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Abstract

Query rewriting (QR) is an important technique
for user friction reduction (i.e. recovering ASR
error or system error) and contextual carry-
over (i.e. ellipsis and co-reference) in conversa-
tional AI systems. Recently, generation-based
QR models have achieved promising results on
these two tasks separately. Although these two
tasks have many similarities such as they both
use the previous dialogue along with the cur-
rent request as model input, there is no unified
model to solve them jointly. To this end, we
propose a unified contextual query rewriting
model that unifies QR for both reducing fric-
tion and contextual carryover purpose. More-
over, we involve multiple auxiliary tasks such
as trigger prediction and NLU interpretation
tasks to boost the performance of the rewrite.
We leverage the text-to-text unified framework
which uses independent tasks with weighted
loss to account for task importance. Then we
propose new unified multitask learning strate-
gies including a sequential model which out-
puts one sentence for multi-tasks, and a hybrid
model where some tasks are independent and
some tasks are sequentially generated. Our
experimental results demonstrate the effective-
ness of the proposed unified learning methods.

1 Introduction

Large-scale conversational AI agents such as Alexa,
Siri, and Google Assistant, are becoming increas-
ingly popular in real-world applications to assist
users in daily life. However, some of the user in-
teractions lead to dissatisfied experiences, where
users do not get what they requested or the assistant
has to engage with the user again to clarify the user
request. These user frictions arise from errors in
the system, including Automatic Speech Recogni-
tion (ASR) and Natural Language Understanding
(NLU), as well as user ambiguity and background

∗Work done while Mukund Rungta was interning at Ama-
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noise. The goal of QR (Hao et al., 2022; Cho et al.,
2021) is to identify the queries that lead to friction
and rewrite them to queries without changing the
users’ intention, in order to mitigate defective inter-
actions. Besides, in a multi-turn dialogue session
with agent, users sometimes tend to use incom-
plete utterances which usually omit or refer back
to entities or concepts that appeared in the previous
dialogue, namely ellipsis, and co-reference. Thus,
we also always rely on contextual carryover (El-
gohary et al., 2019; Liu et al., 2020) to rewrite
the incomplete query into a context-dependent and
self-contained query.

Although query rewriting has received a lot of at-
tention in recent years, it has always been studied in
two separate directions, i.e., reduce defects and con-
textual carryover. Recent works integrate all func-
tionalities into pre-trained Sequence-to-Sequence
(Seq2Seq) language models and report impressive
results (Su et al., 2021; Raffel et al., 2020). This
synergy has resulted in a great deal of recent work
developing transfer learning methodology for NLP.
Inspired by that, we propose a unified contextual
query rewriting framework, that can utilize one
model to perform the rewrite for both friction re-
duction and contextual carryover. Moreover, we
involve two additional tasks in the unified model:
NLU interpretation of rewrite and rewrite trigger
prediction. NLU interpretation of rewrite is a task
to predict the domain, intent, and entity slots infor-
mation. Trigger prediction is a task that enables the
model to decide to trigger a rewrite or not. These
tasks can not only be used for downstream mod-
ules but also serve as auxiliary tasks to boost the
primary task query rewriting performance.

Specifically, we leverage the BART
model (Lewis et al., 2020) which is a large-
scale Seq2Seq framework. We unify defect
reduction and contextual carryover as one QR
task, where the model input is a dialogue context
along with the current request, and the output is
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the rewrite. For NLU interpretation and trigger
prediction tasks, we also cast them as a text-to-text
generation task, where the model output the
trigger decision and the NLU interpretation for
the current request. Motivated by the concept
of in-context learning (Brown et al., 2020), to
steer the model to solve different sub-task, we
plug a task-specific prompt, into the model input.
This way, the generations of different sub-tasks
are decoupled, leading to better flexibility of the
model regarding generation for each sub-tasks.
Besides the traditional text-to-text unified learning
approach (Raffel et al., 2020) in which each task’s
prediction is generated independently, we explored
variants of unified learning approach, including
sequential unified learning where one sequence
is used to generate multi-task results using
target prompts and hybrid unified learning where
some tasks are independent and some tasks are
sequentially generated. We conducted extensive
offline experiments to study the proposed unified
learning approaches. Our experimental results
demonstrate the effectiveness of the proposed
approaches. Our production simulation validates
the positive impact of the proposed model which
indeed generates rewrites of better quality.

2 Related Work

Query Rewriting In dialogue systems, query
rewriting benefits dialogue state tracking especially
co-reference resolution (Rastogi et al., 2019; Hao
et al., 2021), and reducing users’ friction by re-
placing the users’ utterance (Wang et al., 2021;
Fan et al., 2021; Chen et al., 2023). Fan et al.
(2021) and Cho et al. (2021) propose to leverage
the search-based model, which consists of a DSSM
based retrieval layer and a tree ranking layer, to han-
dle global and personalized query rewriting. Su
et al. (2019) use generation-based approaches to
tackle the co-reference and omission-specific sce-
narios. Hao et al. (2022) propose a constrained
generation based Seq2Seq model for query rewrit-
ing.

Contextual Carryover Contextual carryover has
been an important component in dialogue systems
for resolving co-reference and omission. Naik et al.
(2018) leverage an encoder-decoder architecture
for making independent carryover decision for each
slot in the context. Later, Chen et al. (2019) pro-
pose a framework to jointly predict whether a sub-
set of related slots should be carried over from

dialogue history. Rastogi et al. (2019) formulate
the contextual carryover problem as a contextual
query rewriting problem (CQR). Yu et al. (2020)
present a few-shot generative approach to conver-
sational query rewriting. In this work, we unify the
query rewiring task with CQR by one text-to-text
generation model, with generated rewrite handling
contextual slot carryover cases.

Unified Learning Transfer learning in natural
language processing (NLP) has gained popularity
due to its demonstrated effectiveness. This ap-
proach involves pre-training a model on a data-rich
task and fine-tuning it for a specific task (Dong
et al., 2019; Radford et al., 2018; Lewis et al.,
2020). Later, the efficacy of transfer learning has
been further improved by a unified framework that
converts all text-based language problems into a
text-to-text format presented through the T5 model
(Raffel et al., 2020). In this paradigm, instead of
adapting the pre-trained language model (LM) to
downstream tasks via objective engineering, down-
stream tasks are reformulated to look more like
those solved during the original LM training with
the help of a textual prompt.

3 Methodology

Before introducing the unified learning model, we
first establish the baseline for the query rewriting.
We formulate the query rewriting as a sequence-
to-sequence (Seq2Seq) task and fine-tune a pre-
trained BART model for the rewrite generation.
As shown in Figure 1, the model takes the cur-
rent turn and its previous dialog context as input
and generates the target text autoregressively. The
Seq2Seq architecture comprises a bidirectional en-
coder that takes the context and current request as
input, and an autoregressive decoder that performs
constrained decoding to generate the target rewrite.

3.1 Generation based query rewrite
Query rewrite with contextual carryover. In ad-
dition to rewriting defective queries such as "play
night talk by drake" to "play knife talk by drake",
we consider contextual carryover task as a query
rewriting task as well. For example, in a multi-
turn dialog, we have "[USER] what’s the current
temperature at Colorado Springs [AGENT] Right
now, it’s 46 degrees Fahrenheit. Today, expect a
high of 75 degrees. [USER] what’s the air quality",
where location slot "Colorado Springs" needs to
be a carryover to current turn "[USER] what’s the
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Figure 1: Illustration of the seq2seq model query rewriting model. When a new utterance arrives, the model takes
the flattened contextual input and outputs as the final rewrite. We use [USER] as a special symbol added in front of
the user turn, and [AGENT] as a special symbol added in front of the agent turn.

air quality". In such cases, we directly address the
carryover problem by formulating it as a rewrit-
ing task, with the goal of generating the rewrite
"What’s the air quality in Colorado Springs."

We adopt the pre-trained BART (Lewis et al.,
2020) which has the same model architecture as
the widely-used Transformer model (Vaswani et al.,
2017) and is pre-trained with a denoising way (De-
vlin et al., 2018). As illustrated in Figure 1, we
flatten the previous dialogue turns (including both
user requests and agent responses) and the current
user request into a single sequence for input to the
encoder. Then, we fine-tune BART for our task.

Formally, given a contextual request sequence
q = {q1, ..., qM}, where qi for i ∈ {1, ...,M}
denotes a token in the sequence, and the corre-
sponding rewrite r = {r1, ..., rN}. The encoder
is responsible for reading the input request and its
previous dialogue turns, and the decoder autore-
gressively generates the rewrites.

The ultimate goal of the rewrite generation prob-
lem is to learn a probability distribution pθ(r) over
the variable-length text sequence r, where θ is the
parameter of the BART. Typically, the maximum
likelihood estimation (MLE) objective is used to
train the language model which is defined as

Lθ(q, r) = − 1

|r|

|r|∑

j=i

log pθ(rj |r<j) .

Typically, given finite training examples, i.e.,
T pairs of contextual query and rewrite S =
{qt, rt}Tt=1, the model is trained by minimizing
the empirical finite sample objective loss function
Lθ(S) =

1
T

∑T
t=1 Lθ(qt, rt).

3.2 Other tasks

We first introduce the tasks we consider in this
paper as follows.

NLU hypothesis generation task. In conversa-
tional AI systems, interpreting the user’s query,
such as their intent and domain, helps downstream
modules to respond more effectively to the user’s

request. Integrating this interpretation task into the
model can improve its understanding of the user’s
request and context. The results of the NLU inter-
pretation can not only be utilized by downstream
modules but also act as regularizers for the pri-
mary query rewriting task. To integrate the NLU
interpretation task, we let the model generate such
interpretation as an NLU hypothesis that takes the
form of "domain | intent | slot_type:slot_value". For
example, given the query "play bad blood by taylor
swift", the corresponding NLU hypothesis would
be "Music | PlayMusic | SongName:bad blood |
ArtistName:taylor swift". The NLU hypothesis
generation task takes the query as input and gener-
ates the corresponding NLU hypothesis.

Trigger prediction task. The trigger task allows
the model to predict whether a rewrite (or contex-
tual carryover) is necessary for the incoming query.
For example, if the query "play bad blood by Taylor
Swift" is not defective, the model should not trig-
ger a rewrite. Typically, separate and independent
models are used to make this binary decision. How-
ever, in our unified model, we formulate this binary
prediction problem as a text generation problem.
Queries that do not require a rewrite have a tar-
get output of "no trigger", while defective queries
have a target output of "trigger". Integrating trigger
tasks in the unified generation model can save the
resources for having separate trigger models.

3.3 Parallel unified learning model
Figure 2 illustrates the design of parallel unified
learning which is similar to T5 (Raffel et al., 2020).
We fine-tune the BART model on the above three
tasks. The rationale behind unifying multi-tasks
in training is that by successfully predicting the
system’s interpretation of a request (i.e., domain,
intent, and slots in the NLU hypothesis) and its
trigger decision, the model can improve its pre-
diction of the trigger task and subsequent rewrite.
As shown in Figure 2, we add the prompt "predict
trigger:" to the contextual query as input: "predict
trigger: turn brightness down to one percent" and
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Figure 2: Illustration of the parallel multi-task unified learning model. For each task, the model takes the current
turn with its previous dialog context and the task-specific prompt as input to generate the corresponding target text,
i.e., prompt predict hypothesis: for NLU task, predict trigger for trigger task, and generate rewrite used for rewrite
task.

the target output of trigger prediction task is "trig-
ger". For the NLU interpretation task, the model
takes "predict hypothesis: turn brightness down
to one percent" as input and generates the corre-
sponding hypothesis. For the rewriting task, we
add prompt "generate rewrite" to the input. To
account for the varying importance of each task,
we incorporate a weighted loss in our multi-task
unified training approach. Given the incoming con-
textual query q, and target rewrite r, target NLU
hypothesis h and target trigger prediction g, we
use weighted loss as follows

Lθ(q, r,h,g) =λ1 Lθ(q, r)+

λ2 Lθ(q,h) + λ3 Lθ(q,g) ,

where λ1, λ2, and λ3 are the weights for rewrite,
NLU, and trigger tasks separately.

3.4 Sequential unified learning model

In this section, we propose a novel unified learning
approach by leveraging a single (i.e. text genera-
tion) task of text generation with multiple prompts.
Our model encodes the current request and its previ-
ous dialog context and then generates a sequential
output that predicts various tasks. To guide the pre-
dictions, we use markup tokens such as "[rewrite]",
"[trigger]", and "[hypothesis]" to prompt the predic-
tion. This approach leverages the benefits of condi-
tional generation, allowing the model to consider
the previous task’s prediction when performing the
next task’s prediction. As a result, the order of task
generation is important. We also consider the same
three tasks for training this model: NLU hypothesis
task, trigger task, and rewrite generation task. The
model generates the prediction for each task in a
single sequence with the order: rewrite → trigger
→ hypothesis. Figure 3 illustrates the idea of this
sequential multi-task unified learning model.

3.5 Hybrid unified learning model

Parallel and sequential unified learning approaches
both have advantages and disadvantages. The par-
allel multi-task approach trains each task indepen-
dently for a given query, which requires duplicating
training data by the number of tasks and leads to
a longer training cycle. As the number of tasks in-
creases, the size of the training data also increases,
making it challenging to add more tasks. Besides,
each task is trained independently, the model can-
not leverage the correlation between tasks. On the
other hand, the sequential unified approach does
not require duplicate data since the model nests
multitasks into one sequential output, reducing the
training cost. This model has the potential to learn
and leverage the correlation between tasks. How-
ever, the sequential model has higher latency due
to the longer decoding length compared with the
parallel multi-task model. In addition, it is hard to
apply weighted loss for sequential multi-tasks.

To address these issues and combine the benefits
of both models, we proposed a hybrid unified learn-
ing model as shown in Figure 4. The hybrid model
considers the rewrite generation and trigger predic-
tion as a nested sequential task, with the prompt
"generate_rewrite_trigger:". The NLU hypothe-
sis generation is treated as an independent parallel
task, with the prompt "predict hypothesis:". This
hybrid model reduces the duplication of training
data, reduces the training cost, and leverages the
correlation between tasks. We also apply weighted
loss training loss to reflect the importance of tasks:

Lθ(q, r,h,g) = λ1 Lθ(q, {r,g}) + λ2 Lθ(q,h)

where λ1, λ2 are the weights for nested
rewrite_trigger task and NLU tasks separately.
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Figure 3: Illustration of the sequential unified learning model. The model sequentially generate a single output of
different tasks. We have use special tokens (e.g., "[rewrite]", "[trigger]", "[hypothesis]") to prompt the prediction for
different tasks.

Figure 4: Illustration of the hybrid multi-task unified learning model. The model uses task-specific prompt to generate
the task-specific target text, i.e., prompt "predict hypothesis" for NLU hypothesis task, "generate_rewrite_trigger:"
for trigger task and rewrite task.

4 Experiments

We conduct two sets of experiments to evaluate the
proposed unified learning models. The first set of
experiments compares the three proposed unified
models in terms of their effectiveness on the query
rewrite, trigger prediction, and NLU hypothesis
generation. The second set of experiments evalu-
ates the benefit of integrating contextual carryover
into the query rewriting task.

4.1 Experimental Setup

Datasets We use two datasets for our experi-
ments: the query rewrite dataset (QueryR) and
the contextual carryover rewrite dataset (Carry-
overR). The QueryR dataset is weakly annotated
by a defect detection model to identify consecutive
user utterances where the first turn was defective
but the second turn was successful. We also col-
lect 1M non-defective quires which do not need
to be rewritten/triggered (i.e., trigger task label is
"no trigger"). The ContextCarryoverR dataset is
human-annotated for contextual carryover queries.
In this dataset, we have 1M queries need carryover
and 1M queries do not need carryover (i.e., trig-
ger task label is "no trigger"). We collect 1-month
period data for training and validation (randomly
split by 9:1) and subsequent 1-week period data
testing. Table 1 provides the information of each
dataset. Note there is no overlap between QueryR
and CarryoverR, i.e., QueryR does not have con-
textual carryover queries and CarryoverR only has
contextual carryover queries. Note that all the data
has been de-identified.

Datasets Trigger label Train Test

QueryR trigger 7M 200k

no trigger 1M 200k

CarryoverR trigger 1M 908

no trigger 1M 4340

Table 1: Statistics of the query rewriting data sets.

Model Setup In the first set of experiments, we
only focus on the QueryR dataset which does not
have any contextual carryover queries. We train
the parallel, sequential, and hybrid unified mod-
els on QueryR dataset by fine-tuning the BART-
base model, which has 140M parameters, follow-
ing must-task learning approaches in Sections 3.3,
3.4 and 3.5. We compared the proposed unified
learning with the baseline CGF (Hao et al., 2022)
which only consider query rewrite task.

In the second set of experiments, explore the ad-
vantages of unifying query rewrite with contextual
carryover. Thus we train the BART-base trained
on CarryoverR dataset for rewrite generation as
the baseline (name this baseline as BART_CR).
We also have another baseline that we combine
CarryoverR and QueryR datasets and train the
BART-base on the combined dataset for rewrite
generation (name this baseline as BART_CR_QR).
For the proposed unified method, we train the hy-
brid unified model on the combined dataset using
rewrite, trigger, and NLU tasks (name this unified
model as Hybrid_CR_QR).

Evaluation Metrics. In practice, the query
rewriting system is not expected to rewrite or trig-
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Task Rewrite Trigger NLU

precision F1 precision

CGF 78.44% NA NA

Parallel 79.01% 0.89 68.59%

Sequential 65.67% 0.90 66.11%

Hybrid 79.98% 0.91 67.78%

Table 2: Compare parallel, sequential, and hybrid uni-
fied models with existing CGF query rewriting on
QueryR test set. The Hybrid model achieves the best
precision and F1 score.

Dataset QueryR CarryoverR

BART_CR NA 68.51%

BART_CR_QR 78.62% 72.37%

Hyrbid_CR_QR 80.21% 78.45%

Table 3: Rewrite precision at 20% trigger rate of base-
lines and Hybrid unified model on QueryR and Carry-
overR test sets. Hybrid unified model achieves much
higher precision than baselines do.

ger every query from the users, taking into account
cases where the query itself may not be defective
or need a contextual carryover. Thus, To evalu-
ate rewrite and NLU hypothesis quality, we use
utterance-level precision at a fixed trigger rate, i.e.,
20% trigger rate. The utterance level precision de-
notes how often the triggered rewrite matches the
correct rewrite. We use the F1 score as the trigger
task evaluation metric. For CarryoverR test data,
we also use hallucination as metrics. A rewrite is
considered hallucinated if it contains entities that
are not present in the target utterance. We also eval-
uate intrinsic hallucination (when the hallucinated
entities are present in the input) and extrinsic hal-
lucination (when the hallucinated entities are not
present in the input).

4.2 Experimental Results

Unified models on QueryR For parallel model
and hybrid model, we have explored the weights

Hallucination Intrinsic Extrinsic

BART_CR 46.23% 30.42% 20.79%

BART_CR_QR 44.69% 31.82% 18.14%

Hyrbid_CR_QR 39.71% 27.78% 17.11%

Table 4: Hallucination rate (intrinsic and extrinsic hal-
lucination rates) of baselines and Hybrid model. The
Hybrid model achieves the lowest hallucination rate.

for different tasks. By conducting a grid search,
we identify the optimal choice of weight for par-
allel model is 0.7, 0.1, 0.2 for rewrite, trigger and
NLU tasks. For hybrid model the optimal choice of
weight is 0.8, 0.2 for rewrite-trigger task and NLU
task. Table 2 presents the results of the rewrite
generation precision at a 20% trigger rate on the
QueryR test set, as well as the F1 score for the
trigger task. The Hybrid model outperforms the
other models by achieving the best precision in
the rewriting task. The sequential model has a
performance regression due to its longer decoding
sequence when adding the hypothesis task. In the
hybrid model, the trigger task output is conditioned
at the rewriting task, which can explain the higher
F1 score for the Hybrid model compared with the
Parallel model where the trigger task is learned
independently. Overall, the Hybrid model is fa-
vored in terms of good rewrite performance, trigger
performance, and shorter decoding time.

Unified model on QueryR and CarryoverR Ta-
ble 3 shows the precision at 20% trigger rate of
the unified model on QueryR and CarryoverR test
sets. The results of BART_CR and BART_CR_QR
indicate that unifying the contextual carryover task
with the query rewrite task can improve the carry-
over performance, even under a single-task training
approach. The Hybrid model achieved the high-
est precision, demonstrating further improvement
through multi-task learning. Table 4 displays the
hallucination rates, including intrinsic and extrin-
sic hallucination rates, on the CarryoverR test set.
The results indicate that the Hybrid model has the
lowest hallucination rates.

Production simulation We also conduct the pro-
duction simulation of the proposed Hybrid model
(Hybrid_CR_QR). We gather one-week live traf-
fic data from our production system and input the
data into the model. We compare the proposed
model with the no-unified model rewrites within
the English-speaking user’s environment. We use
one primary metric to evaluate the rewrite perfor-
mance: defect rate, which is calculated as the num-
ber of defective rewritten utterances, divided by the
total number of rewritten utterances. We use the
defect detection model in Gupta et al. (2021) to
measure if an utterance is defective. In the analy-
sis, we observe a 16.65% reduction in the defect
rate and an increase of millions of new rewrites
per week. Table 5 provides examples showing the
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defect reduction case
USER: put satellite ho by monica
AGENT: I couldn’t find satellite ho by Monica,
but here is other music by Monica .
USER: i said sideline hope by monica

Baseline rewrite: play sideline hope by monica
Unified model rewrite: play sideline ho by monica

contextual carryover case
USER: who’s the tallest man in the world
AGENT: Sultan Kosen is the tallest man alive.
The tallest man across history is Robert Wadlowski.
USER: how tall is it

Baseline rewrite: how tall is sultan kosen
Unified model rewrite: how tall is robert wadlowski

Table 5: Production examples of Hybrid Unified model
and baseline.

effusiveness of the unified model.

4.3 Limitations

We acknowledge that there are certain limitations
of this framework. First, generation-based models
have latency issue due to the autoregressive gener-
ation. Thus, we will explore Non-autoregressive
and semi-autoregressive methods in a future study.
Second, the knowledge is only stored in model pa-
rameters which limits the capacity of the model
to make the smarter trigger decision through fact-
checking and generate a valid rewrite. To this end,
we intend to consider a retrieval-augmented gener-
ation to incorporate external knowledge to improve
performance as well as incorporating more contex-
tual (e.g. if the user is listening music) and person-
alized (e.g. user preference) signals into the model.
Moreover, generative models can also pose quality
control challenges, such as hallucinations. To miti-
gate this issue, we will add constrained decoding
(Hao et al., 2022) to control hallucinations.

5 Conclusion

In this work, we propose unified learning ap-
proaches for QR. The proposed approach unifies
several tasks into one text-to-text model. Besides,
the proposed approach unifies general rewrite tasks
with contextual carryover tasks. We explored multi-
ple unified learning scenarios such as parallel multi-
task learning, sequential multi-task learning, and
hybrid multi-task learning. Our experimental re-
sults and production simulation demonstrated the
superiority of the unified learning model.
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