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Abstract
Large language models trained on code have
shown great potential to increase productiv-
ity of software developers. Several execution-
based benchmarks have been proposed to eval-
uate functional correctness of model-generated
code on simple programming problems. Never-
theless, it is expensive to perform the same eval-
uation on complex real-world projects consid-
ering the execution cost. On the contrary, static
analysis tools such as linters, which can detect
errors without running the program, haven’t
been well explored for evaluating code genera-
tion models. In this work, we propose a static
evaluation framework to quantify static errors
in Python code completions, by leveraging Ab-
stract Syntax Trees. Compared with execution-
based evaluation, our method is not only more
efficient, but also applicable to code in the
wild. For experiments, we collect code context
from open source repos to generate one mil-
lion function bodies using public models. Our
static analysis reveals that Undefined Name
and Unused Variable are the most common er-
rors among others made by language models.
Through extensive studies, we also show the im-
pact of sampling temperature, model size, and
context on static errors in code completions.

1 Introduction

Automatic code completion by large language mod-
els trained on numerous code repositories has
demonstrated great potential in accelerating soft-
ware development. Code assistant services pow-
ered by these models provide developers with code
suggestions following the current context in real-
time. However, it has been shown that about 70%
of the suggestions are discarded by users in a recent
study (Ziegler et al., 2022). Even worse, mislead-
ing recommendations can lead to failure in complet-
ing programming tasks (Vaithilingam et al., 2022).
Therefore, it is important to understand the weak-
ness of current code generation models through
comprehensive evaluation and analysis.

Figure 1: A function completion example, with an Un-
used Variable error (gray) in context, and an Undefined
Name error (red) in completion.

Recently, execution-based evaluation has be-
come increasingly popular, where model-generated
code is executed with unit tests to check functional
correctness. Several benchmarks have been pro-
posed along this direction, such as HumanEval
(Chen et al., 2021), MBPP (Austin et al., 2021),
MBXP (Athiwaratkun et al., 2022), CodeContests
(Li et al., 2022), and DS-1000 (Lai et al., 2022).
Although these benchmarks are highly reliable and
accurate, they only focus on well-defined algorith-
mic and data science problems, which do not reflect
the need in general software development. Running
execution-based evaluation with real-world code-
bases is, however, prohibitively expensive because
each project requires a different setup and the com-
putation cost is potentially unbounded.

In contrast to the execution-based approach,
static program analysis (or static analysis) can an-
alyze programs without executing them. Although
static analysis is usually unable to determine func-
tional correctness, it covers a large collection of
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static error types, such as undefined names or un-
used variables that are illustrated in Figure 1. More
importantly, the analysis can be very fast and does
not require any project specific environment setup,
which allows us to evaluate model completions for
complex real-world code at large scale. Static anal-
ysis tools such as linters have been widely used, for
example in code editors, to examine human-written
code, but their value in evaluating code generation
models has not been well explored yet.

In this work, we propose a static evaluation
framework for Python language. Code snippets
are first parsed into Abstract Syntax Trees (ASTs)
and then analyzed by Pyflakes1, a popular static
analysis tool for Python. To simulate real-world
use cases of auto completion, we collect code from
public Github repositories to build a function com-
pletion dataset of 100K problems. In each problem,
we randomly mask out a function body in a Python
file and ask the model to complete it given the pre-
ceding context up until the function header. We
then evaluate public models by sampling 10 com-
pletions for each problem, resulting in one million
generations for each model and sampling tempera-
ture, which will be examined by our static evalua-
tion pipeline.

During AST parsing, we find most of the errors
arise from incomplete generations that hit the max
length limit. Otherwise, models of all sizes perform
quite well in producing parsable codes. Moving
forward, Pyflakes analysis reveals that Undefined
Name and Unused Variable are the most prominent
static errors in model-generated code. We also ob-
serve higher temperatures consistently lead to more
errors. Scaling up the model, while able to reduce
errors of many types, do not show a clear benefit
for preventing undefined names. Through a more
fine-grained classification, we find larger models
generate fewer undefined variables but more un-
defined methods, which add up to a mixed result.
Finally, we demonstrate that errors in context can
lead to errors of the same type in generation, which
is likely a consequence of large language models’
in context learning capability.

In summary, our main contributions include the
following. (1) We propose a static evaluation frame-
work for code completion. (2) Our evaluation on
public models reveals common static errors and
how they are impacted by various factors such as
temperature, model size, and context.

1https://github.com/PyCQA/pyflakes

2 Background

Code Generation with Transformers Over re-
cent years, it has become increasingly popular
to train Transformer-based language models on
source code (Feng et al., 2020; Ahmad et al., 2021;
Wang et al., 2021; Lu et al., 2021; Guo et al.,
2022) to support software engineering tasks (Iyer
et al., 2018; Tufano et al., 2019). In particular, sev-
eral decoder-only transformer models have been
developed to facilitate code generation, such as
Codex (Chen et al., 2021), CodeGen (Nijkamp
et al., 2022), Incoder (Fried et al., 2022), and Al-
phaCode (Li et al., 2022). These pretrained causal
language models can be used to predict the contin-
uation of input code without any finetuning.

Abstract Syntax Tree An Abstract Syntax Tree
(a.k.a., AST) is used to represent a source code
in a concise tree form. By discarding unnecessary
details of the underlying code and its corresponding
parsed tree, AST only presents the main structural
content of the source code following the language
grammar (Aho et al., 2007).

Static Analysis Static analysis is a common way
to detect software bugs without executing the pro-
gram (Ayewah et al., 2008; Chess and McGraw,
2004; Chess and West, 2007; Zheng et al., 2006).
Static analyzers tend to detect bugs by analyzing
the static code text, its AST, documentation, etc.
The users usually need to specify the error patterns
and static analyzers use different AST, graph, and
path analysis to find those patterns in the code.
There are a plethora of static analysis tools and
they can detect a wide range of errors depending
on the specified patterns (Emanuelsson and Nils-
son, 2008). For example, Linter is a popular tool
that checks for coding style errors and thus, tries to
enforce a coding standard (Van Oort et al., 2021).

3 The Function Completion Dataset

We introduce the function completion task, which
is one of the most important use cases of auto com-
pletion services. Given an input code snippet that
ends with a function signature plus an optional doc-
string, the model is asked to generate the function
body. Previous works on code completion (Lu et al.,
2021; Svyatkovskiy et al., 2019) have mainly fo-
cused on single-line completion. However, a single
line is often too short to reveal models’ capability
in writing syntactically correct code. We believe
function, as the fundamental building block in most
programming languages, better serves this purpose.
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Figure 2: Evaluation pipeline. Left: We parse [context] and [context + generation] into ASTs. If [context] is not
parsable, we stop without reporting any error on generation. If [context] is parsable, but [context + generation] is
not, we report the AST error in generation. Right: If both are parsable, we run Pyflakes on the trees, which reports
errors in [context] and errors in [context + generation]. Taking the difference gives us errors in generation.

Software developers use code generation models
as black-box services on a diverse set of coding
projects. To better simulate the real-world scenario,
we build an evaluation set by sampling from pub-
lic Github repositories. Specifically we collected
permissively licensed Python code in repositories
that were created between April, 2022 and August,
2022. The selection criterion precludes any chrono-
logical overlap between our evaluation data and the
training data of models to be tested in this work.2

The collected Python codes are reformatted as
function completion problems. We first use tree-
sitter3 to parse the whole file to identify all the func-
tions. Then a function that contains a docstring is
randomly selected. The code from the beginning
of the file up until the end of the docstring is used
as the context, and the function body is considered
as the groundtruth. The rest of the file is discarded.
At test time, we prompt the model with the con-
text part as input, and let the model generate the
function body. We choose only functions with doc-
strings so that context is well-defined and model
can generate meaningful code completions. We
further select test samples whose context length is
between 64 and 768 tokens, and groundtruth length
is shorter than 256 tokens, to match our model gen-
eration setting. Our final evaluation set consists of
100K function completion problems.

4 Static Error Analysis

We propose an evaluation pipeline to detect errors
in function completions generated by models, illus-
trated in Figure 2. Suppose the model generates a
completion x given the input context c. We cannot

2CodeGen models were trained on data up until Oct, 2021.
3https://tree-sitter.github.io/tree-sitter/

directly analyze x which is partial code without
context. Meanwhile, c may also contain errors es-
pecially in real-world cases. Therefore, we perform
our analysis in two passes. We first check c for any
errors in the input that need to be excluded, and
then do another pass on the full code (c, x), the
concatenation of the context and model completion.
Any error that is identified in (c, x) but not in c
must arise from x, or in other words, be generated
by the model. More specifically, we conduct the
following two steps of analysis for Python code.

4.1 AST parsing

In the first step, we parse both c and (c, x) into
abstract syntax trees using Python’s native ast mod-
ule. If the code is parsable, an AST will be returned.
Otherwise, a syntax error is captured. Based on the
parsing outcomes, we take the following actions:

1. If c is not parsable, we are unable to conclude
any error in generation. Empirically this rarely
happens, as we will show in the next section.

2. If c is parsable but (c, x) is not, then we can
confirm the reported syntax error is caused by
model generation. However, notice that only
one error will be returned even if there are mul-
tiple, due to the nature of AST parsing.

3. If both c and (c, x) are parsable, there’s no AST
error in model generation. The ASTs will be
used for static analysis in the next step.

4.2 Static analysis with Pyflakes

If both c and (c, x) can be parsed into ASTs, we
perform static analysis using Pyflakes. Pyflakes is a
static analysis tool that checks a Python source file
for errors by examining the AST. One advantage
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is that the analysis does not rely on dependencies
of the source file, which is important given the
diversity of packages used in real-world code. We
run Pyflakes on c and (c, x) to identify errors in
context and in full code. Errors that are detected in
(c, x) but not in c are considered as introduced by
model completion.

5 Experiments

With the proposed pipeline we conduct error analy-
sis for CodeGen models (Nijkamp et al., 2022) on
the test set described in Section 3, and present the
analysis results.

5.1 Experiment Setup

We evaluate CodeGen-mono models of all sizes,
ranging from 350M to 16B. We generate function
completions using nucleus sampling with top-p
0.95. Sampling temperature is varied between 0.2
and 0.8 for the 2B model, and fixed to 0.4 for the
rest models. We sample 10 generations for each
problem, which results in one million code comple-
tions for each model and temperature. The maxi-
mum generation length is 256 tokens. Generated
code completions are then passed to our static eval-
uation pipeline built with Python 3.8 and Pyflakes
3.0.1. Evaluating one million generations takes
only a few hours on a single CPU thread, and can
be fully parallelized for acceleration.

5.2 Validation of Model Output

While we mainly focus on static errors in this study,
it is also important to validate that the models do
generate relevant code. A counter-example would
be to generate a single line of "return" for every
function signature, which is syntactically correct
but not meaningful at all. Towards this end, we
calculate the edit similarity between model genera-
tion and groundtruth, and compare against Pass@1
from HumanEval (Chen et al., 2021) which is a pop-
ular execution-based benchmark to evaluate code
generation models. Specifically, for both datasets
we generate 10 samples per problem, and report the
averaged edit similarity or pass rate over all gen-
erations. As shown in Table 1, models of all sizes
and temperatures are able to achieve reasonable
edit similarity on the function completion dataset,
which means the generations are semantically rel-
evant. Moreover, edit similarity and HumanEval
Pass@1 both improve as the model scales up, high-
lighting that model scale is crucial for accurate

Model Temp Edit
Similarity

HumanEval
Pass@1

CodeGen-16B

0.4

72.07 31.83
CodeGen-6B 68.76 26.46
CodeGen-2B 64.83 23.72
CodeGen-350M 56.47 12.62

CodeGen-2B

0.2 65.10 25.06
0.4 64.83 23.72
0.6 64.09 21.28
0.8 62.62 17.56

Table 1: Edit similarity on function completion dataset
and Pass@1 on HumanEval, of CodeGen models across
different sizes and temperatures. (1) Edit similarity
and HumanEval Pass@1 are positively correlated across
different settings, which justifies edit similarity can be
used as an alternative metric for model evaluation. (2)
As expected, larger models have better edit similarity (a
proxy to accuracy) on function completion task.

code generation. Finally, the strong positive corre-
lation between the last two columns shows that edit
similarity on the function completion dataset can be
used as an alternative metric for model comparison.

5.3 AST Results
We run AST parsing and find there are only 0.42%
cases with unparsable context that need to be dis-
carded. For the rest, we report percentage of gen-
erations with AST errors in Table 2. A full list of
error types is included in Appendix A. For each
type, we also show a code example in Appendix B.

While there are about 7-8% of unparsable gener-
ations, most of the parsing errors happen at the end
of file (EOF), which means the generated code is
incomplete due to the 256 max token limit. Extend-
ing generation length may help reduce EOF errors,
but will require more computation and increase the
perceived latency of the auto-completion service.

On the other hand, non-EOF errors only account
for a tiny fraction, usually around 0.1-0.2%, which
indicates CodeGen models can generally follow
the abstract syntax grammar to produce parsable
codes, regardless of model size and temperature.

Finding 1. Codes generated by models, unless in-
complete, are mostly parsable into ASTs, regardless
of model size or temperature.

We also show the top-3 non-EOF error types
ranked by frequency, which are Invalid syntax,
Print Missing Parentheses, and Keyword Argu-
ment Repeated. Notably, the first two categories
are often related to Python’s interpreter version.
To illustrate, Python2-style print like print "abc"
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Model Temp Total EOF Non EOF Invalid
Syntax

"print"
Missing

Parentheses

Keyword
Argument
Repeated

CodeGen-16B

0.4

7.330% 7.236% 0.094% 0.042% 0.041% 0.004%
CodeGen-6B 7.446% 7.253% 0.193% 0.081% 0.094% 0.006%
CodeGen-2B 7.272% 7.177% 0.095% 0.052% 0.018% 0.008%
CodeGen-350M 8.703% 8.593% 0.110% 0.041% 0.016% 0.028%

CodeGen-2B

0.2 8.067% 7.982% 0.085% 0.045% 0.018% 0.008%
0.4 7.272% 7.177% 0.095% 0.052% 0.018% 0.008%
0.6 6.823% 6.713% 0.110% 0.060% 0.020% 0.008%
0.8 7.496% 7.337% 0.159% 0.085% 0.029% 0.014%

Table 2: Percentages of AST errors across different model sizes and temperatures. We show (1) total AST errors;
(2) errors at the end of file (EOF); (3) errors not at EOF; (4) top 3 non-EOF errors. Models generally perform well
at AST level except for EOF errors caused by max generation length limit.

Figure 3: Number of undefined variables versus unde-
fined functions. Larger models generate more undefined
functions but fewer undefined variables.

will lead to Print Missing Parentheses in Python3.
Another example is that using async as a variable
name will cause Invalid Syntax because async has
become a reserved word since Python3.7. Models
learn to make such errors from their training data
which consists of code written for different Python
versions. In many cases, it is difficult for a model to
infer the intended interpreter version directly from
the limited context. An interesting future direction
is to guide models to generate version-compatible
code given the target environment.

Finding 2. Interpreter version mismatch is one of
the major reasons for non-EOF AST errors.

5.4 Pyflakes Results

We present frequencies of top 6 linter errors from
Pyflakes in Table 3, with code examples in Ap-
pendix B. While Pyflakes also finds other problems
in code, most of them are very sparse and thus less
important, which we leave to Appendix A. Notice
that one code snippet may contain multiple errors.
We count each type only once in every test sample.

Among all errors, Undefined Name and Un-
used Variable are the most common ones, where

the model either calls a variable that is not defined,
or defines a variable but never uses it. Closely
related are Unused Import, Redefined While Un-
used and Undefined Local, which can be consid-
ered as special cases of the first two. Models also
sometimes unnecessarily use f-strings by not giv-
ing any placeholder. It is worth pointing out that
not all Pyflakes errors will impact execution. In
fact among the six types, only Undefined Name
and Undefined Local may cause runtime problems.
However, all these errors can harm readability and
maintenance which are critical for software devel-
opment. Hence, it is important to address them to
improve the quality of auto code completion.

Across sampling temperatures, we observe in
every column that more errors are generated under
higher temperatures, which is expected because
generations in such cases are less confident.
Finding 3. Higher temperature always leads to
more errors of every type.

The impact of model size on error rate is less
consistent though. For Unused Variable, Unused
Import, and Undefined Local, error rate does de-
crease as the model scales up. However, the other
three categories do not manifest such correlation.
We investigate the underlying reason for this mixed
result particularly in the case of Undefined Name.
Notice that if an undefined name is a function call,
it can potentially be defined afterwards outside the
current function completion scope. While not guar-
anteed, the model might be able to fix this error by
itself if we allow generating longer code instead
of only one function. In contrast, using a vari-
able without first defining it is usually a mistake.
Even in some rare cases where the variable defi-
nition is made up correctly after the usage, such
ordering is often less preferred in terms of coding
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Model Temp Undefined
Name

Unused
Variable

FString
Missing

Placeholders

Unused
Import

Redefined
While

Unused

Undefined
Local

CodeGen-16B

0.4

4.323% 1.729% 0.135% 0.107% 0.131% 0.047%
CodeGen-6B 4.374% 1.775% 0.089% 0.149% 0.126% 0.055%
CodeGen-2B 4.364% 1.810% 0.147% 0.150% 0.146% 0.065%
CodeGen-350M 4.472% 2.032% 0.151% 0.173% 0.155% 0.095%

CodeGen-2B

0.2 4.206% 1.751% 0.125% 0.139% 0.139% 0.067%
0.4 4.364% 1.810% 0.147% 0.150% 0.146% 0.065%
0.6 4.711% 2.000% 0.188% 0.170% 0.159% 0.076%
0.8 5.377% 2.490% 0.240% 0.247% 0.184% 0.086%

Table 3: Percentages of Pyflakes errors across different model sizes and temperatures. Higher temperatures always
lead to more errors in every category. On the other hand, larger models do not necessarily generate fewer errors.

style. In Figure 3, we break down the undefined
names into variables and functions. We find that
larger models yield fewer undefined variables, but
more undefined functions, which demonstrates that
the correlation between error count and model size
varies for different errors types.

Finding 4. While larger models are more accurate
code generators (Nijkamp et al., 2022), scaling
up model size does not lead to reduction in error
counts for all error categories.

5.5 Correlation with Errors in Context

We further study the correlation between errors in
context and in generation. Denote by c the input
context, x the model generation, e the error type.
We write e ∈ c to mean c contains an error of type e.
For every e,4 we calculate P(e ∈ x|e ∈ c), the gen-
eration error rate when context contains the same
type of error(s). We also report the relative ratio
P(e∈x|e∈c)
P(e∈x|e/∈c) to measure the impact of context. From
Table 4, if the model observes errors in context, it
is more likely to produce the same type of errors in
generation, and the error rate can be amplified by
7∼200 times depending on the type. This is pos-
sibly an undesired consequence of the in-context
learning capability of large language models.

We also calculate P(e ∈ c|e ∈ x) to show how
many of the generation errors co-occur with con-
text errors. As indicated by the last column of Ta-
ble 4, even though context errors can significantly
amplify generations errors, the co-occurrences of
two do not account for a large fraction. This im-
plies problematic context is not the only factor for
problematic generation, and it is often the case for
models to produce errors even with correct context.

4We omit Unused Import from Table 3 because it is valid to
have unused imports in the context that is yet to be completed.

Error type P(e∈x|e∈c)
P(e∈x|e∈c)

P(e∈x|e/∈c)
P(e∈c|e∈x)

Undefined Name 26.33% 7.80 25.99%

Unused Variable 14.13% 8.45 8.56%

FString Missing
Placeholders 20.63% 215.50 35.08%

Redefined
While Unused 2.44% 21.16 22.30%

Undefined Local 7.00% 108.68 1.08%

Table 4: Correlation between errors in context and in
generation for the 2B model. First two columns indicate
errors in context can amplify errors in generation; the
last column shows not all generations errors can be
attributed to context. Other models have similar results.

Finding 5. Errors in context generally lead to more
errors in generation.

6 Discussion

We present a static evaluation framework for code
completions generated by large language models.
By utilizing the proposed framework, we conduct
error analysis of CodeGen models on a large scale
real-world Python evaluation set. Our experiment
reveals common static errors made by pretrained
models, as well as their frequency trend across
model sizes and sampling temperatures. By point-
ing out weaknesses of existing models, we hope our
study also sheds light on future directions towards
more accurate code generation.

There are a few limitations of this study. First,
we focus on left-to-right code generation without
considering right-side and cross-file context, which
can be used to determine broader categories of
errors with improved precision. Second, each static
analysis tool has its own limitations. Thus, the
presented analysis is limited by Pyflakes’s accuracy
and coverage to detect certain code issues.
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A Full Error Categories

In addition to those discussed in Section 5, we list
all error categories that can be detected in model
generated code in our experiments, with a minimal
frequency of 0.001% by any of the models (i.e. 10
observations out of the total 1 million generations).

AST errors (EOF errors indicated by aster-
isk):

1. *unexpected EOF while parsing

2. *EOL while scanning string literal

3. *invalid syntax at EOF

4. *EOF while scanning triple-quoted string lit-
eral

5. invalid syntax not at EOF

6. missing parentheses in call to "print"

7. keyword argument repeated

8. leading zeros in decimal integer literals are not
permitted; use an o prefix for octal integers

9. unmatched ")"

10. cannot assign to function call

11. positional argument follows keyword argu-
ment

12. expression cannot contain assignment

Pyflakes issues:

1. undefined name

2. unused variable

3. f-string missing placeholder

4. unused import

5. redefined while unused

6. indentation error

7. import shadowed by loop var

8. raise not implemented

9. invalid print syntax

10. is literal

11. string dot format extra positional argument

12. multi value repeated key literal

13. percent format positional count mismatch

14. tab error

15. string dot format extra named arguments

16. import star not permitted

17. percent format unsupported format character

18. assert tuple

19. percent format extra named arguments

B Examples for Top Error Types

Below we list one code example for each of the
error categories shown in Table 2 and 3. Following
the definition of function completion task, in every
example, context is from the beginning until the
end of the docstring of the last function, and model
completion is the body of the last function.
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1 """ Secondary Structure dataset."""
2

3 import numpy as np
4 from megatron import print_rank_0
5 from .data import ProteinPredictionAbstractDataset
6 from .data import build_tokens_paddings_from_text
7

8 class SecondaryStructureDataset(ProteinPredictionAbstractDataset):
9 def __init__(self ,

10 name: str ,
11 datapaths ,
12 tokenizer ,
13 max_seq_length: int):
14 super().__init__(’secondary_structure ’, name , datapaths , tokenizer ,

max_seq_length)
15

16

17 def build_samples(self , ids , paddings , label , unique_id , seq_len):
18 """ Convert to numpy and return a sample consumed by the batch producer.

"""
19

20 # Seperate inputs and labels in lists
21 input_tokens = [self.tokenizer.tokenize(seq) for seq in ids]
22 input_tokens = [token for seq in input_tokens for token in seq]
23 labels = [self.tokenizer.tokenize(seq) for seq in label]
24 labels = [label for seq in labels for label in seq]
25

26 # Add special tokens
27 input_tokens , labels = self.add_special_tokens(input_tokens , labels)
28

29 # Truncate and pad
30 input_tokens , labels , paddings = self.truncate_and_pad(input_tokens ,

labels ,
31 self

Listing 1: unexpected EOF while parsing (line 31)
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1 from pathlib import Path
2 from wasabi import msg
3 from .remote_storage import RemoteStorage
4 from .remote_storage import get_content_hash , get_command_hash
5 from .. _util import load_project_config
6 from .. _util import project_cli , Arg , logger
7

8

9 @project_cli.command("push")
10 def project_push_cli(
11 # fmt: off
12 remote: str = Arg("default", help="Name or path of remote storage"),
13 project_dir: Path = Arg(Path.cwd(), help="Location of project directory.

Defaults to current working directory.", exists=True , file_okay=False),
14 # fmt: on
15 ):
16 """ Persist outputs to a remote storage. You can alias remotes in your
17 project.yml by mapping them to storage paths. A storage can be anything that
18 the smart -open library can upload to, e.g. AWS , Google Cloud Storage , SSH ,
19 local directories etc.
20

21 DOCS: https ://xxx
22 """
23 for nlp in load_project_config(project_dir , {"directories": [ANIMAL_TRAIN_DIR

]}:
24 remote_storage = RemoteStorage.get(remote)
25 for command in ["train"]:
26 logger.debug(f"Uploading {command} to remote storage ’{remote_storage}’")
27 path = Path(project_dir) / ANIMAL_TRAIN_DIR / command
28 upload_project(remote_storage , path)

Listing 2: invalid syntax (line 23)

1 def prod(F, E):
2 """ Check that the factorization of P-1 is correct. F is the list of
3 factors of P-1, E lists the number of occurrences of each factor."""
4 M = prod_of_prime_factors(F, E)
5 if not all(i == 1 for i in M):
6 print "Error in prod"
7 print F, E
8 return
9 P = product(F)

10 P_1 = 1
11 for i in range(len(F)):
12 P_1 *= F[i]**E[i]
13 if P != P_1:
14 print "Error in prod"
15 print F, E
16 print P
17 print P_1
18 return

Listing 3: Missing parentheses in call to "print" (line 6)
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1 import unittest
2 from datetime import datetime , timezone
3

4 from dateutil.relativedelta import relativedelta
5

6 from bot.utils import time
7

8

9 class TimeTests(unittest.TestCase):
10 """ Test helper functions in bot.utils.time."""
11

12 def test_humanize_delta_handle_unknown_units(self):
13 """ humanize_delta should be able to handle unknown units , and will not

abort."""
14 self.assertEqual(
15 time.humanize_delta(datetime.utcnow (), datetime.utcnow () -

relativedelta(months=1, months =2)),
16 "1 month and 2 months"
17 )

Listing 4: keyword argument repeated (line 15)

1 """
2 This program will continually ask our user to give a number
3 and will calculate the factorial result of the number and print it on the console

.
4

5 The program ends when the user enter the EXIT number.
6 """
7

8 EXIT = -100
9

10

11 def main():
12 """
13 This program will calculate the factorial result according to the number an

user
14 inputs.
15 """
16 print(’<<< Welcome to the Factorial Calculator! >>>’)
17 num = int(input(’Enter a number: ’))
18 print(’The factorial of {} is {}.’.format(num , factorial(num)))
19 if num == EXIT:
20 print(’\n<<< Thank you for using the Factorial Calculator. >>>’)
21 else:
22 main()

Listing 5: undefined name "factorial" (line 18)
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1 def check(full_path , encoding):
2 assert type(full_path) == str , f’\’full_path\’ is of {type(full_path)}. Only

type \’str\’ is acceptable.’
3 assert full_path != "", "\’full_path\’ is empty."
4 assert type(encoding) == str , f’\’full_path\’ is of {type(encoding)}. Only

type \’str\’ is acceptable.’
5 assert encoding != "", "\’encoding\’ is empty."
6

7 def file_read(full_path: str , encoding = "utf8"):
8 ’’’
9 Author: xxx

10

11 Reads file at "full_path" and returns its data in a list.
12 ’’’
13

14 check(full_path , encoding)
15 encoding_check = encoding
16 full_path = full_path.strip()
17 f = open(full_path , "r", encoding = encoding)
18 lines = f.readlines ()
19 f.close()
20 lines = [line.replace("\n", "") for line in lines]
21 return lines

Listing 6: local variable "encoding_check" is assigned to but never used (line 15)

1 import os
2 import json
3

4 from convinse.library.utils import store_json_with_mkdir , get_logger
5

6

7 class HeterogeneousAnswering:
8 def __init__(self , config):
9 """ Initialize HA module."""

10 self.config = config
11 self.logger = get_logger(__name__ , config)
12

13 def train(self , sources =["kb", "text", "table", "info"]):
14 """ Method used in case no training required for HA phase. """
15 self.logger.info(f"No need to train.")
16 pass

Listing 7: f-string is missing placeholders (line 15)
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1 import os
2 import urllib.parse
3 import sqlite3
4

5 SQL = """
6 SELECT p.ZAUTHOR , p.ZTITLE , e.ZTITLE , e.ZASSETURL , e.ZPUBDATE
7 from ZMTEPISODE e
8 join ZMTPODCAST p
9 on e.ZPODCASTUUID = p.ZUUID

10 where ZASSETURL NOTNULL;
11 """
12

13

14 def check_imports ():
15 ’’’ Prompts for password to install dependencies , if needed ’’’
16 import os, importlib , importlib.util
17 import urllib.parse
18

19 # Check for dependency installs
20 # Can be done more simply , but this way I can avoid importing anything from

zmodel ,
21 # which is nice since I can see what’s going on.
22 for k, v in DEPS.items():
23 try:
24 importlib.import_module(k)
25 except ImportError as e:
26 importlib.util.find_spec(k)
27 if importlib.util.find_spec(k) is None:
28 os.system(f’pip install {v}’)

Listing 8: "urllib.parse" imported but unused (line 17)

1 import kfp.deprecated as kfp
2 from kfp.deprecated import components , dsl , compiler
3

4 def get_run_info(run_id: str):
5 """ Example of getting run info for current pipeline run."""
6 import kfp.dsl as dsl
7 client = kfp.Client ()
8 run = client.run_details(run_id)
9 print(f"Run details :\n{run}")

10 print(f"Pipeline details :\n{run.pipeline_runtime}")

Listing 9: redefinition of unused "dsl" from line 2 (line 6)

1 """ Check for nonlocal and used -before -assignment """
2 # pylint: disable=missing -docstring , unused -variable , no-init , too -few -public -

methods
3

4 __revision__ = 0
5

6 def test_ok ():
7 """ uses nonlocal """
8 cnt = 1
9 def wrap():

10 nonlocal cnt
11 cnt = cnt + 1
12 wrap()
13

14 def test_fail ():
15 """ doesn’t use nonlocal """
16 cnt = 1
17 def wrap():
18 cnt = cnt + 1 # [used -before -assignment]
19 wrap()

Listing 10: local variable "cnt" defined in enclosing scope on line 16 referenced before assignment (line 18)
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