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Abstract

Pretraining and fine-tuning language models
have become the standard practice in indus-
trial natural language processing (NLP), but
developing and deploying general-purpose lan-
guage models without the abundant compu-
tation or data resources is a real-world is-
sue faced by smaller organizations or com-
munities whose main focus is languages with
less accessible resources (e.g., non-English).
This paper explores the sequence-to-sequence
(seq2seq) language model architecture as a
more practical and compute-efficient alterna-
tive to the decoder-oriented approach (e.g.,
GPT-3), accompanied by novel findings in
compute-optimality analyses. We successfully
trained billion-scale Korean-language seq2seq
language models that strongly outperform other
competitive models in Korean benchmarks.
Moreover, we demonstrate that such language
models can be more efficiently utilized by em-
ploying a heavy pre-finetuning strategy, by
showcasing a case study on dialog-task adap-
tation. Our case study shows that adopt-
ing language models with more readily avail-
able domain-specific unlabeled data greatly
improves fine-tuning data efficiency in low-
resource settings.

1 Introduction

Pretraining large-scale Transformer-based lan-
guage models and finetuning them for specific
tasks have become the cornerstone of modern NLP
pipelines. Among various Transformer-based lan-
guage model architectures proposed in the field,
generative decoder-based architectures, such as the
GPT family (Brown et al., 2020), have gained more
traction from their impressive ability to scale well
into large language models (LLMs) (Kaplan et al.,
2020; Chowdhery et al., 2022) and follow high-
level natural language instructions with few or even
in the absence of demonstrations (Wei et al., 2022).

∗ Equal contributions.
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Figure 1: Benchmark of notable pretrained seq2seq lan-
guage models with Korean capability. The benchmark is
aggregated from key Korean understanding and reason-
ing tasks, including sentiment classification, topic clas-
sification, natural language inference, and reading com-
prehension. Our proposed model, HyperT5, strongly
outperforms previous models including mT5 (Xue et al.,
2021), a multilingual variant of the text-to-text trans-
former.

However, acquiring pretrained language models
(PLMs) is a data- and compute-intensive process
(Patterson et al., 2021), which many organizations
cannot afford to pursue. This disparity is exacer-
bated for the communities of non-English or non-
Latin languages (e.g., Korean) that have limited
access to resources and share fewer linguistic fea-
tures with English, making the cross-lingual trans-
fer from the top language more challenging (Scao
et al., 2022).

As a more cost-efficient alternative to the pure
generative architecture, the sequence-to-sequence
(seq2seq) Transformer (T5) (Raffel et al., 2022)
may offer a reasonable middle ground between
the generative LM and the encoder-oriented archi-
tecture (e.g., BERT (Devlin et al., 2019)), which
are known to lack robustness in generation abili-
ties. Additionally, T5 has been demonstrated to
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Data Source Accessibility Tokens

Blog Proprietary 146.1B
Online Community Proprietary 44.5B
News Proprietary 39.4B
Crawled Comments Proprietary 21.9B
Korean QA Website Proprietary 14.6B
Modu Datasets Public 3.2B
En. & Jp. Wikipedia Public 2.8B
Others Public / Proprietary 27.5B

Total 300B

Table 1: Data sources of the pretraining corpus.

be good few-shot learners (Liu et al., 2022a) and
task/domain adapters (Aribandi et al., 2022; Gupta
et al., 2022).

This paper aims to provide an industrial perspec-
tive on the language model pretraining strategies
with small- to medium-scale budgets. We conduct
compute-optimality analyses to find the optimal
pretraining strategy given our compute budget and
argue that the text-to-text Transformer architecture
is a superior approach compared to decoder-only
models under restricted compute resources (§5.1).
Based on this finding, we share our experience
with training HyperT5 (§3), the state-of-the-art
seq2seq Transformer for the Korean language (Fig-
ure 1). Moreover, we showcase how HyperT5 can
be further refined to improve data and modeling
efficiency in specific domains (i.e. dialogs) using
relatively abundant unlabeled resources (§4).

2 Related Work

PLMs and Efficiency As we gain more under-
standing of core PLM architectures (Devlin et al.,
2019; Brown et al., 2020; Raffel et al., 2022) and
their scaling laws (Kaplan et al., 2020), research ef-
forts for improving their training efficiencies have
diverged in various directions, including improving
the scaling curve (Tay et al., 2022; Chung et al.,
2022), maximizing optimality (Hoffmann et al.,
2022), and efficient fine-tuning (Lester et al., 2021;
Hu et al., 2022). Our work offers a comprehensive
overview and case study of optimizing the language
modeling efficiency for a less resourceful language.

Non-English Language Models Previously, sig-
nificant works have explored pretraining language
models on multiple languages to support low-
resource languages and maximize cross-lingual
knowledge transfer without explicit supervision
(Devlin et al., 2019; Conneau and Lample, 2019;
Xue et al., 2021; Scao et al., 2022). Recently, lan-

guage models that target specific non-English lan-
guages started to become more common (Zeng
et al., 2021; Kim et al., 2021a; Nagoudi et al., 2022;
Fuadi et al., 2023), especially low-resource or non-
Latin languages that share fewer commonalities
with English. There have been several Korean text-
to-text Transformers proposed in the past, such as
KoBART* and KE-T5 (Kim et al., 2021b), but our
work, among other Korean seq2seqs, is the first
to systematically achieve powerful billion-scale
seq2seq models and conduct extensive analyses
in terms of efficiency and performance.

Dialog-Oriented Language Models Adapting
language models for the purpose of building dialog
agents has been a long-standing goal in the lan-
guage modeling community (Zhang et al., 2020;
Adiwardana et al., 2020; Roller et al., 2021). How-
ever, from the industrial application perspective,
building dialog response generators is not the only
task that can benefit from the advances in language
modeling. In a more recent line of work, several ap-
proaches have been proposed to prepare language
models for various dialog-related tasks (Mehri
et al., 2019; Gu et al., 2021; Chen et al., 2022). In
parallel to dialog adaptation, multi-task fine-tuning
is another line of work that covers dialog-related
tasks, as a subset of dialog-related tasks is included
in the multi-task set, and expanding the task set
to cover dialog-related tasks is trivial (Sanh et al.,
2022; Aribandi et al., 2022).

3 HyperT5

This section describes the details of the pretraining
corpus, pretraining strategy, and evaluation meth-
ods.

3.1 Pretraining Corpus

Inspired by the pretraining corpus proposed by Kim
et al. (2021a), we design our pretraining data to
cover a wide range of domains and data distribu-
tions to ensure that the model trained on top of the
corpus will achieve robustness and generalizabil-
ity. Various sources of written and spoken texts
are included in the corpus (Table 1), although on-
line web texts take a large portion of the data (Ta-
ble 5). While online texts are certainly vulnerable
to the compound effect of biases, the collectively
massive and unfiltered nature provides a compre-
hensive impression of the language distribution

*https://github.com/SKT-AI/KoBART
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Model nlayer dmodel nhead dhead dff

HyperT5SMALL 16 512 6 64 1024
HyperT5BASE 24 768 12 64 2048
HyperT5LARGE 48 1024 16 64 2816
HyperT51.7B 48 1536 24 64 4096
HyperT53B 48 2048 32 64 5120

Table 2: Configurations of different model sizes.

(Scao et al., 2022). We conducted additional stud-
ies to investigate the feasibility of data composition
re-adjustment through sampling (Appendix A.1).
However, we found that the benefit was not clear-
cut.

3.2 Pretraining Setup

Our research employs the transformer encoder-
decoder architecture, similar to T5 of Google (Raf-
fel et al., 2022). However, we have opted for the
T5.1.1 structure, a variation of T5, due to its supe-
rior performance based on experimentation results.
It is worth noting that our HyperT51.7B model size
is not a derivative of Google’s T5, but rather an
interpolation of the LARGE and the 3B model. De-
tailed information on the configuration of different
model sizes can be found in Table 2.

For all model has been pre-trained on a total of
300B tokens, utilizing the replace corrupted spans
method proposed by Google’s T5 as one of their
unsupervised objectives. Specifically, we set the
corruption rate to 15%, while maintaining a mean
span length of 3.

Furthermore, we employed the inverse square
root learning rate schedule with 10k warmup steps
at a learning rate of 0.01 when using the Adafactor
optimizer (Shazeer and Stern, 2018). Both of our
pretrained models were trained using a batch size
of 1024 and a maximum sequence length of 512
for the encoder and decoder, respectively.

By using distributed data-parallel (Li et al.), we
were able to parallelize the training process across
multiple GPUs, effectively reducing the overall
training time and enabling us to train larger models
with higher performance. Specifically, we used 64
A100 GPUs for the small to large models and 1024
A100 GPUs for the 1.7B and 3B models.

3.3 Evaluation Methods

Benchmark The primary objective of the Hy-
perT5 evaluation is to address various natural lan-
guage processing tasks specific to the Korean lan-
guage in a reproducible way. To quantify the effec-

tiveness of our model in these tasks, we designed
a series of benchmarking experiments that cover
a wide range of tasks. The detailed components
of our benchmark are described in Appendix A.2.
Note that while all of our benchmark datasets are
publicly available for reproducibility, some datasets
(YNAT, KLUE-NLI, KLUE-STS, KorQuAD) have
not made the test set publicly available, hence some
of the report values are based on the development
or validation set where the test set is inaccessible.

Baselines We compare not only structures that
are identical to ours but also encoder and decode-
exclusive architectures. Models based on the BERT
and RoBERTa architecture released by KLUE
(Park et al., 2021) are encoder-only models spe-
cialized for natural language understanding. On
the other hand, HyperCLOVA (Kim et al., 2021a)
is a decoder-only structure like GPT. Note that Hy-
perCLOVA does not provide fine-tuning results,
and thus, we compare the ICL and P-tuning (Liu
et al., 2022b) results reported for this model. We
also compare three models with the same structure
as our model. KoBART has the encoder-decoder
structure but follows the learning method and de-
tails of BART (Lewis et al., 2019). The mT5 (Xue
et al., 2021) and KE-T5 (Kim et al., 2021b) mod-
els share the exact same structure as our HyperT5
model, with the difference being that mT5 is a mul-
tilingual model and KE-T5 is a Korean and English
cross-lingual model.

3.4 Evaluation Results
Main Benchmark Results On our Korean bench-
mark, HyperT5 achieves state-of-the-art perfor-
mances across all tasks (Table 3), outperform-
ing other seq2seq architectures by a large mar-
gin. Specifically, the smallest version of our model
(97M) was able to perform on par with the largest
KE-T5 (large) on the average benchmark (87.96 vs
88.61). Compared to large-scale decoder architec-
tures, our largest model (3B) is still able to outper-
form the 39B-scale HyperCLOVA with p-tuning
(93.29 vs 93.00). Although a more comprehensive
benchmark is desirable, the preliminary results on
NSMC suggest that our approach has an advantage
in scaling efficiency for the current compute-budget
range (§5.1).

Parameter-Efficient Fine-Tuning To under-
stand how our model can be further efficiently fine-
tuned using parameter-efficient fine-tuning (PEFT)
techniques, we benchmarked HyperT5 models that
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Model Params. NSMC YNAT KLUE-NLI KLUE-STS KorQuAD Avg.

Metrics Acc. F1 F1 Pearson EM / F1

Encoder-Only Pretrained Language Models

KLUE-BERTBASE 110M - 85.73*† 81.63*† 90.85*† - -
KLUE-RoBERTaSMALL 68M - 84.98*† 79.33*† 91.54*† - -
KLUE-RoBERTaBASE 125M - 85.07*† 84.84*† 92.50*† - -
KLUE-RoBERTaLARGE 355M 91.44 85.69*† 89.17*† 93.35*† - -

Decoder-Only Pretrained Language Models

HyperCLOVA (ICL) 13B 87.2∗ - - - - -
39B 88.0∗ - - - - -
82B 88.2∗ - - - - -

HyperCLOVA (P-Tuning) 137M 87.2∗ - - - - -
13B 91.7∗ - - - - -
39B 93.0∗ - - - - -

Encoder-Decoder Pretrained Language Models

KoBARTBASE 124M 90.24∗ - - - - -

mT5SMALL 300M 88.82 83.57 70.18 80.95 70.83 / 82.02 81.11
mT5BASE 580M 89.59 86.57 78.27 89.09 75.74 / 86.17 85.94
mT5LARGE 1.2B 90.81 87.17 89.96 91.69 80.03 / 88.35 89.00
mT5XL 3.7B 90.34 86.58 87.20 90.58 78.58 / 87.53 88.45

KE-T5SMALL 77M 89.78 86.44 74.37 87.55 80.98 / 89.91 85.61
KE-T5BASE 247M 89.75 86.58 77.58 88.35 83.46 / 91.94 86.84
KE-T5LARGE 783M 91.09 86.94 86.15 86.15 84.19 / 92.72 88.61

HyperT5SMALL 97M 90.91 87.31 79.43 90.32 83.03 / 91.82 87.96
HyperT5BASE 277M 91.82 87.83 87.48 91.87 85.97 / 93.98 90.60
HyperT5LARGE 822M 93.02 88.31 92.39 93.09 87.98 / 94.95 92.35
HyperT51.7B 1.7B 93.11 88.43 93.02 93.43 88.32 / 95.22 92.64
HyperT53B 3B 93.29 88.65 94.07 93.98 88.74 / 95.58 93.11
∗ Reported by the authors. † Reported on the test set, which is not publicly available.

Table 3: Korean understanding and reasoning benchmark results for Korean language models of various architectures.
Our model significantly outperforms all other models, regardless of size and architecture.

Model Params. NSMC YNAT KLUE-NLI KLUE-STS Avg.

Metrics Acc. F1 F1 Pearson

LST (Sung et al., 2022)

HyperT5SMALL 1.3M 88.96 (-2.14%) 85.33 (-2.27%) 72.15 (-9.17%) 86.61 (-4.11%) 83.26 (-4.29%)
HyperT5BASE 5.1M 89.80 (-2.20%) 86.34 (-1.70%) 78.87 (-9.84%) 89.09 (-3.03%) 86.03 (-4.15%)
HyperT5LARGE 17.9M 91.21 (-1.95%) 88.35 (+0.05%) 86.61 (-6.26%) 91.14 (-2.09%) 89.33 (-2.59%)
HyperT51.7B 39.8M 91.77 (-1.44%) 88.50 (+0.08%) 89.18 (-4.13%) 91.65 (-1.91%) 90.28 (-1.87%)
HyperT53B 69.3M 92.02 (-1.36%) 88.10 (-0.62%) 90.10 (-4.22%) 92.00 (-2.11%) 90.56 (-2.10%)

LoRA (Hu et al., 2022)

HyperT5SMALL 0.2M 88.96 (-2.14%) 85.29 (-2.31%) 73.25 (-7.78%) 87.95 (-2.62%) 83.86 (-3.60%)
HyperT5BASE 0.5M 90.60 (-1.33%) 86.31 (-1.73%) 84.43 (-3.49%) 91.02 (-0.93%) 88.09 (-1.85%)
HyperT5LARGE 1.3M 92.22 (-0.86%) 88.12 (-0.22%) 91.46 (-1.01%) 92.68 (-0.44%) 91.12 (-0.64%)
HyperT51.7B 2M 92.63 (-0.52%) 88.58 (+0.17%) 91.55 (-1.58%) 92.97 (-0.49%) 91.43 (-0.61%)
HyperT53B 2.7M 93.19 (-0.11%) 88.47 (-0.20%) 93.43 (-0.68%) 93.44 (-0.57%) 92.13 (-0.39%)

Table 4: Parameter-efficient fine-tuning (PEFT) benchmarked on HyperT5. The relative performance loss in
percentage is shown next to the corresponding results. Overall, a minor performance loss is observed across all
tasks and PEFT techniques, despite using a small number of trainable parameters.
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are fine-tuned using LoRA (Hu et al., 2022) and
Ladder-Side Tuning (LST) (Sung et al., 2022), re-
spectively, and compared the performances against
the full fine-tuning results in Table 3. Results show
that the performance degradation of employing
PEFT compared to the full fine-tuning baseline
is less than 5% on average, while the ratio of pa-
rameters used for training is less than 2.3%. And
as the model scales larger, the issue of performance
degradation is relatively alleviated, falling to 0.39%
for HyperT53B with LoRA. Model scaling and the
specific PEFT technique to employ will be the key
strategic factors for large-scale deployment.

4 Case Study: Efficient Adaptation for
Dialog-Oriented Tasks

Domain and task-family adaptation can further im-
prove the utilization of PLMs in low-resource set-
tings (Maronikolakis and Schütze, 2021). This
section explores the use case for adapting HyperT5
to dialog-related tasks.

4.1 Training Setup

For dialog adaptation, we propose to heavily train
HyperT5 on a 1B-token unlabeled dialog-oriented
data, with the multiple utterance masking (MUM)
objective in the curriculum learning setting. We
take the replace corrupted spans method to a more
challenging strategy, MUM, to help the model hold
a better understanding of dialog structures. During
training, multiple utterances are randomly masked
per dialog session with a pre-defined corruption
rate. We further adopt curriculum learning to grad-
ually raise the training difficulty by increasing the
MUM corruption rate. HyperT5 models, from
small to large, are trained for 5 epochs with a global
batch size of 64 using 2 A100 GPUs. Like pretrain-
ing, the dropout rate is set to 0. MUM corruption
rate sweeps sigmoidally from 5% to 40%.

Training Data We collect a dialog-oriented train-
ing corpus from both open-sourced and proprietary
Korean dialog datasets (Appendix B.1). The cor-
pus consists of 3.3M dialog sessions† in various
domains (e.g. social chats, customer service, broad-
cast transcripts, etc.). The resulting corpus pro-
vides a wide range of topics and aspects of different
dialog-oriented tasks, making it suitable for dialog
adaptation.

†We preprocessed the dialog corpus by truncating and
splitting the original dialogs into up to 20-turn sessions.
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Figure 2: Data efficiency analysis. (AI Hub ToD).

4.2 Evaluation Methods

We conducted an extended series of benchmark-
ing experiments for our dialog-adapted models
(DialogHT5) in both scarce and full data settings.
The benchmark results consist of three generative
tasks, i.e., dialog in-filling (DI), dialog response
generation (DR), and dialog summarization (DS),
and one discriminative task, i.e., dialog classifica-
tion (DC). We only use the open-sourced Korean
dialog-oriented datasets from AI Hub‡. AI Hub
task-oriented dialog (ToD) and open-domain dia-
log (ODD) datasets are used for both DI and DR,
while AI Hub broadcasting media transcript sum-
marization dataset (Script-Summ) for DS. Since
the AI Hub ToD dataset is annotated with dialog
topics, we used the dataset for DC (Appendix B.2).

4.3 Dialog Benchmark Results

Data Scarce Experiments To investigate the
data efficiency of DialogHT5, we first compare
their performance against HyperT5 over scarce
data settings. We benchmarked DialogHT5 and Hy-
perT5 as sweeping the number of training samples
from 0.1k to 5k. Results describe that DialogHT5
mostly achieves a higher score against HyperT5
(more details in Appendix B.3). Especially, Di-
alogHT5 outperforms HyperT5 with the gain of
up to 8 R1 score in the dialog in-filling task, as
shown in Figure 2. DialogHT5SMALL can save the
in-domain data resource approximately ten times
to score tie with HyperT5SMALL of 5k training sam-
ples (Figure 2a), which highlights the effectiveness
of dialog adaptation.

Full Data Experiments Full data benchmark re-
sults show that DialogHT5 obtains higher perfor-
mance compared to HyperT5 in all the experiments
(Appendix B.4). Generative tasks show a gain of

‡https://aihub.or.kr/
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Figure 3: Compute-optimality analysis. Based on the
validation loss curves obtained from our pretraining ex-
periments (shown left), we plot the best model sizes per
compute level on the right. Using the limited optimality
data points, we are able to safely fit a log-log linear line
and extrapolate (red line). The regression indicates that
the optimal model size for our compute budget is 5.6B,
which is less than a binary order of difference with the
largest model size we attained.

up to 0.6 R1 score whereas the discriminative task
shows a gain of 0.7 F1 score.

5 Discussions

5.1 Compute-Optimality Analysis

To investigate whether the model configurations
we experimented with are optimal given our pre-
training compute budget and the pretraining tokens,
we conducted compute-optimality analyses, similar
to the work done by Hoffmann et al. (2022). The
loss curves of our pretraining experiments were
smoothed and interpolated as shown in Figure 3a.
Using the curves, we map out the optimal model
sizes for each given compute level. However, due
to the very small number of model-size samples,
we need to normalize the optimal model-size data
points by selecting the mid-point of each optimal-
ity segment§, as shown in Figure 3b. After fitting
the regression line (r2 = 0.988), we discover that
the size of our largest model lies very close to the
predicted optimal model size for our compute bud-
get. Moreover, the predicted optimal model size
(dashed line in the same figure) for the decoder-
only architecture is significantly smaller (at 448M),
but our benchmark results on NSMC (Table 3)
show that small-scale decoder LMs (i.e., Hyper-
CLOVA) falls behind in terms of performance, sup-
porting the notion that seq2seq architectures are

§The compute range, where the smallest and the largest
model sizes are chosen to be the optimal model, is omitted to
prevent skewness.

more economically viable for small and medium-
scale compute budgets¶.

5.2 Practical Advantages of Seq2Seq

Apart from the quantitative benefits in performance
and efficiency demonstrated throughout the paper,
Seq2Seq offers additional practical and real-world
benefits. First, the encoder-decoder framework pro-
duces a parameter-efficient text encoder as a by-
product, which can be utilized for extracting fea-
tures and encoding purposes (Ni et al., 2022; Liu
et al., 2021). Specifically, the encoder module ex-
tracted from seq2seq is capable of producing high-
quality text embeddings superior to ones produced
from encoders of similar sizes (Ni et al., 2022).

Second, the text-to-text architecture reduces the
software complexity and management costs for
large-scale deployment, as a result of (1) the uni-
fied nature of the input and output format, (2) the
separation of the input and output sequences in-
herently supported by the encoder-decoder archi-
tecture, and (3) better parameter-efficiency. This
translates to fewer engineering resources to support
the same level of deployment scalability. The uni-
fied text nature of the data format allows existing
deployment infrastructures to be easily expanded
to handle new tasks. Also, the inherent distinct two-
part architecture enables simpler and more stream-
lined serving infrastructure. Furthermore, due to
the steeper model-scaling curve exhibited by de-
coder architectures, text-to-text transformers incur
fewer operating costs to maintain the same quality
of services.

6 Conclusion

In this paper, we introduced HyperT5 and Di-
alogHT5 as state-of-the-art on Korean language
modeling. We also demonstrated the feasibility of
performing resource-aware strategization for lan-
guage models. Through the compute-optimality
analyses, we found that the seq2seq architecture
may be more cost-efficient than decoders below
a certain compute-budget threshold. For future
work, we wish to generalize the domain adapta-
tion approach and study the efficacy of multi-task
learning (Aribandi et al., 2022) from the indus-
trial perspective. Furthermore, we look forward
to conducting comprehensive investigations into
cross-architectural optimality.

¶Conversely, this means that decoder-only architectures
scale better with larger compute budgets (Figure 3b).
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Ethics Statement

The authors are aware that the language models
proposed in this paper, either pretrained from our
pretraining corpus or heavily fine-tuned using the
dialog corpus (Appendix B.1), are all subject to so-
cial and unethical biases depending on the way the
corpora were prepared. Internally, the authors and
the relevant members of the affiliated organization
are actively working to make sure that the deployed
language models do not generate ethically question-
able content that may cause harm or stress to the
end user. The specific set of actions that we take
include but are not limited to,

• Employing automated models to detect unethi-
cal content and perform automatic adversarial
attacks on the language model before deploy-
ing them into services and products.

• Under safe and strict ethical guidelines, con-
ducting human studies to identify prompts that
could potentially cause the language model to
generate unethical content. (red-teaming)

• Establishing strategies to mitigate or amend
ethical issues exhibited by the language mod-
els raised from automated and human surveys.
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A Supplementary Materials Regarding HyperT5 Pretraining

A.1 Experiments on Corpus Composition Re-sampling

Data Type Tokens Ratio

Web-Crawled 183.0B 61.0%
Books 61.2B 20.4%
News 55.8B 16.8%
Others 0.3B 0.1%

Korean 238.5B 79.5%
English 61.5B 20.5%

Table 5: Data composition of the experimental pretraining corpus by data type and language. This experimental
pretraining corpus of HyperT5 was designed to contain a relatively higher proportion of knowledge-intensive data
sources such as books and news. Moreover, a higher English proportion was employed to leverage high-resource
language and promote the emergence of cross-lingual knowledge transfer.

Model (corpus) NSMC YNAT KLUE-NLI KLUE-STS Abs. Summ. Avg.
Metrics Acc. F1 F1 F1 / Pearson R1 / R2 / RL

HyperT5BASE (original corpus) 91.52 87.72 85.25 84.95 / 93.27 52.70 / 24.81 / 49.53 71.22
HyperT5BASE (re-sampled corpus) 91.51 87.15 84.10 85.50 / 93.49 53.64 / 25.24 / 50.27 71.36

Table 6: Pretraining results on the experimental corpus re-sampled with an emphasis on knowledge-heavy data.
Note that the pretraining setup is slightly different from the one described in the main section of the paper, hence
the results of the base model may differ.

During pretraining, language models consume billions of weakly preprocessed tokens, which may
impact the model performance to varying degrees. For example, web-crawled data which take up a large
portion of the pretraining corpus is relatively noisy, thus prioritizing certain data sources that are thought
to be dense with information may help to improve training efficiency, i.e., the number of tokens needed to
converge towards a reasonable level of performance.

To investigate our hypothesis, we create an experimental pretraining corpus (Table 5) and made
sure that the proportions of data sources that provide “hard” knowledge (e.g., books and news) are
significantly higher by under-sampling other data types (Rae et al., 2021). Additionally, we augment the
experimental pretraining corpus with English data sources, leveraging knowledge embedded in the world’s
most resource-accessible language. We theorized that the availability of weak-parallel corpora such as
multi-lingual Wikipedia articles acts as mediums for cross-lingual knowledge transfer (Hu et al., 2020).
As shown in the results (Table 6), the base version of our model improved in reading comprehension
and abstract summarization tasks but slightly suffered in classification and NLI tasks, suggesting that
composition of knowledge-oriented data sources in the pretraining corpus may help the language model
in tasks related to language generation (answer generation and summary generation) at the risk of slight
underfitting in discriminatory power.

A.2 Benchmark Datasets

This section provides more details on the benchmark datasets.

• NSMC|| is a movie review dataset constructed from NAVER Movie, a Korean movie review website,
and consists of 150k training data and 50k test data samples, labeled with positive and negative
classes.

• YNAT is a news-topic classification dataset as a part of the Korean Language Understanding
Evaluation (KLUE) (Park et al., 2021) benchmark set. The dataset consists of titles for news articles

||https://github.com/e9t/nsmc
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and the corresponding news topic labels. The dataset has 45.6k training data samples, 91k validation
data samples, and 91k test data samples.

• KLUE-NLI is a natural language inference dataset from the KLUE benchmark set. Similar to MNLI
(Williams et al., 2018), each sample in the dataset contains a pair of premise-hypothesis sentences,
and the goal is to label the pair with one of "entailment", "neutral", or "contradiction". It comprises
25k training data, 3k validation data, and 3k test data samples.

• KLUE-STS is designed to evaluate a model’s ability to capture the semantic similarity between two
sentences. Like YNAT and KLUE-NLI, KLUE-STS is also a part of the KLUE benchmark. The
dataset consists of 11.6k training data, 519 validation data, and 1k test data samples.

• KorQuAD is a Korean question Answering dataset for machine reading comprehension (Lim et al.,
2019), similar to SQuAD (Rajpurkar et al., 2016). The dataset consists of 60k question/answer pairs
for training, 5.8k for validation, and 3.9k for testing.

B Supplementary Materials Related to Dialog-Oriented Adaptation

This appendix section contains supplementary materials related to the dialog-oriented adaption of Hy-
perT5.

B.1 Dialog-oriented Adaptation Corpus

Here is the detailed list of data sources for constructing the dialog heavy-finetuning corpus presented
(Table 7). The data consist of both open-sourced (Modu, AI Hub) and proprietary dialog corpus. Modu
datasets are a collection of various dialog-oriented datasets collected by National Institute of Korean
Language (NIKL)**.

Source Dataset Dialog Type Domain # Dialogs # Turns

Modu TV Series, News Spoken Broadcast Contents 0.1M 2.2M
Open-ended dialogs Spoken General 51.1k 1M
SNS dialogs Written General 24.2k 0.5M
Online communications Written Online Communications 98k 1.7M
Korean parliamentary records Spoken Politics 0.3M 5.5M

AI Hub Customer service QAs Spoken Customer Service 6.7k 0.1M
Empathetic dialogs Spoken Empathetic dialog 45.5k 0.3M
Dialog summarization All General 0.3M 3.5M
Open-ended SNS dialogs Written Online Communications 1.8M 28.6M
Shopping, Public sector, Finance QA Spoken Customer Service 0.1M 1.9M

Proprietary TV Series, News Spoken Broadcast Contents 0.2M 3.3M
Shopping QAs Written Customer Service 0.2M 1M
Elderly care dialogs Written Empathetic dialog 40k 0.4M
Character chatbot dialogs Written Empathetic dialog 32.1k 0.3M

Total 3.3M 50.2M

Table 7: Full list of data sources and corresponding statistics for dialog-oriented heavy-fine-tuning.

B.2 AI Hub Benchmark Datasets

This section provides more details on the dialog-oriented benchmark datasets. Note that the benchmark
datasets are excluded from the dialog adaptation corpus.

• AI Hub ToD is a task-oriented dialog (ToD) dataset from AI Hub††, which covers 20 different
topics (restaurant booking, online shopping QA, etc.). We preprocess the corpus to build 38.5k of
training data and 3.9k of test data. We used the ToD dataset for dialog in-filling and dialog response

**https://corpus.korean.go.kr/
††https://bit.ly/3S9Wxi6
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generation. Each dialog session produces 3 or 4 training samples by random utterance selection.
For the dialog response generation task, the turns before the selected utterance are only used for the
dialog context, whereas both turns before and after the selected utterance are given as the context for
dialog infilling. We also benchmarked the dialog topic classification using the ToD dataset with topic
labels.

• AI Hub ODD is an open-domain dialog (ODD) dataset from AI Hub‡‡, over 20 different topics
(social issues, food, marriage, etc.). We built a dataset with 87.7k training data and 11.0k of test data
for the aforementioned tasks in AI Hub ToD. Similarly to AI Hub ToD, each dialog session results in
multiple training samples.

• AI Hub Script-Summ is a broadcasting media transcript summarization dataset from AI Hub. We
built a dataset with 84.4k training data and 10k test data for dialog summarization. Finally, we use
the ROUGE score for generation task evaluation and Macro F1-Score for classification.

B.3 Scarce Data Benchmark Results
Table 8 illustrates the scarce data benchmark results for our dialog-adapted models against HyperT5
models as baselines. We averaged the experimental results over five different random seeds. All the
experiments are under the early stopping option with a patience level of 5. For each experiment, the best
checkpoint is determined according to the evaluation metric. We set the learning rate to 5e-4 with linear
learning decay.

Note that DialogHT5 shows a huge performance leap in DI tasks. This can be explained by the fact that
dialog in-filling is essentially a single utterance masking (SUM), hence the MUM objective we used for
dialog adaptation is a more challenging version of dialog in-filling.

In the extreme data-scarce settings (i.e., the training sample number of 0.1k), both HyperT5 and
DialogHT5, regardless of the model size, tend to fail training without hyperparameter tuning on the
learning rate. In general, using 5e-4 instead of 5e-5 enables tuning to begin working.

B.4 Full Data Benchmark Results
We further conduct the full data benchmarks. Results show that DialogHT5 models achieve higher scores
compared to HyperT5 models in most cases (Table 9).

‡‡https://bit.ly/3kc75R5
https://bit.ly/3Izjmsv
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Model Params. # Samples DI DR DS DC
Dataset ToD ODD ToD ODD Script-Summ ToD

Metrics R1 R1 R1 R1 R1 F1

HyperT5SMALL 97M 100 13.69 8.58 13.38 8.82 27.03 30.13
500 19.68 13.83 16.15 10.52 35.35 51.86

1000 22.31 13.93 17.80 9.71 33.45 56.49
5000 27.71 15.06 21.82 12.32 35.54 66.85

HyperT5BASE 277M 100 22.26 16.24 12.72 10.72 28.86 -
500 27.42 17.10 16.35 9.99 36.92 43.67

1000 29.05 17.43 20.84 10.68 38.07 53.51
5000 31.78 18.71 24.33 12.80 41.75 63.47

HyperT5LARGE 822M 100 26.40 19.17 10.36 10.00 25.36 52.54
500 30.02 - 18.14 10.67 36.04 -

1000 31.28 - 17.79 13.05 37.79 -
5000 33.40 - 23.26 14.38 41.16 49.64

Data Adaptation

DialogHT5SMALL 97M 100 19.66 16.10 14.71 11.42 18.86 32.15
500 26.56 18.05 18.03 12.55 31.98 54.66

1000 28.22 18.25 19.92 12.82 33.10 53.65
5000 30.15 18.46 22.32 12.75 34.38 65.50

DialogHT5BASE 277M 100 28.45 20.69 15.02 11.15 - -
500 31.82 21.35 21.33 13.05 - 43.32

1000 32.38 21.51 23.14 14.23 - 56.25
5000 33.48 21.66 25.17 15.16 41.73 65.36

DialogHT5LARGE 822M 100 29.46 21.13 13.55 4.62 - -
500 32.56 18.67 22.55 14.07 - -

1000 33.31 - 23.17 11.13 37.84 -
5000 - - 25.49 15.20 41.28 64.31

Table 8: Scarce data benchmark results for dialog adaptation.

Model Params. DI DR DS DC
Dataset ToD ODD ToD ODD Script-Summ ToD

Metrics R1 R1 R1 R1 R1 F1

HyperT5SMALL 97M 37.0 21.3 26.9 15.8 42.9 70.2
HyperT5BASE 277M 38.8 23.1 29.7 16.2 44.6 70.4
HyperT5LARGE 822M 41.5 24.5 30.2 16.5 - 71.0

Data Adaptation

DialogHT5SMALL 97M 37.2 21.7 27.3 15.8 42.9 70.0
DialogHT5BASE 277M 40.1 23.6 29.8 16.4 44.7 71.7
DialogHT5LARGE 822M 41.8 25.1 30.5 16.8 - 68.6

Table 9: Full data benchmark results for dialog adaptation.
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