, NOUN/root) simple clear cyst (simple, ModifierOf, cyst) (clear,

ModifierOf, cyst)
Anatomy Anatomy/root (Anatomy/root, PartOf, Anatomy) liver right lobe (right lobe, PartOf, liver)
Anatomy Finding/root (Finding/root, FoundIn, Anatomy) kidney calculus (calculus, FoundIn, liver)
Anatomy Observation/root (Observation/root, FoundIn, Anatomy) urinary bladder cyst (cyst, FoundIn, urinary bladder)
Modifier Observation/root (Modifier, ModifierOf, Observation/root) non-enhancing lesion (non-enhancing, ModifierOf, le-

sion)

Table 4: The list of some patterns and examples of triplets extracted from noun phrases when patterns are applied to
extract relations. /root represents the root entity of a noun phrase.

Pattern (entity1-category,
entity2-category)

Triplet Format Example (entity1, entity2) Triplets

(Anatomy, Anatomy) (entity1, PartOf, entity2) (right lobe, liver) (right lobe, PartOf, liver)
(Property, Anatomy) (entity1, PropertyOf, entity2) (echotexture, pancreas) (echotexture, PropertyOf, pancreas)
(Finding, Anatomy) (entity1, FoundIn, entity2) (medical renal disease, kid-

ney)
(medical renal disease, FoundIn,
kidney)

(Observation, Anatomy) (entity1, ObservedIn, entity2) (pseudo cyst, body) (pseudo cyst, ObservedIn, body)

Table 5: The list of some patterns and examples of triplets extracted when patterns are applied to extract relations
between two entities.

Figure 5: Knowledge Graph pertaining to the liver. Because to space constraints, we only display partial KG.

Precision Recall F1-Score
Our System 0.93 0.92 0.92
OpenIE 0.57 0.60 0.58

Table 6: The precision, recall, and F-Score for triplets
extracted by our system and OpenIE tool.

viduals/instances in the Protégé tool. The method
is explained in detail in appendix A.2.

4.5 Radiology Report Generation in 3 Stages

Generate Pathological Description: We fine-
tune the KG-BART (Liu et al., 2021) model to
generate the pathological description from the dic-
tation. KG-BART uses the constructed KGs of the
abdominal organs to get the domain knowledge

for generating the pathological description. The
fine-tuning dataset is the "parallel corpora," with
impressions on one side and pathological descrip-
tions on the other. This parallel corpus is created
from the same dataset that was used to construct
abdominals KGs. The parallel corpus is verified
and corrected by two radiologists. Samples from
the parallel corpus are given in the table 10 in ap-
pendix A.4.

Span Identification: The span identification
module identifies the span from the normal re-
port template that would be replaced with a gener-
ated pathological description. Normal report tem-
plates are fairly standardised and templated and use
"fixed" kinds of sentences. We give labels to these
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sentences. For example, we label normal sentence
Liver is normal in size and echotexture as liver1.
Figure 6 shows the normal report template with
a label for each sentence mentioned in brackets.
We create a dataset of pathological description sen-
tences, each of which is annotated with correspond-
ing normal sentence labels (i.e., liver1, liver2, etc.).
The span identification problem can now be for-

Figure 6: Ultrasound normal report template with a
unique label (highlighted in red) for each sentence.

mulated as a multilabel text classification problem.
Given the pathological description, we need to de-
cide which amongst the normal report sentences the
description targets for replacement. A BERT-based
multilabel text classifier takes the pathological de-
scription as input and gives multiple labels for the
pathological description. Further implementation
details are given in appendix A.5. Figure 7 shows
the examples of pathological descriptions and their
corresponding normal sentences to replace.

Figure 7: Examples of pathological descriptions and
corresponding normal sentences identified by span iden-
tifier. Labels are highlighted in red

Replacement: The candidate sentences returned
by the BERT classifier are replaced by the patho-
logical description in the normal report. If there
are multiple candidates, replace the first sentence
only and remove the other candidates. As shown
in the second example of the figure 7, for a single
sentence pathological description, there are two
normal candidate sentences to replace. In that case,

we replace the first normal sentence and remove
the second normal sentence.

5 Experiments

(Details about the training setup and implementa-
tion are in appendix A.4).

Baseline and Evaluation: We compare our fine-
tuned KG-BART model with T5-base/large (Raffel
et al., 2020) and BART-base/large (Lewis et al.,
2019) state-of-the-art pre-trained text generation
models. Gold standard pathological descriptions
extracted from reports and verified by radiologists
are used. Table 7 shows the BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004) and METEOR (Baner-
jee and Lavie, 2005) scores of generated pathologi-
cal descriptions by KG-BART, T5-base/large and
BART-base/large models.

Method
Automatic Evaluation Metrics

Bleu-1 Bleu-3 Rouge-L Meteor CIDEr

T5-large 0.873 0.780 0.897 0.902 0.892
BART-large 0.887 0.798 0.910 0.916 0.908
KG-BART 0.901 0.830 0.930 0.927 0.928

Table 7: The BLEU, ROUGE, METEOR and CIDEr
scores of the generated pathological description (best
results: bold, second best: underlined).

6 Summary, Conclusion and Future Work

We have given a systematic method to construct
organ-wise KGs from free-text radiology reports.
The KGs are stored in standard RDF format, en-
abling their application to various medical appli-
cations. One such example is the generation of
radiology reports, which we have described here.
Our KG-enhanced deep learning model improves
the reported BLEU-3, ROUGE-L, METEOR, and
CIDEr scores of the pathological description gener-
ation by 2%, 4%, 2% and 2% respectively. Our ap-
proach is generalized for other organs and scanned
procedures, as evidenced in the EACL paper8.

To the best of our knowledge, this is the first
attempt at automatic ultrasound report generation.
An MVP (minimum viable product) has been made
available to the beta users (practicing radiologists)
for testing and evaluation. We are continuously col-
lecting feedback on our system from radiologists
and continually refining the tool. We have observed
that it can generate a report within 30 seconds of
running a scan.

8https://aclanthology.org/2023.eacl-main.246/
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Ethics Statement

Anonymized radiology reports are used to build
KGs. The data itself is anonymized; hence, our
system does not reveal any patient-specific identity.
ML technologies for this kind of work have the
potential to gradually become the norm but will
always remain as assistive tools for medical prac-
titioners. Hence, while ML technologies of this
kind often veer towards the norm, the envisioned
assistive nature of this technology, where humans
will always have oversight, will address this issue.
We have evaluated the outputs of the KG-BART
model using automated metrics, but to contextual-
ize the results, a human evaluation metric would
have been useful; however, we left this work for
the future. An MVP (minimum viable product) has
been made available to the beta users (practicing
radiologists) for testing and evaluation. Manual
evaluation will be done by considering beta users
feedback.
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A Appendices

A.1 Data Preprocessing

To construct KGs, we use the information from the
free-text radiology reports. The data preprocessor
module takes radiology reports as input. Radiol-
ogy reports contain Header, Findings, History, and
Conclusion/Impression sections. We use simple
heuristics like regular expressions to fetch only
the Findings and Impression section. Furthermore,
we use regular expressions to separate the organ-
wise sentences in different datasets. We use Sym-
spell9 APIs to correct spelling mistakes, and word-
tokenization since the extracted sentences contain
spelling mistakes, unwanted punctuation marks,
etc. Table 8 shows the samples from the corpus,
which we extract from sample reports. In the cor-
pus, there are a lot of extra spaces and unwanted
punctuation marks found. We have removed these
unwanted characters from the corpus using regular
expressions.

For example, Liver is enlarged in size(16.
45cm)& normal in shape and shows raised echo
reflectivity. No focal or diffuse lesion is seen. The
portal and hepatic veins are normal. In the above
example, there is no space between size, (16.45cm)
and &. Also, there is no space between . and No
and therefore sentence tokenization is challenging.
Liver is enlarged in size ( 16.45 cm ) & normal in
shape and shows raised echo reflectivity. No focal
or diffuse lesion is seen. The portal and hepatic

9https://github.com/wolfgarbe/symspell

veins are normal. The text is then further divided
into sentences.

A.1.1 Spelling Correction
In corpus, there are a lot of spelling mistakes also.
To correct the spellings we have used the SymSpell
library.

Single Word Spelling Correction We have cre-
ated unigram and bigram dictionaries for corpus
text.
Unigram Dictionary: Dictionary of unique correct
spelling words, and the frequency count for each
word.
Bigram Dictionary: Dictionary of the unique cor-
rect spelling of a pair of words, and the frequency
count for each pair.

Levenshtein algorithm is used to compute edit
distance metric between two strings. Edit distance
algorithm finds the correct suggestion for words in
input text with words in unigram dictionary.

For example, enlaregd, billiary, radicals are the
incorrect words found in the corpus. In dictionary
enlarged, biliary, radicals these correct words are
present. Edit distance algorithm suggests enlarged
word for enlaregd. Similarly biliary for billiary
and radicles for radicals.

Multi-word Spelling Correction

• We remove mistakenly inserted spaces within
a correct word
Input: Liver is normal in size and reveals
diffuse hypo attenuation
Output: Liver is normal in size and reveals
diffuse hypoattenuation

• We add mistakenly omitted spaces between
two correct words
Input: Liver appears normal in size and re-
veals mild generalized increasedparenchymal
reflectivity.
Output: Liver appears normal in size and re-
veals mild generalized increased parenchymal
reflectivity.

Table 8 shows the organwise samples from text
corpus after data preprocessing.

A.2 Knowledge Graph Augmentation

Preliminary KGs enhanced using triplets extracted
by IE module. Steps involved in KG augmentation
are explained below:
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Samples from organ-wise corpus

Liver
the liver is normal in size and moderate
diffuse increase in hepatic echogenicity.
no focal lesion is seen.
intra-hepatic biliary radicals are not
dilated.
portal vein is normal.
grade ii fatty liver.
liver is normal in size and echotexture
show no focal areas of altered echotex-
ture or mass lesion.
no intra-hepic biliary radicals dilatation
seen.
Portal vein appears normal.

Uterus
uterus is anteverted and normal in size
and echotexture.
the endometrial echo is midline and reg-
ular.
endometrial thickness is dim mm.
uterus is normal in size of normal echo-
texture.
it measures about 6.7 x 3.1 x 4.5 cms in
size.
no focal mass seen.
endometrial echoes are normal.

Spleen
spleen is normal in size and echotexture.
spleen and Pancreas are normal in size and
echotexture.
no focal mass lesion noted.

Kidney
right kidney measures 10.2 cm in long axis.
left kidney measures 10.3 cm in long axis.
both kidneys are normal in size and
echotexture.
no evidence of hydronephrosis or calculi
seen.
both the Kidneys are normal in size and
echotexture.
corticomedullary differentiation well seen.
no hydronephrosis or stones seen.
right kidney measures about 11.2 x 4.0 cm.
parenchymal thickness is 1.4 cms.
left kidney measures about 10.5 x 4.5 cm.
parenchymal thickness is 1.3 cms.

Ovary
right ovary measures 1.2 x 2.3 cm.
left ovary measures 2.2 x 1.2 cm.
both the ovaries are normal.
no adnexal mass noted.
right ovary measures 2.1 x 1.4 cm.
left ovary measures 2.0 x 1.3 cm.

Pancreas
pancreas is normal in size and echotexture.
spleen and Pancreas are normal in size
and echotexture.
No focal mass lesion noted.

Gallbladder
the gallbladder is adequately distended.
gallbladder calculus noted measuring 7
mm with no pericholecystic fluid.
wall thickness appears normal.
the cbd is normal.
gallstone with no pericholecystic fluid.
gallbladder shows normal distention, no
evidence of stones seen or wall.

Urinary bladder
urinary bladder is normal with no
abnormal internal echoes and wall of
normal thickness.
urinary bladder appears normal.
no stone, mass or wall thickening noted.

Adnexa
no adnexal abnormality seen.

Table 8: Samples from the corpus following data preprocessing (all text is lower cased, removed unwanted
characters, corrected spellings, etc.). Samples for all organs are not listed here. For example, samples for prostate,
bowel etc. are not listed here.

• Step 1: Triplets are stored in the file against
its input sentence. For example, sentence from
corpus is, A lesion of increased echotexture in
the right lobe of liver. Triplets extracted cor-
responding to above sentence are, (increased,
ModifierOf, echotexture), (echotexture, Prop-
ertyOf, lesion), (right lobe, PartOf, liver), and
(lesion, FoundIn, right lobe).

• Step 2: Construct dynamic KG for sentence
triplets. Figure 9 shows the dynamic KG con-
structed for sentence triplets.

• Step 3: Find its appropriate matched path
in our already built preliminary (static) KG.
Figure 10 shows the entities from dynamic
KG path matched with static KG path.

• Step 4: If a triple is missing in the static KG,
then we add a new triple in the static KG.
Here in above example triple (increased, Mod-
ifierOf, echotexture) is missing in static KG.
Hence, we will add this triple in static KG.
Figure 11 shows the updated static KG.

This is how we update the static KG according
to our dynamic KG triplets. We repeat above steps
for all sentences in our corpus.

In a static KG, we have multiple instances of
the same observations, same properties, and same
modifiers. For example, acute hepatitis reveals
decreased echogenicity of the liver and chronic
liver disease reveals increased echogenicity of the
liver. Here for both the findings echogenicity is
the related observation but their related descrip-
tors/modifiers are not same. Decreased is the
echogenicity modifier associated with acute hep-
atitis and increased is the echogenicity modifier
associated with chronic liver disease. Therefore we
have created different instances of observation with
name echogenicity for both the findings. Hence, we
use a path from the dynamic KG to find the appro-
priate entity with identical names from the static
KG. In static KGs, we have arranged findings in
such a way that its parents represent the anatomical
location and its children represent the properties
or states of organs related to that finding. Figure 5
shows the augmented KG of the Liver.
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Figure 8: The augmented KG of the Liver is completed by information extracted from the radiology report corpus.
Newly added nodes are highlighted in yellow. This figure shows a partial KG since it is large and cannot represent it
in limited page size.

Figure 9: Dynamic KG constructed for the triplets of
sentence A lesion of increased echotexture in the right
lobe of liver.

We rely on Protégé10 (Musen, 2015) the well-
known terminology and ontology building and
maintenance tool. Extracted triplets are submit-
ted in a CSV file along with classes of entities and
relation types. The triplets are then ingested by Pro-
tégé to create the KG. We have created a rule-based
system to find the class of each entity from our con-
structed dictionary. For example, given the triplet
lesion-FoundIn-liver, the class-name for lesion is
Finding and that for liver is Anatomy. The follow-
ing are the stages for all triplets (entity1, relation,
entity2): i) Protégé creates instances of correspond-
ing classes for entity1 and entity2. ii) Protégé adds
the relation between two entities. Figure 5 shows
the KG of the liver.

10https://protege.stanford.edu/

Figure 10: The static KG at that instance. Yellow
highlighted nodes show the entities from the dynamic
KG path matched with the static KG path.

A.3 Datasets and Examples
Table 9 shows the triplets extracted by OpenIE
tool for given input sentences. As shown in the
table 9, for the sentence 1, OpenIE could not find
the relation between calculus and middle calyx,
middle calyx and right kidney and for the sentence
2, OpenIE does not consider the shape, location,
and cortical echogenicity.

A.4 Training Details: KG-BART
Table 10 shows the samples from the parallel (im-
pression and findings) dataset.

We have implemented our own algorithm for
KG-grounding task. We use pre-trained KG-
BART11 model which was trained for common-
sense reasoning on ConceptNet KG and common-
sense dataset. We fine tune this model on radiology

11https://github.com/yeliu918/KG-BART
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Figure 11: Updated static KG after adding new triple.
Newly added node highlighted in green.

Input Sentence Triplets Extracted Using OpenIE
A 5 mm calculus
is noted in an up-
per calyx and a 4
x 3 mm calculus is
noted in a middle
calyx of right kid-
ney.

(mm calculus, is noted in, upper calyx)

(mm calculus, is, noted)

(5 mm calculus, is noted in, calyx)

(5 mm calculus, is noted in, upper calyx)

(5 mm calculus, is, noted)

(mm calculus, is noted in, calyx)

Right kidney is
normal in size 9.6
x 4.0 cm, shape,
location and corti-
cal echogenicity.

(kidney, is, normal)

(right kidney, is, normal)

(right kidney, is normal in, size)

(kidney, is normal in, size)

Table 9: Examples of triplets extracted using OpenIE
tool for given input sentences

text dataset that we have constructed. We use byte-
pair encoding for tokenization with a maximum
length of 32 for the encoder and 64 for the decoder.
We set learning rate to 0.00001 and used AdamW
with 1 = 0.9, 2 = 0.98 for optimization. We set the
batch size to 32. We trained the KG-BART for 15
epochs, and the gradients are accumulated every 6
steps. We apply dropout with a probability 0.1 to
avoid over-fitting. We use beam search with beam
size 5 and length penalty with factor 0.6 while in-
ferencing. The training time took 7 hrs on a single
NVIDIA GeForce GTX 1080 Ti GPU with 11 GB
GDDR5X memory.

A.5 Implementation Details of Span Identifier
We use a BERT-based multilabel text classifier to
identify the normal sentences. The last layer uses
a sigmoid activation function to generate the prob-
ability of a sample belonging to the correspond-
ing class. We used pretrained BERT weights to
initialize our model. There are a total of 24 la-
bels, according to the number of nodes in the last
layer change. We train all the models on a DGX

A100-SXM-80GB GPU server. For all transformer
based models we use hugging face transformer li-
braries.12

A.6 Examples of Constructed KGs for
Abdominal Organs

A.7 Example of Normal Report and Patient
Specific Report

12https://huggingface.co/docs/transformers/
index
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Impression Pathological Description
Hepatomegaly with a tiny clear cyst seen in right lobe of
liver measuring 3 x 5 mm.

liver is enlarged in size with normal echopattern a tiny anechoic thin
walled cyst measuring 3 x 5 mm in right lobe of liver.

Right renal hemorrhagic cyst at upper pole measuring 9.4
x 8 mm.

A cortical cyst is noted at upper pole of right kidney measuring 9.4 x 8
mm showing internal mobile echoes.

Chronic pancreatitis with thick walled pseudo pancreatic
cyst measuring 8.6 x 6.4 cm vol 1.1 mm noted in region
of the tail of pancreas.

Pancreas is slightly small, reveals thin inhomogenous paranchyma.
the pancreatic duct is dilated measuring 1.1 mm. multiple intraductal
calculi seen. a thick walled 1.1 mm cyst measuring 8.6 x 6.4 cm vol
1.1 mm in the region of the tail of pancreas.

Table 10: Samples from dataset constructed using radiology report corpus.

Figure 12: The augmented KG of the Liver is completed by information extracted from the radiology report corpus.
Newly added nodes are highlighted in yellow. This figure shows a partial KG since it is large and cannot represent it
in limited page size.

Figure 13: The augmented KG of the Liver is completed by information extracted from the radiology report corpus.
Newly added nodes are highlighted in yellow. This figure shows a partial KG since it is large and cannot represent it
in limited page size.
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Figure 14: Left hand side shows normal report template of ultrasonography of the Abdomen and Pelvis, and the
right hand side shows a patient-specific report of ultrasonography of the Abdomen and Pelvis.
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