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Abstract

Datasets used to train deep learning models
in industrial settings often exhibit skewed dis-
tributions with some samples repeated a large
number of times. This paper presents a simple
yet effective solution to reduce the increased
burden of repeated computation on redundant
datasets. Our approach eliminates duplicates
at the batch level, without altering the data
distribution observed by the model, making
it model-agnostic and easy to implement as
a plug-and-play module. We also provide a
mathematical expression to estimate the reduc-
tion in training time that our approach provides.
Through empirical evidence, we show that our
approach significantly reduces training times
on various models across datasets with vary-
ing redundancy factors, without impacting their
performance on the Named Entity Recognition
task, both on publicly available datasets and
in real industrial settings. In the latter, the ap-
proach speeds training by up to 87%, and by
46% on average, with a drop in model perfor-
mance of 0.2% relative at worst. We finally
release a modular and reusable codebase to fur-
ther advance research in this area.

1 Introduction

Deep neural networks have recently enabled
impressive results across many fundamental
tasks (Brown et al., 2020; Dosovitskiy et al., 2021).
However, training state-of-the-art models is now a
very demanding process, in terms of both time and
resources (Strubell et al., 2019). The issue is exacer-
bated when models are required to train on datasets
that naturally exhibit a redundant distribution. User
queries are one such example: AOL (Pass et al.,
2006) and MSN query logs (Zhang and Moffat,
2006) are composed for the 51.6% and 52.4% of
duplicates, respectively.

∗Equal contribution.

Figure 1: Effect of employing batch-wise unique sam-
ples. Consider a dataset with 8 samples of 4 distinct
types (e.g. utterance text). Instead of inserting samples
sequentially until the batch is full, by inserting only the
first encountered sample per type (keeping track of the
occurrences) the number of batches is decreased.

A similar phenomenon can be observed in rec-
ommender systems data, in which most of the en-
tries involve a relatively small set of popular items
(Cremonesi et al., 2010). Finally, in large scale con-
versational assistant data, the vast majority of user
interactions is composed of commands and queries
that are frequently expressed with minimal or no
variation. When training on this redundant data,
there will be instances in which: (i) the training
input is the same, and (ii) the model has the same
weights; in these instances repeated computations
will occur, increasing training times.

In this paper, we propose a simple yet effective
approach to reduce repeated computations during
training by removing duplicates at the batch level,
while accounting for frequency of the samples in
the batch during the loss computation. This leaves
the data distribution perceived by the model un-
touched and we empirically show that it leads to
a model that has similar weights and has followed
a similar trajectory in the parameter space during
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training, compared to a model trained without any
data deduplication.

Our contribution is therefore four-fold: (i) we
propose a novel online deduplication technique
to mitigate the training burden over redundant
datasets and provide rigorous mathematical rea-
soning backing its benefits; (ii) we show its effec-
tiveness on both a real industrial datasets as well as
artificially upsampled public datasets; (iii) we fur-
ther provide a set of empirical analyses, including
a study of the effect on the parameters’ evolution
and the difference in benefit when varying batch
size; (iv) finally, we release a modular and extensi-
ble codebase1, implementing deduplicator classes,
easily reusable by the community. Even though the
methodology is agnostic to both task and model,
we experimentally validate its strengths on NER as
it constitutes a critical task for large-scale conversa-
tional assistants, on which we show the duplication
problem to be relevant. We believe this work fills a
gap in the current research landscape, since dedu-
plication techniques for training data appear to be
an under-explored research territory, but also an
increasingly pressing need in industry.

2 Related work

The success of language models pre-trained on
large corpora, such as BERT (Devlin et al., 2018),
raised awareness on optimization of training times
and costs within the NLP community. Strubell et al.
(2019) showed that carbon footprint of NLP re-
search is following a concerning trend and spurred
researchers to prioritize the development of compu-
tationally efficient algorithms. Countless directions
have been explored by the community, from dis-
tillation techniques (Hinton et al. (2015)) used to
produce smaller models (Sanh et al. (2019)) up to
efficient computation frameworks to improve dis-
tributed training (Song et al. (2023)). To the best
of our knowledge, only a few works in the liter-
ature address the problem of optimising training
in presence of duplicates in the data. Lee et al.
(2021) show the benefits of completely removing
duplicates when pre-training large language mod-
els. Ya-Guan et al. (2020) propose a way to im-
prove accuracy focusing on mini-batches and per-
forming undersampling and oversampling in order
to balance classes. Faghri et al. (2020) mention the
possibility of reducing computation time by remov-
ing all but one of the duplicates in a mini-batch,

1Available at github.com/amazon-science/unique-batches.

although their work focuses on the optimal way
to sample data to minimize gradient variance, and
not on training time reduction. Similarly, Wang
et al. (2016) propose a way to balance the train-
ing effort among batches, to improve Stochastic
Gradient Descent (SGD) by minimizing gradient
variance. Compared to these previous works, our
approach focuses on reducing the repeated com-
putation that occurs when training on redundant
datasets, retaining model performance while being
minimally invasive to the pre-existing setup.

3 Approach

A deep learning modelM(θ) is typically trained
over a given datasetD with SGD (or one of its vari-
ants), estimating the gradient of a loss function with
respect to the model weights θ, by iterating over
the dataset in batches of fixed size. If D contains
duplicates, then some of them might fall within
the same batch, resulting in the same computations
occurring multiple times. We propose to remove
duplicates while building the batch, also account-
ing for the number of occurrences of the samples
when computing the loss. In practice, first creat-
ing the batches and then removing the duplicates
would result in smaller batch sizes and therefore in
under-exploiting the parallel computation enabled
by GPUs. Therefore, we keep the actual batch size
the same, filling a batch with unique samples (ig-
noring repetitions when encountered, see fig. 1),
but accounting for repetitions by multiplying the
loss of a sample by its frequency in the batch. See
appendix A.1 for the details of the procedure. By
considering the number of repetitions of the sam-
ples, the size of the batches remains the same while
virtually containing more samples, therefore reduc-
ing the required number of batches to iterate over
the dataset and leading to training time reduction.
We remark that the proposed technique does not
make any assumption on the underlying task and
model, but only affects the way data is loaded dur-
ing training. Therefore, it is well suited for a pro-
duction setting in which one wishes to reduce the
burden of frequent re-training, while at the same
time changing the setup as little as possible.

Motivation Our methodology is grounded on the
following intuitions: (i) frequent samples should
be given a larger weight than rarer ones, as they
are most frequently encountered in the production
traffic, and (ii) the model should be able to see
the duplicated samples multiple times per epoch,
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i.e. at different stages of the model parameters
evolution. While (i) explains why we should de-
duplicate and take sample frequency into account
in the loss computation, (ii) explains the need to
do it at the batch level. In section 6 we provide
empirical support to these observations.

Training time reduction The reduction in train-
ing time comes from a direct reduction in the num-
ber of batches, as each batch virtually contains
more samples than its actual batch size. We can
define the virtual batch size Bvirtual of batch b con-
taining B unique objects oi as

Bvirtual =

B∑

i=1

occurrences(oi, b). (1)

Let Ndup be the number of duplicates in batch b,
once it has been filled with B unique samples, then
Bvirtual = B + Ndup. The number of duplicates
in a batch is a random quantity that depends on
the dataset distribution and the batch size. As the
randomness only regards Ndup, we have

E
{
Bvirtual} = B + E{Ndup}. (2)

The expected relative increase in batch size is then
Binc = E

{
Bvirtual

}
/B. Let N be the number of

training samples. Let M =
⌈
N
B

⌉
be the number of

batches resulting from iterating over the samples
with batch size B. Finally, let M ′ be the number
of batches when using batch size E

{
Bvirtual

}
. By

definition, we have

E
{
M ′} =

⌈
N

E {Bvirtual}

⌉

=

⌈
N

BBinc

⌉
=

⌈
M

Binc

⌉
.

(3)

If we assume that a mini-batch of size B can be
processed in parallel, the time complexity of a
pass over N samples to optimize d parameters
is (Bottou and Bousquet, 2007)O(Nd

B ) = O(Md).
Our approach introduces an O(N) step, while at
the same time reducing the time complexity to
O(M ′d) = O( Nd

BBinc ). This expected reduction
in training time complexity simply reflects the ex-
pected reduction in number of batches computed
above. This leads the overall complexity to

O
(
N +

Nd

BBinc

)
= O

(
Nd

B

(
B

d
+

1

Binc

))

(4)

Since usually the number of parameters to optimize
is much larger than the batch size, we can assume
B ≪ d from which it follows B

d ≈ 0, hence the
overall complexity is

= O
(

1

Binc
Nd

B

)
(5)

meaning the expected reduction in training time
is proportional to the expected relative increase in
batch size.

Accounting for duplicates Removing duplicates
in the batch also removes the influence of repeated
samples, hence removing the larger contribution to
the loss of more frequent samples. This leads to
different gradients and therefore different training
evolution. To counter this, the contribution to the
loss of each sample oi is re-weighted by

frequency(oi, b) =
occurrences(oi, b)

Bvirtual (6)

thus resulting in the same loss signal we would
have when using the virtual batch size instead. We
delve into more details on the effect of including
the frequency signal in the loss in section 6.

4 Boost estimation

Estimating the expected increase in virtual batch
size is important for two reasons. First, the virtual
batch size allows us to compute the expected re-
duction in the number of batches required to iterate
over the dataset. This in turn provides an estimate
for the reduction in training time (see eq. (3)) with-
out the need to actually run any training. Second, it
is common practice to scale the learning rate when
increasing the batch size (Krizhevsky, 2014; Goyal
et al., 2017), thus having an estimate of the virtual
batch size helps correcting the learning rate. This
is discussed more in detail in section 7.

To the best of our knowledge there is no closed
form solution for E

{
Bvirtual

}
in eq. (2). Therefore

we derive a solution for the number of duplicates d
in a batch b of size n, and then invert the formula
to compute the expected number of unique samples
in b as u = n− d. This way a numerical solution
to the original problem can be found by iterating
over the possible values of n = 1, . . . , N , up to
the one that yields u = B unique samples. In
the following we introduce the formula for d and
leave the details of its derivation in appendix A.2.
Consider a dataset

D = {xi | xi ∈ C, i = 1, . . . , N} (7)
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Alias Name Scope # Copies Weighted

Base Baseline D ci ✗

DU Dataset-wise Unique D 1 ✗

DWU Dataset-wise Weighted Unique D 1 ✓
DL Dataset-wise Logarithmic D log(ci) ✗

BU Batch-wise Unique B 1 ✗

BWU Batch-wise Weighted Unique B 1 ✓

Table 1: The deduplication techniques under considera-
tion. Scope regards whether samples are deduplicated
at the batch (B) or at the dataset (D) level, weighted
approaches account for the number of frequencies dur-
ing the loss computation, and # copies determines how
many repetitions are left after deduplication. The first
row corresponds to the non-deduplication baseline.

of N samples, some of which may be duplicates,
taken from a collection C = {o1, . . . , oC} of C
distinct objects. Let k1, . . . , kC denote the number
of occurrences in D, such that k1 + · · ·+ kC = N .
Then, we can show that:

d =
C∑

i=1

(
n
ki
N
− 1 +

(
N−ki

n

)
(
N
n

)
)
. (8)

Effect of sampling strategy The estimate in
eq. (8) assumes batches are formed by sampling
uniformly at random from the dataset. However,
NLP practitioners often rely on sampling strate-
gies that optimize memory consumption, such as
Bucketing by Sequence Length (Khomenko et al.,
2016). Samples are distributed in buckets based
on their length, and then batches are formed sam-
pling uniformly at random from these. In such a
scenario, the boost estimation in eq. (8) still holds,
but on each bucket individually. The overall ex-
pected number of duplicates can be computed as a
weighted average of the estimates on each bucket,
weighted by the bucket size. We highlight that if
samples are grouped in buckets by length, then
all of the duplicates of one sample will fall in the
same bucket. This has the effect of increasing the
number of expected duplicates in each batch (N in
eq. (8) is smaller), leading to larger training time
reduction in realistic scenarios that use bucketing.

5 Experimental setting

The proposed approach is tested on the task of
NER (Tjong Kim Sang and De Meulder, 2003).
Two samples (also referred to as utterances) are
considered duplicates if they share the same anno-
tation, i.e. word-level tokens and corresponding
ground truth NER labels in the dataset.

The experiments are performed on datasets used
for training a large-scale conversational assistant
(referred to as internal in the following) and also
on publicly available data. The internal datasets
comprise live traffic utterances, de-identified for
privacy regulations and annotated to enable super-
vised training of deep learning models for solv-
ing the NER task. The datasets exhibit varying
degree of skewness in their redundancy, and we
refer to them as InternalMS, InternalVS, InternalXS,
meaning mildly skewed, very skewed and extremely
skewed, respectively. Given the artificial dedupli-
cation of manually curated datasets, we upsam-
ple a public dataset to mimic the redundancy ob-
served on internal data. The MITRestaurant dataset
(Liu et al., 2013), consisting of restaurant-related
queries, is chosen for the semantic similarity of
its queries to the utterances found in the internal
datasets. From this dataset, upsampling is per-
formed to arrive at three datasets with redundancy
ratios of r1 = 0.5, r2 = 0.7 and r3 = 0.9. We
refer to these artificially upsampled public datasets
as MITMS,MITVS,MITXS, with the same meaning
of the acronyms. Given the redundancy ratio r of
interest for each of the three datasets, these are
generated as follows. First, the number of dupli-
cates to draw is computed, according to the above
probability distribution (eq. (8)), as d = r

1−rn.
Then, to generate a realistic distribution, the fact
that shorter utterances are more frequent (Borbély
and Kornai, 2019) and thus more likely to be du-
plicated is leveraged. In a conversational assistant,
for instance, we expect to observe more frequently
short utterances such as “yes” or “stop” than long
sentences related to some more specific queries.
This heuristic is implemented by sampling the d
duplicates according to a power-law over the length
of the utterance in characters, for which an utter-
ance ui with length li is sampled with probability
p(ui) =

1
(li)α

. The exponent of the power-law α is
set to 3 for MITMS and MITVS, while it is set to 5
for MITXS. See table 2 for more statistics on these
artificially upsampled datasets.

We compare the proposed approach with various
baselines (see table 1), which either deduplicate
at the batch level or at the dataset level, can either
account for the number of repetitions during the
loss computation or ignore them, and keep one
or more copies per sample. The comparison is
drawn in terms of training steps and time, as well as
performance of the trained model in terms of micro-
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Dataset Size Redundancy # Named Entities

MITRestaurant 9180 –

17
MITMS 18360 0.5
MITVS 30600 0.7
MITXS 91801 0.9

Table 2: Statistics of the public dataset used in the ex-
periments, and the three artificially upsampled versions.

F1 score, considering averages across 5 seeds.
All the deduplication methods are applied to

the training of a model with the same architecture,
across all experiments. In particular, we employ
a simple NER architecture that obtains contextual
word embeddings from a pre-trained DistilBERT
encoder (Sanh et al., 2019). The embeddings are
then fed to a Multi-Layer Perceptron (MLP) to
map into the label space. The models are trained to
convergence with early stopping.

We remark that what changes across the experi-
ments is the deduplicator and not the model that is
employed. The latter is in fact defined by the same
architecture and hyperparameters, except for the
learning rate that is adjusted as described in sec-
tion 7 to account for the difference in virtual batch
size. Refer to appendix A.4 for further details.

6 Experimental results

Results on internal data Table 3 reports the re-
sults on the three internal datasets. We can see how
the only approach that reduces training times while
also keeping model performance intact is remov-
ing duplicates at the batch level: training times are
significantly reduced (−46.5% on average, −87%
at best) and the model evaluation metric is almost
on par (−0.1% on average, −0.2% at worst). On
the other hand, naively removing duplicates at the
dataset level is suboptimal: the strategy is consis-
tently the best approach in terms of reduction in
training time (−91.3% on average, −97% at best),
but also the worst in terms of F1 score of the result-
ing model (−3.1% on average, −5.8% at worst).
Finally, only keeping a logarithmic portion of the
duplicates at the dataset level allows to reduce the
training times less (−65.2% on average, −84% at
best), but with a milder worsening of model perfor-
mance (−0.3% on average, −0.5% at worst).

We observe that introducing the sample weight-
ing term in the loss when deduplicating batch-wise
(BWU) does not seem to result in a significant im-
provement over the un-weighted variant (BU). We

Figure 2: Expected and actual reduction ratio versus
batch size for the three upsampled datasets.

hypothesize this to be a consequence of leaving
the pre-trained BERT encoder frozen during train-
ing. To test this hypothesis, we experiment also
on a simpler LSTM-based model (Hochreiter and
Schmidhuber, 1997), without pre-training (see ta-
ble 7) and find that the weighted variant (BWU)
is on average 22.8% faster than the un-weighted
variant (BU) since it leads to faster convergence.
Finally, it is worth mentioning that, if keeping per-
fectly on-par model performance is not critical,
simpler deduplicators (e.g. DL) may achieve better
training time reduction.

Results on public data Table 4 reports the results
on public data, where we observe similar patterns
to the ones on internal data. Again, the only ap-
proach consistently reducing training times while
also keeping model performance on par is BWU:
it leads to a training time reduction of −23% on
average, and −61.1% at best, while exhibiting no
model performance drop on average, and −0.1%
at worst. We observe again similar results between
BWU and BU, and carry out the same test on a
simpler LSTM also on public data (see table 8),
with similar results. Removing duplicates at the
dataset level is still the best approach in terms
of time reduction (−32% on average, −68.7% at
best), but at the cost of worst model performance
decrease (−9.2% on average, −21.2% at worst).
The DL deduplicator is less competitive on public
data, with an average and best time reduction of
−32.2% and −68.7%, respectively, and a model
performance decrease of −0.83% on average and
−1.4% at worst.

Parameters evolution We hypothesize that in-
cluding the frequency information in the loss, and
thus having an almost identical loss signal to the
non-deduplication baseline, leads to models having
similar weights. To test this hypothesis, we retain
parameter vectors during training with all the dedu-
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deduplicator

BS = 512 BS = 1024

MITMS MITVS MITXS MITMS MITVS MITXS

Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑
Base – – – – – – – – – – – – – – – – – –
DU -34.0% -31.0% -0.7% -83.0% -83.0% -0.6% -87.0% -87.0% -0.2% -54.0% -53.0% -0.9% -75.0% -73.0% -0.3% -83.0% -82.0% -0.2%
DWU -86.0% -86.0% -5.8% -93.0% -93.0% -1.9% -97.0% -97.0% -2.1% -88.0% -87.0% -5.3% -91.0% -91.0% -2.2% -94.0% -94.0% -1.3%
DL -32.0% -30.0% -0.5% -75.0% -74.0% -0.2% -83.0% -83.0% -0.2% -47.0% -45.0% -0.4% -76.0% -75.0% -0.3% -84.0% -84.0% -0.3%
BU +11.0% +15.0% -0.0% -58.0% -57.0% -0.2% -73.0% -70.0% -0.1% -18.0% -16.0% -0.1% -34.0% -29.0% -0.2% -75.0% -72.0% -0.1%
BWU -3.0% +0.0% +0.1% -52.0% -50.0% -0.1% -75.0% -72.0% -0.1% -26.0% -23.0% +0.0% -51.0% -47.0% +0.1% -89.0% -87.0% -0.1%

Table 3: Comparison of the deduplicators on the internal datasets. Highlighting in bold best results column-wise.
While BWU is not the best technique in terms of training steps and time alone, it is the only one that can reduce
training time while maintaining model performance.

deduplicator

BS = 512 BS = 1024

ExternalMS ExternalVS ExternalXS ExternalMS ExternalVS ExternalXS

Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑
Base 696 99.2s 0.915 1046 136s 0.929 1987 224.6 0.955 450 124.6s 0.914 700 178.4s 0.927 1800 394.8s 0.956
DU -32.0% -11.5% -1.1% -51.2% -30.4% -2.1% -75.8% -55.8% -6.5% -46.6% -30.0% -1.4% -61.4% -47.8% -3.0% -86.7% -75.2% -8.8%
DWU -39.8% -21.2% -3.1% -52.9% -32.5% -2.9% -85.2% -72.3% -11.9% -48.2% -30.0% -4.4% -65.6% -51.9% -11.9% -86.8% -75.6% -21.2%
DL -26.2% -4.4% -0.3% -36.9% -16.5% -0.4% -66.9% -46.0% -0.9% -40.0% -21.0% -0.7% -52.9% -36.6% -1.3% -80.0% -68.7% -1.4%
BU -16.7% -5.4% -0.1% -18.4% -8.7% -0.1% -45.6% -31.4% +0.3% -20.0% -8.7% -0.1% -31.4% -20.3% -0.1% -70.8% -61.7% -0.2%
BWU -5.6% +9.1% +0.2% -27.7% -17.5% -0.1% -53.8% -40.6% +0.0% -20.0% -8.3% +0.0% -31.4% -19.3% +0.0% -70.4% -61.1% -0.1%

Table 4: Comparison of the deduplicators on the public datasets. Following the same data presentation conventions as
in table 3. We observe very similar results to the ones on the internal datasets, with BWU being the only deduplicator
able to consistently reduce training time and keep model performance on par with the non-deduplication baseline.
Absolute results are available in table 9.

plicators; looking at table 5 we can see how indeed
the BWU deduplicator trains a model that is the
closest (in parameter space) to the model trained
without deduplication, among the tested dedupli-
cators. Furthermore, we find that this behavior is
the result of a stronger property of our approach.
Let us define the distance between trajectories in
parameter space as

dtrajectory(A,B) =
1

n

n∑

i=1

∥Ai −Bi∥2 (9)

where A,B ∈ Rn×d are matrices of n parameter
vectors of dimension d, and ∥·∥2 is the Euclidean
norm. Essentially, we are considering the average
point-wise Euclidean distance between correspond-
ing pairs of points along the two trajectories in pa-
rameter space. Then, our finding is that employing
the BWU deduplicator during training leads to a
trajectory in parameter space that is the closest one
to that of a model trained without any deduplication
(see again table 5). One can qualitatively appreciate
this property by resorting to t-SNE (van der Maaten
and Hinton, 2008) to project the d-dimensional vec-
tors down to 2D, and visualizing the trajectories in
parameter space, as can be seen in fig. 3.

deduplicator dfinal ↓ dtrajectory ↓
DU 56.8 40.4
DWU 74.1 52.6
DL 49.9 35.15
BU 48.6 32.3
BWU 45.5 29.7

Table 5: Comparison of the deduplicators in terms of
Euclidean distance of the final parameter vector, and the
overall trajectory in parameter space, from the one of
the model trained with no deduplication

Figure 3: Visualization of the trajectories in parameter
space followed by the same model, with same initial-
ization, when trained with different deduplicators. Our
proposed deduplicator (BWU) results in the closest tra-
jectory to the non-deduplicated one (Base) across all
training. The figure has been obtained following the
same procedure used by Huang et al. (2019).
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7 Discussion

Influence of batch size As can be seen in Fig-
ure 2, the expected number of duplicates increases
with the batch size. Intuitively, given a finite set
of elements that contains repetitions, the larger a
sample, the more likely it is to have repetitions.
The plot clearly shows how the greatest increase in
the number of duplicates is obtained when passing
from small batch sizes to over 1000. The maximum
possible reduction in number of batches would triv-
ially be obtained when the batch size is equal to the
total number of samples, when the reduction would
be exactly the redundancy ratio of the dataset.

Learning rate It is advisable to scale the learning
rate when increasing the batch size, as the gradi-
ent computed over a larger batch size is a more
accurate estimate of the real gradient and should
therefore provide a more reliable direction. Small
batches naturally provide more chaotic gradients
and therefore a large learning rate may result in
“overshooting” and missing the minima. A com-
mon approach is to increase the learning rate as
the square root of the batch size increase factor
(Krizhevsky, 2014), or to scale it linearly with the
batch size (Goyal et al., 2017). We adopt the lat-
ter in this work, multiplying the learning rate by
the expected increase in batch size computed as in
section 3.

8 Conclusions

In this paper, we address the problem of reduc-
ing training time when using redundant datasets,
proposing a novel approach agnostic to task and
model that results in a significant time reduction
without waiving performance. The approach is
compared with various deduplication methods on
the task of Named Entity Recognition, on both in-
dustrial and public datasets. The comparison shows
that our approach is the only one to significantly
reduce training time while maintaining the same
model performance metrics, with observed boosts
in training time of 23%, 47% and 87% on datasets
used to train models for a large-scale conversational
assistant. Various analysis are conducted, on the
tradeoff with batch size and on how learning trajec-
tories are modified. We also provide a theoretically
sound procedure to estimate the expected reduc-
tion, allowing practitioners to assess the benefits
before employing the method. Finally, a modular
and reusable codebase is released to foster further

research in the area.
We believe that this approach can have a high im-

pact on the industry, where large, expensive models
are often trained on datasets containing redundant
user queries or items. This reduction in training
times may in fact allow for faster experimental iter-
ations while cutting times and costs, also reducing
the carbon footprint of deep learning models.

As future work we plan to (i) leverage the gener-
ality of the approach on other tasks that exhibit high
redundancy in data, like semantic search and (ii)
study a more relaxed definition of equality between
two samples, to allow considering two samples the
same if they only differ up to a tolerated quantity.

Limitations

An important limitation of our contribution lies in
breadth of the experimental validation. We decided
to focus our experimentation on the setup where we
encountered the issue of redundant datasets: NER
for a large-scale conversational assistant. While
it is true that our approach does not make any as-
sumption neither about the task nor about the model
architecture, and while we also provide a rigorous
proof to support the estimated gain in terms of train-
ing time, the extent to which our approach remains
the best time-accuracy trade-off when other tasks
are considered is not explored in this work.

An additional limitation stems from the lack of
absolute results on the internal datasets, as the latter
can only be disclosed as relative improvements
over a baseline due to internal policy. We attempt
to mitigate this by reporting full results on an open
dataset, but as we mention we have to resort to
upsampling given the artificial deduplication that
manually curated datasets incur before publishing.

Ethics Statement

The carbon footprint generated by the NLP commu-
nity has shown a concerning trend in recent years.
Similarly, the development and maintenance of pro-
duction models using large neural networks in an
industry setting has a non negligible negative im-
pact on our planet. While our technique offers a
significant advantage only in presence of duplicates
in the training data, which might not always be the
case, we see it as a small but tangible contribution
towards a more sustainable research. Furthermore,
a reduction in training times also directly translates
to a reduction in costs, therefore works like ours
also contribute to the democratization of language
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models development and their applications. Finally
we note how our approach does not lead to the in-
troduction of any new bias, since it leaves the data
distribution observed by the model during training
identical to the one of the initial dataset.
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A Appendix

A.1 Schedule generation

Algorithm 1 describes in pseudo-code the proposed
procedure to generate a batching schedule that re-
moves duplicates at the batch level. Notice that we
consider two utterances identical when their anno-
tation, i.e. both sequence of word-level tokens and
corresponding NER labels, are identical.

Procedure 1 Proposed deduplication approach

Input: dataset data, batch size B
Output: schedule for dataloader

occurrences← []
schedule← []
Ib← {} ▷ IDs seen in batch
sample_posb← {} ▷ sample pos in batch
occb← [] ▷ occurrences in batch
C ← B ▷ capacity of current batch
for all sample s in data do

spos ← position of the sample
sid← unique id of the sample
if sid /∈ Ib then

schedule += spos
Ib += sid
sample_posb[sid]← len(occb)
occb.append(1)
C −= 1

else
occb[sample_posb[sid]] += 1

end if
if (C = 0) ∨ (s is the last sample) then

occurrences.append(occb)
C ← B
occb← []
sample_posb← {}
Ib← {}

end if
end for
return schedule, occurrences

In practice, the schedule is then used to load sam-
ples during training, that are then fed to the model
to obtain class scores z ∈ RN×C×L, with N,L,C
the number of samples, the sequence length, and
the number of classes, respectively. Then, the oc-
currences (normalized as relative frequencies fi)
are integrated in the loss function as follows

L = −
N∑

i=1

fi ·
1

L

L∑

j=1

log
exp(zn,j,yn)∑C
c=1 exp(zn,j,c)

(10)

Figure 4: Effect of the skewness of frequency distribu-
tion over the number of duplicates in a batch. Consider
a dataset with 8 samples of 4 distinct types (redundancy
factor 1

2 ), with various frequency distribution skewness:
no skew ([2, 2, 2, 2]), medium skew ([3, 3, 1, 1]), large
skew ([5, 1, 1, 1]). Consider a batch of size 4. More
skewed distributions lead to more occurrences in the
batch, hence fewer batches to cover the dataset.

where y ∈ Rn is the vector of ground truth labels.

A.2 Derivation of boost estimate

Aim of this section is to formally derive the for-
mula for the expected virtual batch size reported in
Equation (8) given the distribution of duplicates in
the dataset, reported in section 4.

Problem Formalisation Consider a dataset D =
{x1, . . . , xN} with N objects, some of which
might be repeated more than once. As described
in section 3, we fill a batch b by sampling Bvirtual

objects O = {xp1 , . . . , xpBvirtual} so that O con-
tains B distinct elements. We want to compute
the expected value E

{
Bvirtual

}
. This problem has

some analogies with a generalized version of the
coupon collector problem in which one wants to
find how many samples with replacement are re-
quired to obtain a certain number of unique objects
(Ferrante and Frigo, 2012), but in our case there
is no replacement. To the best of our knowledge
there is no closed form solution for this version of
the problem, and therefore, we derive a solution for
the expected number of duplicates d = Ndup in a
batch b of size n. This way a numerical solution of
the original problem can be found by iterating over
the possible values of n = 1, . . . , N , up to the one
that yields u = B unique samples.

Estimate Derivation Consider now a dataset D
of size N instead as a collection C = {o1, . . . , oC}
of C distinct objects each associated with its num-
ber of occurrences k1, . . . , kC such that k1 + · · ·+
kC = N . Consider a random sample without re-
placement X1, . . . , Xn over D, with n < N repre-
senting the batch size. Now introduce C counting
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variables Z1, . . . , ZC , such that Zi counts occur-
rences of oi in the sample.
Formally:

Zi =
n∑

j=1

1(Xj = oi) (11)

The counting variables introduced above follow,
by definition, a multivariate hypergeometric distri-
bution (Duan, 2021), characterized by probability
mass function

pZ1,...,ZC
(z1, . . . , zC) =

∏C
i=1

(
ki
zi

)
(
N
n

) (12)

and expected value

E(Zi) = n
ki
N

. (13)

We want to compute the expected number of dupli-
cates in the sample d = E

(
Ndup

)
. The number of

duplicates of oi in the sample is Zi − 1, since the
first occurrence is not a duplicate; therefore in total
we have:

Ndup =
C∑

i=1

max (Zi − 1, 0) . (14)

By linearity of expectations, it holds that:

E
(
Ndup) = d =

C∑

i=1

E (max (Zi − 1, 0)) (15)

Let di = E (max (Zi − 1, 0)), then by the chain
rule of expectations (also known as Law Of The Un-
conscious Statistician (Schum, 2001)) it follows:

di =

ki∑

j=0

max(j − 1, 0)pZi(j)

where pZi(j) is the probability mass of Zi in j.
Now, noticing that the first two contributions to the
sum are 0, we have

di =

ki∑

j=2

max (j − 1, 0) pZi(j)

= [E (Zi)− pZi(1)]− [1− pZi(0)− pZi(1)]
(16)

and substituting from eq. (13) we get

di = n
ki
N

+ pZi(0)− 1. (17)

The value pZi(0) denotes the probability of object
oi having zero elements in the sample. Now, if
the batch size is larger than the number of objects
different from oi, i.e. k1 + · · · + ki−1 + ki+1 +
· · · + kC < B, then the sample will contain at
least one occurrence of object oi, and in that case
pZi(0) = 0. However in real-world scenarios this
is quite unlikely, since usually B ≪ k1 + · · · +
ki−1 + ki+1 + · · ·+ kC , therefore we have

pZi(0) =

(
N−ki

n

)
(
N
n

) (18)

and putting it all together, we get:

d =
C∑

i=1

(
n
ki
N
− 1 +

(
N−ki

n

)
(
N
n

)
)
. (19)

As mentioned before, with this closed-form ex-
pression we now have a proxy to numerically
compute the actual quantity of interest, that is
E{Bvirtual} = n = u + d = B +Ndup. See algo-
rithm 2 for the procedure to compute this numerical
solution.

Procedure 2 Estimated boost computation

Input: dataset distribution k1, . . . kC , batch size
B

Output: estimated boost
N ←∑C

i=1 k1 ▷ dataset size
l← 0
r ← N
while r > l do ▷ binary search

n =
⌈
(r−l)
2

⌉

Compute d with eq. (19)
if n− d = B then

r ← n
B ▷ Increase in batch size

return
(
1− 1

r

)

else if n− d > B then
r = n− 1

else
l = n+ 1

end if
end while

A.3 Effect of frequency distribution

We remark that the reduction factor depends di-
rectly on the number of duplicates in the batch,
and not on the overall redundancy factor. This can
be appreciated in fig. 4. Three datasets with the
same redundancy factor, but different skewness,
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lead to differt virtual batch sizes. In fact, the distri-
bution with most skewness in frequency results in
the largest number of duplicates, as it is easier to
draw repeatedly a very frequent object than doing
so for one of the many different objects contribut-
ing equally to the total redundancy in the dataset.

A.4 Implementation details
The experiments have been run on p3.2xlarge
EC2 instances2, equipped with a NVIDIA Tesla
V100 GPU3. As optimization framework, Py-
Torch (Paszke et al., 2019) has been used, along
with PyTorch Lightning (Falcon, 2019) and Hy-
dra (Yadan, 2019) for easier and faster develop-
ment and experiment executions. Table 6 reports
the hyperparameters used to train the models with
the various deduplicators. We remark that the
deduplicators themselves have no hyperparameters,
therefore the table lists the hyperparameters of the
models. We used pretrained distilled BERT (Sanh
et al., 2019) models from HuggingFace (Wolf
et al., 2019) as well as LSTM-based (Hochre-
iter and Schmidhuber, 1997) models trained from
scratch. Both types of models feature a two-layer,
fully-connected MLP mapping word embeddings
into label-space. As for the BERT-based mod-
els, the encoder is a distilbert-base-cased4

for the English-only public dataset, while
a distilbert-base-multilingual-cased5 has
been used for the internal data. In both cases the
encoder weights are not updated during training.
Subword token-level embeddings are obtained by
summing the hidden states of the last 3 layers of
the encoder; then, average pooling is used to obtain
word-level embeddings. As for the LSTM-based
models, they use an embedding layer exploiting a
simple word-level vocabulary (built considering all
the corpus).

The models are trained with the Adam (Kingma
and Ba, 2014) optimizer to convergence with early
stopping, monitoring the loss values on a held-
out validation set. Learning rate is increased for
the models trained with the Batchwise Weighted
Unique deduplicator, as mentioned in section 5, to
reflect the increase in (virtual) batch size. Note
that this is not the case for the Batchwise Unique

2https://aws.amazon.com/ec2/instance-types/
p3/

3https://www.nvidia.com/en-us/data-center/
v100/

4https://huggingface.co/distilbert-base-cased
5https://huggingface.co/

distilbert-base-multilingual-cased

deduplicator, since while both fill the batch with
unique samples, ignoring duplicates, only the for-
mer has an impact on the training dynamics due to
the introduction of the sample-wise weight in the
loss. In fact, the latter neglects the duplicates’ con-
tribution to the loss, therefore does not lead to an
actual increase in the batch size, while the former
does, hence the need to increase the learning rate
accordingly.

A.5 Additional Results
After observing that sample weighting does not
result in a significant improvement against the un-
weighted batch-wise unique deduplicator, we in-
vestigate whether this is a flaw of the proposed
deduplication technique or a consequence of us-
ing a pre-trained BERT encoder. As mentioned in
Section 6, the latter turns out to be the case. In
fact, training a simpler LSTM-based model from
scratch, we get the results reported in Table 8. We
can see how indeed the weighted variant is consis-
tently on-par or superior to the un-weighted variant
in terms of predictive performance, despite need-
ing consistently less training steps, for both tested
batch sizes. The effect becomes more noticeable
as the redundancy and skewness in the dataset in-
creases, as we would expect, with BU and BWU
being almost comparable on the MS dataset with
batch size 512, while the latter overcomes the for-
mer using almost half the training steps on the XS
dataset with batch size 1024.

While the margin between the BU and BWU
deduplicator is not as close on internal data, as ob-
served on the public data, we repeat the experiment
on the LSTM-based model also on the former. The
results are reported in Table 7 and are quite sim-
ilar to the ones reported in Table 8 on the public
dataset.
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Parameter Value

BERT LSTM

Learning Rate 1e-3
Optimizer Adam
Max epochs 30
Embedding size 768 50
Hidden size 256
Dropout 0.5 0.2
Activation ReLU
Validation split 0.1
Early stopping metric Validation loss
Early stopping delta 1e-4
Early stopping patience 3
Clipping gradient norm 10

Table 6: Hyperparameter values for the two types of deep neural network used in the experiments.

deduplicator

BS = 512 BS = 1024

InternalMS InternalVS InternalXS InternalMS InternalVS InternalXS

Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑
Base – – – – – – – – – – – – – – – – – –
DU -45.0% -44.0% -0.1% -77.0% -76.0% -0.1% -84.0% -83.0% -0.2% -45.0% -44.0% -0.2% -75.0% -75.0% -0.2% -81.0% -81.0% -0.2%
DWU -61.0% -58.0% -3.6% -87.0% -85.0% -1.2% -92.0% -92.0% -0.8% -60.0% -56.0% -3.5% -85.0% -82.0% -1.1% -90.0% -89.0% -0.6%
DL -36.0% -34.0% -0.1% -72.0% -72.0% -0.1% -84.0% -83.0% -0.1% -33.0% -31.0% -0.2% -71.0% -70.0% -0.1% -79.0% -79.0% -0.1%
BU -3.0% +4.0% +0.0% -32.0% -21.0% +0.0% -69.0% -57.0% +0.0% +0.0% +13.0% +0.0% -42.0% -27.0% -0.0% -69.0% -50.0% -0.0%
BWU -7.0% +4.0% +0.1% -37.0% -27.0% +0.0% -77.0% -67.0% -0.1% -19.0% -6.0% -0.0% -46.0% -28.0% -0.0% -80.0% -68.0% -0.0%

Table 7: Comparison of the deduplicators on the internal datasets, when training a LSTM-based model from scratch.

deduplicator

BS = 512 BS = 1024

MITMS MITVS MITXS MITMS MITVS MITXS

Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑
Base 504 16s 0.925 662 20s 0.953 1526 47s 0.974 354 15s 0.92 489 21s 0.952 979 43s 0.973
DU 387 12s 0.912 422 13s 0.939 441 14s 0.945 240 11s 0.9 240 11s 0.913 240 11s 0.903
DWU 297 10s 0.828 316 11s 0.867 377 13s 0.903 211 10s 0.821 227 11s 0.857 240 12s 0.888
DL 392 12s 0.92 475 15s 0.948 595 19s 0.969 270 12s 0.912 330 15s 0.942 360 16s 0.964
BU 451 15s 0.924 546 18s 0.951 655 26s 0.973 352 17s 0.919 437 22s 0.947 421 28s 0.971
BWU 398 14s 0.925 483 16s 0.954 403 16s 0.975 304 15s 0.922 340 17s 0.949 223 15s 0.974

Table 8: Comparison of the deduplicators on public datasets, when training a LSTM-based model from scratch.

deduplicator

BS = 512 BS = 1024

MITMS MITVS MITXS MITMS MITVS MITXS

Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑
Base 696 99.2s 0.915 1046 136.0s 0.929 1987 224.6s 0.955 450 124.6s 0.914 700 178.4s 0.927 1800 394.8s 0.956
DU 473 87.8s 0.905 510 94.6s 0.91 480 99.2s 0.893 240 87.2s 0.901 270 93.2s 0.899 240 98.0s 0.872
DWU 419 78.2s 0.887 493 91.8s 0.902 294 62.2s 0.841 233 87.2s 0.874 241 85.8s 0.817 238 96.2s 0.753
DL 514 94.8s 0.912 660 113.6s 0.925 657 121.2s 0.946 270 97.2s 0.907 330 113.2s 0.915 360 123.6s 0.943
BU 580 93.8s 0.914 854 124.2s 0.928 1082 154.0s 0.958 360 113.8s 0.915 480 142.2s 0.926 525 151.2s 0.954
BWU 657 108.2s 0.917 756 112.2s 0.928 918 133.4s 0.955 360 114.2s 0.914 480 144.0s 0.927 532 153.6s 0.955

Table 9: Absolute results for the comparison of the deduplicators on the public datasets presented in table 4.
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