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Abstract

E-commerce websites (e.g. Amazon) have a
plethora of structured and unstructured infor-
mation (text and images) present on the product
pages. Sellers often either don’t label or misla-
bel values of the attributes (e.g. color, size etc.)
for their products. Automatically identifying
these attribute values from an eCommerce prod-
uct page that contains both text and images is a
challenging task, especially when the attribute
value is not explicitly mentioned in the catalog.
In this paper, we present a scalable solution for
this problem where we pose attribute extraction
problem as a question-answering task, which
we solve using MXT, consisting of three key
components: (i) MAG (Multimodal Adapta-
tion Gate), (ii) Xception network, and (iii) T5
encoder-decoder. Our system consists of a gen-
erative model that generates attribute-values
for a given product by using both textual and
visual characteristics (e.g. images) of the prod-
uct. We show that our system is capable of
handling zero-shot attribute prediction (when
attribute value is not seen in training data) and
value-absent prediction (when attribute value
is not mentioned in the text) which are miss-
ing in traditional classification-based and NER-
based models respectively. We have trained
our models using distant supervision, remov-
ing dependency on human labeling, thus mak-
ing them practical for real-world applications.
With this framework, we are able to train a
single model for 1000s of (product-type, at-
tribute) pairs, thus reducing the overhead of
training and maintaining separate models. Ex-
tensive experiments on two real world datasets
show that our framework improves the abso-
lute recall@90P by 10.16% and 6.9% from the
existing state of the art models. In a popular e-
∗This work was done while author was in International

Machine Learning team.

commerce store, we have deployed our models
for 1000s of (product-type, attribute) pairs.

1 Introduction

E-commerce websites (e.g. Amazon, Alibaba) have
a very wide catalog of products. Seller provided
catalog of these products contain both textual in-
formation and product images. Apart from this
unstructured information, they also provide struc-
tured information about the products such as color,
material, size, etc. This information can be rep-
resented in terms of attribute-value pairs (see fig-
ure 1). In this paper, we will use the terms at-
tribute and attribute-name interchangeably. The
value of attribute will be referred as attribute-value.
However, while listing the products, sellers rarely
specify all attribute values or mistakenly fill incor-
rect values. These attribute values may or may
not be present in the unstructured textual product
information. Extracting/inferring the missing at-
tribute values from the unstructured textual product
information (and images) can improve the catalog
quality, thereby improving the customer experience
(again, refer figure 1 for an example of attribute
extraction).

Figure 1: Illustration of attribute extraction problem

PT-attribute: A PT-attribute is defined as a pair
of (product-type, attribute), where product-type (or
PT) is a broad category of products (e.g. "shoes",
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"dress", "laptops" etc.) and attribute is an attribute-
name (e.g. "color", "size" etc.). Typically, attribute-
extraction is done at the granularity of PT-attribute
(e.g. "extract the value of color attribute of shoe").

A good attribute extraction system has follow-
ing desirable properties: (1) Scalability: A single
model should handle multiple PT-attributes so that
there is no need to train a separate model for ev-
ery PT-attribute combination, (2) Multi-modality:
Model should be able to extract attributes from
multiple modalities like text, image, video etc., (3)
Zero-shot inference: Model should be able to ex-
tract attribute values that were not seen in the train-
ing data, and (4) Value-absent inference: Model
should extract attribute values that are not explicitly
mentioned in the text on the product page (but can
be inferred from image or some other reasoning).

Related Work: Extensive research has been
done to build attribute extraction models, which
can be categorized as extractive, predictive, or gen-
erative. Extractive models pose this problem as a
Named Entity Recognition (NER) problem (Zheng
et al., 2018). Some of the recent work in this space
include LATEX-numeric (Mehta et al., 2021), and
MQMRC (Shrimal et al., 2022b) . However, these
models don’t do value-absent inference. Moreover,
these are text based models and do not use product
images. Predictive models are the classifier mod-
els that take text (and image) as input and predict
the attribute values. CMA-CLIP (Liu et al., 2021)
is a recent multi-modal predictive framework for
predicting attribute values. However, these mod-
els can’t do zero-shot inference as the prediction
comes from the predefined classes only. Generative
models pose this problem as an answer generation
task given a question and context. Here, the ques-
tion is the attribute name, and context is the product
data (text and image), and the answer is the attribute
value. For example, Roy et. al. (Roy et al., 2021)
presented a generative framework to generate at-
tribute values using product’s text data. PAM (Lin
et al., 2021) introduced a multi-modal generative
framework, however their model requires (i) Train-
ing encoder and decoder from scratch, (ii) Manu-
ally modifying the vocabulary of outputs (attribute-
values) for different product-types.

In this paper, we present MXT, a multimodal
generative framework to solve the attribute extrac-
tion problem, that consists of three key components:
(i) MAG (Multimodal Adaptation Gate) (Rahman
et al., 2020b): a fusion framework to combine tex-

tual and visual embeddings, that enables generat-
ing image-aware textual embeddings, (ii) Xception
network (Chollet, 2017): an image encoder that
generates attribute-aware visual embeddings, and
(iii) T5 encoder-decoder (Raffel et al., 2020). The
models trained by our generative framework are
scalable as a single model is trained on multiple
PT-attributes, thus reducing the overhead of train-
ing and maintaining separate models. We remove
the disadvantages of PAM model by (i) finetuning
a strong pre-trained language model (T5 (Raffel
et al., 2020)) and thus leveraging its text generation
ability, (ii) providing product-type in the input it-
self so that output distribution is automatically con-
ditioned on the PT. Moreover, our trained model
satisfies all of the 4 desirable properties that were
mentioned previously.

Our system formulates the attribute extraction
problem as a question-answering problem, where
(a) question is the attribute name (e.g. "color"),
(b) textual context comprises of a concatenation of
product-type (e.g. "shirt"), and textual description
of the product, (c) visual context comprises product
image, and (d) answer is the attribute value for the
attribute specified in the question. Our model archi-
tecture consists of (i) a T5 encoder to encode the
question and textual context, (ii) encoding visual
context into product specific embeddings through a
pre-trained ResNet-152 model (He et al., 2016) and
fusing them with T5’s textual embeddings using a
multimodal adaptation gate (MAG) (Rahman et al.,
2020a), (iii) encoding visual context into attribute
(e.g. "sleeves", "collar" etc.) specific embeddings
through Xception model (Chollet, 2017) and fusing
them with previously fused embeddings through a
dot product attention layer (Yu et al., 2021), and
finally (iv) generating the attribute values through
T5 decoder. The detailed architecture of our system
is shown in figure 2.

In section 2, we explain our proposed model
MXT. In section 3, we compare our model’s perfor-
mance with NER-Based MQMRC (Shrimal et al.,
2022a) along with a popular multi-modal model
CMA-CLIP (Liu et al., 2021) and show that on
same precision, we outperform them (on recall)
for a majority of the attributes. We also show an
ablation study justifying the proposal of different
components in MXT. Finally, we also show that
our model is able to perform zero-shot and value-
absent inference. Our trained models using MXT
framework are being used to extract attributes for
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over 12000 PT-attributes in a popular e-commerce
store, and have extracted more than 150MM at-
tribute values.

2 MXT Framework

Given a set of product-types (PTs) P =
{p1, p2, . . . , pm} and attribute-names A =
{a1, a2, . . . , an}, we define MXTP,A as a multi-
PT, multi-attribute, and multi-modal generative
model that is trained on PT-attributes from (P,A),
and can be used to generate attribute value for any
product in the trained PT-attribute set. The overall
architecture of our model is described in figure 2.

2.1 Problem Formulation

We formulate the problem of attribute extraction as
the problem of answer generation given a question
and a context. Here question is the attribute-name
a ∈ A, and context consists of textual description,
product type p ∈ P and image of the product. All
of these are used to extract attribute values. The an-
swer generated from the model is the attribute value
for a. As shown in figure 2, our model architecture
mainly consists of 3 components: (a) Image-aware
Text encoder, (b) Attribute-aware Text-Image Fu-
sion, and (c) Text decoder. Below, we describe
each component in detail.

2.2 Image-aware Text encoder

We use T5 (Raffel et al., 2020), which is a trans-
former (Vaswani et al., 2017) based text only
Seq2Seq pretrained language model. It includes a
bidirectional encoder and a unidirectional (forward
only) decoder. In this section, we give an overview
of T5’s encoder and details of its usage for our task.
Our text input consists of (i) attribute-name (e.g.
"color"), (ii) product-type (e.g. "dress"), and (iii)
textual description of product. In our QnA format,
the question consists of attribute-name, and con-
text consists of concatenation of product-type and
textual description of the product. We tokenize
both question and context and create a single in-
put sequence of tokens. This input sequence x is
then fed to an embedding and positional encoding
layer to create input features Temb ∈ RN×d, where
N is the sequence length and d is the feature di-
mension. These input text embeddings are then
fused with Multimodal Adaptation Gate (MAG)
as described in Rehman et. al. (Rahman et al.,
2020b) to generate image aware text embeddings.
Due to MAG, the internal representation of words

(at any transformer layer) is shifted conditioned
on visual modalities. This attachment essentially
puts words into a different semantic space, which
is conditioned on the visual inputs. For e.g., the
meaning of the word “ripple” changes according to
the visual input soap image or paper image. With
soap, the meaning is “free and clear”, while with
paper, the meaning is “wavy pattern” as shown
in figure 3. This module shifts the meaning of
“ripple” according to visual modality. Since T5
is pretrained model and can understand only text
embeddings it is required to fuse the visual embed-
dings (VR ∈ Rd) with text before feeding it to T5
Encoder rather than feeding the visual embeddings
along with text. Specifically, in MAG, for each in-
put token i of the sequence, we first learn a gating
vector gi using concatenated embeddings of T i

emb

and VR: gi = RELU(Wg[T
i
emb;VR] + bg). This

gating vector highlights the relevant information
in visual modality conditioned on the input tex-
tual vector. We then create an image displacement
vector Hi by multiplying VR with each token’s gat-
ing vector gi: Hi = gi · (WHVR) + bH . Finally,
we shift the embedding T i

emb by the weighted dis-
placement vector Hi to get the multimodal vector
T̂ i
emb = T i

emb + α ∗ Hi. In this equation, α =

min(
||T i

emb||2
||Hi||2 ∗β, 1), where β is a hyper-parameter

whose value is taken as it is from the paper (Rah-
man et al., 2020b). This is then passed through a
layer normalization followed by a dropout layer to
get the final fused embedding FMAG from MAG
module, where F i

MAG = dropout(LN(T̂ i
emb)).

This fused output is then fed to the T5 encoder.
The encoder consists of L encoder-layers. It takes
FMAG as input gives Tenc as output. Equation 1
shows the encoding done by kth layer. Here SA is
the multi-head self attention layer, Res is the resid-
ual connection, LN is the layer normalization, and
FC is a fully connected layer.

T k
enc = LN(Res(FC(LN(Res(SA(T k−1

enc ))))))
(1)

2.3 Attribute-aware Text-Image Fusion
Xception(Chollet, 2017) model performs depth-
wise (or channel-wise) separable convolutions, i.e.,
it applies separate filters for different color chan-
nels. We propose another fusion layer based on
the Xception network. The advantage of using this
is that it can readily learn the visual features con-
ditioned on the attribute type. For example, for
the attribute “sleeve type” of a dress, it can iden-
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Figure 2: Architecture of MXT. (a) Generates image-aware text embeddings by fusing image embeddings (obtained
from ResNet-152) and text embeddings of the input text (concatenation of attribute name, product type, and
textual description of the product), (b) Image-aware text embeddings are then attended with region specific visual
embeddings obtained from separable convolution of Xception Network, which in turn passes only the attribute
specific embeddings to the decoder (c) Fused embeddings are passed through T5 decoder to generate attribute value.

Figure 3: Shift in text embeddings (e.g. "ripple") after
applying MAG with visual embeddings

tify the channel/color difference between sleeves
of dress and skin of the person, thus identifying
whether sleeve is half or full. We then fuse the
text and image embeddings using multi-head cross
attention. As shown in figure 2(b), a product im-
age has several regions of interest, for different
attributes like "neck style" and "sleeve type". This
region specific embeddings are learnt by separa-
ble convolutions in Xception which is then at-
tended with text embeddings to arrive at attribute
aware text embeddings. Now given text embedding
Tenc ∈ RN×d and image embedding VX ∈ R1×x

(from MXT), we create an attribute-aware fused
embedding FA ∈ RN×d (having same dimension
as of text embedding). This fused embedding is
created through a multi-head cross attention mod-
ule, that applies cross attention between textual and
visual embeddings as shown in figure 2. This fu-
sion has an advantage that for an attribute, different
attention scores can be learned for each object of

an image, allowing attending to specific portions
of the product image conditioned on the attribute
name in the question. For example, for the product
type "shirt" and attribute "sleeve-type", we may
want to concentrate only on the portions of the
image where sleeves are visible.

2.4 Text Decoder

We use T5’s unidirectional decoder to output the at-
tribute values. The input to the decoder is the fused
embedding vector FA =< F 1

A, F
2
A, . . . , F

N
A >.

The decoder iteratively attends to previously gen-
erated tokens y<j (via self-attention) and FA

(via cross-attention), then predicts the proba-
bility of future text tokens Pθ(yj |y<j , x, I) =
Dec(y<j , FA). For attribute generation, we fine-
tune our model parameters θ by minimizing the
negative log-likelihood of label text y tokens
given input text x and image I: LGEN

θ =

−∑|y|
j=1 logPθ(yj |y<j , x, I).

3 Experimental Setup & Results

30PT Dataset: We picked 30 product types (PTs)
consisting of total 38 unique attributes from a pop-
ular e-commerce store. For each product in the
dataset, we have textual information and image.
The dataset has 569k and 84k products in train and
validation data across 30 PTs. Our test data con-
sists of products from two product types with a
total of 73k products.
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PT #top
attributes

CMA-
CLIP

MXT

Multi-PT Single PT Without-
Xception

Without-
MAG

A
K=5 +6.16% +22.33% +19.58% +21.82% +20.93%

K=10 +6.70% +16.89% +15.50% +15.60% +15.19%

K=15 +1.81% +13.23% +11.64% +10.67% +10.45%

B
K=5 +8.34% +16.63% +12.86% +13.94% +13.58%

K=10 +18.46% +24.98% +22.46% +22.81% +22.55%

K=15 +11.72% +18.51% +15.50% +16.28% +15.68%

PT MXT

A +15.56%

B -1.47%

C -7.89%

D +9.98%

E +13.23%

Table 1: Left: Improvement in Recall@90P% of CMA-CLIP and MXT (with different ablation studies) over NER-
MQMRC on 30PT datasetE-commerce5PT dataset. Right: Improvement in F1-score of MXT over NER-MQMRC
on E-commerce5PT dataset

We evaluated MXT against two state of the art
methods on attribute extraction: (1) CMA-CLIP:
A multi-task classifier that uses CLIP (Radford
et al., 2021) for learning multi-modal embeddings
of products followed by using two types of cross-
modality attentions: (a) sequence-wise attention
to capture relation between individual text tokens
and image features, and (b) modality-wise atten-
tion to capture weightage of text and image fea-
tures relative to each downstream task, (2) NER-
MQMRC: This framework (Shrimal et al., 2022b)
poses Named Entity Recognition (NER) problem
as Multi Question Machine Reading Comprehen-
sion (MQMRC) task. This is the state of the art
model for the text-based attribute extraction task.
In this model, given the text description of a prod-
uct (context), they give attribute names as multiple
questions to their BERT based MRC architecture,
which finds span of each attribute value answer
from the context.

Left table in the figure 1 compares the re-
call@90P% of the three models. We show the
performance on top-5, top-10 and top-15 attributes
(by number of products in which they are present.
We can see that MXT outperforms MQMRC and
CMA-CLIP on both product types.

E-commerce5PT: This is a benchmark dataset
from NER-MQMRC paper (Shrimal et al., 2022b).
We take a subset of this dataset (removing numer-
ical attributes) consisting of 22 product-attributes
across 5 product types. This is a benchmark dataset
for NER based models since all attribute values
are present in the text in this dataset. The dataset
has 273,345 and 4,259 products in train and test
data respectively. We compare average F1 scores
(averaged across attributes for each product type)
of MXT model with NER-MQMRC on this dataset

where our model outperforms NER-MQMRC on
16/22 attributes. Right table in the figure 1 shows
the average F1-scores (across attributes in each
product type) of MXT and NER-MQMRC models.

3.1 Ablation Study

We show three ablation studies on 30PT dataset that
justify our choices in the MXT architecture. Left
table in the figure 1 shows the results of these stud-
ies. (a) Scalability: We show that our proposed
framework is highly scalable. For that, we com-
pute Recall@90P% of the MXT model trained on
individual PTs. The results show that (i) our model
leverages cross-PT information during training, (ii)
we don’t need to train separate model for each PT,
which makes model monitoring and refreshing eas-
ier in the production, (b) Xception network: We
show that Xception network helps concentrating
on certain attribute features. For this, we removed
the Xception network from our architecture and
trained and evaluated the model, (c) MAG: We re-
placed MAG with simple concatenation of text and
image embeddings in MXT. We can see in the table
that each of our ablation model under-performs the
MXT model trained on 30PTs, thus justifying our
design choices.

3.2 Zero-shot Inference and Value-absent
Inference

Most existing methods for attribute extraction face
two challenges: (i) Zero-shot inference: All the
predictive models (classification-based models) can
predict attribute values only from a predefined set
of values that are seen in the training data. They
are unable to do zero-shot inference i.e. they can’t
predict an attribute value if it is not seen in the train-
ing data, (ii) Value-absent inference: All NER-
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based models can extract values only which are
mentioned in the text data i.e. if an attribute value
is absent in the input text, they can’t extract that
value. Our generative model solves both of these
challenges. For example, in the E-commerce5PT
dataset, there are a total of 8289 product-attribute
pairs in the test data, out of which 970 product-
attribute pairs were not seen in the training data,
from which our model correctly generated 124
product-attribute pairs. For example, given a prod-
uct of product-type "dress" with title "Tahari ASL
Women’s Sleeveless Ruched Neck Dress with Hi
Lo Skirt", our model generated the value "Ruched
Neck" for the attribute "neck style". Here the value
"Ruched Neck" was absent from the training data.
Similarly, for the "dress" product shown in fig-
ure 1 , our model generated the value "mini" for
the attribute "item length" (by inferring it from the
image) even when this value is not mentioned in
the product text(thus solving the second challenge).

3.3 Training & Inference Details

We conducted training for each model over a span
of 20 epochs, employing a batch size of 4. The
training process was performed using distributed
multi-GPU training across 8 V-100 Nvidia GPUs,
each equipped with 16GB of memory. For text
encoder and decoder, we finetune the pretrained
t5-base 1 checkpoint. We obtained ResNet-based
image embeddings using a pretrained ResNet-152,
specifically with one embedding assigned to each
image. 2. During training, we employed the Adam
optimizer with learning rate of 5e−5 and warmup
ratio of 0.1. We chose the checkpoint having best
validation loss. For inference, we used greedy
search to generate attribute values.

4 Deployment

In a popular e-commerce store, we have deployed
MXT for 6 English speaking markets covering
>10K PT-attributes and have extracted >150MM
attribute values.
Design Choices: In popular e-commerce stores,
usually there are more than 100K PT-attributes
across various markets. Earlier models like NER-
MQMRC or CMA-CLIP could be trained only for
few 100s of PT-attributes. NER-MQMRC (Shrimal

1The t5-base checkpoint is available at https://
huggingface.co/transformers/model_doc/t5.html

2https://download.pytorch.org/models/
resnet152-b121ed2d.pth

et al., 2022a) architecture only allowed one prod-
uct type in one model training, while CMA-CLIP
couldn’t scale beyond few 100s of PT-attribute
pairs due to network explosion (as they had to cre-
ate an output layer for each of the different attribute
value). This had serious issues of monitoring, re-
freshing and maintaining the quality of models.
Our prompt-based approach in MXT allows us to
train a single model checkpoint for any number of
PT-attribute pairs.
Practical Challenges: We faced several challenges
during building and deploying the model. One of
the biggest challenge was lack of normalized at-
tribute values. Since we were relying on the dis-
tantly supervised training data from the catalog,
there were multiple junk values. Normalizing these
values is challenging without the support of anno-
tations. To overcome this problem, we used some
heuristic matches to merge similar values. We also
trimmed the tail attribute values to remove the junk
values further. The second major challenge was to
evaluate the model and find the threshold for every
PAC to achieve the desired precision. Since we had
>10K PT-attributes, even if we annotate 300 sam-
ples per PT-attribute, it leads to 3MM annotations,
which is not feasible. For that, we evaluated the
model automatically using the catalog data. Since
the catalog data can be noisy, we checked other
things like whether the predicted value is present in
text, whether the attribute should allow zero-shot
prediction etc. Based on these checks, we decided
the required precision accordingly.

5 Conclusion & Future Work

In this paper, we presented MXT, a large scale
multi-modal product attribute generation system to
extract product attributes from the products listed
in eCommerce stores. Our model infers the at-
tribute values using both textual and visual infor-
mation present on the product pages. We intro-
duced a novel architecture comprising a T5 based
encoder and decoder along with two fusion layers
to fuse text and image embeddings. We showed our
model can beat the existing state of the art extrac-
tive as well as predictive models on the benchmark
datasets. Our model is scalable to multiple prod-
uct types and countries by just specifying them in
the input text prompt. We further showed that our
model is able to perform zero-shot inference, as
well as it can generate attribute values not present
in the text. There are several future directions to ex-
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plore which can further improve the performance
of our model. First, we would like to create an
ensemble of NER-based and generative models
so that we can leverage the power of extraction
based models which work very well for numerical
attributes (e.g. size, length etc.). Second, our cur-
rent approach does not use relational information
among the products. Since similar products can
have common attribute values, we can use graph
based approaches to capture that relational infor-
mation. Specifically, we can approach the attribute
extraction problem through either link prediction
or node classification. In the former method, we
aim to predict missing links between products and
their attributes. Alternatively, the latter approach
involves using similarity between product features,
including text, images, and co-viewing informa-
tion, to determine graph edges for classification of
product nodes.

6 Limitations

In this section, we discuss some of the limita-
tions of our current model architecture: (1) Non-
English locales: Currently in our experiments, we
have trained and evaluated models only on English
datasets. Building models on non-English locales
is the direction for future work, (2) Use of pre-
trained tokenizer: The T5’s tokenizer in our mod-
els has been pre-trained on open-domain datasets,
and its vocabulary misses out on e-commerce spe-
cific terms. For example, the current tokenizer
of T5 tokenizes the phrase “skater midi dress” as
[“sk”, “a”, “ter”, “mid”, “I”, “dress”]. Here, the
meaning of words “skater” and “midi” is not cap-
tured in the tokenized text. We believe that we
can overcome this limitation by pre-training T5
on e-commerce data which would help tokenizer
understanding and tokenizing the e-commerce spe-
cific terms more correctly.
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