
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 322–331

July 10-12, 2023 ©2023 Association for Computational Linguistics

An efficient method for Natural Language Querying on Structured Data

Hanoz Bhathena¶, Aviral Joshi1¶, Prateek Singh1¶

¶Machine Learning Center of Excellence, JPMorgan Chase & Co.
{hanoz.bhathena,aviral.joshi,prateek.x.singh}@jpmchase.com

Abstract

We present an efficient and reliable approach
to Natural Language Querying (NLQ) on
databases (DB) which is not based on text-to-
SQL type semantic parsing. Our approach sim-
plifies the NLQ on structured data problem to
the following "bread and butter" NLP tasks: (a)
Domain classification, for choosing which DB
table to query, whether the question is out-of-
scope (b) Multi-head slot/entity extraction (SE)
to extract the field criteria and other attributes
such as its role (filter, sort etc) from the raw
text and (c) Slot value disambiguation (SVD)
to resolve/normalize raw spans from SE to for-
mat suitable to query a DB. This is a general
purpose, DB language agnostic approach and
the output can be used to query any DB and re-
turn results to the user. Also each of these tasks
is extremely well studied, mature, easier to col-
lect data for and enables better error analysis by
tracing problems to specific components when
something goes wrong.

1 Introduction

With the recent revolution in information retrieval
and question answering, powered by deep learning
models, asking queries in a more natural question
format e.g. who scored the most points in the NBA
back in 2018? have become commonplace instead
of keyword based searches. More recently models
like ChatGPT 1 directly generate responses instead
of just highlighting text in webpages.
A large majority of work in large scale QA sys-
tems has been on documentQA (Chen et al., 2017;
Karpukhin et al., 2020), wherein both the query
and the retrieval unit is of text modality. Here,
both query and documents are generally embed-
ded into a vector representation (generally in the
same D-dimensional space) and fast maximum in-
ner product search is used to retrieve the top doc-
uments. Similar approaches have been used for

1Equal contribution.
1https://openai.com/blog/chatgpt/

image search (Dubey, 2021).
However, when the information to be retrieved is
in structured form i.e. table or group of tables in
a database; dual embedding approaches are less
common. Here, semantic parsing i.e. translating
the natural language query into a formal meaning
representation e.g. SQL are more common. This
has inspired several text-to-SQL approaches Zhong
et al. (2017); Yu et al. (2018); Finegan-Dollak et al.
(2018); Iyer et al. (2017). Yu et al. (2018) in-
troduced Spider, a large-scale complex and cross-
domain semantic parsing and text-to-SQL dataset.
Models are evaluated on (clause level) exact match
between the gold SQL query and the generated one,
and the execution accuracy.
However, building such models have many prac-
tical constraints, perhaps the most important one
being collection of domain specific annotated data.
Annotators not only need to be well versed in the
query language but also have detailed knowledge
of the comprehensive database schema, table struc-
ture etc. It is one thing to know a unique list of
all the tables and/or columns in a database, but
it is even more demanding to remember which
schema or table they belong to and have to refer to
this everytime to manually write an output query
(even with templates provided). Additionally, if
the schema/table structure changes with columns
added/dropped/moved from one table, then some
queries might become invalid. Furthermore, the
models themselves can suffer from some of the
common issues associated with auto-regressive gen-
erative models such as repetition, hallucination etc.
Although these can to some extent be mitigated
via decoding constraints, the process is still cum-
bersome and the gains in most practical use cases
might not be worth it. Finally, if the DB type is
changed and uses some other query language then
annotating newer data might require re-training the
annotation team and even existing queries would
need to be translated into the second language,

322

https://openai.com/blog/chatgpt/


which might be difficult for certain language pairs.
An alternative end-to-end approach first introduced
in Herzig et al. (2020) has also been explored in
the literature where the question and flattened table
are jointly embedded into a transformer model and
trained using masked language modeling (MLM)
to table cells. While this approach can work well
on smaller tables and documents with text and em-
bedded tables, it would be difficult to scale to large
tables and have even bigger controllable generation
issues than semantic parsing approaches.
In this paper, our primary contribution is proposing
a simple yet powerful and configurable framework
for a reliable question answering system on struc-
tured data by converting the multi-domain NLQ
on DB problem to (1) domain prediction (2) multi-
head slot tagging (3) raw slot value resolution or
disambiguation and (4) deterministic algorithm to
convert the outputs of the above three into a query
for given database. For (1) and (2) we use elemen-
tal NLP models for text classification and token
classification (like NER), respectively. For slot
value resolution we propose a suite of methods de-
pending on the data type of the slot extracted and
intrinsic nature of the problem (lexical vs seman-
tic similarity; contextual vs non-contextual resolu-
tions). This approach allows us to annotate data
much faster as annotators only need to know the
names of the tables and unique set of columns
across all tables. Furthermore, we can also indi-
vidually test, improve and troubleshoot potential
defects to particular components of the pipeline as
required; something critical in real world produc-
tion systems. We posit that our approach can be
applicable to a large majority of business use cases
where the natural language queries being asked do
not need overly complex sub-querying and joins.
Our method is capable of scaling to when the num-
ber of total unique columns (which is equivalent to
slot types) is of the order of tens to low hundreds
and same for number of tables/domains. In terms
of queries we are able to theoretically support se-
lection, filtering, sorting and aggregation and joins
(in a limited capacity as described below).

2 Methodology

2.1 Problem Setting

Our goal is to retrieve data from a structured
database using natural language questions. Given a
user question X and a database with tables T and set
of all unique columns C, our framework must be ca-

pable of converting it to a database query Q. There
must be no dependence on the type of DB (SQL
or NoSQL) and we must support select, filter, sort
and aggregate clauses and do simple joins. Further-
more, our framework must be reliable enough to
apply in a real world commercial setting; scalable
to be trained on large quantities of annotated data;
easy to gather annotated data without annotators
needing to know the query language or full schema
details; and engineers and scientists who build the
E2E system must be able to troubleshoot issues
quickly. Finally, while adding unique new tables
and columns can necessitate need for re-training,
editing the schema via dropping, renaming or mov-
ing tables or columns should require no re-training
of the NLU model components (this can be handled
in the query formulation function).
In the rest of this paper we demonstrate our ap-
proach via an example use case, which is currently
deployed in production, of querying two customer
transactions tables with eight unique columns. For
our particular use case only filtering of data is
needed and joins are not needed. However, we will
also explain how the framework can be generalized
and adapted to other settings.

2.2 Slot Domain Model

The first two steps of our four step framework
consists of a domain classification and slot extrac-
tion model, which corresponds to (multi-class or
multi-label) text classification and multi-head token
classification task, respectively. Depending on the
use case these can be separate models or they can
be done together using multi-task learning (MTL).
There is typically positive transfer between these
tasks and so unless there is good reason otherwise,
we propose using a model trained with multi-task
learning (MTL) for these tasks.
Functionally, the domain model would be used to
(a) select the appropriate table/collection relevant
to the user query and (b) detect when a given query
is unanswerable from the available structured data.
Having this module is advisable as even in the triv-
ial case of just one table, deciding whether the
query is answerable or not is practically crucial in
a real world setting where users are free to type in
anything. For joining multiple tables, the simpler
multi-class text classification problem would be-
come a multi-label classification problem with two
heads: one for the table name and another for the
type of join (inner, outer, full, or none), with the

323



Figure 1: An overview of the proposed Natural Language Querying (NLQ) system. NLQ passes the user input to
the NLU engine which is responsible for identifying the appropriate domain and slots in a user utterance, following
which it disambiguates slot values using the different approaches mentioned in 2.3 and A.1. The disambiguated slot
values are used by NLQ to formulate the database query and return the results to the user

join done on common column names.
The next component is multi-head slot/entity ex-
traction which is framed as a multi head slot tag-
ging task which must predict the type, role and
function of a given span. The first head which we
call the type head, predicts a label that corresponds
to the column/field name. The second head pre-
dicts the role of that slot span e.g. filter, sort_asc,
sort_desc, aggregation, selection. The function
head predicts the aggregation function i.e. count,
sum, avg etc. The slot type and aggregation func-
tion (which can be None for no aggregation) is
always multi-class for a given span, but the role
is multi-label as the same column can appear in
multiple roles e.g. filter and sort or in select and
group by.
For example, in the query "what were my purchases
at Amazon in the last month"; purchases, Amazon
and last month are all slots with role filter only.
However, for "what were my largest purchases at
Amazon in the last month", Amazon and last month
are still only role of filter, while purchases has
both filter and sort_desc.

2.2.1 Model Architecture
For our purposes we utilize the DIET model pro-
posed by Bunk et al. (2020) whose implementation
is available in the Rasa open source library 2. Each
head for the domain and slot prediction has a loss
value associated with it. Softmax cross entropy loss
is used for multi-class heads while sigmoid loss is
used for multi-label heads. The total training loss
is the sum of all of the individual head losses; with
differentiated weighting possible if one or more
heads requires it. We use balanced mini-batching
to handle class imbalance and utilize data augmen-
tation to mitigate most underrepresented classes.
In our use case we use both sparse and dense fea-
ture inputs to DIET. Sparse features include word
and character n-gram counts while the dense fea-
tures are sentence level ([CLS]) and token level
features from a BERT (Devlin et al., 2018) pre-
trained language model, with in-domain masked
language modeling (MLM) pre-training. Since we
use sub-word tokenization, we employ a general
purpose custom token to span level label aggrega-
tion and conflict resolution also.

2https://github.com/RasaHQ/rasa

324

https://github.com/RasaHQ/rasa


Furthermore, since we utilize MTL for our use case,
it is possible that the slot type i.e. column and do-
main i.e. table might not match as our model does
not have direct knowledge of the schema. One way
to solve for this would be adding heuristic rules
in the query formulation step to handle conflicts,
say based on confidence, which is what we use.
Another method is not to use a joint model, rather
first predict the domain (which can map to a table)
and then train separate slot models for each.

2.3 Slot Value Disambiguation

Slot values extracted from the tagging model are
not fit to be used directly for querying a database. A
user might enter "last week" which needs to be re-
solved to an actual date range. They can enter free
form text with spelling mistakes or abbreviations
such as "amzn" instead of "Amazon.com, Inc"; or
in more complex cases use totally different values
than enumerated names or codes in the DB e.g. say
"coffee" whereas DB only has a category called
"Beverages" or say "hotel" while the DB has value
of "Hospitality". Therefore, the free form slot value
from a user input must be resolved to a compatible
value (generally from some knowledge base) be-
fore querying the DB. This task is commonly called
named entity disambiguation (NED) or entity link-
ing when we are in the context of Named Entity
Recognition (NER). However, since in our case this
is not only needed for named entities but broader
types and values e.g. dates, numbers, amounts, ex-
pense categories etc we call this more generic step
Slot Value Disambiguation (SVD).
Our solution for SVD utilizes the prediction of the
type head of the upstream slot tagger to determine
the type of disambiguation treatment applied to the
slot value. At a high level, we categorize the type
of slot values into four distinct categories.

2.3.1 Numeric slot values queried with strict
equality only

Numeric slots like account numbers, phone num-
bers, SSNs etc. which generally have distinct val-
ues which require an exact (or partial e.g. last 4
digits of credit card) lookup into the database, but
are never queried as ranges. For example, phone
numbers are not generally queried as a range and
hence such slot types will be used with minimal
post processing for lookup against the database,
such as removing dashes, commas or other non-
numeric characters as needed.

2.3.2 Numeric slot values queried with
equality or ranges

Other numeric values e.g. date, amounts, percent-
ages, area etc are potentially queryable using equal-
ity (e.g. "6/1") or ranges (e.g. "6/1-9/2") and they
also need to be normalized e.g. a dollar amount
could be represented as "$2,000" or "2000 dollars"
or "two thousand" etc. To normalize above into a
standard format we utilize Duckling 3, 4. Duckling
is an open-source probabilistic parser to detect slots
like dates, times, amounts and durations. It then
resolves these to standard values using rule based
methods. We found the entity extraction quality of
Duckling quite inferior to our in-domain trained
DIET model. Therefore, unlike typical usage of
duckling for both slot/entity extraction and disam-
biguation, we use it only for disambiguation and
provide the type of slot derived from the upstream
tagger (DIET). To handle potentially conflicting
DIET and Duckling types we supplement our SVD
with a set of curated rules, see Table 4 for full de-
tails. Additionally, our solution supplements Duck-
ling’s rules by accounting for many more variations
which are seen in natural language utterances, see
appendix A.1 for more details.

2.3.3 Non-contextual Textual SVD
For remaining types of slot values, SVD involves
mapping the raw value in the slot to one from a pro-
vided knowledge base (KB). The mapping can be
non-contextual (takes only slot value span as input)
or contextual (needs the entire utterance context for
the mapping).
For non-contextual SVD, our approach relies on
the comparing the similarity between the raw span
extracted from tagger against a finite set 5 of po-
tential resolution candidates to determine the final
normalized value which is used for querying the
database. We create a Resolution to Candidates
(R2C) mapping from the knowledge base contain-
ing final enumerated resolutions and a correspond-
ing list of candidates. The raw text span from the
tagger is compared against the candidate list and
the top-N candidates are selected which are then
mapped back to the final resolution using the in-
verse R2C mapping. The candidates are chosen via
a semi-automated approach. If available a subject
matter expert can provide a seed list of candidates,

3https://github.com/treble-ai/pyduckling
4https://github.com/facebook/duckling
5finite but need not be static i.e. the list of final resolutions

can change without necessarily needing re-training

325

https://github.com/treble-ai/pyduckling
https://github.com/facebook/duckling


Figure 2: Overview of the candidate re-ranking and slot
value disambiguation (SVD) process

however this is completely optional and might not
be conducive in larger scale settings which is why
we have a multi-stage automated approach to gen-
erate additional candidates as follows:

• Most frequent span values annotated to a par-
ticular resolution from training utterances are
added as candidates to the R2C mapping.

• Sometimes, the same raw span might be
mapped to more than one resolution. If we
are in a multi-label setting, this is OK. How-
ever, for the multi-class case we tie break by
choosing the resolution for which a particular
span was most often assigned to by human
annotators.

• We also generate synonyms for selected can-
didates by augmenting them with character
perturbations and also derive candidate phrase
synonyms by choosing top N most similar
phrases from their phrase vector representa-
tions. Which phrase vector representation is a
design choice; but we use Trask et al. (2015)
in our experiments and its associated library 6

We use lexical and semantic similarity between
slot values and candidates from the R2C mapping.
More technical details on these techniques are pro-
vided in appendix A.2.

2.3.4 Contextual Textual SVD
For certain types of slot disambiguation, the nor-
malized value might be different according to the
context e.g. "apple" in "dining table purchased at
the apple store" should resolve to "Big Apple An-
tiques", a furniture store and not "Apple Inc". Here,

6https://github.com/explosion/sense2vec

the context is essential for the slot value disam-
biguation as only the word "apple" is not enough.
Finally, contextual and non-contextual SVD meth-
ods can be ensembled using either unconditional
(use all models) or conditional (only trigger other
models if first one is less confident) as described in
appendix A.3.

2.4 Query formulation
Given the table name and resolved slot values,
types and roles; we can write a deterministic func-
tion to generate the query. The filtering clause can
get slightly more complicated because filters can
be connected by AND, OR conditions and can have
ranges or equality conditions. We posit that AND
conditions are generally be among inter-column
filters and OR for intra-column filtering e.g. "how
many stocks of Apple and Amazon did I purchase
last week". Even though the user says "Apple and
Amazon", the intent is to filter on both compa-
nies, the (SQL) query actually would be something
like where (company_name="Apple Inc" OR com-
pany_name=Amazon.com Inc) AND (date between
<week_start> AND <week_end>). Additionally,
notice how we separated filter conditions on equal-
ity from ranges and this (also needed for SVD)
must be done by defining the type of the given
column.

3 Experimental Details

3.1 Dataset
Statistics for the domain and slot/entity types on
our internal dataset are provided in Table 1. We
aim to support searches on two large database ta-
bles in the retail and investment space. We add a
third domain other which serves as a background
class that bypasses the remaining pipeline for un-
supported queries. There are eight slot types in our
dataset.

3.2 Data augmentation for Domain Slot
Model

In order to mitigate high imbalance and improve
robustness we used various data augmentations.

• Backtranslation: Generated semantically sim-
ilar utterance reformulations by translating
an utterance to another language and then
translating it back to English. We then an-
notated these new utterances for missing slot
tags using combination of exact match and cer-
tain user defined transformation functions for

326

https://github.com/explosion/sense2vec


Domains W/o Augmentation Augmented

retail 9871 67548
investments 541 1807

other 3150 15763

Slots W/o Augmentation Augmented

acc num 313 1909
amounts 5800 56931

dates 4096 22914
merchant 2557 17147

prod. name 649 4448
prod. type 1482 7356

spend category 1463 6229
txn type 6564 35439

Table 1: Training Dataset statistics

perturbed slot/entity spans e.g. "$50" would
match against "50 dollars".

• Paraphrase generation: Same idea as back-
translation, we used the Pegasus model
(Zhang et al., 2019), fine-tuned for paraphras-
ing, 7 to generate semantically similar utter-
ances to a source utterance. We used similar
post-processing described in back-translation.

• Keyboard perturbations: Introduce character
errors in words based on the proximity of char-
acter keys on the keyboard, based on a proba-
bility.

• Swap perturbations: Characters within a word
swapped, based on a probability.

• Deletion perturbations: Deleting randomly
chosen characters from word(s) in an utter-
ance, based on a probability.

• Short utterances: Generate short utterances,
given longer ones using keyword models, slot
span only utterances and extracting slot spans
with minimally required context words around
them as standalone utterances.

• Math operators for amount and date ranges:
Utterances with just operators along with
amount and date slots e.g. <$30.

3.3 Setup

We trained our model for 400 epochs, using a bal-
anced mini-batching strategy with batch sizes in-
creasing linearly from 32 to 64. We used an initial
learning rater of 0.001 for our optimizer, and used

7https://huggingface.co/tuner007/pegasus_
paraphrase

Slots P R F1

account number 86.09 100.00 92.52
amounts 98.13 99.25 98.68

dates 95.36 95.08 95.19
merchant 79.93 90.61 84.93

product name 90.29 95.64 92.89
product type 93.03 92.86 92.94

spending category 84.64 82.75 83.68
txn type 94.53 95.09 94.81

micro avg 92.53 95.17 93.83
macro avg 92.41 94.78 93.51

weighted avg 92.77 95.17 93.91

Table 2: Slot tagging results for different slot types

cross-entropy loss during training. Our domain and
slot tagging DIET model had 4 transformer layers
and was also trained using MLM along with do-
main and slot prediction. Along with this we used
a dropout rate of 0.2 for the encoder and applied
separate dropout to the sparse input layers but none
to the attention.

3.4 Results

In this section we present the results from the differ-
ent parts of our pipeline. Table 3 reports the perfor-
mance results of our approach for the components
of domain classification, slot value tagging and
disambiguation. The domain classification model
achieves an F1 score of 89.64, with the maximum
confusion occuring with the "other" class. At in-
ference this is mitigated by ignoring "other" pre-
dictions if some slot span is predicted. Table 2
shows the performance of our approach on slot tag-
ging. Because, dates and amount type slots are
subdivided into equality, from (start of range) and
to (end of range), their slot tagging results are an
average of the three subtypes. Overall our pipeline
is able to recognize relevant slots with avg F1 score
of 93.91. Finally, our SVD results can be found
in Table 3, as evident from the table, our model
performs the best on product type SVD (99.27 F1
score) followed by amounts and transaction type-
97% accuracy and 92.58 F1 score. For dates and
amounts SVD, since we do not map them to classes
i.e. the ground truths are point-in-time standardized
dates and amounts values, we can only calculate
accuracy to measure their performance for them.

4 Conclusion

We presented a simple, yet effective and highly con-
figurable framework for natural language querying
on structured database tables which circumvents

327

https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/tuner007/pegasus_paraphrase


Task P R F1 Acc.

Domain class. 89.6 90.0 89.6
Slot tagging 92.8 95.2 93.9

SVD (txn type) 93.0 94.8 92.6
SVD (prod. type) 98.6 100.0 99.3
SVD (prod. name) 90.8 90.1 88.9

SVD (spend category) 93.8 87.5 89.2
SVD (dates) 88

SVD (amounts) 97

Table 3: Performance on domain classification, slot
tagging and SVD

some of the practical constraints of generative text-
to-SQL approaches. While our approach might
not be all-encompassing especially w.r.t. complex
sub-query generation, we empirically see that these
queries are often required only in limited type of ap-
plications. Furthermore, the performance of SOTA
text-to-SQL approaches today is anyway quite far
away from the performance expected for commer-
cial applications and are therefore also effectively
limited to simpler queries anyway. In this setting,
we posit that our approach could provide a way to
quickly collect labelled data and scale to multiple
domains and/or database tables while also provid-
ing much more interpretability and controllability.

Limitations

As mentioned previously, the main limitation of
our approach is that, very complex joins e.g. se-
quences of joins of different types and joining on
columns which have different names in different
tables is not straightforward in our approach. One
extension to possibly handle this would be using a
decoder to generate the complex sequence of joins
and column relations. Note, however that this does
not complete revert to the constrained sequence-to-
sequence decoding as in semantic parsing, as its
not for the entire query but only the table joins or
the from section of a SQL statement. The select,
where, order by and group by can still be done via
our approach and we could also continue to use
MTL.
The second limitation of our approach is sub-
querying capability which currently we do not have
a strategy to handle queries which would require
them. However, this is notoriously hard even for
existing SOTA semantic parsing algorithms e.g. the
current leader on the Spider dataset Graphix-T5-3B
Li et al. (2023) achieves only 50 Exact Match (EM)
accuracy on the extra hard Spider data subset and
61.5 on the Hard subset. Overall this model has a

75.6 EM.
Finally, the last limitation is related to comparative
evaluation. We did not benchmark our method di-
rectly against SOTA semantic parsing text-to-SQL
methods on open-source datasets such as Spider.
This was because to do this we would have needed
to re-annotate Spider or any other dataset with
domain, slot extraction and resolution labels and
given the size of open source datasets this was in-
feasible given available annotation resources. How-
ever, we can say that on private datasets and use
cases, this approach was tested against some ex-
isting text-to-SQL approaches and was very com-
petitive especially as we could collect a lot more
data for these simpler tasks and also were able to
train, evaluate, troubleshoot and improve different
components individually.

Ethics Statement

All the work done and discussed in this paper meets
and upholds the ACL Code of Ethics.

References
Tanja Bunk, Daksh Varshneya, Vladimir Vlasov, and

Alan Nichol. 2020. Diet: Lightweight language un-
derstanding for dialogue systems. arXiv preprint
arXiv:2004.09936.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Shiv Ram Dubey. 2021. A decade survey of content
based image retrieval using deep learning. IEEE
Transactions on Circuits and Systems for Video Tech-
nology, 32(5):2687–2704.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology. arXiv preprint
arXiv:1806.09029.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng,
David Simcha, Felix Chern, and Sanjiv Kumar. 2020.
Accelerating large-scale inference with anisotropic
vector quantization. In International Conference on
Machine Learning.

Jonathan Herzig, Paweł Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. arXiv preprint arXiv:2004.02349.

328

https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1908.10396


Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback.
arXiv preprint arXiv:1704.08760.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023. Graphix-t5: Mixing pre-
trained transformers with graph-aware layers for text-
to-sql parsing. arXiv preprint arXiv:2301.07507.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Andrew Trask, Phil Michalak, and John Liu. 2015.
sense2vec-a fast and accurate method for word sense
disambiguation in neural word embeddings. arXiv
preprint arXiv:1511.06388.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-
marking zero-shot text classification: Datasets, eval-
uation and entailment approach. arXiv preprint
arXiv:1909.00161.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

A Appendix

A.1 Supplemental rules for numerical range
SVD using duckling

Since we use duckling just for disambiguation of
already extracted slots and not how its typically
used i.e. extraction and disambiguation with the
entire utterance provided, we need to (1) resolve
for certain potential conflicts between slot type
from our trained DIET slot tagger and duckling’s
internal slot type, see Table 4 which contains one
such example for date ranges; (2) help improve
duckling’s resolution performance using certain
pre and post-processing rules as below:

• Merging separate slot spans split by the slot
tagger. Example: "August 2nd to 10th" are
tagged by the slot tagging model as [August
2nd](date_from) to [10th](date_to). In this
case duckling would fail to resolve "10th" as
"10th of August". Hence we merge two oth-
erwise independent spans to [August 2nd to
10th] from which duckling is capable of re-
solving the range correctly.

• Use regex patterns to map diverse date formats
e.g. "mm/ddyy", "mmdd/yy", "mmddyy",
"mm/ddyyyy", "mmdd/yyyy", "mmddyyyy"
to standardized "mm/dd/yyyy" to make SVD
process output more consistent and reliable.

• Combining multiple duckling outputs during
post-processing e.g. for "May 2021", duck-
ling does not understand it is May in the year
2021 but splits "May" and "2021" and detects
it as May of the current year (say 2022) and
the entire year of 2021, which is incorrect.
Our custom post-processing corrects the reso-
lution.

• For dates add "st", "nd", "rd", "th" etc. as
applicable e.g. "1" -> "1st" to help duckling
resolution.

• Prepend extracted amount span values without
$ sign with a dollar sign, Ex. "$30 to 200" or
"$30-200" can only be interpreted correctly
when $ is prepended to 200.

A.2 Non-contextual SVD methods
A.2.1 Lexical ranking
This ranking approach relies on the lexical similar-
ity between the raw slot value in the tagged span

329

http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777


Duckling Slot from_date to_date

value date_eq from_date to_date
value date_from from_date None
value date_to None to_date

from date_eq from_date None
from date_from from_date None
from date_to from_date None

to date_eq None to_date
to date_from None to_date
to date_to None to_date

from+to date_eq from_date to_date
from+to date_from from_date to_date
from+to date_to from_date to_date

Table 4: Dataset statistics pre and post augmentation

and the candidates of the slot type R2C mapping to
identify the most relevant candidate. The top candi-
date(s) are used to lookup the inverse R2C mapping
to obtain the final resolutions. For example, con-
sider the phrase "starbks crd" in a user utterance
of the form, "my purchases using my starbks crd",
needs to be resolved to the name "Starbucks Card".
We might not be able to come up with all possi-
ble variations, mis-spellings, abbreviations, or syn-
onyms of Starbucks and so we collect these from
our training data (SVD ground truth labels tagged
by human annotators) to improve our R2C map-
ping for recall. Then we use fuzzy string matching,
specifically a length normalized Levenshtein dis-
tance, but other string similarity metrics could also
work.
The advantages of this Fuzzy string match approach
are:

• Relatively quick to execute, especially when
the candidate list is small.

• Needed when slot values and resolutions are
more lexically than semantically similar e.g.
people names, company names etc.

The disadvantages are as follows:

• If words have similar meaning but widely dif-
fer in characters (e.g. beverages and coffee)
then simple string similarity is insufficient.
While this can be somewhat mitigated by R2C
augmentations from labelled data, one needs
large enough dataset for this.

• Does not use context surrounding the word
hence cannot be utilized for contextual meth-
ods.

A.2.2 Semantic similarity
With certain spans it might be preferable to use
semantic information for disambiguation. For the
coffee and beverage example above, using lexical
similarity would lead to poor results if "coffee"
was not a candidate in the R2C mapping for "bev-
erage". The most intuitive method to do this is by
training a phrase embedding model using classical
techniques like word2vec (Mikolov et al., 2013b,a)
or GloVe (Pennington et al., 2014) and calculating
a phrase similarity of the raw slot value embedding
against the candidates in the inverse R2C mapping.
For very large number of candidates where pair-
wise similarity is impractical, approximate nearest
neighbor (ANN) algorithms like FAISS (Johnson
et al., 2019) or ScaNN (Guo et al., 2020) could be
used.
Finally, we also experimented with an alternative
zero-shot approach which can be used in certain
cases. Based on the method put forth in (Yin et al.,
2019) we formulate our task into one of textual
entailment, where spans and the candidates are
converted into (premise, hypothesis) pairs using
a predefined template, with high entailment score
signifying semantic similarity.

The advantages of using semantic similarity:

• Works even when the candidate is not lexically
similar to the span value mentioned in the
customer utterance.

• Can be used in unsupervised way but can also
be fine-tuned to specific domain if training
data is available.

• These methods can be used for contextual
SVD as well, if in-domain data is available.

The disadvantages are as follows:

• Might need in domain training data especially
for specialized domains where unsupervised
or self-supervised learning is insufficient.

• On average are slower than a string based al-
gorithms, although this is less of a problem in
recent times due to availability of fast ANN
algorithms as mentioned earlier.

A.3 Ensemble SVD Re-ranking
We can chain multiple SVD components for the
same slot value resolution, choosing the best res-
olution using pre-defined criteria such as majority
voting. The decision of whether to execute all SVD

330



Figure 3: Ensemble SVD Re-ranking

components in the sequential chain can be based
on confidence (conditional chaining) or not (uncon-
ditional chaining).
Conditional chaining works as follows and is high-
lighted in figure 3:

• The first SVD module returns the top candi-
dates using a threshold.

• If the confidence score exceeds a set value
and/or the first N values are within a given am-
biguity threshold we directly return the SVD
outputs.

• Else, we proceed to the next SVD module to
help improve the final disambiguation, repeat-
ing this until the last available SVD module
or until a high confidence prediction can be
made.

331


