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Abstract

Learning on noisy datasets is a challenging
problem when pre-trained language models are
applied to real-world text classification tasks.
In numerous industrial applications, acquiring
task-specific datasets with 100% accurate la-
bels is difficult, thus many datasets are ac-
companied by label noise at different levels.
Previous work has shown that existing noise-
handling methods could not improve the peak
performance of BERT on noisy datasets, and
might even deteriorate it. In this paper, we
propose SaFER1, a robust and efficient fine-
tuning framework for BERT-based text classi-
fiers, combating label noises without access to
any clean data for training or validation. Utiliz-
ing a label-agnostic early-stopping strategy and
self-supervised learning, our proposed frame-
work achieves superior performance in terms
of both accuracy and speed on multiple text
classification benchmarks. The trained model
is finally fully deployed in several industrial
biomedical literature mining tasks and demon-
strates high effectiveness and efficiency.

1 Introduction

Large Language Models (LLMs) have dominated
Natural Language Processing (NLP) in recent years
and achieved state-of-the-art performance in a va-
riety of industrial applications. Among them, the
most widely-adapted LLMs are transformer-based
models, including BERT, T5, GPT, etc (Devlin
et al., 2018; Raffel et al., 2020; Brown et al., 2020).
LLMs learn general natural language knowledge
from large corpora and the representations for text
data can be utilized in various downstream NLP
tasks. Such a paradigm is also extensively imple-
mented in both industrial and research domains and
achieves considerable performance improvement
compared with traditional statistical approaches.

∗Equal Contributions.
†Corresponding author.

1Code will be released at GitHub.

Text classification is one of the most important
tasks in the industrial domain (Sanchez-Pi et al.,
2014; Han and Akbari, 2018; Wei et al., 2018; Ar-
slan et al., 2021; Chen et al., 2018; Cheng et al.,
2021), including sentence classification, named en-
tity recognition, etc. Typically, these tasks can be
accomplished by leveraging embeddings generated
by the encoder architecture of LLMs. Unfortu-
nately, the performance is always limited by the
data quality in either pre-training or fine-tuning
stage. Real-world datasets, especially those col-
lected for industrial applications, usually contain
a substantial proportion of mislabeled data (Song
et al., 2022). Such label noise can be induced by
crowd-sourcing, human mistakes, system errors,
or the uncertainty itself in the weakly-supervised
labeling methodology. The corrupted labels can
dramatically influence the model performance and
robustness, which has been validated theoretically
and experimentally (Song et al., 2022; Zhu et al.,
2022b). Worse still, re-labeling procedures can be
cost-intensive and time-consuming due to lack of
domain experts. That means in most cases we can
only access the noisy validation set and lose the
validation with ground truth.

Previous work addressed the label noise issue
by proposing robust loss functions, recovering the
noise transition matrix, and incorporating unsuper-
vised learning strategies (Jindal et al., 2019; Yao
et al., 2020; Lukasik et al., 2020; Jenni and Favaro,
2018; Wei et al., 2020; Tan et al., 2021). However,
the label noise issue of using LLMs in NLP tasks is
still an open problem and remains unsolved, espe-
cially in text classification tasks. Zhu et al. (2022b)
demonstrate that directly incorporating existing
noise-encountering methods cannot consistently
improve and even deteriorate the BERT model per-
formance under noisy labels in text classification.
This conclusion is also supported by the results of
our industrial implementation and ablation study
(Appendix C). By investigating the process of fine-
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tuning LLMs on noisy sets, we observe that the
model is experiencing a “convex” learning curve
under label noise (Appendix C Figure 3): the model
gradually increases the accuracy by learning easy
samples in the earlier stage, but continuously expe-
riences performance drop by over-fitting the noise
labels. Hence, can we reserve the knowledge of the
first stage and mitigate the over-fitting in the sec-
ond stage without using any clean data validation?

Following this intuition, we propose SaFER:
a noiSe-resistant Framework for Efficient and
Robust BERT fine-tuning to perform robust LLMs
fine-tuning under noisy classification NLP tasks,
without using any clean labels. Generally, this
framework is compatible with any LLM that con-
tains an encoder architecture to encode sequences
into latent representations. We first fine-tune the
model following a typical manner but perform early
stopping with a label-agnostic strategy. Then, we
leverage contrastive learning with an NLP-specific
augmentation strategy and implement structural
learning to further combat noisy labels.

To evaluate our proposed framework, we per-
form experiments on text classification tasks us-
ing pre-trained BERT models (Devlin et al., 2018).
Here, we select the BERT family to represent
LLMs due to their widespread recognition in both
the industry and research domains. We imple-
ment several state-of-the-art robust learning meth-
ods against label noise as our baseline methods
(Appendix B.1). These methods are designed to
mitigate the general classification label noise issue
without explicitly considering the usage of LLMs.
The experiment results show the consistent and su-
perior performance of our proposed learning frame-
work. Finally, we implement SaFER in two indus-
trial biomedical literature mining tasks under un-
avoidable human labeling noise and achieve robust
practical performance compared with baselines.

The main contributions are as follows:

• We propose an efficient and robust learning
framework: SaFER, for BERT fine-tuning on
datasets with noisy labels without accessing
any clean data.

• We empirically show that SaFER achieves su-
perior performance on text classification tasks
using BERT.

• We demonstrate the practical feasibility of
SaFER on two industrial biomedical literature
mining tasks.

2 Methods

2.1 Problem Settings
We focus on the classification task on text data.
Suppose X ⊂ Rd is the d dimensional input space
and Y = {0, 1}k is the label space in a one-hot
manner. In a typical text classification task, a clean
training corpus C = {(xi, yi)ni=1} drawn from the
joint distribution X × Y is provided, where xi de-
notes a data sample, yi is the corresponding ground-
truth label of xi, and n is the size of the corpus.
However, in the noisy label setting, a certain pro-
portion of the training data are not correctly labeled.
Given a noisy training corpus Ĉ = {(xi, ŷi)ni=1}
drawn from a noisy joint distribution X × Ŷ , with
noise level being ρ = |{(xi, ŷi)|ŷi ̸= yi}|/n, we
hope to train a classifier f(·; θ) that gives correct
predictions on unseen data.

Some noise handling methods assume that a
small clean set is available (Tänzer et al., 2021;
Shu et al., 2019). However, such clean data is often
not easy to obtain in real-world industrial settings.
In our problem, we assume that there is no fully
clean data available. In the subsequent sections,
by saying “noisy” we mean there is a non-zero
probability that such data item is wrongly labeled.

2.2 SaFER
2.2.1 Motivation
We identify two problems caused by noisy labels:
1) early stopping at the wrong training step on noisy
validation sets, therefore one would miss the best
model parameters, and 2) noisy supervision from
incorrect labels, thus preventing the model from
improving its performance or even deteriorating it.
Improper Early Stopping Traditional strategy
(Tänzer et al., 2021) relies on a clean validation set
to find the point where the model reaches its highest
generalization capability. If a model reaches a high
performance on the validation set at some training
step, and such performance is not exceeded in a
certain amount of further steps, then the model is
early stopped. In our settings, nevertheless, such
a validation set is not clean and the performance
on such a set may not be a reliable indicator of
early stopping, as shown in Appendix C Figure 4.
Moreover, evaluating the model for every few steps
is very time-consuming, especially when it comes
to doing inference with large language models with
a huge amount of parameters.
Noisy Supervision Under label noises, the opti-
mization with loss function L on a noisy batch ĈB
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Figure 1: Illustration of SaFER framework.

sampled from the noisy dataset Ĉ at time step t is
formulated as:

θt+1 = θt − η∇


 1

|ĈB|
∑

(x,ŷ)∈ĈB

L(f(x; θt), ŷ)


 ,

(1)
where the noisy label ŷ participates in the loss
calculation and can corrupt the model parameters
through backward propagation, thus misleading the
optimization progress.

2.2.2 Label-Independent Early Stopping
To find the point where the generalization reaches
the best performance, we need a reliable signal
that indicates when the classifier starts to overfit
the noisy labels. Intrinsic Dimensionality (ID) is
a measure of the number of variables needed to
minimally represent a set of data, and it has been
proven to be a good indicator of the generaliza-
tion ability of DNNs (Amsaleg et al., 2017; Ma
et al., 2018b,a; Ansuini et al., 2019; Nakada and
Imaizumi, 2020; Birdal et al., 2021). When con-
sidering each sample in the dataset, we have Local
Intrinsic Dimensionality (LID) that measures the
dimensional complexity of the local subspace in
its vicinity. Previous studies on DNN learning dy-
namics empirically show that the ID curve behaves
like a concave shape at the beginning of the train-
ing, which applies to several types of DNNs. When
LID reaches a low point, the DNN could reach high
generalization ability before starting to memorize
label noises. We show that the BERT encoder also
follows such a manner (Appendix C Figure 2) and
propose to utilize such characteristics to find the
proper stopping point.

Following Ma et al. (2018b), we estimate the
LID score within batches. Consider a BERT-based
classifier h : P → Rk where k is the number of
classes. Given a transformed text batch XB ⊂ X

sampled from the training corpus, and a reference
point x ∼ P , the estimated LID score of x can be
calculated as:

L̂ID(x,XB) =

−
(
1

k

k∑

i=1

log
ri(g(x), g(XB))

rmax(g(x), g(XB))

)−1

,

(2)
where g is the output from the second-to-last
layer of BERT, ri(g(x), g(XB)) is the distance of
g(x) to its i-th nearest neighbor in the batch, and
rmax(g(x), g(XB)) is the maximum distance of
g(x) to its neighbors in the batch (or the radius
of the batch, centered on x). Using the estimated
LID score as a stopping indicator, we can quickly
warm up the classifier without any noise-handling
modules, as shown in stage 1 of Algorithm 1 in
Appendix D. As for why we do not apply any noise
handling at the first stage, Zhu et al. (2022b) has
shown in Figure 1 of their paper that the pure BERT
method is the fastest one to reach its peak perfor-
mance compared with other methods that add extra
modules to BERT, and such peak performance is
already very high, thus being a good start.

2.2.3 Noise-Tolerant Supervisor
To further improve the model’s performance after
warming up, we introduce unsupervised learning to
apply label-independent supervision, thus prevent-
ing label noises from misleading the optimization.
The second stage incorporates a simple multi-layer
perceptron (MLP) as a projection head, which is
trained along with the classifier and simultaneously
imposes constraints on the representation space of
the classifier.

Given a noisy batch ĈB = {(xi, ŷi)bi=1} drawn
from Ĉ, the BERT encoder f with parameters θ1
takes the tokenized sentence xi as input and pro-
duces the sentence embedding zi = f(xi; θ1). The
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classification head g with parameters θ2 transforms
zi into a k-dimensional vector ui = g(zi; θ2) (k
is the number of classes), which is supervised by
noisy labels with cross-entropy loss:

LCE(ui, ŷi) = −
k∑

j=1

ŷi
(j) log(u

(j)
i ),

LCE({ui}bi=1, {ŷi}bi=1) =
b∑

i=1

LCE(ui, ŷi).

(3)

On the other hand, we train a projection head
h with parameters θ3 using contrastive learning.
Borrowing experience from the unsupervised Sim-
CSE framework (Gao et al., 2021), we forward
passed xi through f and g twice and got two rep-
resentations vi = h(f(xi,m; θ1); θ3) and v′i =
h(f(xi,m

′; θ1); θ3) as positive pairs, where m and
m′ are two random dropout masks of BERT, while
representations for other sentences are treated as
negative samples. The reason why we adopted
SimCSE is that it is an extremely simple but ef-
ficient way to build positive pairs for sentences,
and it has been proven to perform much better in
sentence representation than other traditional NLP
data augmentations such as crop and word deletion.
Using the output representations, we calculate the
standard InfoNCE loss (Oord et al., 2018):

Lcon(vi) = − log
exp(S(vi, v

′
i)/τ)∑b

j=1 exp(S(vi, v
′
j)/τ)

,

Lcon({vi}bi=1) =
b∑

i=1

Lcon(vi),

(4)

where S is a measurement of similarity between
representation vectors and τ is a temperature hyper-
parameter. As for why we need such a projection
head h, the reason is that it prevents noisy labels
from corrupting the classifier’s representation space
by forcing the classification head g to “agree” with
its output. This is realized by applying a structural
loss (Tan et al., 2021) to h and g. Minimizing the
KL-divergence between the similarities of classi-
fier outputs and those of projector outputs, struc-
tural loss applies a structure-preserving constraint
on output features of g, keeping its representation
space structure similar to that of h:

Lstr({ui}bi=1,{vi}bi=1) =
∑

p ̸=q

R(vp, vq) log
R(vp, vq)

R(up, uq)
,

(5)

where R is a similarity metric. Notice that only the
classification head is trained with structural loss,
while BERT and the projection head are frozen.

2.2.4 Two-Stage Fine-tuning Framework
We design a two-stage framework for fine-tuning
models. For the first stage, a classifier with pre-
trained BERT as the backbone is fine-tuned on
the noisy set without any noise-handling methods,
but monitored by a reliable early stopper. After
the early stopping is triggered, we enter the sec-
ond stage where a projection head is trained along
with the classifier using an unsupervised learning
method, and it simultaneously applies regulariza-
tion to the representation space of the classifier.
With a strong knowledge base built at the first stage
and further boosting at the second stage, the clas-
sifier can reach a high generalization capability
quickly. The entire SaFER framework is illustrated
in Figure 1 and Algorithm 1 in Appendix D.

3 Experiment

3.1 Implementation
Injected Label Noise Following previous work
on modeling noisy datasets (Reed et al., 2014;
Van Rooyen et al., 2015), we define two types of
synthetic label noise: the single-flip noise

P(ŷ = j|y = i) =





1− ρ, for i = j

ρ, for one i ̸= j

0, else

and the uniform-flip noise

P(ŷ = j|y = i) =




1− ρ, for i = j
ρ

k − 1
, else

According to statistics shown in the survey done by
Song et al. (2022), we define four levels of injected
noises: low (ρ = 0.2), medium (ρ = 0.3), high
(ρ = 0.4), and extreme (ρ = 0.45).
Models We use the pre-trained BERT-base model
from Huggingface as the pre-trained BERT back-
bone, and the BERT fine-tuning strategy follows
Devlin et al. (2018). The classifier head is a linear
layer with input size being the hidden size of the
BERT backbone and output size being the num-
ber of classes. The projection head is a two-layer
perceptron in which the input size is the hidden
size of the BERT backbone, the intermediate size
is 512, and the output size is 128 (i.e., the feature
dimension of the projection).
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Baselines We compare SaFER with the follow-
ing methods (implementations were adapted from
code provided by Zhu et al. (2022b)): Without
Noise-Handling, Noise Matrix, Noise Matrix with
Regularization, Label Smoothing, Robust Loss, Co-
Teaching, and Co-Learning. Note that all of them
use a noisy validation set for early stopping. We
refer readers to Appendix B.1 for more details.
Environment The model is fine-tuned by single
NVIDIA Tesla V100-32G GPU under PyTorch
(v1.12.1) framework. We refer the readers to Ap-
pendix B.2 for more implementation details.

3.2 Text Classification with BERT

IMDB (Maas et al., 2011) is a dataset for binary
sentiment classification containing around 50K
movie reviews, most commonly used for sentiment
analysis, i.e. models should predict “positive” or
“negative” for the reviews. We use a set of 25K
reviews for training/validation, and 25K for testing.
Following Zhu et al. (2022b), we inject single-flip
noise into the IMDB dataset.
AG-News (Zhang et al., 2015) is a sub-dataset
of AG’s corpus of more than 1 million news ar-
ticles gathered from more than 2K news sources,
having the 4 largest classes (“World”, “Sports”,
“Business”, “Sci/Tech”) of AG’s Corpus. The AG-
News contains 30K training samples and 1,900
test samples for each class. Following Zhu et al.
(2022b), we inject uniform-flip noise into the AG-
News dataset.

Before injecting label noises, we assume that
IMDB and AG-News themselves are 100% clean.
Their test splits remain the same, while the train-
ing/validation splits are modified by the aforemen-
tioned injected noises. Table 1 and 2 show the ex-
periment results: SaFER performs the best across
all noise levels on AG-News, and also achieves
state-of-the-art performance on IMDB, except that
at medium noise level, it reaches comparable re-
sults with Co-Learning. When the noise level is
low or medium, all methods maintain good per-
formance. But when it comes to higher noise, all
the baselines showed varying degrees of decline in
accuracy, while SaFER still maintains high perfor-
mance thanks to the feature-dependent information
gained from unsupervised learning. Especially, we
notice that on extremely noisy IMDB, Co-Teaching
stops at the wrong training step where the accu-
racy is just 52.53% because the validation set is so
noisy that the highest validation accuracy does not

match the highest test accuracy (above 70%). But
SaFER uses label-independent method for early
stopping, thus avoiding such a problem. Notably,
SaFER is the only method that maintains accuracy
above 90% on AG-News across all five levels of
noise.

Regarding efficiency, SaFER has also shown su-
perior results compared with other baseline meth-
ods. Noise Matrix, Label Smoothing, and Robust
Loss do not differ much from pure BERT because
they introduce only limited extra computations.
But Co-Teaching needs to maintain two neural net-
works, thus being very slow during backward prop-
agation, and Co-Learning trains the BERT back-
bone twice: once with the classifier and once with
the projector, therefore it is also very inefficient.
However, SaFER uses pure BERT for the first stage,
which largely cut down the training time. Most
importantly, the LID-based early stopping strat-
egy does not require inference on a validation set,
thus saving much time at each evaluation step. As
shown in the table, SaFER only takes around half
of the time per training step that is required by
Co-Teaching and Co-Learning.

3.3 Ablation Study

To verify the effectiveness of using two-stage, we
compare SaFER with one-stage pure BERT and
one-stage BERT with unsupervised learning. The
test accuracy v.s. training step on IMDB is shown
in Appendix C Figure 3. Note that the two-stage
scheme actually uses pure BERT for stage one and
next uses BERT with unsupervised learning for
stage two. As we can see, pure BERT climbs up
very fast at the initial 500 steps, while BERT with
unsupervised learning cannot reach the same accu-
racy until its 1500th step. However, pure BERT’s
accuracy starts to drop after it reaches maximum
performance, while BERT with unsupervised learn-
ing continues going up. SaFER combines their
advantages: the accuracy quickly gets to a high
point and continues climbing with a stable pace,
therefore its curve is at the highest place.

Early stopping for stage one is used to find the
transition point from pure BERT to BERT with
unsupervised learning. We also studied whether
to apply early stopping to stage two to find the
converging point of the classifier, as shown in Ap-
pendix C Table 4. It can be seen that with early
stopping at stage 2, SaFER reaches an accuracy of
89.06%, which is much higher than pure BERT’s
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Methods ρ = 0.0 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.45 time/step
Without Noise-Handling 93.36 91.08 90.96 86.72 77.76 5.43s
Noise Matrix 93.18 91.19 90.30 87.37 81.45 5.49s
Noise Matrix with Regularization 93.29 91.40 90.71 88.16 79.26 5.42s
Label Smoothing 93.34 91.49 90.10 86.42 73.72 5.48s
Robust Loss: MAE 91.98 88.74 85.98 78.66 73.93 5.46s
Robust Loss: SCE 93.26 88.75 85.74 83.92 76.21 5.89s
Co-Teaching 93.42 90.98 90.96 84.84 52.53 5.94s
Co-Learning 93.56 91.83 91.46 86.76 78.37 6.15s
SaFER 93.73 92.64 91.27 89.06 82.48 3.31s

Table 1: Comparing accuracy(%) with SOTA methods on IMDB. ρ stands for noise level, and time/step is the
average time needed for each training step (including the necessary time for validation or LID score calculation).

Methods ρ = 0.0 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.45 time/step
Without Noise-Handling 91.35 90.76 88.63 85.32 87.34 3.82s
Noise Matrix 92.93 89.00 88.67 85.34 83.27 3.97s
Noise Matrix with Regularization 90.72 89.23 88.52 85.73 84.60 3.84s
Label Smoothing 91.35 89.97 89.72 90.12 88.53 3.90s
Robust Loss: MAE 90.18 90.01 90.12 89.03 87.89 3.92s
Robust Loss: SCE 92.98 90.13 88.71 89.38 88.80 4.03s
Co-Teaching 91.25 89.89 87.84 87.02 86.37 4.40s
Co-Learning 91.82 90.78 89.82 89.86 88.30 4.52s
SaFER 93.07 92.22 91.66 91.13 90.92 2.16s

Table 2: Comparing accuracy(%) with SOTA methods on AG-News. ρ stands for noise level, and time/step is the
average time needed for each training step (including the necessary time for validation or LID score calculation).

84.49% and BERT with unsupervised learning’s
77.33% and even better than fine-tuning BERT with
unsupervised learning till the end (88.59%).

3.4 Biomedical Literature Mining

We further deploy our framework on two industrial
biomedical literature mining tasks. These tasks are
binary classification tasks used to recognize spe-
cial biomedical phrases in the literature to assist
our medication and biomedical experts in patents
and literature reading. The data is acquired from
several experts in daily work who have different
technology stacks. The data is labeled by experts
themselves or organized from the web resource in
daily work. Hence, the data itself is highly cor-
rupted by label noise due to crowd-sourcing and
labeling preference. Unfortunately, unifying the
label standard and relabeling all data is impossi-
ble due to the high workload of our experts and
the large quantity of data: both tasks share the
same data space which has around 40K data with
an average of 60 text lengths. To evaluate our pro-
posed method, we invite one human expert to exam-
ine and relabel part of the dataset which contains
2K data, and suppose that this part of the data is
clean. We use this part of the data as a test set
for model evaluation and find that the label noise

level for both tasks is around ρ = 0.3. We shuf-
fle and split the remaining noisy data by 20% and
80% for validation and training, and fine-tune the
original BERT model in a typical training manner
and our proposed SaFER framework, separately.
Experiment results are listed in Table 3, showing
the practical effectiveness of SaFER in industrial
settings. We deploy our trained model as a new
online service in our company to assist biomedical
researchers in literary readings.

Methods Task 1 Task 2
BERT w/o noise-handling 75.24 91.02
SaFER 80.03 94.75

Table 3: Accuracy (%) for two industrial biomedical
literature mining tasks.

4 Conclusion

We propose a novel framework SaFER to perform
robust and efficient BERT fine-tuning in text clas-
sification tasks under label noises. This framework
is evaluated on both open-source datasets with syn-
thetic label noise and industrial tasks with human
label noise, compared with several state-of-the-art
noise handling methods. Experiments show that
SaFER not only achieves superior results but also
demonstrates significant improvement in efficiency.
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Limitations

SaFER framework is designed for handling BERT
classification label noise without using any clean
data. Despite the fact that the BERT is one of the
most extensively used models in the industrial do-
main, the influence of label noise on GPT models
and prompt should be further studied in light of the
recent rapid progress. We believe that our frame-
work is compatible with these models, however,
further evaluation is required.

Another limitation is the types of label noise.
We analyze SaFER using synthetic datasets with
uniform and flip label noise which are typical class-
level noise in practice. However, in industrial appli-
cations, the model may experience instance-level
label noise, which is beyond the scope of our inves-
tigation. Although SaFER achieves robust results
in our biomedical literature mining task under hu-
man label noise, we encourage users to examine
the label noise type first in their own application.

Ethics Statement

All experiments can be conducted on a single
NVIDIA Tesla V100-32G GPU. The datasets
(Maas et al., 2011; Zhang et al., 2015) used to
compare SaFER with previous methods are pub-
licly available, and we did not modify any data or
labels in these datasets. The dataset used for indus-
trial biomedical literature mining tasks is protected
and we do not plan to make it public in this work.
But the source code and instructions for using our
framework will be released along with the paper.
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A Related Work

In this section, we briefly review previous work on the problem of robust learning with label noises and
focus on applying such methods to pre-trained language models like BERT.

Noise matrix is a transition matrix added to the end of DNNs to model the underlying label transition
pattern of the noisy dataset (Sukhbaatar et al., 2014; Bekker and Goldberger, 2016; Patrini et al., 2017;
Hendrycks et al., 2018; Yao et al., 2020; Jindal et al., 2019). Patrini et al. (2017) proposed Forward-
Correction, which corrects wrong labels during forward propagation by multiplying the estimated noise
transition matrix with the model’s outputs. To obtain trustworthy noise matrices, Hendrycks et al. (2018)
proposed gold loss correction that corrects loss using available trusted labels and then turns the confusion
matrices of trusted labels into accurate transition matrices. Different from them, Jindal et al. (2019) trained
transition matrices with an l2 regularization which is not necessarily normalized into probability matrices.
However, noise matrix methods have shown large estimation errors when only noisy data is available or
when the noise level is high, which may not be feasible in real-world settings.

Regularization is widely used to prevent the overfitting of DNNs. Label smoothing (Szegedy et al., 2016)
is such a method via softening ground truth labels by mixing the one-hot label with a uniform vector. As
shown by Lukasik et al. (2020) and Zhang et al. (2017), label smoothing is an effective way to combat
label noises. Jenni and Favaro (2018) proposed bilevel learning, which introduces a bilevel optimization
using a clean validation dataset to regularize the overfitting of DNNs. However, the extended features
introduced by regularization slow down the convergence of training, and the performance gain is very
limited unless the models are deeper.

Robust Loss methods re-design the loss function to mitigate the negative impacts brought by incorrect
labels. Kumar et al. (2020) has mathematically defined the pre-requisite for robust loss on multi-label
classification tasks. Ghosh et al. (2017) showed the mean absolute error (MAE) loss satisfies such a
condition and helps models achieve better generalization ability than the traditional cross-entropy loss.
Wang et al. (2019) introduced symmetric cross entropy (SCE) loss that combines a reverse cross-entropy
loss with the standard cross-entropy loss, achieving higher performance than previous methods. However,
robust loss methods perform well only in simple cases where data patterns are easy to learn or the number
of classes is small.

Co-Training is a family of methods that use two DNNs to help combat incorrect labels. Decoupling
(Malach and Shalev-Shwartz, 2017) maintains two networks and updates them using instances with
different predictions. Similarly, Co-teaching (Han et al., 2018) also trains two networks, but it selects
small-loss data to teach the peer network, which is improved by Co-Teaching+ (Yu et al., 2019) through
selecting small-loss data from only disagreement data. JoCoR (Wei et al., 2020) maintains two networks
too, but it trains them together with a joint loss to maximize their agreement. However, the differences
between two networks of the same architecture are very limited, especially during the later training
period, so they can provide only slightly different views of the data. To solve such problems, Tan et al.
(2021) proposed Co-Learning that introduced self-supervised learning to assist supervised learning of the
classifier. However, the extra-introduced optimization largely slows down the convergence of the model.

Language models’ robustness to label noises has not been as widely studied as Computer Vision models.
Several attempts (Moradi and Samwald, 2021; Zhu et al., 2022a; Wang et al., 2020) have been made
to improve language models’ robustness to input perturbations, but they mainly focused on noisy data
instead of noisy labels. Zhu et al. (2022b) showed that for text classification tasks with modern NLP
models like BERT, existing noise-handling methods, including some methods mentioned above, do not
always improve its performance under noisy labels of different noise rates, and may even deteriorate it.
Jindal et al. (2019) proposed a CNN-based architecture that incorporates a non-linear processing layer to
model the label noise statistics. But this method changes the commonly used NLP architecture, making
pre-trained language models not usable, therefore it may be not applicable in various real-world corpora.
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B Experiment Details

B.1 Baseline Descriptions
We compare SaFER with the following baselines:

• Without Noise-Handling, which does not apply any noise-handling modules to the classifier’s training.

• Noise Matrix (Sukhbaatar et al., 2014), which appends a noise matrix after BERT’s output to
transform the clean label distribution to the noisy one.

• Noise Matrix with Regularization (Jindal et al., 2019), which also appends a noise matrix after
BERT’s output, but the matrix is trained with l2 regularization.

• Label Smoothing (Szegedy et al., 2016), which mixes each one-hot label with a uniform vector.

• Robust Loss, which leverages robust loss function (Mean Absolute Error Loss (Ghosh et al., 2017))
or designs new loss function (Symmetric Cross Entropy Loss (Wang et al., 2019)).

• Co-Teaching (Han et al., 2018), which trains two networks to select “clean” training subsets for each
other.

• Co-Learning (Tan et al., 2021), which trains a projector along with the classifier to apply constraints
on the classifier’s learning.

The time per training step shown in Table 1 and Table 2 is calculated by averaging the total training
duration across all label noise types on each dataset, including the time for model loading, training, and
validation.

B.2 Hyperparameters
We set the following hyperparameters for SaFER evaluation:

Field Value
BERT dropout rate 0.1
number of training steps (stage 1) 5000
number of training steps (stage 2) 5000
training batch size 32
evaluation batch size 64
evaluation frequency 25
feature dimension (projection) 128
number of batches for LID estimation 10
initial LID calculation step 5
LID window size 5
BERT learning rate 2e-5
SGD momentum 0.9
SGD dampening 0
SGD weight decay 0.0005
SGD nesterov True
patience for early stopping 25

C Ablation Study Results

Here, we report the ablation study results in Section 3.3. We compare SaFER with one-stage pure BERT
and one-stage BERT with unsupervised learning. The results is shown in Figure 3. We studied whether to
apply early stopping to stage 2 to find the converging point of the classifier. The result is shown in Table 4.
We also investigate the two early stopping strategies of fine-tuning the BERT classifier in noisy sets and
evaluation in clean sets. The result is shown in Figure 4.
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stage 1 stage 2 early stop stage 2? accuracy (%)
BERT w/o noise-handling BERT+unsup yes 89.06
BERT w/o noise-handling BERT w/o noise-handling yes 84.49
BERT+unsup BERT+unsup yes 77.33
BERT w/o noise-handling BERT+unsup no 90.01
BERT w/o noise-handling BERT w/o noise-handling no 62.64
BERT+unsup BERT+unsup no 88.59

Table 4: Ablation study on the two-stage scheme.

Figure 2: A typical LID curve in the label noise problem.
Recorded at every 25 steps for training BERT-based
classifier (without noise-handling) on IMDB dataset
with low noise level (ρ = 0.2).

early stopping 
is triggered

projection head 
needs some training

Figure 3: Comparing two-stage scheme with one-stage
counterparts. Pure BERT method first gets to a high
point and then drops significantly, but unsupervised
learning could help avoid such a problem. Results are
recorded when training on IMDB dataset with a high
noise level (ρ = 0.4). The green box denotes the neces-
sary steps for the projection head to catch up with the
training.
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LID stop point

traditional stop point

highest test ACC

Figure 4: Comparing two early stopping strategies’ results of fine-tuning BERT classifier without handling noise on
IMDB (fast test), with extreme noise level (ρ =0.45), recorded for every 25 steps. The LID-based stopping strategy
(middle) stops at the correct time, while the traditional strategy (bottom) misses the highest point.
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D Algorithm

We demonstrate the full algorithm of SaFER in Algorithm 1.

Algorithm 1 SaFER: Two-Stage Finetuning

Input: Noisy training corpus Ĉ, pre-trained BERT backbone f(·; θ1), batch size b, number of stage
training steps T1, T2 for stage 1 and 2

Output: Trained text classifier f · g
{STAGE 1: Fast Warming Up}

1: Initialize classification head g(·; θ2).
2: for each t from 0 to T1 − 1 do
3: Sample a batch from Ĉ:

x← {xi}bi=1, ŷ ← {ŷi}bi=1

4: Obtain predictions:
u← g(f(x; θ1); θ2)

5: Update θ1, θ2 using Eq. 3.
6: Calculate batch LID scores using Eq. 2 and get the average score lidavg.
7: if lidavg reaches turning point then
8: Save θ1, θ2 and break.
9: end if

10: end for
{STAGE 2: Combating Label Noises}

11: Initialize projection head h(·; θ3).
12: for each t from 0 to T2 − 1 do
13: Sample a batch from Ĉ and get a copy:

x← {xi}bi=1, ŷ ← {ŷi}bi=1; x′ ← x
14: Encode sentences with BERT:

z ← f(x; θ1), z
′ ← f(x′; θ1)

15: Get predictions from classifier g:
u← g(z; θ2)

16: Get projections from projector h:
v ← h(z; θ3), v

′ ← h(z′; θ3)
17: Update θ2 using Eq. 5.
18: Update θ1, θ2 using Eq. 3.
19: Update θ1, θ3 using Eq. 4.
20: end for
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