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Abstract

In this work, we present a natural language pro-
cessing (NLP) pipeline for the identification,
extraction and linking of Research Infrastruc-
ture (RI) used in scientific publications. Links
between scientific equipment and publications
where the equipment was used can support mul-
tiple use cases, such as evaluating the impact
of RI investment, and supporting Open Science
and research reproducibility. These links can
also be used to establish a profile of the RI
portfolio of each institution and associate each
equipment with scientific output. The system
we are describing here is already in production,
and has been used to address real business use
cases, some of which we discuss in this paper.
The computational pipeline at the heart of the
system comprises both supervised and unsuper-
vised modules to detect the usage of research
equipment by processing the full text of the
articles. Additionally, we have created a knowl-
edge graph of RI, which is utilized to annotate
the articles with metadata. Finally, examples of
the business value of the insights made possible
by this NLP pipeline are illustrated.

1 Introduction

According to the definition adopted by the Euro-
pean Commission (European Commission et al.,
2012), Research Infrastructure (RI) refers to "facil-
ities, resources and related services that are used
by the scientific community to conduct top-level
research in their respective fields and foster innova-
tion". A similar concept, which is more commonly
used in the United States, is "Research Core" (Bai
and Schonfeld, 2021).1 RI plays a crucial role
in conducting high-quality research, with signif-
icant financial resources invested every year; for
example, European countries have invested over 10
billion EUR every year in the period 2014− 2020
(European Commission et al., 2019), while UK

1We will use "RI" throughout the text to refer to both
concepts.

Research and Innovation (UKRI), the main public
research funding agency in the United Kingdom,
has announced in its Corporate Plan for the years
2022− 2025 to increase the RI investments by at
least £200 million every year, to reach over £1.1
billion in 2024 to 2025 (UKRI, 2022). It is, there-
fore, extremely important for all stakeholders in
the research landscape to assess the impact of such
investments. Various frameworks for impact evalu-
ation have been proposed in the past (OECD, 2019;
Griniece et al., 2020) and they all include scientific
outputs, particularly publications in peer-reviewed
journals, as an important facet of impact.

There are several challenges in tracking research
outputs enabled by RI, such as the lack of a stan-
dard approach to recognize contributions of facility
managers and staff scientists (Bai and Schonfeld,
2021), or the fact that sometimes it is not even con-
sidered appropriate to include them as co-authors
(Hockberger et al., 2018). Another important is-
sue is that the contribution of RI to the research
project is mostly found in the full text of publica-
tions, usually in sections named "Materials and
Methods", "Experimental Setup", or similar. This
means that abstract and indexing databases such as
PubMed, Scopus or Web of Science, which don’t
index the full text of records, are of limited help in
this scenario. Other approaches, such as assigning
persistent identifiers to scientific instruments and
reference them in the manuscript (Stocker et al.,
2020), while in principle effective for new publica-
tions, require widespread adoption among publish-
ers, as well as time and effort to create a database
of equipment records. For all these reasons, the
identification of links between publications and
RI remains largely a manual and inefficient task
(Strubczewski, 2019).

In this work we present a solution to the problem
of identifying and linking RI in the text of scien-
tific publications, introducing a pipeline designed
to connect scientific publications with RI utilized
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Figure 1: Visual representation of the proposed system. The diagram illustrates the workflow of the pipeline, with
each module explained in its respective subsection. Input specifications can be found in section (3.1), and the output
of the system is described in (3.2). The various modules include Sentence Splitter (4.1), Sentence Classifier (4.2),
Named Entity Recognition (NER) (4.3), Clustering of Annotations (4.4), Knowledge Graph Enrichment (4.5), and
RI Annotation (4.6).

in the respective works. To the best of our knowl-
edge, this is the first comprehensive solution to
tackle this challenge end-end, and to be brought
in a production environment. The pipeline of the
solution utilizes state-of-the-art few shot learning
algorithms to train our machine learning models
using a limited labeled dataset. By employing these
cutting-edge techniques, we were able to achieve
very insightful results for research stakeholders,
despite the constraints of a small training set.

The remaining of the paper is organized as fol-
lows; the key user problems that this solution is
addressing are discussed in Section 2. Section 3
provides an overview of the solution’s architecture,
followed by a detailed description of each module
in Section 4. Section 5 presents evaluation results
and analysis. Section 6 highlights concrete busi-
ness impact of the proposed system and in Section
7 we conclude and provide pointers to future work.

2 Description of User Problems

Working with academic institutions and funding
agencies with a specific interest in RI, we have iden-
tified several use cases where being able to link RI
(as an input to research) with research outputs (in
particular scientific publications) can provide valu-
able insights to a broad range of stakeholders such
as policy makers, academic leaders, researchers
and technical staff, as well as the general public.
Here are some representative use cases: (1) Sup-
porting decision making processes and investment

planning about RI with a quantitative, evidence-
based approach that complements qualitative in-
sights based on expert opinion; (2) Showcasing RI
to attract top talents. Institutions can promote them-
selves as a destination for the best researchers in
various fields by showcasing state-of-the-art instru-
ments available at their research facilities; (3) Pro-
moting collaboration at local, national and regional
level, as well as across disciplines and sectors (for
example academic-corporate collaborations); (4)
Supporting Open Science and Big Science, by pro-
moting transparency and accountability, particu-
larly for large RIs; (5) Improving the reproducibil-
ity of research, by providing useful information
about the equipment used in research works.

3 Overview of the Proposed Solution

This section provides an overview of the proposed
solution, including the input requirements and de-
sired output of the pipeline. We also discuss the
dataset collected for training the NLP components.
An overview of the solution’s pipeline is illustrated
in Figure 1. The first part of the pipeline (unsuper-
vised provess) is composed of fully automated mod-
ules, while the latter (supervised process) requires
supervision by a Subject Matter Expert (SME) to
guarantee high-quality results.

3.1 Input Specification
The system requires two inputs: (i) the text of aca-
demic publications, to identify mentions of RIs,
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and, (ii) a knowledge graph of RIs, which is a list of
equipment with specified attributes. This list can be
customized to a specific research center/university
by using their research information management
system (e.g., PURE2) or equipment/lab manage-
ment systems (e.g., ClusterMarket3).

3.1.1 Full text of publications
The system can handle input text several formats,
namely plain-text, XML, and PDF. The section
tags of the XML files, when available, can be also
utilized for selecting specific sections to process.
To transform PDF files into plain-text, the TIKA
Python library was employed (Apache Software
Foundation, 2021).

3.1.2 RI Knowledge Graph
A Research Infrastructure Knowledge Graph (KG)
is also required, to formalize the representation of
participating research institutions, their facilities,
equipment vendors and equipments. The equip-
ments facet is organized in broad categories such as
Measuring equipment, hosting a poly-hierarchy of
equipment types, such as Spectrophotometer, with
equipment models as leaf nodes e.g., NanoDrop
ND-1000. Each equipment model is linked to: their
equipment type(s), the facility and research institu-
tions they are located in, their vendor, the original
research institution’s local identifier, and, their re-
lated method (e.g., Spectrophotometry in our previ-
ous example).

The KG has been built iteratively and is updated
frequently based on customers’ needs. After an ini-
tialization based on generic lists of equipment types
used in the first participating universities from a
pilot that was conducted, each customer gives us
their actual list of equipment models and types and
we place them accordingly in the KG: for each cus-
tomer, we expand the equipment types hierarchy,
using sub-string matching and transformer based
clustering methods (using BERT) to identify where
to automatically place the new RI instances.

3.2 Output Specification

The final output of the pipeline is a table connect-
ing RIs to relevant publications (e.g., DOIs). It’s
important to note that the relationship between RIs
and publications is many-to-many, meaning that a
single RI can appear in multiple studies and mul-
tiple RIs can be used in one study. The resulting

2https://www.elsevier.com/solutions/pure
3https://clustermarket.com/

table can serve as the foundation for different dash-
boards, analyses and decision support systems.

3.3 Datasets

The lack of widely available training data for the
NLP modules of the pipeline, and the cost of com-
piling large new data sets for the task has lead us to
assemble a small dataset to use in a few shot learn-
ing fashion. We used 103 research publications,
with 78 being held for training and 25 for model
evaluation. To train and test the sentence classifier,
all sentences in these publications containing at
least one RI were labeled as positive and the rest as
negative. However, this resulted in a heavily biased
dataset, with less than 3% of the sentences being
labeled as positive. The final dataset comprises
more than 14K sentences, two-thirds of which were
utilized for training the models, while the remain-
ing third was reserved for evaluation purposes. To
train the Named Entity Recognition component,
we used 354 sentences with annotations provided
at the word level. This dataset includes 494 RIs.
Using the tokenization process described in sub-
section 4.1, each word-token was matched to its
corresponding label in BIO format (Ramshaw and
Marcus, 1999).

4 Modules of proposed solution

This section provides the details of each of the
components in the pipeline illustrated as blue boxes
in Figure 1.

4.1 Sentence Splitter

The initial step in identifying mentions of RIs is
to split the full text of a publication into sentences.
We use the Stanza Python library (Qi et al., 2020)
for sentence splitting, as it has very high reported
accuracy, but slow processing time. This choice
is crucial for correctly identifying RI mentions,
as RI names often contain punctuation that could
lead to incorrect results with regular expression
methods. Additionally, Stanza considers not only
punctuation, but also contextual meaning, making
it more precise, which comes at the cost of slower
processing speed compared to other approaches.

4.2 Sentence classifier

The next step is to identify sentences that discuss
the usage of RIs using the trained sentence classi-
fier. This step is crucial as not all references to RIs
are related to their usage in the current research;
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for example, authors may compare their work with
others’.

For the sentence classification objective a BERT
for sequence classification, namely SciBERT-base-
uncased (Beltagy et al., 2019) pretrained model
(Devlin et al., 2018; Wolf et al., 2019) was used un-
der a contrastive loss (CL) objective (Gunel et al.,
2020). The sentence classifer attempts to differen-
tiate between samples that not only contain an RI,
but also express usage of an RI as context. This
improves the overall precision of the model as well
as providing valid predictions for the NER module.
For the loss, it is known that cross entropy by itself
is a weak measurement of loss in a few-shot set-up
where labeled data is limited (Dodge et al., 2020;
Zhang et al., 2020), thus, we used a normalized
summation of the Cross Entropy loss and Super-
vised Contrastive loss. Contrastive loss is a tech-
nique used in few-shot learning to train models by
maximizing similarity between the representations
of samples from the same class and minimizing
similarity between the representations of samples
from different classes. The model was trained for
20 epochs with a batch size of 64, on a 70 : 30 split.
Learning rate was 1e− 5. Input tokenized vector
size per sentence was of maximum length 128. The
contrastive loss setting temperature was set to 0.3
and the λ parameter to 0.9.

4.3 NER

Once the sentences discussing the usage of RIs in
the research have been identified, a NER compo-
nent is employed to extract of the RI entities within
these sentences. For the entity detection objective
a BERT for token classification, namely bert-base-
uncased pretrained model with a similar contrastive
loss objective per above, was used. In this case, the
contrast is introduced on the word-token level of
the sentence. While the data are scientific publica-
tions, parts of the name of an RI can also be found
in the common language and there is no base rule
for referencing it. It is important to identify, based
on the context, which token belongs to an RI and
group them together. The larger and more diverse
training corpus of BERT-base makes it more sen-
sitive to a broader range of linguistic pattern and
contexts over SciBERT which is exclusively trained
on computer science and biomedical publications.
Empirically, BERT-base was a better candidate for
fine-tuning on the downstream NER task due to the
representation capturing general language knowl-

edge, despite SciBERT outperforming it in various
benchmarks.

As for the word level tokens, the B token in
this case not only assists in not confusing the indi-
vidual RIs that were found but also visualizes the
model’s behaviour on the boundaries it identifies
between tokens surrounding the RI, which is done
with the assistance of contrastive loss. This model
was trained for 28 epochs with a batch size of 8. In-
put tokenized vector size per sentence was of max-
imum length 128. Learning rate was 5e − 5.The
contrastive loss setting temperature was set to 0.5
and the λ parameter to 0.8.

4.4 Clustering of Annotations
The application of the sentence classifier and NER
modules on the input documents results in a large
number of mentions of RIs. Due to the variety by
which authors cite or quote the equipment used,
some of these mentions may match the official
names of RIs in a provided supplied equipment
list, while others may not. To accurately match
these alternative names to a specific RI, we apply
a clustering algorithm to group them together. A
three-step divide and conquer strategy has been
developed to guarantee the correctness of the clus-
tering process. By doing this, we can make sure
that references of RIs with different vendor names
or model numbers do not fall into the same cluster.
This approach is as follows:

1. Group all mentions based on the vendor name
mentioned in them. There is also a separate
group for mentions without a vendor name.

2. Group the items within each group from step
1 based on the longest word token that con-
tains at least one digit. This substring usually
represents the equipment’s model number.

3. Each group from step 2 is clustered using K-
means clustering on the TF-IDF representa-
tion of the mentions. To find the optimal num-
ber of clusters in each group, the Silhouette
score is maximized.

An example of resulted clusters is presented in
table 1

4.5 Knowledge Graph Enrichment
The equipment list from a given university, mapped
to our KG’s unique identifiers, is used to identify
mentions of these pieces of equipment in research
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mentions of RI
transmission electron microscope (TEM, JEOL
JEM-2010)
JEM-2010 microscope (JEOL, Japan)
JEOL JEM-2010 electron
JEOL JEM-2010 electron microscope
High-resolution transmission electron microscopy
(HR-TEM) system (JEOL, JEM-2010)
JEOL JEM-2010
Selected area electron diffraction (SAED, JEOL.
JEM-2010, 200.0 KV)
JEOL JEM-2010 transmission electron microscope

Table 1: An example cluster of mentions of RI.

Accuracy Precision Recall F1
0.99227 0.86734 0.7798 0.82125

Table 2: Performance of the Sentence classifier model.

articles. These mentions are clustered as described
in 4.4. Each cluster is carefully reviewed by a Sub-
ject Matter Expert and possibly edited before being
added to the KG as synonyms for the equipment
data point it is mapped to. Our latest KG version
contains over 1, 500 pieces of equipment (types
and models) and over 2, 500 vendors.

4.6 Annotation
For extracting the list of RI mentions in a given doc-
ument set we combine three sources of equipment
names into a single vocabulary for text matching:
(i) reference vocabulary, cf. 3.1.2; (ii) terms found
in the input texts, cf. 4.4; (iii) user-submitted list
of equipment of interest. Research institutions or
funders have an interest in tracking the usage of
equipment that they own or manage and will submit
a list of RI that reflects that interest. This list will be
matched against the enriched vocabulary, resulting
in a final reference list of RI, containing many name
variants, and formatted in a way suitable for use
in the annotation tool; we employ the annotation
tool FPS (Fingerprint Services) that is described
by Kohlhof et al. (2014). Applying the RI anno-
tation as a final stage to the process accomplishes
several things: (1) it integrates the knowledge accu-
mulated in previous stages; (2) drawing on the FPS
capabilities, it allows us to influence recall and pre-
cision; (3) it results in a list of consumer-relevant
data linked to the right identifiers; (4) applying to
specified parts of the full-text documents we can
evaluate the quality of the annotation tool for dif-

Tag Precision Recall F1
O 0.88 0.88 0.88
B-EQ 0.93 0.94 0.93
I-EQ 0.98 0.97 0.98
Macro average 0.93 0.93 0.93
EQ (phrase level) 0.76 0.77 0.77

Table 3: Performance of NER model at tag level and
phrase level.

ferent scenarios, i.e., when applied to "positive"
sentences only, when applied to specific text sec-
tions only (as explained in 3.1.1 having the input
publication in XML format enables us to focus on
specific sections, like Material and Methods), or
when applied to whole text for maximum recall.

5 Performance Evaluation

5.1 Inference Time

Tested in a sample of 120k full text scientific pub-
lications, the total inference time for the complete
pipeline, by means of aggregating the inference
times for the sub-modules of sentence splitting,
sentence classification, NER and clustering of an-
notations, results to 35.5 hours in a g4dn.2xlarge
Amazon EC2 instance. The majority of the infer-
ence, amounting to 83% is taken up by the first two
modules, while NER needed 30 minutes (1.4%) of
total elapsed time to complete the processing of all
documents.

5.2 Precision and Recall of Modules

5.2.1 Sentence classifier
The combination of a scientific BERT model with
the contrastive loss assists the sentence classifica-
tion model to capture the context of RIs utilization.
In production state this model parses millions of
sentences averaging similar metrics. In Table 2 we
present the overall performance of model, as this
was measured on our hold-out test set.

5.2.2 NER
Despite the low number of training samples, the
NER model with its contrastive nature is able to
generalize with very satisfactory performance. The
performance in the tags of interest is high enough
so that the full extraction of a RIs can be done with
a simple post processing of the NER’s output. The
performance of the NER module in our hold-out
test set is shown in Table 3.
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(a) (b)

Figure 2: (a) Citation impact of publications from the entire institution, compared to that of publications with
associated RI and publications enabled by RI in a specific facility; (b) Average number of patent citations to scientific
publications for every 1000 publications, for the entire institution and for publications involving a specific facility.

5.2.3 Discussion on the Overall performance

The performance of the individual models has still
room for improvement. In the two previous sec-
tions we presented the performance of two of the
key components, which is the sentence classifier
and the NER. The majority of the issues we ob-
served in a manual error analysis results from the
poor generalization of the models in capturing all
possible ways of how a RI is reported and discussed
in a scientific paper. The sentence classifier com-
ponent’s nature is to lighten the processing load on
the NER component. i.e., instead of processing all
sentences of a scientific publication for RI entities,
to only focus on the ones that the sentence clas-
sifier believes they discuss the usage of RI. This
additional step also introduces some errors; how-
ever, even with an imperfect sentence classifier the
NER is still able to distinguish the proper mentions
of RI as seen by the high scores in Table 3. Tak-
ing into account the phrase level score, it should
be highlighted that the NER task is more difficult
compared to the conventional NER tasks with com-
mon entities like PER/ORG/LOC. In an industrial
setting, we have found that the aforedescribed per-
formance is already sufficient to address business
use cases and generate very meaningful insights for
the RI stakeholders, examples of which we share
in the next section.

6 Business Impact

We have completed several projects with institu-
tions active in the Science, Technology, Engineer-
ing and Mathematics (STEM) domains. We fo-
cused primarily on the first use case of those listed
in section 2: we helped institutions evaluate the
impact of their RI investments by providing quanti-
tative evidence based on a scientometric analysis
of publications enabled by institutional RI. Those
insights include: (1) the contribution of RI to the
scientific output in a certain topic; (2) the scientific
impact of publications enabled by RI, compared to
the institutional average; (3) the scientific impact
of a specific facility or lab inside the institution;
(4) the impact on innovation that is enabled by a
certain technology available at the institution, and,
(5) the role of institutional RI on collaborations
with corporate entities. Charts in Fig. 2, which are
taken from a report that was done for one of the
pilot institutions, illustrate how these insights can
be derived using our system.

The evaluation of scientific impact is routinely
done by analysing citation networks, and several
metrics have been developed for this purpose (Walt-
man, 2016). The chart in Fig. 2a compares for
a specific facility the citation impact of publica-
tions from the entire institution, with the subset
of publications linked to RI and with a subset of
publications linked to equipment. The X axis mea-
sures the citation impact of the journals hosting the
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publications; the Y axis reports the direct citation
impact of the publications. Both metrics are size-
independent and normalized. Figure 2b shows that
RI is a net contributor to the scientific impact of the
institution, as captured by both metrics, as well as
how research enabled by equipment from a specific
facility has a much higher ratio of patent citations
than the institutional average.

7 Conclusions and Future Work

In this paper we have presented a novel system that
can detect, extract and link the Research Infrastruc-
ture (RI) used and mentioned in scientific publi-
cations. The system comprises several advanced
NLP components that can annotate and classify sen-
tences, as well as detect RI entities and link them
to a knowledge graph (KG) that has been created
for the purpose of this business application. We
have discussed the performance of the key individ-
ual components of our system, the use cases that
the proposed solution can address, and we have
demonstrated the insights and knowledge that any
research facility or institution can obtain around the
impact and Return of Investment of their equipment
in research conducted by its personnel. Our future
work will focus on expanding and releasing the KG
in public, as well as optimizing the paralelization
and scaling of the existing pipeline.
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