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Abstract

Conversational NLU providers often need to
scale to thousands of intent-classification mod-
els where new customers often face the cold-
start problem. Scaling to so many customers
puts a constraint on storage space as well. In
this paper, we explore four different zero and
few-shot intent classification approaches with
this low-resource constraint: 1) domain adapta-
tion, 2) data augmentation, 3) zero-shot intent
classification using descriptions large language
models (LLMs), and 4) parameter-efficient
fine-tuning of instruction-finetuned language
models. Our results show that all these ap-
proaches are effective to different degrees in
low-resource settings. Parameter-efficient fine-
tuning using T-few recipe (Liu et al., 2022) on
Flan-T5 (Chung et al., 2022) yields the best
performance even with just one sample per in-
tent. We also show that the zero-shot method
of prompting LLMs using intent descriptions
is also very competitive.

1 Introduction

Intent classification is the primary natural language
understanding task for a virtual agent or a chatbot.
Providing intent-utterances for training intent clas-
sification models is a laborious process. In this
paper, we address this problem by exploring zero
and few-shot intent identification using Large Lan-
guage Models (LLMs) as well as instruction fine-
tuned models. Zero-shot and few-shot intent pre-
diction completely remove or substantially reduce
the work to provide intent-utterances, respectively.
We demonstrate that the following four approaches
work well in practice for zero/few-shot intent clas-
sification.

• Domain adaptation We use a sentence en-
coder that is pre-trained with our domain
knowledge and show that it performs well in
a few-shot setting compared to off-the-shelf
sentence encoders.

• Data Augmentation By supplementing
human-curated training data with LLM-
generated data to improve training data.

• Zero-shot intent classification High capacity
LLMs can be prompted creatively with intent
descriptions to do zero-shot classification.

• Parameter-efficient fine-tuning (PEFT)
Finetuning a small number of parameters
added to instruction finetuned LMs using only
a few examples

Here is the outline of the rest of the paper. In Sec-
tion 2 we describe the related work. In Section 3
we detail the datasets used. In Section 4 we de-
scribe the four approaches covered in this work
for zero/few-shot intent classification. Finally, we
conclude with observations in Sections 5 and 6.

2 Related Work

Recent work has successfully used domain adap-
tation and contrastive learning for few-shot intent
classification. One approach is to use embeddings
from a BERT model (Devlin et al., 2019) pretrained
on domain data to search for utterances belonging
to new intents in the domain (Yu et al., 2021). In a
similar vein, (Zhang et al., 2021) finetune a BERT
model on few-shot data using contrastive learning
which learns to discriminate between semantically
similar sentences. Our work on domain adaptation
differs from these mainly due to our setting which
involves serving thousands of customers. For le-
gal reasons, we cannot co-mingle data from these
customers to pre-train a single model. Instead, we
pre-train a sentence encoder based on an intent tax-
onomy and out-of-the-box intents, which consist
of human generated synthetic data. In this setting,
we can only train very lightweight models for each
customer, e.g. a dense layer on top of a pre-trained
sentence encoder.

Data Augmentation is another widely used tech-
nique to solve the problem of data scarcity. Recent
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Dataset Intents Train Size Test Size OOS Samples in Test
MASSIVE 60 11514 2974 No

OOTB-dataset* 27 1363 3099 No
Benchmark01* 9 270 300 Yes
Benchmark02* 13 390 420 Yes
Benchmark03* 31 930 960 Yes

Table 1: Statistics for intent classification datasets used in this paper. Datasets marked with an asterisk (*) are private,
internal benchmarking datasets. Train and Test Sizes correspond to the number of utterances in the respective splits.
OOS samples in test set indicates whether there are any out-of-scope samples in the test set.

work on data augmentation has focused on using
multiple methods to improve model performance
(Chen and Yin, 2022). LLMs like GPT-3 (Brown
et al., 2020) can be prompted to generate labeled
training data for intent classification (Sahu et al.,
2022). The quality of generated training data using
LLMs is highly dependent on the prompts. In this
work, we show various prompt-based approaches
that generate diverse data for training and boost the
performance of intent classifiers.

As the usage of conversational agents grows, it
is important for them to generalize to new intents.
Recent work has focused on performing zero-shot
intent detection on unseen intents and domains. Us-
ing knowledge from ontologies or attributes (Fer-
reira et al., 2015; Yazdani and Henderson, 2015)
can help in detecting and generalizing to new in-
tents. A more recent approach by (Liu et al., 2019)
makes modifications to capsule networks to gen-
eralize to unseen domains. Embeddings of intent
descriptions have also shown to be quite mean-
ingful in generalizing to new intents and services
(Ma et al., 2019). While these methods are ef-
fective, they all require training on an initial set
of intents. Large Language Models (LLMs) like
GPT-3 (Brown et al., 2020) and more recently in-
struction finetuned models like (Chung et al., 2022)
have shown good zero-shot performance on newly
seen tasks without any prior training data on those
tasks. In this work, we show that these models
are also effective for zero-shot intent classification
using just intent descriptions.

3 Datasets

We use public and private intent classification
datasets to benchmark different approaches. For
evaluation on public dataset, we use the English
train and test sets from MASSIVE for intent clas-
sification. MASSIVE contains utterances directed
at a physical device spanning 60 intents and 18 do-
mains. For more details on the MASSIVE dataset
(FitzGerald et al., 2022), we encourage readers to

refer to their paper. We also use private bench-
marking datasets internal to our company. These
datasets contain various intents and utterances in
the enterprise setting spanning 3 different domains:
IT Service Management (ITSM), HR and Customer
Service Management (CSM). The utterances are
inspired by interactions between humans and chat-
bots and are typically queries from goal-oriented
conversations where the user needs to resolve an
issue. Additionally, some of these datasets also
contain out-of-scope (OOS) utterances in their test
set i.e. utterances that do not belong to any intent,
in order to benchmark irrelevance detection of in-
tent classification models. Table 1 shows statistics
for different datasets used in our benchmarking.

4 Methodology

In this section, we describe the various methods we
evaluate for zero and few-shot learning.

4.1 Domain Adaptation

Domain and task-specific pre-training of language
model (Gururangan et al., 2020) has shown to sig-
nificantly improve classification accuracy in both
low and high resource settings. Techniques like
contrastive learning (Gao et al., 2021) (Feng et al.,
2022) are effective for improving the quality of
sentence encoders, specifically in low-resource set-
tings. Inspired by these ideas, we use a sentence
encoder trained on our domain-specific data along
with public datasets. Starting with the LaBSE
checkpoint (Feng et al., 2022) we train it further
by converting intent classification, paraphrasing,
etc, as sentence similarity tasks. We will refer to
this model as ELMSE (enterprise language model
based sentence encoder).

For training intent-classification models, we
freeze ELMSE weights and use its sentence em-
beddings as features for a trainable non-linear
dense layer for classification. We compare ELMSE
against other publicly available sentence encoders,
namely LaBSE, Multilingual Universal Sentence
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Dataset Intent Names Utterance

OOTB - dataset*

UpdateChangeRequest I could I update CHG1234567
TroubleshootSlowComputer My laptop is taking too long to load

SubmitARequest I need a new phone
IdentifyScheduledChanges What are the upcoming scheduled changes

CreateProblem report new critical problem

Benchmark01 - dataset*

GuestWifiAccess How do I get in the guest wifi
IdentifyScheduledChanges Can you pull up the list of scheduled changes

MyAssignedEquipment Show me my devices list
SearchKnowledgeBase I want information on policies

RepositoryAccess How can I access the shared drive

Benchmark02 - dataset*

EscalateITTicket increase priority of my incident
LocalAdminAccess Can I get authorization as local admin on my pc

RSAToken RSA login is not working
EmailSetup How do I configure outlook on my device

BillingInvoiceIssue I was billed twice but have no account

Benchmark03 - dataset*

SubmitARequest I request a new computer
RSAToken I have problem with authentication code

CreateChangeRequest I want to request a change
LocalAdminAccess How can I login as local admin

Feedback I have bad experience

Table 2: Few samples of intents and their respective utterances from the private internal benchmarking datasets.

Few-shot K model Massive Benchmark01 Benchmark02 Benchmark03

3

LaBSE 46 (1.7) 59 (2.9) 52 (2.7) 58 (3.1)
MUSE3 53 (2.8) 64 (3.8) 62 (2.7) 64 (1.3)
GTR-3b 59 (1.4) 76 (1.4) 70 (3.3) 78 (2.2)
ELMSE 57 (2.3) 77 (2.4) 63 (4.6) 74 (1.7)

5

LaBSE 58 (1.7) 65 (3.3) 59 (1.7) 67 (1.8)
MUSE3 61 (0.9) 70 (2.2) 66 (1.4) 70 (1.7)
GTR-3b 66 (1.2) 78 (1.0) 73 (1.7) 84 (1.0)
ELMSE 63 (1.1) 80 (1.7) 67 (2.6) 79 (1.2)

Table 3: Results for domain adaptation on 3 internal datasets along with MASSIVE comparing LaBSE, MUSE,
ELMSE, and GTR-3B models. The metric reported here is in-scope accuracy averaged over 5 different selections of
few shot data. Numbers inside parenthesis indicate standard deviation across the 5 selections

Encoder (MUSE) (Yang et al., 2020) and GTR-3B.
ELMSE is comparable in size to LaBSE and MUSE
while almost 30 times smaller than GTR-3b. We
simulate few-shot setting by randomly selecting
K utterances per intent from full datasets. We use
K=3,5,8,10,15,20 as well as the full dataset. We
report results on 4 datasets from Table 1. Since
OOTB-dataset was used for pretraining ELMSE,
we exclude it from few-shot evaluation.

4.1.1 Results for Domain Adaptation

Table 3 reports in-scope accuracy and standard de-
viation averaged of 5 random seeds for 3-shot and
5-shot classification. The results demonstrate that
domain adaptation is a very effective approach with
improvements of greater than 5 percent in most
cases when compared with models of similar size.
These results carry over as we increase the number
of few-shot utterances to more than 5 as shown
in Figure 1. The plots also show that the gap be-
tween ELMSE and LaBSE is much larger in a few-
shot setting and reduces as K increases. Moreover,

Figure 1: Comparison of ELMSE which is domain
adapted with sentence encoders which are not domain
adapted
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ELMSE is only 2-3% worse than GTR-3b which is
30 times larger model.

4.2 Data Augmentation

We use data augmentation to generate labeled data
for training starting with a seed set of 5 utterances
per intent. In this section, we explore different
ways of prompting GPT-3 and T5 (Raffel et al.,
2020). For evaluating the generated utterances, we
use them for training the same type of lightweight
classifier as described in 4.1 using ELMSE as the
sentence encoder. This section describes different
prompt-based approaches for data generation.

GPT-3 + Paraphrase : Following (Sahu et al.,
2022), we ask GPT-3 to generate 20 paraphrases
of utterances from the same intent taken from the
seed set. To encourage diverse generations, we set
high temperature and top_p values.

GPT-3 + Intent Descriptions : We describe in-
tents in the prompt and ask GPT-3 to generate 20
utterances for a particular intent. We find that de-
scribing all intents prevents hallucinations in the
generations.

Parrot T5 Paraphrasing : We use the Parrot
Paraphrase approach based on T5 (Damodaran,
2021) to generate 20 diverse paraphrased utterances
given seed set. Table 4 shows a few generations
from our prompt-based approaches.

4.2.1 Experimental Setup and Results

To evaluate the quality of generated utterances, we
use them to train intent classifiers. We evaluate
the performance of augmented dataset from each
approach as mentioned in Section 4.2.1 by train-
ing ELMSE classifier model for intent classifica-
tion task. We evaluate on 4 datasets and compared
against ELMSE few-shot baseline where K is set
to 5. We report the in-scope accuracy and stan-
dard deviation averaged over 3 different random
seeds. Table 5 shows the result for all approaches
using the data augmentation. Unless mentioned
explicitly, we do not add the seed set to the training
mix.

We find that using paraphrases from GPT-3 and
Parrot T5 Paraphraser give better results compared
to ELMSE Baseline even without the seed set. GPT-
3 Augmentations using Intent Descriptions does
not perform well but when combined with ELMSE
Baseline seed set gives better results. Moreover,

given a good quality seed-set, we see that data aug-
mentation using LLMs can boost the performance
of intent classification in few-shot setting.

4.3 Prompting Zero-shot Prediction

The given sentence needs to be mapped to exactly
one of the intents described below:
alarm_set: user wants to set an alarm
iot_cleaning: user wants to do some cleaning
...
play_podcasts: user wants to play a podcast or
rewind/repeat a particular episode in a podcast
none_of_the_above: if the user sentence is not about
any of the intents above
Sentence: wake me up at 7am
Intent: alarm_set

We use intent names and descriptions for prompt-
ing language models to perform zero-shot predic-
tion. The intent descriptions are prefaced with
instructions to predict the correct intent and the
test utterance is specified at the end. The output
is expected to be the correct intent label. Figure
4.3 shows an example prompt from the MASSIVE
dataset and the output from LLMs. For evalua-
tion, we check for the presence of intent names
in the LLM completion text as opposed to an ex-
act match and report the first intent predicted in
the completion. This is done to account for hal-
lucinations. If no intent names are present in the
completion text, we mark it as an “out-of-scope
prediction”. We create intent descriptions for 4
datasets: 3 internal benchmarking datasets and the
open-source MASSIVE dataset. We benchmark 2
language models using this type of prompt: GPT-3
(175B parameters) and Flan-T5-XXL (11B param-
eters), an instruction fine-tuned model.

Filtering Intents for LLMs Many conversa-
tional agents have a lot of intents, sometimes more
than 50. As the number of intents increases, the
prompt size increases which incurs higher latency
and cost (in case of token-based pricing models).
To restrict the length of the prompt, we use sentence
similarity to retrieve the top-5 intents and only use
those 5 intents in the language model prompt. Us-
ing sentence similarity needs a few training exam-
ples which makes this a few-shot approach. With
just 5 examples per intent, we get more than 0.85
recall for Top-5. To restrict the size of the prompt,
we do not pass the training examples to the LLMs.

Setup For GPT-3, we set the temperature to 0
and max tokens for generation to 20. We use the
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Approach Prompt Generated Text

GPT3 Paraphrase Aug.

Task: Create diverse utterances
by paraphrasing the following utterances:
schedule alarm to wake me up after 3 hours
alarm for ten am
wake me up on friday at five in the morning i need to catch the train
alarm me at eight am
please set alarm for today
Create 20 utterances:

Set an alarm for 10 o’clock.

Wake me up on Friday at 5am
so I can make the train.
...
Set a timer to wake me up
in three hours

GPT3 Aug. Using Intent Descr.

A virtual assistant serves multiple intents.
Below are the description of the intents:
alarm_set: user wants to set an alarm
iot_cleaning: user wants to do some cleaning
...
play_podcasts: user wants to play a podcast or rewind/repeat a particular
episode in a podcast
Generate 20 utterances for alarm_set intent:

Can you set an alarm for next week?
I need to set an alarm for a specific time
I want to set an alarm for a certain day
...
I’d like to set an alarm
for a certain hour

Table 4: Example prompts used in generating text for the corresponding approaches

Approach MASSIVE Benchmark01 Benchmark02 Benchmark03
ELMSE Baseline 63 (1.1) 80 (1.7) 67 (2.6) 79 (1.2)
GPT-3 w/ Paraphrase Aug. 63 (0.5) 84 (0.4) 71 (0.3) 81 (0.5)
GPT-3 w/ Intent Descriptions 51 (0.5) 76 (0.4) 69 (0.5) 76 (0.2)
Parrot T5 58 (0.4) 81 (0.2) 73 (0.4) 81 (0.4)
Seed Set + GPT-3 w/ Intent Descriptions 63 (0.8) 84 (0.4) 71 (0.3) 78 (0.9)
Seed Set + Parrot T5 63 (0.6) 79 (0.4) 68 (2.2) 76 (0.6)

Table 5: Results for Data Augmentation on 3 internal datasets along with MASSIVE comparing the performance on
multiple prompt-based approaches. We report the average in-scope accuracy and standard deviation averaged over 3
different random seeds

Dataset LLM Intents Model In-Scope Accuracy Out-of-scope Recall

MASSIVE (60 intents)

5 Flan-T5-XXL 68.6 -
GPT-3 69.2 -

60 Flan-T5-XXL 73.3 -
GPT-3 73.9 -

OOTB-dataset (27 intents)

5 Flan-T5-XXL 83.7 -
GPT-3 83.4 -

27 Flan-T5-XXL 86.3 -
GPT-3 84.9 -

Benchmark01 (9 intents)

5 Flan-T5-XXL 86.5 0.43
GPT-3 84.6 0.97

9 Flan-T5-XXL 86.5 0.48
GPT-3 89.3 0.67

Benchmark02 (13 intents)

5 Flan-T5-XXL 69.7 0.65
GPT-3 60.6 0.87

13 Flan-T5-XXL 69 0.7
GPT-3 61.3 0.67

Table 6: Results for zero-shot prediction on 3 internal datasets along with MASSIVE with GPT-3 and Flan-T5-XXL.
In-scope accuracy is the accuracy computed for test samples that belong to the intents in the dataset. Out-of-scope
recall is the fraction of out-of-scope test samples which were correctly identified as irrelevant by the model i.e., not
belonging to any of the intents

default setting generation settings for the Flan-T5-
XXL model and do not restrict the number of to-
kens to be generated. The results with filtering are
averaged over 3 runs using different random seeds
for sampling the 5 samples per intent.

Results Table 6 reports the accuracy for in-scope
intents and the recall for out-of-scope samples
where applicable (samples that do not belong to any
of the intents in the dataset). We find that prompt-
ing language models with intent descriptions for

zero-shot intent classification performs better than
few-shot learning using a classifier (Tables 3 and
5). Since this only needs intent descriptions, this
approach can generalize to new intents as well. Us-
ing the same prompt, Flan-T5-XXL is competitive
with GPT-3 in terms of in-scope accuracy and is
often better when presented a smaller number of
intents in the prompt. While the in-scope accuracy
is comparable, GPT-3 clearly outperforms Flan-T5-
XXL in terms of the out-of-scope recall, indicating
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Figure 2: Plots comparing in-scope accuracy of different Flan-T5 models using Parameter-efficient FineTuning
(PEFT) with the T-Few recipe. The dotted lines show the best results on each dataset from previously described
methods. The shaded regions show the standard deviation

that it is better at detecting irrelevant samples. We
attribute the strong performance of Flan-T5-XXL
(even though it is 16x smaller) to the multi-task
instruction finetuning on over 1800 datasets.

For the 3 internal datasets, we also find that using
more intents in the prompt works better only up to
a certain extent but have excluded the results for
the brevity of this paper. While the intent retrieval
method does not give perfect Top-5 recall, it helps
in keeping the prompt short and hence provides
lesser chances for the language models to give a
output a wrong label name. Moreover, filtering can
also improve the out-of-scope recall as in the case
of Benchmark02 dataset.

4.4 Parameter-Efficient FineTuning (PEFT)

Taking inspiration from the T-Few recipe (Liu et al.,
2022), we add and finetune IA3 adapters from
scratch in Flan-T5 models in a few-shot setting
which is similar to 4.1. We pick K=1,3,5 utterances
per intent. Since the Flan-T5 models are instruc-
tion fine-tuned, we use the same prompt from 4.3
and provide the intent name as the target string.
For MASSIVE and OOTB-dataset, we restrict the
number of intents in the prompt to 15 at training
time to prevent out-of-memory exceptions. At in-
ference time, we provide all intents in the prompt.
We use all 3 loss functions (language modeling,
unlikelihood and length normalized losses) and the

same hyperparameters as mentioned in the T-Few
paper. For more details about the T-Few recipe, we
encourage readers to refer to their paper.

Figure 2 compares the results of PEFT against
the best results from previously described methods.
Flan-T5-XL (3B parameters) consistently outper-
forms all other methods with just 1 training exam-
ple per intent. With a few more examples, Flan-
T5-Large (770M parameters) also outperforms all
other methods except Flan-T5-XXL on the OOTB
dataset. This shows that we can train significantly
smaller models which are easier to deploy and also
outperform LLMs like GPT-3 with just a few pa-
rameters using intent descriptions and a handful of
examples.

5 Observations

Comparing results across the 4 approaches, we
notice that all 4 approaches are effective in low re-
source settings. We find that domain adaptation is
a cheap option in terms of size of the models but it
still requires 5-10 training utterances per intent for
getting accuracy above 70%. Data Augmentation
using paraphrasing further helps in most cases by
2-4 percentage points. However, expanding to new
domains requires sentence-pairs data for training
the sentence encoder which can involve days of hu-
man labeling. Zero shot classification using intent
descriptions with LLMs and instruction finetuned
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models performs even better than domain adapta-
tion with data augmentation and doesn’t require
any utterances to be configured per intent. How-
ever a good description for each intent is required.
Additionally, these models can be expensive to op-
erationalize. Inference on Flan-T5-XXL requires
using A100 GPUs. GPT-3 is not open-source and
based on a pricing model which can be expensive
to scale to thousands of customers. Parameter ef-
ficient fine-tuning (PEFT) of instruction finetuned
models like Flan-T5-XL and Flan-T5-Large offers
the best performance across all methods and often
by a large margin. Moreover, these models are only
a fraction of the size of GPT-3 and Flan-T5-XXL
and much easier to operationalize at scale with far
lesser compute resources.

6 Conclusion

In this paper, we addressed the task of zero and
few-shot intent identification using Large Lan-
guage Models (LLMs). We presented four ap-
proaches, namely domain adaptation, data augmen-
tation, zero-shot prediction with prompting, and
parameter-efficient fine-tuning. Our experimental
results demonstrate that LLMs and larger instruc-
tion fine-tuned language models are very effec-
tive in zero-shot setting with in-context prompting.
Smaller instruction finetuned models with adapters
are even better when adapter-finetuned on just 1 or
3 examples per intent. We hope these results are
useful for practical deployment of conversational
agents in low-resource settings as well as aiding
non-practitioners in building their intent classifica-
tion models. In the future, we plan to extend this
work by domain adapting smaller instruction fine-
tuned models in a multi-task setting and exploring
their zero-shot capabilities.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In

750

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/arXiv.2206.05790
https://doi.org/10.48550/arXiv.2206.05790
https://doi.org/10.48550/arXiv.2210.11416
https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.1109/ICASSP.2015.7178987
https://doi.org/10.1109/ICASSP.2015.7178987
https://doi.org/10.1109/ICASSP.2015.7178987
https://doi.org/10.48550/arXiv.2204.08582
https://doi.org/10.48550/arXiv.2204.08582
https://doi.org/10.48550/arXiv.2204.08582
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740


Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Han Liu, Xiaotong Zhang, Lu Fan, Xuandi Fu, Qimai
Li, Xiao-Ming Wu, and Albert Y.S. Lam. 2019. Re-
constructing capsule networks for zero-shot intent
classification. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4799–4809, Hong Kong, China. Association
for Computational Linguistics.

Haokun Liu, Derek Tam, Muqeeth Mohammed, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is bet-
ter and cheaper than in-context learning. In Advances
in Neural Information Processing Systems.

Yue Ma, Zengfeng Zeng, Dawei Zhu, Xuan Li, Yiying
Yang, Xiaoyuan Yao, Kaijie Zhou, and Jianping Shen.
2019. An end-to-end dialogue state tracking system
with machine reading comprehension and wide &
deep classification. CoRR, abs/1912.09297.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Gaurav Sahu, Pau Rodriguez, Issam Laradji, Parmida
Atighehchian, David Vazquez, and Dzmitry Bah-
danau. 2022. Data augmentation for intent classi-
fication with off-the-shelf large language models. In
Proceedings of the 4th Workshop on NLP for Conver-
sational AI, pages 47–57, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo,
Jax Law, Noah Constant, Gustavo Hernández Ábrego,
Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. 2020. Multilingual uni-
versal sentence encoder for semantic retrieval. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics: System Demon-
strations, ACL 2020, Online, July 5-10, 2020, pages
87–94. Association for Computational Linguistics.

Majid Yazdani and James Henderson. 2015. A model of
zero-shot learning of spoken language understanding.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
244–249, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Dian Yu, Luheng He, Yuan Zhang, Xinya Du, Panupong
Pasupat, and Qi Li. 2021. Few-shot intent classifi-
cation and slot filling with retrieved examples. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 734–749, Online. Association for Computa-
tional Linguistics.

Jianguo Zhang, Trung Bui, Seunghyun Yoon, Xiang
Chen, Zhiwei Liu, Congying Xia, Quan Hung Tran,
Walter Chang, and Philip Yu. 2021. Few-shot intent
detection via contrastive pre-training and fine-tuning.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1906–1912, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

751

https://doi.org/10.18653/v1/D19-1486
https://doi.org/10.18653/v1/D19-1486
https://doi.org/10.18653/v1/D19-1486
https://openreview.net/forum?id=rBCvMG-JsPd
https://openreview.net/forum?id=rBCvMG-JsPd
http://arxiv.org/abs/1912.09297
http://arxiv.org/abs/1912.09297
http://arxiv.org/abs/1912.09297
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2022.nlp4convai-1.5
https://doi.org/10.18653/v1/2022.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.18653/v1/D15-1027
https://doi.org/10.18653/v1/D15-1027
https://doi.org/10.18653/v1/2021.naacl-main.59
https://doi.org/10.18653/v1/2021.naacl-main.59
https://aclanthology.org/2021.emnlp-main.144
https://aclanthology.org/2021.emnlp-main.144

