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Abstract
In a typical call center, only up to 8% of callers
leave a Customer Satisfaction (CSAT) survey
response at the end of the call, and these tend to
be customers with strongly positive or negative
experiences. To manage this data sparsity and
response bias, we outline a predictive CSAT
deep learning algorithm that infers CSAT on
the 1-5 scale on inbound calls to the call center
with minimal latency. The key metric to max-
imize is the precision for CSAT = 1 (lowest
CSAT). We maximize this metric in two ways.
First, reframing the problem as a binary class,
rather than five-class problem during model
fine-tuning, and then mapping binary outcomes
back to five classes using temperature-scaled
model probabilities. Second, using soft labels
to represent the classes. The result is a produc-
tion model that supports key customer work-
flows with high accuracy over millions of calls
a month.

1 Introduction

1.1 Motivation
Call centers have been using CSAT surveys to mea-
sure Customer Satisfaction for decades. Like most
CSAT surveys, those our company provides are
delivered either on the line at the end of a call or
in response to an SMS message. In the survey, the
customers are asked to rate their customer service
experience on a 1-5 scale, with 1 being very dis-
satisfied and 5 being very satisfied, respectively.
However, we found that for a typical call center,
only up to 8% of callers leave a CSAT survey re-
sponse1. Since only a small fraction of customers
leave a survey response, managers and coaches of
traditional call centers are missing important infor-
mation. Specifically:

1. The mean CSAT score suffers from response
bias, as customers with a strongly positive or

1for the 691 call centers in our dataset with at least 50
CSAT survey responses, the 10th and 90th percentile of survey
response rates were 0.3% and 8%, respectively.

negative experience are far more likely to take
the time to respond (Table 1).

2. When the customer has a sub-optimal experi-
ence but does not leave any feedback, the call
center may not be able to proactively take nec-
essary actions in a timely manner to improve
customer experience.

To address these issues, we have developed and
present here an algorithm that infers CSAT scores
on call center calls with high accuracy and low
latency. At the moment of writing, our predictive
CSAT feature is fully deployed at scale and has
rated over 50 million calls.

1.2 Intended Uses of predictive CSAT
At our company, predictive CSAT is used for coach-
ing purposes, to maintain and improve overall cus-
tomer experience and to create new opportunities
for analytics.

In “Coaching Hub” we provide coaches with
material for both recognition of agents and im-
provement in the form of two lists, with calls rated
with predicted CSAT scores of 5 and 1 respec-
tively. Therefore, the precision of classes 5 and
1 is critical - it’s necessary that the calls in these
lists are reliably satisfied and dissatisfied, respec-
tively. Since satisfied calls outnumber dissatisfied
calls by a wide margin, the precision of class 1
has long been our limiting factor and therefore our
primary focus.

Maintaining and improving overall customer ex-
perience is crucial for our users. Users such as call
center managers, coaches, and agents use predicted
CSAT to proactively identify dissatisfied customers
moments after the call ends by reviewing calls with
predicted CSAT scores of 1 or optionally 2. This
enables users to follow up with customers and po-
tentially save their accounts.

Predicting CSAT also creates new opportunities
for analytics. We examine which factors are most
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associated with dissatisfied calls, where the pre-
dicted CSAT score is 1 or 2. For example, we might
report that calls associated with hold times longer
than 10 minutes are associated with a higher per-
centage of dissatisfied calls in a call center. In this
way, we offer data-driven recommendations to im-
prove CSAT for this call center. In interviews with
our target users (call center coaches and managers),
we learned that a certain amount of error tolerance
is acceptable when inferring CSAT scores. Conse-
quently for these 3 applications, it’s acceptable if
the model predicts a 1 and the customer left a sur-
vey response of 2. This motivates our introduction
in the System Overview section of precision* and
recall* which are metrics with an error tolerance of
1.

1.3 Constraints

Our solution space is constrained in the following
ways:

• High precision of class 1: As discussed above
in section 1.2, this metric is our primary fo-
cus, being central to Coaching Hub’s lists of
coachable calls and being the minority class
relative to class 5. Thus, it is important for
our model to have high precision in predicting
calls for the lowest CSAT class.

• Latency: The predicted CSAT score is in-
cluded in a call summary that is shown to
the user 10 seconds after the call, and avail-
ability within 10 seconds at least 99.9% of the
time is a hard requirement for all features dis-
played in the summary. This holds even if the
transcript is many thousands of words long.
Since we deploy this model on CPU to con-
trol cost and availability, this was non-trivial
to achieve.

The typical, out-of-the-box deep learning solu-
tion for solving multiclass classification problems
is to allow each distinct label as a possible output of
the neural network, and train using a loss function
such as cross-entropy loss over the set of all la-
bels. As a shorthand, we refer to this approach here
as “5-way classification”. However, this approach
does not lend itself well to meeting constraints 1
and especially 2.

The main contribution of this paper is to present
a combination of two techniques, which were
adapted for this problem to solve both constraints:

CSAT Rating Number of labels
1 39k
2 9k
3 8k
4 17k
5 222k

Total 296k

Table 1: The CSAT survey distribution favors the ex-
tremes. This phenomenon is well known in the contact
center space and is explained by reporting bias: since
taking a survey takes time and effort, customers that are
strongly motivated by a very positive or very negative
experience are more likely to leave a response than cus-
tomers with a relatively normal experience

1. Binary classification + fan-out: We reframe
the 5-class prediction problem as a binary clas-
sification task during model training and then
map temperature-scaled model probabilities
back from 2 to 5 classes during inference time
(‘fan out’).

2. Soft labels: We introduce a modified label
smoothing approach that achieves superior ac-
curacy for this ordinal classification task.

2 Related Work

There are few research studies on predicting
customer satisfaction (CSAT) scores on contact
center conversations using transcripts generated by
an Automatic Speech Recognition (ASR) model.
In Bockhorst et al., 2017, they developed a system
that not only utilizes call transcripts transcribed
by an ASR model but also other non-textual data
such as call duration, queue, in-queue waiting
times, utterance level sentiment scores, and various
customer data. Overall, there are 5,501 features
in the training dataset. The author’s model is
trained to predict a metric called Representative
Satisfaction Index (RSI) which is the average
of four different survey scores. In the end, their
framework involves two models, namely a rank
scoring and an isotonic regression model. In a
more recent study, Auguste et al., 2019 used the
Net Promoter Score (NPS) to predict customer
satisfaction on chat conversations. A promoter
score can be defined as a rating that customers
give to indicate how likely they are to promote
a company. Out of a scale of 0 to 10, customers
with ratings of 9 or 10 are considered promoters
whilst those with ratings of 0 to 6 are considered
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detractors. NPS is calculated as the difference
between promoters and detractors and companies
want this metric to be positive and as high as
possible. They compared macro F1 scores across
different classification methods and their best
method yielded a macro F1 score of 53.8%, which
they noted that is a rather limited performance.
Other studies that looked at predicting CSAT
on contact center conversations proposed using
information extracted from raw audio signals such
as acoustic, emotions, and prosodic features. (Park
and Gates, 2009; Zweig et al., 2006; Vaudable and
Devillers, 2012; Devillers et al., 2010)

Contact center managers are usually interested in
picking out calls with a low CSAT score for either
coaching purposes or for identifying opportunities
to take meaningful interventions in a timely man-
ner to improve customer experience. Hence, it’s
important to identify these calls with a relatively
high degree of precision. Label smoothing is a reg-
ularization technique introduced by Szegedy et al.,
2016 that has been successfully used to improve
accuracy of the Inception architecture on the Im-
ageNet dataset. In Müller et al., 2019, it is noted
that label smoothing has been adopted in training
procedures of other state-of-the-art image classifi-
cation models (Zoph et al., 2017; Real et al., 2018;
Huang et al., 2018). In another domain such as
speech recognition, Chorowski and Jaitly, 2016
used label smoothing to reduce word error rate on
the WSJ dataset. Additionally in machine trans-
lation, Vaswani et al., 2017 was able to slightly
improve the BLEU score

3 System Overview

3.1 Dataset

We only used the call transcripts as input to the
model. The transcripts are produced by our com-
pany’s proprietary Automatic Speech Recognition
(ASR) models. This simplifies model deployment
and helps latency as the model can be run as soon
as a transcript is available, without waiting for any
additional features, and it was sufficient to obtain
high accuracy. We then preprocessed transcripts
of contact center conversations to create training,
validation and test sets.

The labels collected were CSAT survey re-
sponses left by customers. Labels were aggregated
into a single dataset rather than many separate
company-specific datasets. Surveys were either

run at the end of the call (“please stay on the line
for a brief survey. . . ”) or sent to customers as an
SMS message. Survey responses have a customer
satisfaction (CSAT) rating of 1-5, where 5 is the
highest satisfaction. Table 1 shows the distribution
of CSAT customer ratings over our dataset.

Additionally, we excluded callers that were
present in the training set from the validation and
test sets2 to prevent contamination of these sets 3.

3.2 Model Fine-tuning

We used the Big bird4 model hosted on Hugging-
face5(Wolf et al., 2020) for all experiments. We
chose Big bird (Zaheer et al., 2020) as our model ar-
chitecture because it is a transformer-based model
capable of handling long sequences (up to 4096
tokens) with low latency in our production environ-
ment. Specifically, its memory requirements scale
linearly in the number of tokens rather than quadrat-
ically as many transformers-based models do. If
transcripts exceeded 1536 tokens6 in length, only
the last 1536 tokens of the conversation were used
and the preceding were discarded; this occurred in
16% of transcripts. This allowed us to keep latency
and cost under control at inference time.

We trained all models using cross-entropy loss
and a learning rate of 10e−5 with early stopping.
The metric we chose to evaluate the checkpoints is
motivated by the user experience around CSAT, as
detailed in section 1.2.

As a result, the precision of class 1 is more im-
portant than the precision of other classes, or than
recall, and an error tolerance of 1 is acceptable for
our intended use cases. Therefore, we introduce the
metric “precision*”, i.e., the precision with an error
tolerance of 1. We also formally define a modified
version of true positive and false positive (denoted
tp* and fp* respectively)7 which is necessary in

2The final size of the validation and test sets were 2996
and 2943 calls, respectively

3We also excluded the data of one company from the valida-
tion and test set because its CSAT distribution was so unusual
(99% of responses were 1s and 2s) we suspect a misconfigura-
tion of the survey for that company.

4https://huggingface.co/google/
bigbird-roberta-base

5https://huggingface.co/
6tokens: a part of a sentence, usually a word, but can also

be a subword (non-common words are often split in subwords)
or a punctuation symbol

7Where CSATp denotes the predicted CSAT, CSATs de-
notes the CSAT survey response, and class c ∈ (1, 2, 3, 4, 5).
As an example using class c=2, TP2* is the count of predicted
CSAT = 2 where survey CSAT ∈ (1, 2, 3)
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defining precision*.

TP∗
c = |CSATs ∈ (c± 1) ∧ CSATp = c| (1)

FP∗
c = |CSATs /∈ (c± 1) ∧ CSATp = c| (2)

FNc = |CSATs = c ∧ CSATp ̸= c| (3)

Precision∗ =
TP∗

TP∗ + FP∗ (4)

Recall∗ =
TP∗

TP∗ + FN
(5)

For the purposes of picking the best model check-
point for any experiment, we measure the F-beta
metric with β = 0.5 on class 1 with a tolerance of
1 and define it as follows:

F ∗
β =

(1 + β2)× Precision∗ × Recall∗

(β2 × Precision∗) + Recall∗
(6)

Using beta = 0.5 achieves our goal of weighing
both precision and recall while giving precision
more importance than recall.

3.3 Binary Classification + Fan-Out
First, we mapped the CSAT labels to the 0-1 range.
For example, when using hard labels, the CSAT la-
bel vector [1, 2, 3, 4, 5] is remapped to [0, 0, 0, 1, 1].
Since the remapped vector contains 2 classes, we
can train a binary classifier. At inference time,
we first rescale the fine-tuned model output, log-
its with temperature scaling. Temperature scaling
simply divides the logits by a single parameter that
is fitted on a held-out validation set so the model
probabilities are better calibrated (Guo et al., 2017).
Typically, for a classification task, the logits from
a model are passed through a softmax function to
get final class probabilities. Instead, we use the
low-CSAT class probability to “fan-out”, i.e. we
map this probability ∈ [0, 1] back into 5 classes
using 4 class thresholds. For example, if the class 5
threshold is 0.15, then a model probability (of low
CSAT) of 0.01 corresponds to a 5, while a model
probability of (of low CSAT) 0.16 maps to a 4. We
illustrate this fine-tuning and inference method in
Figure 1.

The algorithm we devised to infer the class
thresholds is the following. As explained previ-
ously, class 1 F ∗

0.5 is our primary metric. Thus we
set the class 1 threshold first in a way to optimize it.
Specifically, we use a loop to search the parameter
space of class 1 threshold values and pick the one
that optimizes class 1 F ∗

0.5 on the validation set.
Then we repeat this process with the thresholds

that separate classes 5-4, 2-3, and 4-3 (the priority
is determined by user workflows) to optimize class
5 F ∗

0.5, class 2 F ∗
0.5 and then class 4 F ∗

0.5. Once the
4 thresholds are set, the 5 classes are defined by
them. Here’s a real example of threshold values:
[0.92, 0.45, 0.09, 0.03], and these separate classes
1-2, 2-3, 3-4 and 4-5 respectively.

3.4 Soft Labels
The traditional label smoothing equation is

yLSk = yk(1− α) + α/K (7)

where K is the number of label classes, yk is a
one-hot encoded label vector and α is the hyperpa-
rameter that determines the amount of smoothing
(Müller et al., 2019).

Our motivation for trying label smoothing is the
ordinal nature of CSAT classes. That is, a call with
a survey response of ‘2’ is a low CSAT call, but not
as strongly as a ‘1’, and more strongly so than a
‘3’. So when using binary classification as detailed
above, it’s natural to try label smoothing with a
higher level of smoothing for the center classes.
We also refer to labels that have been smoothed
as “soft” labels. In Table 2 we show the values
of α we used for different classes, reserving the
weakest α for the outermost classes (1,5) and the
strongest α for the center class (3). Aside from
using these multiple values of α , we implemented
label smoothing to train the model in the standard
way.

CSAT Class α Soft Labels
1 0.02 0.99
2 0.2 0.90
3 1 0.5
4 0.2 0.1
5 0.02 0.01

Table 2: Different smoothing values were applied to
each of the 5 CSAT classes that resulted in the soft
labels used for training

3.5 Experiments
We conducted a total of 24 experiments, each ex-
ploring a different permutation of the experimental
conditions. The conditions are shown in Table 3.

This setup allowed us to explore multiple experi-
mental conditions while generating variability for
statistical analysis but limiting the number, cost
and carbon footprint of our experiments.
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Finetuned 
model 

ASR 
transcribed 
contact 
center 
transcripts 

Softmax 
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Logits

Tokenize 
and 

preprocess 
inputs 

Binary 
Classifier

[2.0247, -0.6201]

Temperature 
scaled logits 

Apply 
temperature 

value, 
T=2.0923

[0.9677, -0.2964]

SoftMax

[0.78, 0.22]

if proba > t1

if proba > t2

if proba > t3

if proba > t4

if proba < t4

class 1

class 2

class 3

class 4

class 5

Fan-out 
classification

(low CSAT) 
Proba

0.78

Model Inference 

Data preprocessing
1. Remove onomatopoeias
2. Remove punctuation, dialog tags, lower 

case depending on experimental conditions
3. Truncate transcripts to 1536 tokens

ASR 
transcribed 
contact 
center 
transcripts 

Model Finetuning
(Optional)

Label Smoothing
Apply label smoothing 
to ordinal classes

Threshold 
t1, t2, t3, t4

t1=0.92, t2=0.45
t3=0.09, t4=0.03

Model Finetuning

t1=0.92, t2=0.45
t3=0.09, t4=0.03

Figure 1: The overall training and inference method used

Experimental Condition Cardinality Set
Type of Classification 3 Binary Soft Labels / Binary Hard Labels / 5-way classification

Punctuation 2 Included / None
Dialog Tags 2 Included / None

Casing 2 Lowercase / Uppercase

Table 3: Our 24 experiments corresponded to every permutation of these experimental conditions

4 Results and Discussion

4.1 Type of Classification

On precision and “precision*” of classes 1 and 5,
soft labels binary classification performed best (
figure 2 and table 4. All 8 t-tests of binary soft
labels vs the other two have p-values < 0.05). Fur-
thermore, within the binary classification + fan out
approach, soft labels worked better than hard labels
on almost every metric. It had higher precision
on every class (most important for our users), and
better on recall for 3

5 classes.
5-way classification had the highest precision on

center classes by a wide margin. It also produces
the strongest recall for classes 1 and 5, probably
because the binary classification approaches opti-
mize for precision of these 2 classes the most. In
terms of overall accuracy (with a tolerance of 1),
binary soft labels and 5-way classification were sta-
tistically tied (90.4% vs 90.6% respectively), with
binary hard labels trailing slightly (89.2%).

4.2 Conclusion

In this paper, we propose an approach to maximize
the precision of certain classes in the context of an
ordinal classification problem. We show that for

our application it makes sense to cast the problem
first as binary classification and restore the 5 out-
put classes using probability thresholds. We also
show that the use of soft labels outperforms that of
hard labels in our setup. This approach can benefit
applications where ratings can be formulated as
ordinal classes and where some classes are empha-
sized over others in the primary user workflows.
We also show that the problem of CSAT prediction
is amenable to modern deep learning techniques
with high accuracy using the transcript as the sole
input to the model.

5 Limitations

• We use only the transcript as input to the
model. This implies the model wouldn’t know
that a hold was long unless the customer said
“that was a long hold” or something to that
effect. The transcript usually contains lan-
guage indicating the hold is taking place “may
i place you on hold?”, “thanks for holding”,
etc, but rarely indicates the exact duration of
the hold. Similarly, the model doesn’t know
the wait time unless the customer complains
explicitly about it.
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Metrics Binary Hard labels Binary Soft labels 5-way-classification
Class 1 Precision* 77.9% 83.4% 78.0%
Class 2 Precision * 57.3 63.8 82.9%
Class 3 Precision * 23.7 35.9 79.7%
Class 4 Precision * 78.5 80.3% 94.9%
Class 5 Precision * 94.5% 95.3% 92.5%
Class 1 Precision 68.5% 74.2% 69.5%
Class 2 Precision 5.8% 5.6% 19.4%
Class 3 Precision 6.7% 11.7% 50.5%
Class 4 Precision 12.4% 14.1% 55.0%
Class 5 Precision 88.5% 89.7% 86.7%

Class 1 Recall 58.0% 55.5% 65.2%
Class 2 Recall 7.7% 10.7% 3.1%
Class 3 Recall 6.4% 13.2% 14.4%
Class 4 Recall 9.2% 15.4% 11.9%
Class 5 Recall 91.7% 90.7% 96.9%

Table 4: Precision*, precision and recall for each class
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Figure 2: Class 1 Precision as a function of Classifica-
tion Type

• Predicted CSAT is available 10 seconds after
the end of the call. New applications become
possible if predicted CSAT is made available
continuously throughout the call since a man-
ager would be able to “whisper” (advise the
agent on the call without the customer hear-
ing), message or barge (jump into the call as a
3rd party). An important concern if predicted
CSAT is computed repeatedly will be man-
aging the cost and carbon footprint, possibly

by using a small model as an initial gating
function.

• If a call center doesn’t collect CSAT surveys
through our company, their accuracy will be
impacted as they won’t be reflected in the
training or test set. We ensure customers un-
derstand this by training our agents to explain
it and including it in help center documenta-
tion.

6 Ethics Statement

• We have read and abide by the ACL Code of
Ethics 8.

• Data Privacy: We follow the data privacy
measures in place at our company which in-
clude scrubbing personal identifiable informa-
tion (PII) from customer data and restricting
our use of customer data to improvements to
the services we provide them. We did not rely
on any external annotations.

• Intended Use by Customers: In the product
we highlight both high and low CSAT calls
for review by a supervisor to ensure employ-
ees receive a mix of positive and constructive
feedback. Since supervisors review calls, they
can adjust incorrect classifications produced
by the model.

8https://www.aclweb.org/portal/content/acl-code-ethics
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• Potential bias: We sample subpopulations
of users and their customers and evaluate in-
ternally to ensure the model outputs are not
biased against specific groups.

• Carbon Footprint: We minimized the carbon
footprint of our experiments while meeting
the need for variability required by statistical
analysis. We achieved this by running 24 ex-
periments, each with different experimental
conditions, rather than running multiple ex-
periments with different random seeds within
each of the 24 conditions. In total the experi-
ments described in this paper represented less
than 500 hours of computation on a single
V100 GPU.
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