
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 720–728

July 10-12, 2023 ©2023 Association for Computational Linguistics

CUPID: Curriculum Learning Based Real-Time Prediction using
Distillation

Arindam Bhattacharya
Amazon, India

aribhat@amazon.com

Ankith MS
Amazon, India

ankiths@amazon.com

Ankit Gandhi
Amazon, India

ganankit@amazon.com

Vijay Huddar
Amazon, India

vhhuddar@amazon.com

Atul Saroop
Amazon, India

asaroop@amazon.com

Rahul Bhagat
Amazon, USA

rbhagat@amazon.com

Abstract
Relevance in E-commerce Product Search is
crucial for providing customers with accurate
results that match their query intent. With re-
cent advancements in NLP and Deep Learning,
Transformers have become the default choice
for relevance classification tasks. In such a
setting, the relevance model uses query text
and product title as input features, and esti-
mates if the product is relevant for the cus-
tomer query. While cross-attention in Trans-
formers enables a more accurate relevance pre-
diction in such a setting, its high evaluation
latency makes it unsuitable for real-time pre-
dictions in which thousands of products must
be evaluated against a user query within few
milliseconds. To address this issue, we pro-
pose CUPID: a CUrriculum learning based
real-time PredIction using Distillation that uti-
lizes knowledge distillation within a curricu-
lum learning setting to learn a simpler architec-
ture that can be evaluated within low latency
budgets. In a bi-lingual relevance prediction
task, our approach shows an 302 bps improve-
ment on English and 676 bps improvement for
low-resource Arabic, while maintaining the low
evaluation latency on CPUs.

1 Introduction

Large-scale e-commerce search systems, such as
those used by companies like Amazon, Walmart
etc., typically employ a multi-step process to re-
trieve relevant products for a given query (Guo
et al., 2022). The first step in this process is to
generate a matchset that is approximately relevant
to the query, followed by a series of steps that op-
timize for relevance, customer interest and other
associated metrics (Momma et al., 2022). In such
a setting, it is imperative to have features that ac-
curately capture relevance between the customer’s
query-intent and the candidate set of products in
the matchset.

Recently, transformer-based models such as
BERT have proven to be highly effective in es-

timating relevance between a query and a prod-
uct by using cross-attention (Mangrulkar et al.,
2022a; Nogueira and Cho, 2019; Wang et al., 2019),
self-attention (dual-encoders) (Bhattacharya et al.,
2023; Reimers and Gurevych, 2019a; Mangrulkar
et al., 2022b), or late interaction (Khattab and Za-
haria, 2020a; Santhanam et al., 2021; Lu et al.,
2022) models. The use of cross-attention in trans-
formers has been shown to be effective, as it allows
the model to take into account both the query and
the product when determining relevance (Menon
et al., 2022; Hofstätter et al., 2020). However, these
models come at a cost, as they require heavy com-
putational resources and have a high latency even
during evaluation. In large-scale search systems,
it is important to perform real-time relevance pre-
dictions, as thousands of products need to be pro-
cessed for each query, with strict latency require-
ments.

For this reason, dual-encoder models are more
suitable, as they can provide real-time relevance
predictions with low latency requirements. In such
a setting, the task of estimating relevance is reduced
to carrying out simple vector operations, typically a
dot product of high-dimensional vectors, one repre-
senting the query and the others representing prod-
ucts. Under such a setting, the vectors representing
products are pre-computed and cached, while those
for the query are computed on-the-fly. Such on-the-
fly computation of query vectors or embeddings in
low latency settings restricts us from using a full
stack of transformer layers, as is typical to models
like BERT. To address the issue of latency in com-
putation of query embeddings, we instead borrow
from the architecture used in (Nigam et al., 2019)
to be used for the query arm for our asymmetric
dual-encoders, while continuing to use a full stack
of transformers for the product arm (as shown in
Figure 1). Their simple architecture is comprised
of a word embedding layer and a mean-pool layer
(based on (Huang et al., 2013a), referred loosely as

720



DSSM (Deep Structured Semantic Model) hence-
forth), which is more suitable for real-time sce-
narios with low latency requirements. However,
this model lacks the rich semantic representation of
models built purely of transformers. To bridge this
gap, we leverage knowledge distillation techniques,
where we use the DSSM of the query arm as a stu-
dent model to learn the rich semantic representation
from the transformer model.

To address this issue, we propose CUPID: a
Curriculum learning based real-time prediction us-
ing distillation that utilizes knowledge distillation
within a curriculum learning setting to learn a sim-
pler architecture that can be evaluated within low
latency budgets. Our contributions to the literature
can be summarized as follows:
• We show that our low-latency model benefits

more through knowledge distillation from a struc-
turally similar dual-encoder transformer model as
a teacher, rather than from a cross-encoder trans-
former model. Even though the cross-encoder
transformer model is more accurate, the student
is able to learn better from a structurally similar
teacher.

• We demonstrate that a learning regime, where a
structurally similar student, optimizes for a cross-
entropy loss for the first few epochs, followed
by a curriculum-styled learning of the teacher
embeddings using an alignment loss outperforms
other alternative learning regimes.

2 Related Work

Cross Encoders and Bi-Encoders Cross encoders
and bi-encoders are two distinct architectures used
in sentence pair modeling. While both approaches
aim to capture the relationship between two sen-
tences, they differ in how they encode the sentences
and produce their representations.

Cross encoders (Reimers and Gurevych, 2019b)
jointly encode both sentences into a fixed-length
representation. The shared encoder takes a pair of
sentences as input and captures the interaction be-
tween them. This joint encoding helps capture both
local and global interactions between the sentences,
leading to improved representation learning.

Bi-encoders (Kiros et al., 2015), on the other
hand, use separate encoders for each input sentence.
Each sentence is encoded independently, producing
two separate representations. These representations
are then compared using a similarity function (e.g.,
dot product, cosine similarity) to determine the

relationship between the sentences.

Both cross encoders and bi-encoders have their
advantages and are suitable for different scenarios.
Cross encoders excel at capturing the interaction
between sentences, while bi-encoders are compu-
tationally efficient. The choice between the two
architectures depends on the specific requirements.
For real-time predictions, cross encoders are often
infeasible, but bi-encoders excel due to the ability
to utilize pre-computed indexes.

Low latency Transformers In recent years, with
the state-of-the-art performance of transformers in
NLP applications, there has been a demand to make
transformers suitable for real-time e-commerce ap-
plications. And the reduction in computation time
and latency is crucial for transformers to be viable
for such use cases. There are three main themes
(Lin et al., 2022) into which the advances in the de-
sign of low-latency transformers can be categorised.
(I) architectural level, (II) component level, and
(III) technique-based. At the architectural level
(I), modifications are made at a higher level, such
as the use of lightweight transformers like Funnel
Transformer (Dai et al., 2020), Lite Transformer
(Wu et al., 2020), and DeLighT (Mehta et al.,
2020). Additionally, pruning techniques reported
in (Kwon et al., 2022; Gordon et al., 2020; Mao
et al., 2020; Hou et al., 2020) aim to reduce the
size and computation by eliminating unimportant
weights. Finally, Quantization-based approaches
(Ganesh et al., 2021) and model compression (Bai
et al., 2019) are used to compress weights and acti-
vations. At the component level (II), there is a focus
on efficient self-attention, such as in the works of
(Wang et al., 2020), and delayed interaction net-
works (Reimers and Gurevych, 2019c; Khattab and
Zaharia, 2020b; Santhanam et al., 2021). Lastly, un-
der the category of technique-based (III), research
efforts have been made in areas such as early exit
(Mangrulkar et al., 2022a; Zhou et al., 2020; Xin
et al., 2020) and knowledge distillation (Hinton
et al., 2015; Sanh et al., 2020).

Knowledge Distillation Knowledge Distillation
(KD)(Hinton et al., 2015) is a widely researched
topic that enables the transfer of knowledge
from a complex, pre-trained model to a smaller,
more computationally efficient model. With
the rise of BERT (Devlin et al., 2018) and the
corresponding growth in textual data, there has
been growing interest in applying KD to BERT
models in the field of NLP. Distill BERT (Sanh

721



et al., 2020) is one such seminal work along with
(Tinybert(Jiao et al., 2020), Fast BERT(Liu et al.,
2020), Task specific BERT (Tang et al., 2019),
Patient Knowledge Distillation BERT (Sun et al.,
2019a). These propose using KD to transfer
knowledge from a large BERT model to a smaller
model. While the Distill BERT makes BERT
models faster by 60%, they cannot be used in
real-time because e-commerce applications such
as semantic matching (Huang et al., 2013b; Nigam
et al., 2019) have limited computational resources
(especially GPUs) and strict latency requirements.
The latest TwinBERT (Lu et al., 2020) proposes the
distillation of 12-layer BERT to 6-layer twin tower
BERT structure, thus, permitting pre-compute
of document embeddings and cache in memory
saving additional computational time. However,
the TwinBERT requires GPUs during inference
to compute the query arm embeddings within the
latency budgets.

3 Our Approach

In this section, we present our proposed approach
CUPID that uses bi-encoder transformer models
as teachers, and learn asymmetric student models
having DSSM architecture in the query side and
transformer architecture in the product side. Using
cross-encoders as teachers is natural, however, in
this work we show that using bi-encoder teacher
yields better performance and allows better trans-
ferring of knowledge to bi-encoder student models
(refer to Section 4.3). Bi-encoder teacher model
enables better transfer of semantics to a simpler
bi-encoder student model with better alignment of
query embeddings. Later in the section, we present
a very simple curriculum learning framework for
training bi-encoder student model by progressively
increasing the difficulty of task. We present the de-
tailed architecture (also shown in Figure 1) below.

3.1 Teacher Model

The teacher model used is a Siamese BERT
(SBERT) architecture. SBERT first computes fixed
size contextual representation for an entity by mean
pooling the BERT model’s output, followed by a
dense layer with tanh activation to get entity em-
bedding. We use the same BERT model for repre-
senting both query and product to enable the trans-
fer of language semantics between them. Finally,
the similarity ŷi between entities is determined by

the cosine distance between the embeddings. Note
that, although we use BERT, any transformer model
can act as an alternative to the BERT model. In
Section 4, we present results on some multilin-
gual datasets, where we use the multilingual XLM
RoBERTa transformers. It should also be noted
that while cross-encoder models are widely used as
teacher models in knowledge distillation tasks for
NLP, for our application, we claim that a bi-encoder
model is much better suited for the task of teach-
ing an asymmetric bi-encoder student. Section 4.3
justify this claim.

Teacher Training Objective Let’s assume our
training samples are represented by the tuple
(qi, pi, yi), where qi is a query entity and pi is
a product entity, and yi is the ground truth la-
bel. Let S(·) be the function returning the em-
bedding EmbeddingTransformer. Then the pre-
dicted semantic similarity between the query and
the product is measured using the cosine similarity
as ŷ = sim(q, p) = cos(S(p), S(q)). We train the
teacher model using the binary cross entropy loss,
computed as lossce(ŷ, y) = y · log(ŷ) + (1− y) ·
log(1− ŷ).

3.2 Student Model
In the teacher model, both arms use SBERT (or any
transformer) models to generate query and prod-
uct representations. While SBERT generates better
representations of the entities, the latency of such
large models are prohibitively high for real-time
representation generation for queries. We therefore
train a smaller model for query representation, and
retain the SBERT model for product representation
generation, which can be computed and indexed in
advance, and do not require real-time latency. The
high-level architecture of the query arm is similar
to that of SBERT. The only difference is that we
use embedding lookup and mean-pool layer instead
of BERT encoder to generate the intermediate rep-
resentation for query. We use the teacher BERT
model to generate embedding for the product.

Student Model Training Here we discuss how
we distill the knowledge from the query arm of
the teacher SBERT models to the smaller student
models.

The standard way to distill knowledge from
teacher to student is to use a loss function over the
predicted similarities between the query and the
product of teacher model, ŷT and student model,
ŷS (Sanh et al., 2020), that is, the student tries

722



Figure 1: Our proposed architecture for learning asymmetric bi-encoder student model having DSSM architecture
on the query arm and BERT architecture on the product arm with Alignment loss and Curriculum learning

to imitate the final output of the teacher. We call
this loss the imitation loss, which is computed as
lossimitation(ŷT , ŷS) = −ŷT log(ŷS).

In this work, we use a loss which tries to align
the representation generated by the student to that
of the teacher similar to (Sun et al., 2019b; Li
et al., 2021). We name this loss alignment loss.
Let D(·) be the function returning the embedding
EmbeddingDSSM generated by the student model.
Then the alignment loss for a query q is computed
as

lossalignment(S(q), D(q)) = 1−cos(S(q), D(q)).

In our experiments, we noted that if we introduce
lossce in the student model, it performs better. Fur-
thermore the lossimitation becomes superfluous,
that is removing it doesn’t affect the model per-
formance. Section 4 shows the effect of using all
three losses, and shows that adding imitation loss
does not add to the model performance and remov-
ing it does not impact have any negative impact,
but simplifies the training process by removing a
component of the loss.

Curriculum Learning for Student Models Ini-
tially, the query arm of the student model is mis-
aligned due to random initialization, which causes
instability in learning. To address this, we perform
two stage curriculum learning. In the first stage,
we train the student model for few epochs using
the positive training data and random negative data.
The random negatives are generated by randomly
shuffling the products forming pairs (qi, pj) such
that i ̸= j. This approach provides the model with
easy examples compared to the negatives present

in the dataset itself. This method initializes the
DSSM weights to be more aligned to generate the
expected query representation. In Section 4, we
show that this kind of training stabilizes the training
and improves the performance.

In the second stage of curriculum learning, we
scale up the alignment loss gradually during the
model training. So initially, α is 0, and the model
is effectively learning only from true labels. Grad-
ually we scale up α, making the models objective
more complicated: reduce the cross entropy loss
with true labels, and align the student’s query arm
with that of the teacher to generate similar em-
beddings. The progressive increase in model’s task
defines this stage of curriculum learning rather than
the difficulty of examples.

With these improvements, we now arrive at the
proposed knowledge distillation loss:

lossKD = (1− α) · lossce + α · lossalignment,

where α is the scaling factor that varies from 0 to 1
and is incremented each epoch.

4 Experiments and Results

In this section, we compare the performance of
CUPID with the state of the art methods of knowl-
edge distillation. We also study the latency of the
student models and compare them with the latency
of teacher model to show why BERT based mod-
els are not suitable for real time predictions. We
then present results for a real world application of
CUPID on an internal dataset. Finally we show
the effect each of the losses have on the perfor-
mance of the models, and explain the choice of

723



a bi-encoder teacher model compared to a better
performing cross-encoder model.

4.1 Datasets
We performed the experiments on the Shopping
Queries Dataset (Reddy et al., 2022) that was made
openly available as part of KDD Cup 2022 work-
shop. The training dataset has around 800 thousand
samples and the test dataset has around 400 thou-
sand. For each query, the training dataset provides
on average a list of up to 13 potentially relevant
results, together with relevance judgements (Ex-
act, Substitute, Complement, Irrelevant) indicating
the relevance of the product to the query. For our
experiments, we consider the problem as a binary
classification where a product is either relevant (ex-
act, substitute or complement) or irrelevant. Both
training and test dataset contains around 1 negative
example per 10 positive examples. We also present
the results of CUPID and the baselines on datasets
from Arabic language locales that have been sub-
sampled from a leading e-commerce company’s
history log and human-audited for ESCI labels,
similar to the work of(Reddy et al., 2022). At this
time, the data is not publicly available and is pro-
prietary. We used a few hundred thousand records
to train and test the models.

4.2 Experiments
We implement the CUPID and the baseline models
described in Section 3 using PyTorch (Paszke et al.,
2019) library and Hugging Face (Wolf et al., 2019)
transformers.

Teacher Models Both the biencoder
model and the cross-encoder model uses
bert-base-uncased as a pretrained model, with
a dense layer of size 128 to generate both query
and product representation. The teacher is trained
for 10 epochs using Adam optimizer with exponen-
tially decaying learning rate. We use a batch size
of 256 to fit the model into GPU memory. Due to
the imbalance inherent in the dataset, we use two
standard approaches to stabilize the training. First,
we accumulate the gradients across 10 batches
before applying the Adam updates. Second, we
use a weighted sampler while loading the training
batch to ensure that we over-sample the negatives
to retain a balanced class distribution.

Student Models The student models use the
same BERT arm to generate the product represen-
tation as the teacher. For the query generation, the

Table 1: Area under ROC curve of various models.
Cross entropy, imitation and alignment losses are repre-
sented as CE, IL and AL respectively. Stages of curricu-
lum learning (CL) used are also indicated.

ID Experiment CL Stage AUC (%)

T Teacher I 87.25

B Student: CE (No KD) I 83.15
S1 Student: IL I 84.53
S2 Student: IL + AL I 84.81
S3 Student: CE + AL I 85.32
S4 Student: CE + IL I 84.59
S5 Student: CE + IL + AL I 84.80
H CUPID I & II 86.17

use DSSM layer with a dense layer of size 128,
same as that of the BERT arm. The student models
are also trained for 10 epochs, and uses the same
optimizers and schedulers as teacher. The weights
of the product arm are frozen and only the query
arm is trained.

Metrics We use area under the ROC curve to
compare the results of the baseline models with
CUPID. This allows us the compare the perfor-
mance of the model without forcing a choice of
desired precision or recall, which may vary based
on the requirements. In addition, AUROC also
gives an indication of the probability of a negative
being ranked higher than a positive, which is an im-
portant information when dealing with applications
such as product search.

4.2.1 Results
We now compare the results of CUPID and the
baselines on our dataset. Table 1 shows the area
under the ROC curve for the models. The teacher
model (T) achieves an AUC of 87.25%. For base-
line (B), we show the performance of a model with
DSSM for query arm and a BERT for product arm
that is trained only using the training data, with
no knowledge distillation. As expected, its perfor-
mance falls short of the teacher. We then show the
effects of various losses described in Section 3. S1
uses only the imitation loss. S2, which adds align-
ment loss increases the performance by around 50
basis points. Replacing imitation loss with BCE in
S3 gives us approximately another 50 basis points
boost. The S4 configuration shows us that using
BCE and imitation loss together doesn’t provide
significant boost over just imitation. Similar obser-
vation is made in S5 which is presented for com-
pleteness. There we notice that addition BCE to
S2 complicates the model and performs no better.

724



Table 2: Area under ROC curve of various models on
Arabic data. Cross entropy, imitation and alignment
losses are represented as CE, IL and AL respectively.
Stages of curriculum learning (CL) used are also indi-
cated.

ID Experiment CL Stage AUC (%)

T Teacher I 89.04

B Student: CE (No KD) I 72.41
S1 Student: IL I 74.63
S2 Student: IL + AL I 76.14
S3 Student: CE + AL I 76.59
S4 Student: CE + IL I 75.02
S5 Student: CE + IL + AL I 74.80
H CUPID I & II 79.17

Finally, CUPID with the weighted loss achieves
the best results with over 300 basis points boost
over the baseline with no knowledge distillation
and more than 150 basis points above the standard
KD method using imitation loss.

Latency Latency is a major concern for real time
predictions. Here we compare the query arm la-
tency of the teacher and student models to justify
the need of a DSSM based students at the cost
of some performance. We convert the models to
ONNX before performing the inference. BERT
has a latency of 11.6ms, which is almost 4× that
of the DSSM students, which is 3.2ms. In real
time, 11ms is higher than the standard expected la-
tency for real time applications. While the product
representations can be pre-computed, this latency
explains the need for a student model to gener-
ate the query representation. All the experiments
to compute the latency was carried out for CPU
on Amazon EC2 machines using p3.8xlarge in-
stances with 2.3 GHz (base) and 2.7 GHz (turbo)
Intel Xeon E5-2686 v4 processors.

4.2.2 Real World Application: Irrelevant
Result Detection in Arabic Locales

Here we present the results of our method on
the real world Arabic data. For this experiment,
we trained the teacher model with pre-trained
xlm-roberta model. This transformer model is
trained on multiple languages and thus is more
suitable for Arabic language data. The remaining
parameters and the architecture of student models
remain same. Table 2 shows the results of various
methods on the Arabic data. Because of smaller
size of dataset, larger vocabulary, and larger trans-
former model, the performance difference between
the teacher and the students is larger. Also, the

Table 3: Comparison with Cross-Encoder (CE) teacher

ID Experiment AUC (%)

T BiEncoder Teacher 87.25
CT CE Teacher 89.76

H CUPID: BiEncoder Teacher 86.17
CH CUPID: CE Teacher 81.53

Table 4: Impact of Curriculum Learning

ID Experiment CL Stage AUC (%)

B- Student: No KD None 82.09
B Student: No KD. I 83.15
H- CUPID II 85.65
H CUPID I & II 86.17

improvement of CUPID over the baselines is more
pronounced for this dataset.

4.3 Ablation Studies

In this section we look at the impact of some of
the choices made by CUPID, studying their impact
and comparing with the alternative approaches.

Why is curriculum-based learning important to
the CUPID Model? Table 4 shows the effect of
curriculum learning for the baseline and CUPID.
B- and H- are the versions of baseline and CUPID
without curriculum learning respectively. We no-
tice that in each case, curriculum learning gives us
a significant improvement in performance.

What is the role of the α? How important is
the Alpha scheduler? The parameter α is used
to adjust the importance of the alignment loss in
the CUPID model. In our experiments on non-
English datasets, we found that a constant α could
achieve an AUC of 85.32%. We hypothesized that
the DSSM model, due to its basic architecture com-
pared to the transformer model, would have diffi-
culty learning the projection matrix and classifica-
tion task jointly. Hence, by gradually increasing
α, we improved the model performance to 86.17%.
We also note that the improvement is not due of
the trade-off of achieving better results by letting
the model have higher alignment loss, but α scal-
ing actually helps reduce the alignment loss faster
than when the alignment loss is not scaled, which
justifies the hypothesis.

Why Bi-Encoder teacher and not cross-encoder?
Cross encoder models are known to perform better
in similarity matching tasks in NLP. So a natu-
ral question arises: why not train a cross-encoder

725



model and use that as a teacher. Here we show
that the cross encoder model performs better than
the bi-encoder student. But due to the requirement
of separate generation and indexing of query and
product for real time predictions, we require a bi-
encoder student. And due to the difference in se-
mantics, the transfer of knowledge between a cross
encoder teacher and a biencoder student doesn’t
yield better results than with a biencoder teacher,
as seen in Table 3. We notice that cross encoder
teacher (CT) model performs better that biencoder
teacher (T) but 250 basis points but the student
trained with the bi-encoder teacher (H), which has
access to alignment loss, greatly outperforms the
student with cross encoder teacher (CH), which has
access to only imitation loss which has a different
semantics.

5 Conclusion

In this paper, we propose CUPID, a novel approach
for knowledge distillation for real-time prediction
of relevancy using curriculum learning. It uses a
new loss function and two-stage curriculum learn-
ing framework to increase the influence of teacher
gradually, resulting in a loss function that outper-
forms imitation learning based KD methods by up
to 300 basis points.

References
Junjie Bai, Fang Lu, Ke Zhang, et al. 2019. Onnx:

Open neural network exchange. https://github.
com/onnx/onnx.

Arindam Bhattacharya, Ankit Gandhi, Vijay Huddar,
MS Ankith, Aayush Moroney, Atul Saroop, and
Rahul Bhagat. 2023. Beyond hard negatives in prod-
uct search: Semantic matching using one-class clas-
sification (smocc). In WSDM 2023.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le.
2020. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. Ad-
vances in neural information processing systems,
33:4271–4282.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali
Khan, Yin Yang, Hassan Sajjad, Preslav Nakov, Dem-
ing Chen, and Marianne Winslett. 2021. Compress-
ing large-scale transformer-based models: A case
study on bert. Transactions of the Association for
Computational Linguistics, 9:1061–1080.

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. arXiv preprint
arXiv:2002.08307.

Jiafeng Guo, Yinqiong Cai, Yixing Fan, Fei Sun, Ruqing
Zhang, and Xueqi Cheng. 2022. Semantic models
for the first-stage retrieval: A comprehensive review.
ACM Trans. Inf. Syst., 40(4).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Sebastian Hofstätter, Sophia Althammer, Michael
Schröder, Mete Sertkan, and Allan Hanbury. 2020.
Improving efficient neural ranking models with cross-
architecture knowledge distillation.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. Advances in Neural
Information Processing Systems, 33:9782–9793.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013a. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
International Conference on Information and Knowl-
edge Management, CIKM ’13, page 2333–2338, New
York, NY, USA. Association for Computing Machin-
ery.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013b. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Information & Knowl-
edge Management, pages 2333–2338.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing.

Omar Khattab and Matei Zaharia. 2020a. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert.

Omar Khattab and Matei Zaharia. 2020b. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard
Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Skip-thought vectors. Advances in
neural information processing systems, 28.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney,
Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
2022. A fast post-training pruning framework for
transformers. arXiv preprint arXiv:2204.09656.

Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun,
Zheng Liu, Xing Xie, Tianqi Yang, Yanling Cui,
Liangjie Zhang, and Qi Zhang. 2021. Adsgnn:
Behavior-graph augmented relevance modeling in
sponsored search.

726

https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://doi.org/10.1145/3486250
https://doi.org/10.1145/3486250
http://arxiv.org/abs/1503.02531
https://doi.org/10.48550/ARXIV.2010.02666
https://doi.org/10.48550/ARXIV.2010.02666
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
https://doi.org/10.48550/ARXIV.2004.12832
https://doi.org/10.48550/ARXIV.2004.12832
https://doi.org/10.48550/ARXIV.2004.12832
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832


Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng
Qiu. 2022. A survey of transformers. AI Open.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling bert with adaptive inference time. arXiv
preprint arXiv:2004.02178.

Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. Twin-
bert: Distilling knowledge to twin-structured bert
models for efficient retrieval.

Yuxiang Lu, Yiding Liu, Jiaxiang Liu, Yunsheng Shi,
Zhengjie Huang, Shikun Feng Yu Sun, Hao Tian,
Hua Wu, Shuaiqiang Wang, Dawei Yin, and Haifeng
Wang. 2022. Ernie-search: Bridging cross-encoder
with dual-encoder via self on-the-fly distillation for
dense passage retrieval.

Sourab Mangrulkar, Ankith M S, and Vivek Sembium.
2022a. Be3r: Bert-based early-exit using expert rout-
ing. In KDD 2022.

Sourab Mangrulkar, Ankith M S, and Vivek Sembium.
2022b. Multilingual semantic sourcing using prod-
uct images for cross-lingual alignment. In The Web
Conference 2022.

Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang,
Yang Wang, Yaming Yang, Quanlu Zhang, Yunhai
Tong, and Jing Bai. 2020. Ladabert: Lightweight
adaptation of bert through hybrid model compression.
arXiv preprint arXiv:2004.04124.

Sachin Mehta, Marjan Ghazvininejad, Srinivasan Iyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2020.
Delight: Deep and light-weight transformer. arXiv
preprint arXiv:2008.00623.

Aditya Menon, Sadeep Jayasumana, Ankit Singh Rawat,
Seungyeon Kim, Sashank Reddi, and Sanjiv Kumar.
2022. In defense of dual-encoders for neural ranking.
In Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 15376–15400.
PMLR.

Michinari Momma, Chaosheng Dong, and Yetian Chen.
2022. Multi-objective ranking with directions of pref-
erences. In SIGIR 2022 Workshop on eCommerce.

Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lak-
shman, Weitian, Ding, Ankit Shingavi, Choon Hui
Teo, Hao Gu, and Bing Yin. 2019. Semantic product
search.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage
re-ranking with bert.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:

An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Chandan K. Reddy, Lluís Màrquez, Fran Valero, Nikhil
Rao, Hugo Zaragoza, Sambaran Bandyopadhyay,
Arnab Biswas, Anlu Xing, and Karthik Subbian.
2022. Shopping queries dataset: A large-scale ESCI
benchmark for improving product search. arXiv.

Nils Reimers and Iryna Gurevych. 2019a. Sentence-
bert: Sentence embeddings using siamese bert-
networks.

Nils Reimers and Iryna Gurevych. 2019b. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Nils Reimers and Iryna Gurevych. 2019c. Sentence-
bert: Sentence embeddings using siamese bert-
networks.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2021. Col-
bertv2: Effective and efficient retrieval via
lightweight late interaction.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019a.
Patient knowledge distillation for bert model com-
pression. arXiv preprint arXiv:1908.09355.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019b.
Patient knowledge distillation for bert model com-
pression.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao,
Jiangnan Xia, Liwei Peng, and Luo Si. 2019. Struct-
bert: Incorporating language structures into pre-
training for deep language understanding.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song
Han. 2020. Lite transformer with long-short range
attention. arXiv preprint arXiv:2004.11886.

727

http://arxiv.org/abs/2002.06275
http://arxiv.org/abs/2002.06275
http://arxiv.org/abs/2002.06275
https://doi.org/10.48550/ARXIV.2205.09153
https://doi.org/10.48550/ARXIV.2205.09153
https://doi.org/10.48550/ARXIV.2205.09153
https://www.amazon.science/publications/be3r-bert-based-early-exit-using-expert-routing
https://www.amazon.science/publications/be3r-bert-based-early-exit-using-expert-routing
https://www.amazon.science/publications/multilingual-semantic-sourcing-using-product-images-for-cross-lingual-alignment
https://www.amazon.science/publications/multilingual-semantic-sourcing-using-product-images-for-cross-lingual-alignment
https://proceedings.mlr.press/v162/menon22a.html
https://www.amazon.science/publications/multi-objective-ranking-with-directions-of-preferences
https://www.amazon.science/publications/multi-objective-ranking-with-directions-of-preferences
http://arxiv.org/abs/1907.00937
http://arxiv.org/abs/1907.00937
https://doi.org/10.48550/ARXIV.1901.04085
https://doi.org/10.48550/ARXIV.1901.04085
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/2206.06588
http://arxiv.org/abs/2206.06588
https://doi.org/10.48550/ARXIV.1908.10084
https://doi.org/10.48550/ARXIV.1908.10084
https://doi.org/10.48550/ARXIV.1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.48550/ARXIV.2112.01488
https://doi.org/10.48550/ARXIV.2112.01488
https://doi.org/10.48550/ARXIV.2112.01488
http://arxiv.org/abs/2006.04768
http://arxiv.org/abs/2006.04768
https://doi.org/10.48550/ARXIV.1908.04577
https://doi.org/10.48550/ARXIV.1908.04577
https://doi.org/10.48550/ARXIV.1908.04577


Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exiting
for accelerating bert inference.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.

728

http://arxiv.org/abs/2004.12993
http://arxiv.org/abs/2004.12993
http://arxiv.org/abs/2006.04152
http://arxiv.org/abs/2006.04152

