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Abstract

Automated digitization of prescription images
is a critical prerequisite to scale digital health-
care services such as online pharmacies. This
is challenging in emerging markets since pre-
scriptions are not digitized at source and pa-
tients lack the medical expertise to interpret
prescriptions to place orders. In this paper, we
present prescription digitization system for on-
line medicine ordering built with minimal su-
pervision. Our system uses a modular pipeline
comprising a mix of ML and rule-based com-
ponents for (a) image to text extraction, (b) seg-
mentation into blocks and medication items, (c)
medication attribute extraction, (d) matching
against medicine catalog, and (e) shopping cart
building. Our approach efficiently utilizes mul-
tiple signals like layout, medical ontologies,
and semantic embeddings via LayoutLMv2
model to yield substantial improvement rel-
ative to strong baselines on medication at-
tribute extraction. Our pipeline achieves +5.9%
gain in precision@3 and +5.6% in recall@3
over catalog-based fuzzy matching baseline for
shopping cart building for printed prescriptions.

1 Introduction

In recent years, prompted by the COVID pandemic,
there has been a rise in the adoption of online phar-
maceutical services leading to improved access to
medications and health outcomes. However, in
emerging markets such as India, online pharmacy
ordering continues to be challenging since prescrip-
tions tend to be paper-based, unstructured and of-
ten, handwritten, which makes digitization a vi-
tal prerequisite. For in-store purchases, customers
follow a simple process of presenting a prescrip-
tion to the store pharmacist who interprets it and
fulfills the order. Current e-commerce purchase
process, however, imposes a significant cognitive
load on customers since they have to explicitly
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specify the medicines. This process is onerous for
the customers due to their (a) unfamiliarity with
the ordering process, (b) difficulty in understand-
ing prescriptions, and (c) lack of expertise to in-
terpret medical acronyms and identify substitute
medicines. Further, most online pharmacies have
a post-cart creation workflow where customers up-
load the prescription to be verified by a remote phar-
macist. Lack of pharmacist capacity often leads
to long wait time making the process unscalable.
Therefore, an automated system that converts pre-
scription images to a digitized form to facilitate
search-less shopping is essential for the success of
online pharmacies. In particular, we need to extract
the medical advice section which contains a list
of medication items, each of which is a record of
multiple fields such as BRAND-NAME.
Challenges. Addressing this problem is non-trivial
due to multiple reasons shown in Figure 3a: (a) vari-
ability in prescription image quality, background,
and orientation, (b) diversity of layouts and doc-
tor styles, (c) high prevalence of typos that create
confusion between similar items (e.g., Fibrodone
and Firodone), (d) specialized vocabulary of re-
gional prescriptions, and (e) the need for convert-
ing dosage-specific instructions to a precise product
order. Additionally, there are limited labeled pre-
scriptions due to the high manual effort it entails.
Related work. While there have been significant
advances in document AI [6, 15, 19] and informa-
tion extraction [29, 21, 13] techniques, most of
these methods are effective only on images of well-
formatted documents such as invoices. Besides,
these generic methods require significant supervi-
sion and are not sufficiently modular to support
a phased automation of the prescription process-
ing workflow. Recent work on digitizing medical
prescriptions [27] is focused on using named en-
tity recognition (NER) methods for medication at-
tribute detection, but these models perform poorly
on non-US prescriptions due to vocabulary gaps
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Figure 1: Prescription processing stages & entities. Only fic-
tional prescriptions are shown in the paper for privacy reasons.

and do not utilize the layout or catalog information.
We present additional related work in Appendix B.
Contributions. In this paper, we present a study on
automated digitisation of prescription images with
printed content which covers design, data, model-
ing and evaluation aspects. We discuss experimen-
tal results for our emerging modular pipeline which
comprises a mix of ML and rule-based components
for (a) image to text extraction and normalization
(b) segmentation into blocks, medication items and
extraction of medication attributes, (c) matching
against pharmacy catalog, and (d) shopping cart
building. We detail how our approach efficiently
combines layout signal, medical ontologies, and
semantic embeddings via LayoutLMv2 model to
yield substantial improvement relative to strong
baselines on medication attribute extraction, and
results in +5.9% and +5.6% gain in precision@3
and recall@3 over catalog-based fuzzy matching
baseline for printed prescriptions. We discuss key
learnings relevant for low data regime document AI
systems in addition to presenting component-wise
efficacy of our pipeline and results from ongoing
experiments (Appendix A.4.2) to highlight future
directions. We present safety aspects in Section 9.

2 Prescription Digitization Problem

Given a prescription image, a natural choice for
digitization is in terms of conversion to a structured
prescription object as per a global standard such
as the Fast Healthcare Interoperability Resources
(FHIR) framework [3]. Since our objective is to

create a shopping cart for automated medicine or-
dering we focus on populating the relevant fields
only in the FHIR prescription schema (Table 5). To
accommodate the nuances of regional medications,
we define each medicine in the pharmacy catalog
as a unique tuple of BRAND-NAME or GENERIC-
NAME1, FORM, INGREDIENT and STRENGTH. A
unique pair of a medicine and package details cor-
responds to a stock keeping unit (SKU).

Figure 1 depicts the various stages of processing
a prescription (denoted by hA, hD, hO) that results
in the successive creation of following entities: (a)
Annotated Prescription is a visually rich document
(VRD) comprising labeled rectangular bounding
boxes (BBs). Each BB is associated with text and
a list of annotations, which include the start-end
offsets and labels corresponding to medication at-
tributes, item boundaries, and block type, (b) Digi-
tized Prescription is a structured object with canon-
ical entries following the FHIR-based prescription
schema, (c) Pharmacy Order is a list of SKUs from
the prescription along with the recommended quan-
tities. The conversion to a pharmacy order (hO)
can be enabled via a deterministic lookup using a
medicine-SKU map if the medication codes in the
digitized prescription are from the catalog. Hence,
we focus on the non-trivial transformations hA and
hD that entail a data-driven approach.
Let P = {pi}Ni=1 denote the set of the available
prescription images for training. For the ith pre-
scription pi, let (ai, di, oi) denote the human an-
notated prescription, digitized prescription, and
pharmacy order obtained from expert pharmacists,
i.e., ai = hA(pi), di = hD(ai), oi = hO(di).
Typically, pharmacists directly create or validate
pharmacy orders from a prescription image with-
out any record of the intermediate annotation and
digitization. Since these prescription-order pairs
are inadequate for an end-to-end neural model, we
explicitly gather supervision for the intermediate
stages for a subset of the prescriptions to enable
a pipelined approach. Let zAi , z

D
i , zOi denote bi-

nary indicators of the availability of ai, di, oi re-
spectively. Further LA(·, ·), LD(·, ·), LO(·, ·) be
suitable loss functions for comparison of pairs of
candidate annotated versions, digitized versions,
and orders corresponding to a prescription such as
the accuracy of annotations, matching with canoni-
cal entities, and the constructed order respectively
as shown in Table 2. Then, the training objective

1Generic names are globally approved, e.g., paracetamol, while brand
names are manufacturer given e.g., Calpol.
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is to learn mappings ĥA and ĥD that produce high
fidelity reconstructions of the processed versions
of the prescription and can be viewed as a loss
minimization:

minĥA,ĥD

[∑
i|zAi =1 LA(ai, ĥA(pi))

+
∑

i|zDi =1 LD(di, (ĥA ◦ ĥD)(pi))

+
∑

i|zOi =1 LO(oi, (ĥA ◦ ĥD ◦ hO)(pi))
]

Given a new prescription, the learned mappings
(ĥA, ĥD) along with hO yield a pharmacy order.

3 Solution Design

3.1 Design Choices
We discuss the key tenets and design choices of our
prescription digitization approach (Figure 3b).
Modularity. Supporting phased automation of
user-driven cart building and pharmacist-driven val-
idation workflows entailed a modular pipeline.
Solution choice dependent on input signals. Lim-
ited labeled prescription data coupled with access
to medical ontologies made it prudent to choose a
hybrid combination of rule-based and ML modules
instead of an end-to-end deep neural model.
Interoperability. The need to interface with other
healthcare systems led us to choose a data repre-
sentation based on global FHIR standards.
Extension over reinvention. Fast and scalable
implementation required use of existing solutions
for sub-problems wherever acceptable and focusing
on exploration of the harder sub-problems.

3.2 Components
We describe components of Figure 3b below.
Text extraction & VRD Normalization. First, we
identify OCR bounding boxes (BBs) and extract
the text from these BBs. Then we perform rotation
and background cropping, using the position coor-
dinates of BBs, to create normalized VRDs with
more homogeneous layouts as shown in Figure 2.

Figure 2: Steps in VRD normalization pipeline.

Entity Annotation. Annotating BBs comprises
three tasks corresponding to stage (b) of Figure
1: (a) detecting block(s) containing medical ad-
vice of doctor, (b) chunking of words, within med-
ical advice block, related to medication(s) into

item(s), and (c) extracting medication attributes
such as brand name, duration of consumption from
an item. Though a joint model that optimizes∑

i|zAi =1 LA(ai, ĥA(pi)) to simultaneously detect
blocks, medication items, and attributes seems like
a natural choice, it is prohibitive due to the con-
straints on amount of supervision, computational
effort, and limits on context size of NLP models
(usually 512 tokens). We simplify this problem by
solving the sub-tasks in the order (a → c → b).
Advice block detection reduces sequence length (as
shown in figure 4) permitting transformer-based en-
codings and increasing precision for later tasks. In
this task, we construct latent representation of the
BBs based on position, semantics, and membership
in medical ontologies and learn a supervised clas-
sification model to predict whether a BB contains
medical advice or not. We perform step (c) and
(b) only on BBs predicted as advice blocks. For
medication attributes, we label each token in ad-
vice BB using our NER model into one of 7 classes
(DURATION, FORM, FREQUENCY, INGREDIENT,
ITEM-MARKER, BRAND-NAME, and STRENGTH).
Sequence of NER predictions are fed into our
heuristic algorithm for medication item chunk-
ing that leverages relative positions of BRAND-
NAME, STRENGTH and FORM tokens. Matching
and Canonicalization. The next step (ĥD) is to
map each annotated medication item in the pre-
scription (e.g., T.[FORM] Crocin[BRAND-NAME],
5 ml[STRENGTH]) to a medicine ID in the phar-
macy catalog using extracted attributes. For this
we use our Pharmacy product catalog as a reference.
This catalog contains all medicine products listed
on our website and each product is described by a
set of attributes such as BRAND-NAME and FORM.
We adopt a two-stage approach comprising: (a)
identifying candidates by fuzzy matching predicted
BRAND-NAME with that in catalog, (b) computing
a match score based on FORM and STRENGTH to
identify the best matching medicine ID using either
a rule-based or an ML classifier.

Cart Building. The final step (hO) is to construct
the pharmacy order, i.e., list of required SKUs and
their quantities. To enable this, the standard dosage
amount of SKU is computed during catalog cre-
ation, e.g., 3 packs of 30 ml bottle maps to 90 ml.
From the digitized prescription, total recommended
dosage amount can be computed from dosage dura-
tion, daily dosage pattern and units to be consumed
at a time. Appropriate SKU and its quantity can be
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derived to minimally exceed this amount.

4 Data Collection

Due to the sensitive nature of prescriptions and
recent emergence of our medicine ordering applica-
tion, a public dataset of unstructured prescription
images does not exist to the best of our knowledge.
External benchmarks such as [5] only contain clean
text without any layout information. Hence, we
use a proprietary dataset of 1359 Indian prescrip-
tions paired with (fully or partial) digitized orders,
delinked from customer IDs. These are mostly or
fully printed prescriptions and have been validated
by our in-house experts. The prescription images
are modified as follows prior to modeling. AWS
Textract, which is security certified for critical data,
is used to extract text from images. The obtained
text is then run through AWS Comprehend to de-
tect personally identifiable information such as pa-
tient/doctor names, phone numbers and then the
corresponding OCR bounding boxes are grayed out.
For a subset of prescriptions, we procured in-house
human annotations for supervised training of all
components. Ground-truth text, BBs for medical
advice blocks, labeled text spans for medication
attributes, as well labels for pairs of candidate and
ground truth SKUs for medication matching were
annotated in the prescription image by the annota-
tors. More details on the annotation tasks are given
in Table 6. Table 1 lists details of the training and
evaluating splits for various components. Given the
expensive labeling effort, this data size is realistic
for early-stage specialized document AI systems.

5 Experimental Results

We present our evaluation method and results on
the efficacy of the full system and various compo-
nents with focus on medication attribute extraction.

5.1 Evaluation Methodology
Practical systems need to be evaluated during de-
velopment (offline metrics) and post deployment
(online metrics). Table 1 lists our offline evalua-
tion metrics. Most of these are self-explanatory
except Brand match which is the percentage of
medicine brand names ordered by the customers
in the extracted text and indicates the medical text
extraction efficacy. The online metrics of our sys-
tem (not reported for proprietary reasons) depend

2https://en.wikipedia.org/wiki/Word_error_rate
3Strict matching metrics as per SemEval-13 [7].

on whether the digitization is integrated into the
pharmacist processing flow or the customer-facing
UI. These include rate of correction of automated
cart suggestions, reduction in cart-building time, re-
duction in order rejections during verification stage
as well as business metrics on the order volume.

5.2 Component-wise Efficacy

Table 2 lists the metrics of various components of
our digitization pipeline, which we discuss below.
Text Extraction. Due to limited supervision, we
use pretrained off-the-shelf solutions. AWS Tex-
tract is our preferred choice as it provides a higher
brand match (+7%) than AWS Rekognition as the
latter has limit on the number of extractable words.
Advice Block detection. To reduce complexity for
downstream tasks, we first detect medical advice
blocks. We employ a two-stage solution (see Figure
4) of (a) clustering BBs using K-means on their po-
sitional coordinates, and (b) classifying each cluster
as advice block or not using XGBoost [8] classifier
trained on cluster position, and fractions of medical
and printed words. Lastly, adjacent advice blocks
are merged. This method can be extended to other
block types (e.g., header, footer) using a multi-class
classifier and block-type indicators. Our solution
results in an operational point with 94.8% recall,
88.1% precision, reduction in block size (Figure
5) and mostly homogeneous clusters (homogeneity
score: 0.857). Common errors occur due to: (a)
sparse text that cannot use local semantic context
well leading to false positives, and (b) long lines
that are ideally a single cluster but split because of
the high divergence in the horizontal dimension.
Medication Item Chunking. We exploit the obser-
vation that attributes of a medication are contiguous
with BRAND NAME preceding STRENGTH and the
ordering relative to FORM being flexible. Let tk be
the kth detected BRAND NAME token. For each tk,
we construct up to two candidate medications with
brand based on tk, STRENGTH based on the closest
STRENGTH token to tk in the span (tk, tk+1), and
FORM derived from the FORM tokens closest to tk
on either side in the spans (tk−1, tk) and (tk−1, tk).
Our approach yields high accuracy (97.2%) obviat-
ing the need for an ML system.
Matching and Canonicalization. As discussed in
Section 3.2, we employ a two-stage approach of
filtering and ranking using match score. For match
score computation, we consider two methods using
the same attribute fuzzy scores as inputs: 1) rule-
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Figure 3: (a) Illustration of the challenges with prescription digitization in emerging markets. The image presents a representative
Indian prescription, (b) Flow of automated order creation from prescription images

Figure 4: Flow chart of medical advice block detection mod-
ule. Highlighted blue boxes are predicted advice blocks.

based one with heuristics for handling missing val-
ues and 2) XGBoost classifier that predicts whether
a chunked item matches a candidate SKU using the
same features as rule-based one except heuristics.
Empirically, we see that the former approach yields
+18% gain over the latter in precision@1 of the top
matching item. Note that precision@1 is the same
as recall@1 due to stand-alone evaluation.

5.3 Medication Attribute Extraction

Table 3 shows performance of various approaches
based on multiple input signals: (a) Catalog Fea-
tures: These include membership scores of to-
kens with respect to dictionaries of BRAND-NAME,
INGREDIENT, STRENGTH (e.g., mg) and FORM

(e.g., tablet) created from the catalog, (b) Seman-
tic features: These include contextual text em-
beddings derived from transformer models such
as BERT [10] and MedBERT [25] pretrained on
Wikipedia and PubMed respectively, (c) Layout
features: Since the layout provides extra infor-
mation, e.g., text in the middle is usually medical

advice, we use LayoutLM [32] and LayoutLMv2
[31] models, which have multi-modal Transformer
architecture as backbone and utilize layout, visual,
and textual features to learn cross-modal interac-
tions, and (d) Collective labeling: We use the lin-
ear conditional random field (CRF) loss to exploit
relationships amongst labels, e.g. BRAND-NAME

often lies between FORM and STRENGTH.
Note than in Table 3, the token level metrics are

weighted with token length so that errors on small
tokens are less penalized and OTHER tokens are
excluded as these are not critical for the applica-
tion. From the results, we observe that XGBoost
trained with catalog features performs comparable
to custom Comprehend fine-tuned on our data il-
lustrating the importance of catalog signal. While
BERT-based models using semantic features fur-
ther improve the performance, the best accuracy
is seen when we incorporate layout features (Lay-
outLMV2 variants) as well. Note that models such
as Comprehend Medical and MedBERT are not
suitable for our problem as these are not trained on
the Indian medicine vocabulary.

Ablation Studies. To evaluate the efficacy of
the various signals as well as modeling sequen-
tial dependencies via CRF, we conducted ablation
studies. Since LayoutLMv2 already uses semantic
and layout features, we added collective labeling
(LayoutLMv2 + CRF) and catalog features (Lay-
outLMv2 + CF) separately and in a combined set-
ting (LayoutLMv2 + CF + CRF). We note from
Table 3 that performance only changes marginally.
Similar behavior is observed when using BERT-
variants indicating that catalog and collective la-
beling are subsumed by the semantic and layout
encoding. Good performance of XGBoost + cata-
log features variant points to presence of non-linear
interactions and value of catalog signal. Further
studies (Appendix A.4.2) indicate that the perfor-
mance depends on the quality and diversity of su-
pervision more than than the quantity pointing to
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Task Data split Metrics Approaches
Text extraction (-, -, 10) Brand match % Textract, Rekognition
Block detection (44, 5, 13) Precision (P), Recall (R) K-means + XGBoost
Medication attribute extraction (977, 190, 192) Token & entity level P, R, F1 3 Refer Table 3
Medication Item Chunking (977, 190, 192) Accuracy Rule based
Matching & canonicalization (272, 46, 58) Precision@k (P@k) Rule based, XGBoost

Table 1: Details of dataset (train,val,test splits), evaluation metrics, and approaches for sub-tasks.

Method Brand match%

Textract 56.17
Rekognition 49.38

(a) Text Extraction

Method Precision Recall

K-means +
XGBoost 0.881 0.948

(b) Block Detection

Method P@1

Rule based 0.945
XGBoost 0.765

(c) Matching

Method Accuracy

Rule based 0.972

(d) Medication Chunking

Table 2: Efficacy of various stages of pipeline excluding medication attribute extraction.

Type Model Token
Precision

Token
Recall

Token
F1

Entity
Precision

Entity
Recall

Entity
F1

AWS Solutions Custom Comprehend 0.955 0.882 0.915 0.774 0.790 0.782

Catalog Features (CF) CF + XGBoost 0.973 0.870 0.917 0.766 0.780 0.773

Semantic Features BERT 0.975 0.913 0.942 0.802 0.829 0.815
MedBERT 0.974 0.893 0.931 0.802 0.811 0.806

Layout Features LayoutLM (LLM) 0.981 0.918 0.948 0.826 0.834 0.830
LLMv2 0.983 0.926 0.953 0.829 0.842 0.835
LLMv2 + CF 0.981 0.915 0.946 0.835 0.837 0.836

Collective Labeling BERT + CRF 0.974 0.903 0.936 0.800 0.816 0.808
BERT + CF + CRF 0.974 0.896 0.932 0.808 0.814 0.811
LLMv2 + CRF 0.982 0.921 0.950 0.835 0.840 0.838
LLMv2 + CF + CRF 0.983 0.921 0.950 0.830 0.835 0.832

Table 3: Performance of various NER methods on medication attribute extraction.

the benefits of using active learning approaches.
Error Diagnosis. Table 4 presents an error diag-

nosis of our best model (LayoutLMv2) and areas of
improvement such as deducing labels from context
(e.g. "tablet once a day"→ Frequency). Figure 9
presents the confusion matrix of different medica-
tion attribute classes.

5.4 Overall Cart Building Efficacy

We evaluate the overall pipeline on a test set of 179
orders (71% are partially digitized) consisting of
200 digitized medication items. We predict top K
(K=3) SKUs for each medicine identified in the
prescription image for customer safety and evalu-
ate our approaches on precision@3 (i.e., fraction of
predicted being in the ground truth orders) and re-
call@3 (i.e., fraction of actual ordered medications
being detected). Since precision estimate is based
on partial orders, it is pessimistic. The baseline
method performs fuzzy matching of attributes (e.g.,
BRAND-NAME, FORM) of catalog items with n-
grams from complete prescription text and selects

top K SKUs for each prescribed medicine. Our pro-
posed approach combines the best version of each
component from Section 3.2 and gets +5.9% in pre-
cision@3 and +5.6% in recall@3 over the baseline.
Error diagnosis. Primary gaps in our approach
include: (a) Text extraction errors, e.g., capsule
extracted as "apsule" resulting in misclassification
as form; (b) Limited semantic understanding of
the model, e.g., "once a month" denotes Frequency
but was predicted as Duration; (c) Token not ex-
clusively associated with a label, e.g., “syrup” is
usually Form, but "corn syrup” is an Ingredient, and
(d) Minor variations in medication attributes (e.g.,
"LosarH" vs "LosarCH") which can be handled by
including INGREDIENT during matching.

6 Learnings

Below are our key learnings on building document
AI systems for low data regime:
Annotation design is critical. Annotation tasks
(drawing BBs, text chunking) should be well-
specified with low cognitive load and include all the
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````````Actual
Predicted ITEM-

MARKER
INGREDIENT FORM DURATION

BRAND-
NAME

STRENGTH FREQUENCY OTHER

ITEM-MARKER 6 . TAB

INGREDIENT Motia 3 Corn Syrup Pregabalin Para
Sucphate

FORM
ctab duone-
mer apsule T-FIL ointment at

bedtime
tab after
breakfast

DURATION
tues / thurs /
sat

BRAND-NAME
2 Clon-
azepam

Threptin
Diskettes VOGS GM Rient OD

STRENGTH
100 billion
spores SPF 50 10 gm

FREQUENCY 1 unit tablet once a
day

once a for
month 2 TSF bed Ativan

time

OTHER 1 . D-Rise
Glargin
composi-
tion Insulin

1 tab oral Continue Bioderma
Sebium

vertin tab
16mg

1-0-1 single
dose

Table 4: Error diagnosis matrix: Words colored in red belong to the row attribute and are confused for the column attribute.
For example, "Corn Syrup" is labeled as INGREDIENT but Syrup is wrongly predicted as FORM. There are few primary reasons
for the errors: (a) token being used with multiple labels, e.g., “syrup” is a common term in FORM, but "Corn Syrup” is a
special case where it is INGREDIENT. (b) Text extraction errors, e.g., Capsule detected as "apsule" resulting in it being labeled
as INGREDIENT instead of FORM. (c) Limited semantic understanding of the model (e.g., once a month is an expression for
FREQUENCY), and (d) High fraction of the OTHER class resulting in biased decisions.

relevant input (e.g., raw images) to avoid cascading
errors. This is especially true for annotations on
VRD output from OCR which could itself be er-
roneous. Building an annotation UI that leverages
existing models but allows for manual corrections
as part of a semi-automated workflow is an ideal
strategy for progressive improvement.
Divide and conquer. Despite the ubiquity of end-
end neural models, it is vital to choose a solution
approach based on application constraints, e.g.,
data limitations, the need for modularity to support
phased development and audibility. We adopted a
divide-and-conquer approach by partitioning our
problem into sub-tasks which could be solved sep-
arately using domain knowledge where possible.
Our multi-stage solution is extensible and reusable
across different workflows and data segments.
Model and problem complexity should match.
Ideal performance is obtained when complexity of
approach matches that of the problem conditioned
on available data and domain knowledge. We no-
ticed in our case that richer ML models were com-
parable or under-performed simpler ML models
and domain heuristic-based approaches in medicine
chunking and matching tasks due to less data.

7 Concluding Remarks

Prescription digitization is a critical enabler of on-
line pharmacy services. We present a holistic, mod-
ular approach to address this problem in a low data
regime using hybrid ML and rule-based compo-
nents. Our approach uses layout signals, medical
ontologies, sequential dependencies, and semantic
embeddings to yield significant improvement over

baselines and good performance on unstructured
printed prescriptions. Ongoing directions include
using active learning to judiciously label data (sec-
tion A.4.2), pseudo labeling of partially digitized
orders and digitizing handwritten prescriptions.

8 Limitations

Our prescription digitization approach has a few
limitations but is still effective for a broad enough
application domain and permits future enhance-
ments that address these limitations. First, our
system uses an off-the-shelf text extraction tool
(AWS Textract) that provides accurate extractions
on printed prescriptions but has variable perfor-
mance on hand written data depending on the legi-
bility of the handwriting. In future, we plan to build
a specialized extraction model trained to recog-
nise medical practitioner’s handwriting to replace
AWS TextExtract. Further, multiple components
in our approach (e.g., attribute extraction) have
been trained on primarily English transcriptions.
Extension to other language prescriptions requires
access to medical vocabulary and training data in
those languages. Note that AWS Textract supports
multiple languages and can be readily paired with
an automated translator to convert the content to
English. We did not consider this option since mul-
tilingual prescriptions in India tend to have mixed
content with medications written in English itself.
Lastly, the performance of multiple tasks such as
advice block detection, medication attribute extrac-
tion and matching-canonicalization depends on the
coverage of the available medical catalog.
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9 Safety and Ethics Statement

Our motivation is to improve access and affordabil-
ity to online pharmaceutical services in emerging
markets such as India through accurate and easy
digitization of medical prescriptions. Given the
sensitive nature of medical prescriptions and the
associated health impact, it was critical to pay at-
tention to multiple aspects that we discuss below:
Secure and Privacy-safe Data Collection: Pri-
vacy of customer data is paramount to us. Hence,
prior to modeling, we remove customer, facility
and practitioner information by obscuring the re-
gions containing personally identifiable fields such
as names, phone numbers, and addresses, which
are identified using security-certified AWS services
(AWS Comprehend, AWS Textract).
Model Bias: A key limitation of the existing medi-
cal NER models is their poor performance on non-
US and EU prescriptions due to bias in the training
data, which is almost exclusively based on US-
EU centric medical content and vocabulary. In
our approach, we have deliberately chosen to have
explicit dependence on aspects that vary across geo-
graphical regions (e.g., medical catalog), which en-
hances the applicability of our approach. To further
limit the model bias and minimize distributional
differences between training and production set-
tings, we have trained our models on prescription
images that are randomly sampled from customer
uploads. These often include low resolution and
improperly positioned images. In future, as the
scope of deployment changes, we plan to period-
ically retrain the model with training images by
sampling from the production data.
Health Safety: One of the primary concerns in
prescription digitisation is the impact of errors on
patient health and adherence to health regulations.
To alleviate adverse outcomes, we have multiple
guardrails. First, we present the top three sugges-
tions along with scores for each medication for
two-fold review by customer and pharmacist. Sec-
ond, to avoid prescription abuse (e.g., manipulation
of quantities, prescription reuse) and comply with
regulations, there are additional checks based on
the prescription date, patient purchase history, and
recommended limits on medication quantities.
Usage for a Limited Scope: Our proprietary sys-
tem has been trained for a specific-use case, i.e.,
prescription digitization with acceptable perfor-
mance on primarily English printed prescriptions
for India region. We plan to use the model within

this limited scope and expand usage only after ade-
quate benchmarking. To limit the risks of misuse,
we do not plan to release this system externally.
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A Additional Solution Details

A.1 Prescription Schema
Refer to Table 5 for prescription schema.

Field Type Description

Medicine ID Identifier Unique code in catalog

Duration Numeric #Days to consume the
medicine

Consumption
Pattern Enum Consumption pattern of

the doses, e.g., 1-0-0

Repeat Fre-
quency Numeric

For medications con-
sumed with gaps across
days

As Needed In-
dicator Boolean Set to true if medicine is

to be taken SOS
Dosage Size Numeric Size of the dose

Dosage Units Enum Units for quantifying
dose (e.g., 1 ml, 1 tablet)

Additional In-
struction String Guidelines on consum-

ing the medicine

Table 5: Schema for digitized prescription which is compliant
with FHIR standard.

A.2 Annotation Tasks
Refer to Table 6 for details on annotation tasks.

Annotation Task Labels

Block
Identification

Medical advice, Other

Medication Item
Chunking

B, I, O label for medica-
tion item segments

Medication
Attribute
Extraction

B, I, O labels based on
entities below
a) DURATION
b) FORM
c) FREQUENCY
d) INGREDIENT
e) ITEM-MARKER
f) BRAND-NAME
g) STRENGTH

Table 6: Annotation of VRD is done in three ways - (a)
forming BB around relevant block such as medical advice,
(b) identification of series of tokens which form one medica-
tion item, (c) extraction of attributes required for identifying
medicinal items, e.g., BRAND-NAME, STRENGTH.

A.3 Advice Block Detection
Figure 5 shows the reduction in length of prescrip-
tions with advice block detection.

A.4 Medication attribute extraction
A.4.1 Training setup and details
For training LayoutLMV2 model (our best perform-
ing model), PyTorch [23] is used and the pretrained
model is taken from open-source Huggingface li-
brary. Batch size of 2 and dropout of 0.1 is used
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(a) Token count density distribution for prescriptions (b) Token count density distribution for Advice blocks

Figure 5: Histogram for token sequence length for the entire prescriptions and advice blocks. Note that advice
blocks tend to be much smaller than the 512 tokens required for a transformer.

for model training. Learning rate schedule and
loss convergence curves are shown in Figure 6.
Model architecture for LayoutLMv2 is shown in
Figure 7. Adam optimizer is used with exponential
decay rates for first moment and second moment
estimated as 0.9 and 0.99 respectively.

(a) Loss curve epoch wise (b) Learning rate step wise

Figure 6: Details of the training set up for the LayoutLMv2
Model.

A.4.2 Efficient Use of Unlabeled Data.
Training the model with an increasing number of
randomly chosen prescriptions indicated that there
is improvement in performance, but at a relatively
slow rate. Since labeling effort is much more ex-
pensive than acquisition of unlabeled prescriptions,
we explored using common active learning meth-
ods [26] to prioritize the selection of prescriptions
for labeling. Figure 8 shows the learning curves
using increasing training data size with selection
based on random sampling, entropy of class poste-
riors, and product of entropy as well as normalized
occurrence frequency in the unlabeled data. The re-
sults point to potential benefits of judicious prioriti-
zation but more exploration is required to optimally
combine the entropy and frequency signals.

B Related Work

Our work is primarily related to four areas of re-
search that we briefly review below.
Document AI is a multi-disciplinary area centered

Figure 7: LayoutLMv2 Model Architecture from [31]

on understanding visually rich documents (VRDs)
using techniques [22, 20] spanning computer vi-
sion, layout understanding, natural language under-
standing, and information retrieval. Document AI
techniques that combine Optical Character Recog-
nition (OCR) [4, 2, 1] with graph neural net-
works [33, 34, 18, 29, 19] have proven to be ef-
fective at extracting structured information from
documents images, especially for well-formatted
printed documents with tables and headers such as
invoices. However, these methods perform poorly
on documents with uneven layout and handwrit-
ten content, such as medical prescriptions. Recent
models such as LayoutLM [32, 31] that jointly
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Figure 8: Plot of test entity level F1 score with model trained
using different data selection strategy and data volume. Curves
represent data selection strategies based on a) class posteriors
entropy, b) product of entropy and normalized frequency and
c) random sampling

Figure 9: Confusion matrix showing detailed error re-
ports.

learn the layout, visual, and text signal from a
large corpus of document images improve perfor-
mance with uneven layout. Handwritten text recog-
nition (HTR) remains an open challenge despite
advances in multi-dimensional RNNs and trans-
former models [9, 12, 17] due to the variability in
author style and limited supervision. Incorporating
domain-specific language models is, thus, critical
for domain-specific HTR. We combine ideas from
OCR, LayoutLM, and domain catalog-based match-
ing to create a tailored solution for our application.
Information extraction techniques [29, 21, 13]
that deal with conversion of unstructured text to
structured form, especially forming blocks of inter-
est comprising lists of multi-attribute records are

directly relevant to our application. These methods
primarily use coupled models for segmentation and
attribute detection (i.e. entity recognition (ER)),
based on conditional random fields in combination
with semantic embeddings derived from seq2seq
models such as BERT [10], Bi-LSTMs and require
extensive labeled data. Since such supervision is
limited in our scenario, we decouple segmentation
and attribute extraction tasks, using simpler ap-
proaches for the former and exploring the SOTA
ER techniques while incorporating ideas on exploit-
ing ontologies [30].
Prescription Digitization has seen rising interest
in recent years with standardization of health data
resources [3, 14]. Most techniques [28, 24, 11, 16],
however, fixate on the ER aspects assuming the
input is an unstructured text sequence and present
results on benchmark datasets [27, 13, 5] of printed
clinical documents from Western marketplaces.
These models are inadequate for unstructured pre-
scriptions since these do not account for the ex-
traction errors, layout signals, and the gaps in the
vocabulary. Therefore, we focus on developing a
holistic approach with raw noisy prescriptions as
input.
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