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Abstract

In this work, we report our efforts in advanc-
ing Chinese Word Segmentation for the pur-
pose of rapid deployment in different applica-
tions. The pre-trained language model (PLM)
based segmentation methods have achieved
state-of-the-art (SOTA) performance, whereas
this paradigm also poses challenges in the de-
ployment. It includes the balance between
performance and cost, segmentation ambigu-
ity due to domain diversity and vague words
boundary, and multi-grained segmentation. In
this context, we propose a simple yet effective
approach, namely CWSeg, to augment PLM-
based schemes by developing cohort training
and versatile decoding strategies. Extensive
experiments on benchmark datasets demon-
strate the efficiency and generalization of our
approach. The corresponding segmentation sys-
tem is also implemented for practical usage and
the demo is recorded.

1 Introduction

Chinese word segmentation (CWS) is a prelimi-
nary but essential procedure for Chinese language
processing tasks, and has been applied in various
scenarios (Yang et al., 2018; Zhang et al., 2019; Cui
et al., 2020; Han et al., 2020; Zhang et al., 2020;
Tan et al., 2020; Lu et al., 2023). Especially for fast
complete recall and accurate semantic understand-
ing in search and recommendation scenarios (Bao
et al., 2022), CWS is still indispensable. In addi-
tion, experiments on Chinese LLaMA and Alpaca
show that the token throughput of the model that
expands the vocabulary through word segmentation
has greatly improved the processing of Chinese text
compared with the original model (Cui et al., 2023).
Recent deep learning methods have achieved re-
markable results on publicly available datasets in
this regard (Qiu et al., 2019). Also, the pre-trained
language model (PLM) (Liu et al., 2019) further

+Work was done at SenseTime Research
*Corresponding author

emerges as the paramount foundation of text rep-
resentation for CWS as seen in other tasks (Tian
et al., 2020b; Huang et al., 2020a; Maimaiti et al.,
2021).

Current PLM-based approaches, however, pose
three hurdles to the production deployment we need
to cross: (1) One dilemma is the trade-off between
the model performance and inference speed. (2)
The lexical diversity and domain gap also jeop-
ardize the fast deployment of a generic model to
customized scenarios. (Maimaiti et al., 2021). (3)
PLM-based schemes with single granularity are
less likely to meet multi-granularity demands of
practical relevance.

To tackle these issues, we propose an efficient
and general approach to augmenting PLM-based
Chinese Word Segmentation methods, namely
CWSeg. It can extrapolate to different sequence la-
beling scenarios. Recent studies showed that small
models also have the potential to be comparable to
large models (Ba and Caruana, 2014; Zhang et al.,
2018). We thus introduce a new cohort training
strategy to co-train a cohort of multi-scale model
artifacts to meet the performance and real-time de-
mands. Specifically, we employ Wasserstein dis-
tance (WD) (Rüschendorf, 1985) to orchestrate dis-
tributions of model cohorts to enable more robust
learning. In addition, we propose to construct the
tailored domain-specific lexicon Trie (Liu et al.,
2002) and build up a versatile decoding scheme to
augment the optimal segmentation path searching
on the fly for diverse practical scenarios. It can flex-
ibly adjust the segmentation granularity and benefit
customized domains.

In summary, our primary goal is to build a versa-
tile framework for strengthening different models
simultaneously and then rapidly deploying them
into multiple practical scenarios of CWS, which
is fundamentally different from existing research
works. Essentially, the output models of this frame-
work can be regarded as complements to, not re-
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placements for, existing SOTA methods.
Experimental results on multiple benchmark

datasets demonstrate the effectiveness of our ap-
proach. Ablation studies confirm the necessity of
cohort training strategy and lexicon Trie aided ver-
satile decoding solution. The cross-domain appli-
cation experiments demonstrate the generalization
capacity of our holistic approach.

2 Related Work

Early work in Chinese word segmentation builds
upon the statistical assumption (Li and Sun, 2009;
Sun et al., 2012a) by modeling rules into the learn-
ing process. Recently, PLMs have been introduced
(Tian et al., 2020b,a; Maimaiti et al., 2021) and
made significant advances in this regard. Our work,
however, aims to alleviate their potential challenges
involved in the industrial applications as mentioned
in Section 1.

Recent works (Huang et al., 2020b, 2021) distill
knowledge from the well-trained teacher model
into a student model to balance the model scale and
performance. However, it requires multiple fine-
tuning rounds and models can’t learn from each
other collaboratively. In this work, we introduce a
cohort training based learning strategy to address
these two problems for CWS. Different from the
pioneering mutual learning (Zhang et al., 2018) in
computer vision, we propose Wasserstein distance
to better enable the learning as studied in Sec. 4.3.
It’s a more carbon-footprint-friendly solution as
compared to recent research threads.

To mitigate the effects of Chinese lexical diver-
sity, Qiu et al. (Qiu et al., 2019) proposed a concise
unified model to extract the criterion-aware repre-
sentation for multi-criteria corpus, which requires
training from scratch on the entire corpus for new
criteria or domains. Gong et al. (Gong et al., 2017,
2020) proposed a multi-grained word segmentation
by training with large-scale pseudo labels, which
is relatively lagging for rapid deployment to new
domains. Our work approaches this issue by a
lightweight versatile decoding scheme to sidestep
heavy training loads.

3 Methodology

As shown in Fig. 1 (a), we formulate CWS as a
classical sequence labeling problem as with exist-
ing compelling schemes. Concretely, given a text
sequence of n characters X = {x1, . . . , xn}, CWS
is to tag involved characters sequentially with the

Figure 1: Overview of the CWSeg framework. (a) In the
training phase, we set several SOTA models as training
cohorts and initial weights from PLM. (b) In the infer-
ence stage, we select the most suitable artifacts from
the cohort for the actual scenario and apply the versatile
decoding strategy for the multi-granularity demands.

Figure 2: The cohort training strategy.

BIO encoding by maximizing their joint probability
p(y1, . . . , yn|X ) where yi ∈ T = {B, I,O}, short
for beginning, inside and outside respectively.

3.1 Cohort Training

The cohort training strategy enables multiple stu-
dent models to teach and learn from each other. The
objective function contains supervised loss Lc and
mimicry loss Lm. As exemplified by two models
in Fig. 2, the overall loss function is:

L = Lc1 + Lc2 + λ · Lm (1)

where λ ∈ [0, 1] is a hyper-parameter. Lc1 and Lc2
guide the model learning under the supervision of
real segmentation tags while Lm can encourage
different models to learn from each other collabo-
ratively.

Specifically, Lc1 and Lc2 refer to the cross en-
tropy (CE) loss. Without loss of generality, Lc1 =

−∑N
i=1

∑|T |
t=1 I(yi, t)log(p

t
1(xi)) and pt1(xi) =

exp(zt1)∑|T |
t=1 exp(z

t
1)

where I(·) is an indicator function,

pt1(xi) is the prediction probability, zt1 is the output
logit of the model F1. For Lm, Kullback-Leibler
(KL) divergence is a naive metric to quantify the
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distance between two distributions KL(p2||p1) =∑N
i=1

∑|T |
t=1 p

t
2(xi)

pt2(xi)

pt1(xi)
. However, KL diver-

gence is asymmetric and possibly infinite when two
distributions are disjoint or there are points such
that p1(xi) = 0 and p2(xi) > 0, which is fragile
in training (Arjovsky et al., 2017). The symmetric
Jensen-Shannon (JS) divergence, suffers from the
same problem (See A.1 for more details). Given
the above concerns, we introduce the Wasserstein-1
distance (a.k.a. earth mover’s distance):

W (p2,p1) = inf
γ∈∏(p2,p1)

E(x,y)∼γ [∥x− y∥] (2)

where
∏
(p2,p1) is the set of all joint distributions

γ(x,y) whose marginals are p2 and p1, respec-
tively. As shown in Appendix A.1, Wasserstein
distance can provide a meaningful and smooth rep-
resentation of the in-between distance for two dis-
tributions in lower dimensional manifolds without
overlaps. Eq. (2), however, is highly intractable.
We thus resort to Kantorovich-Rubinstein duality:

W (p2,p1) = sup
∥f∥≤1

Ex∼p2 [f(x)]− Ey∼p1 [f(y)]

(3)
where the supremum is over all the 1-Lipschitz
* function f : RK → R, which maps each K-
dimensional feature vector in the semantic space
to a real number. In practice, f is implemented
as a two-layer feed-forward neural network with
parameters Θf clipped to [−c, c], where c > 0.
Therefore, the mimicry loss Lm can be derived as
the dual form of Wasserstein distance:

Lm = max
Θf

∑

(x,y)

[f(x)− f(y)] (4)

Extension to Larger Cohort The cohort training
strategy can be easily extended to larger cohorts.
For example, given K models (K ≥ 2), the overall
loss function L can be formulated as:

L =

K∑

i=1

Lci +
2 · λ

K(K − 1)

K∑

i=1

K∑

j=i+1

W (pj ,pi)

(5)
Obviously, Eq. (1) is a special case of Eq. (5)

when K = 2.

3.2 Versatile Decoding
However, the PLM-based segmentation capacity of
single-granularity barely meets diverse real-world

*f is 1-Lipschitz⇔ |f(x)− f(x′)| ≤ |x− x′| for all x
and x′

Figure 3: The versatile decoding strategy. (a) The bot-
tom left shows the fine-tuned model prediction, which is
largely affected by the training corpus. (b) The top left
shows phrases matched by the lexicon Trie built from a
user-defined vocabulary set. (c) The right part integrates
matching results by constructing CWSGraph and uses
the Viterbi algorithm for dynamic decoding according
to granularity requirements.

applications. As illustrated in Fig. 3 (a), the model
tends to decode the input text as “中国 (China) /科
学技术 (Science and Technology) /大学 (Univer-
sity)”, whereas only the input as a whole “中国科
学技术大学 (University of Science and Technol-
ogy of China, USTC)” refers to a meaningful entity.
Additionally, for large-scale content recommenda-
tions, rapidly acquiring as much relevant content
as possible is an essential step towards quality can-
didates on which more sophisticated methods can
function. Thus, reasonably splitting the whole en-
tity of “中国科学技术大学 (USTC)” into smaller
relevant semantic units “中国 (China) /科学 (Sci-
ence) /技术 (Technology) /大学 (University)” is
crucial in this regard.

In this context, we focus on adapting generic
models trained on annotated corpora to specific
domains and supporting diverse granularity. It in-
cludes the construction of lexicon Trie (Liu et al.,
2002) and versatile decoding.

Lexicon Trie: The lexicon Trie is designed to
store vocabulary in a compressed Trie structure
and search for each word efficiently. As illustrated
in Fig. 3 (b), the solid node denotes the root node,
and each circle denotes a Trie node, which contains
a value containing a Chinese token and a label
representing whether it is a complete word from the
root node so far. Here the red circle indicates that
the label is equal to True. Thus, given a collected
vocabulary set, we can initialize a lexicon Trie.

In the matching stage, given an input text such
as “中国科学技术大学”, we apply the matching
algorithm to search for all complete words in the
input text that can be matched on the lexicon Trie.
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The matched word list is shown in Fig. 3 (b).

Diverse Modes: The granularity crite-
rion criteria is roughly determined by the
RouteScore, which is the number of chunks
in the segmented path regularized by semantic
completeness. In total, we have the following four
modes:

Normal Mode: High-probability segmentation
that conforms to the statistics of the data.

Fine Mode: RouteScore larger than normal,
collecting more semantic units.

Coarse Mode: RouteScore smaller than nor-
mal, perceiving more complete semantics.

Index Mode: A segmentation result that com-
bines the above three modes.

The whole process can be formulated as Fig. 3
and Algorithm 1 (refer to A.1 for more function
details). In addition to the prediction from the fine-
tuned model F , we create a lexicon Trie D from
the pre-processed vocabulary set V to capture all
candidate phrases C without training. We merge
predictions P into candidates set C to construct
CWSGraph G, where each node represents a token.
Viterbi algorithm is adopted for decoding according
to the granularity criteria. In this way, we can
flexibly tailor model-based segmentation results to
multiple domain-specific scenarios while meeting
the multi-granularity requirements.

Algorithm 1 Versatile Decoding

Input: Text sequence X , fine-tuned model F , lex-
icon Trie D, granularity mode m.

Output: Text sequence label: Y .
1: P = F(X ); C = Matching(X ,D)|P;
2: G = CWSGraph(C);
3: borders = ExtractBorders(P);
4: if m = "normal" then
5: Y = P
6: else if m = "fine" then
7: cands = CutBorders(G, borders);
8: Y = Viterbi(G, cands, criteriam);
9: else if m = "coarse" then

10: cands = LinkBorders(G, borders);
11: Y = Viterbi(G, cands, criteriam);
12: else if m = "index" then
13: for m:["normal", "fine", "coarse"] do
14: Y |= VersatileDecoding(X ,F ,D,m);
15: end for
16: end if
17: return Y

4 Experiments

4.1 Setup

Dataset We experiment with six widely-used
datasets AS, CityU, CTB6, MSR, PKU, Weibo,
from SIGHAN 2005 Bakeoff, Chinese Treebank
and NLPCC2016 (SIGHAN2005Bakeoff; Emer-
son, 2005; Xue et al., 2005; Qiu et al., 2016). The
basic statistics and train/dev/test settings are de-
tailed in Table 1.

Corpus Vocab.
Size

Word Len. Dataset Size
50% 75% Train Dev. Test

AS 144.5k 3 3 698.9k 10.0k 14.4k
CityU 70.7k 2 3 47.7k 5.3k 1.5k
CTB6 47.5k 2 3 23.4k 2.0k 2.7k
MSR 90.1k 3 5 78.2k 8.7k 3.9k
PKU 58.1k 2 3 17.1k 1.9k 1.9k
Weibo 56.1k 2 3 20.1k 2.0k 8.5k

Table 1: The statistics of the datasets.

Baselines We select baselines both from tradi-
tional methods and the well-executed or SOTA
methods, such as Jieba (jieba) (Fast CWS tool
based on HMM), HanLP (pyhanlp) (CRF-based
method), THU (THULAC) (Perceptron-based
method), PKU (PKUSeg) (CRF-based CWS tool
uses a new training method, namely, the adaptive
online gradient descent method based on feature
frequency (Sun et al., 2012b)). Since the major ar-
chitecture of recent competing methods is CRF on
top of Transformers (e.g., BERT and its variants),
and as mentioned earlier, our flexible framework
CWSeg is a complement to, not a replacement for,
existing compelling methods, we experiment with
our method on BERT-CRF (refer to A.1 for more
details), which can be easily applied to other vari-
ants. WMSeg (Tian et al., 2020b), another most
recent SOTA method based on this architecture
utilizing memory networks to incorporate word-
hood information, is also used for comparison. To
be noted here, the PLMs implemented in BERT-
CRF and WMSeg are the BERT base model. Since
CWSeg adopts the cohort training strategy, we set
base versions of BERT and NEZHA as cohorts.

Experiment Settings The PLMs used in this
work are readily available, and are the widely rec-
ognized SOTA backbones in the Chinese commu-
nity. Such as ‘BERT’ for bert-base-chinese (Devlin
et al., 2019; bert-base chinese), ‘RoBERTa’ for
chinese_roberta_wwm (Liu et al., 2019; chinese-
roberta wwm), ‘NEZHA’ for NEZHA-Base-WWM
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(Junqiu Wei, 2019; NEZHA-Base-WWM). They
are based on Chinese characters (similar to sub-
words in English). We choose Adam optimizer
(Kingma and Ba, 2014) with an initial learning rate
as 2e-5 and tuned amongst {1e-4, 5e-5, 2e-5, 1e-5}.
We use the early stopping mechanism (Yao et al.,
2007) in the model training. The batch size was
tuned amongst {32, 64, 128}. The hyper-parameter
λ was set as 0.5 and tuned from [0.01, 1], and
the clipping threshold c was set as 0.5 and tuned
from [0.1, 0.5]. All experiments were run on In-
tel(R) Core(TM) i7-8700 CPU @ 3.20GHz and
NVIDIA V100-32g GPUs. Note here that all these
time-cost comparison experiments are tested on the
same CPU device, while deep methods run faster
on CUDA devices.

Adapt w/o
Retraining

Multi-
granularity F1 Latency

(s/k)
Jieba ! ! 80.67 0.17
HanLP ! ! 82.34 0.33
THU ! - 88.09 0.57
PKU - - 91.29 0.63
BERT-CRF - - 96.59 12.7
WMSeg - - 97.06 14.5
CWSeg ! ! 97.65 12.9

Table 2: Overall model comparison. ‘s/k’ refers to
seconds spent per thousand requests on the same CPU
device.

4.2 Main Results

Overall Performance Table 2 reports the overall
performance. For the sake of fairness, we utilize a
unified model and average F1 scores of six individ-
ual test sets (Luo et al., 2019). BERT-CRF stands
out as compared to traditional methods due to the
powerful representation capacity of the pre-trained
language model. Following the PLM paradigm,
(Tian et al., 2020b,a) further fuses wordhood in-
formation into the network, and achieves better
performance compared to BERT-CRF. For simplic-
ity, we set the BERT-CRF architecture as the cohort
in our implementation to verify the gain effect of
our framework. As shown in Table 2, our approach
further advances BERT-CRF with cohort training
and versatile decoding without reshaping model
architecture, which also defeats the most recent
SOTA method WMSeg (Tian et al., 2020b).

Multi-grained Segmentation We evaluate
CWSeg on four different segmentation modes. As
shown in Table 3, compared to the model without

Examples Modes Outputs

新型冠状病毒
COVID-19

Normal 新型/冠状/病毒
New Type/ Crown/ Virus

Fine 新型/冠状/病毒

Coarse 新型冠状病毒
COVID-19

Index

新型/冠状/病毒/
新型冠状病毒/
冠状病毒
Coronavirus

上海中心大厦
Shanghai
Tower

Normal 上海/中心/大厦
Shanghai/ Center/ Building

Fine 上海/中心/大厦

Coarse 上海中心大厦
Shanghai Tower

Index

上海/中心/大厦/
上海中心/
Shanghai Tower
中心大厦/
Centre
上海中心大厦

欧洲联盟
European Union

Normal 欧洲/联盟
Europe/ Union

Fine 欧洲/联盟

Coarse 欧洲联盟
European Union

Index 欧洲/联盟/欧洲联盟

中国科学技术大学
USTC

Normal 中国/科学技术/大学
China/ Sci. n Tech/ University

Fine 中国/科学/技术/大学
China/ Sci./ Tech/ University

Coarse 中国科学技术大学
USTC

Index 中国/科学技术/大学/科学/
技术/中国科学技术大学

Table 3: The multi-granularity case study.

versatile decoding, CWSeg can better capture the
whole words of the entity. This also illustrates the
granularity gap between annotated corpora and
the application scenarios. With versatile decoding,
CWSeg can generate both fine-grained and coarse-
grained labels. And multi-granularity results
provide more knowledge and indexing, which is
crucial for multiple scenarios such as retrieval,
content recommendation, and advertisement.

4.3 Ablation Study

We investigate the impact of versatile decoding,
cohort training, and different losses on CWSeg.

Effect of Versatile Decoding Table 4 details the
performance gain of our approach in the domain
adaption. It enables models to be readily applied
to new domains without training. Take MSR for
instance, our approach lifts the model performance
by a large margin of 7%. This is reasonable as MSR
has significantly different distributions compared
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Train Test Methods F1

All w/o AS AS CWSeg 96.91
w/o Versatile 96.88 (-0.03)

All w/o CityU CityU CWSeg 92.48
w/o Versatile 91.41 (-1.07)

All w/o CTB6 CTB6 CWSeg 89.21
w/o Versatile 89.17 (-0.04)

All w/o MSR MSR CWSeg 92.26
w/o Versatile 85.26 (-7.00)

All w/o PKU PKU CWSeg 92.58
w/o Versatile 90.56 (-2.02)

All w/o Weibo Weibo CWSeg 87.73
w/o Versatile 86.01 (-1.72)

Table 4: The effect of versatile decoding by cross-
domain experiments. ‘All w/o AS’ means all datasets
after removing AS. ‘w/o Versatile’ refers to the CWSeg
model without the versatile decoding module.

to others as shown in Table 1, and thus requires the
domain-adaptive decoding strategy.

PLM Settings SN MD CH
Net1 Net2 Net1 Net2 Net2 Net1 Net2

BERT-4 BERT-1 96.31 93.85 94.04 96.9 94.84
NEZHA-4 NEZHA-1 96.83 94.39 94.87 97.03 95.37

Table 5: The effect of cohort training experiments on
CTB6 (F1). ‘MD’ for model distillation of Net1 distills
Net2, ‘SN’ for single training, and ‘CH’ for cohort
training. ‘BERT-4’ means the first 4 layers of the BERT
base model.

Effect of Cohort Training Overall, the cohort
training outperforms the classical model distillation
approach in terms of small models as evidenced
by Net2 (94.84 vs 94.04 and 95.37 vs 94.87) in Ta-
ble 5. It’s worthwhile to note that big models also
benefit from the cohort training as compared to the
independent training (e.g., Net1: 96.9 vs 96.31 and
97.03 vs 96.83). In this setting, the CH training
policy, which is trained only once and converges
faster, is about 3 times faster than MD, which re-
quires 3 stages of training (Train Net1, train Net2,
Net1 distills Net2).

Effect of Cohort Settings To study the effect of
the cohort settings, we conducted a detailed analy-
sis. As shown in Table 6, we can easily find that:
(1) The cohort setting stands out in all trials, and
the small model improves more significantly. (2)
Larger models improve small models better. (3)
Diversity in cohort settings promotes performance.

Effect of Wasserstein Distance For the cohort
training, we further study the impact of mimicry
loss. Specifically, we compare WD with KL and

BERT-1 BERT-4 BERT-8 NZ-1 NZ-4
F1 93.85 96.31 96.97 94.39 96.83

(a) Single model training settings. ‘NZ’ for NEZHA.

BERT Cohort NZ Cohort
PLM BERT-1 BERT-4 BERT-1 BERT-8 NZ-1 NZ-4

F1 94.84
(+0.99)

96.9
(+0.59)

94.88
(+1.03)

97.31
(+0.34)

95.37
(+0.98)

97.03
(+0.20)

(b) Cohort training settings with the same backbone.

BERT and NEZHA Cohort
PLM BERT-1 BERT-4 NZ-1 NZ-4
F1 94.85 (+1.00) 96.91 (+0.60) 95.51 (+1.12) 97.16 (+0.33)

(c) Cohort training settings with different backbones.

Table 6: The effect of cohort setting experiments.

KL JS WD
BERT-1 94.39 94.48 94.56
BERT-2 95.81 95.82 96.02

Table 7: The effect of Wasserstein distance loss. ‘WD’
for Wasserstein distance.

JS as detailed in Table 7 and Fig. 4. WD is slightly
better than both KL and JS in large part due to the
performance ceiling, whereas it can significantly
accelerate cohort training by multiple folds. This
is appealing, especially for multiple large-scale
model learning.

4.4 Trade-off between Performance and
Speed

We experiment with cohort training (CH) of BERT-
1, BERT-4, BERT-8, and BERT-12. As a compar-
ison, these 4 single networks (SN) are also fine-
tuned independently. The latency for CH and SN is
the same, and the units of latency are defined in Sec-
tion 4.2. As shown in Fig. 5, overall, CH produces
a batch of different model artifacts simultaneously
as designed, which outperforms counterparts of SN
without inference latency penalty. For example,
CH-4 setting has almost the same segmentation
performance as SN-12. These artifacts can serve
different inference scenarios. Specifically, CH-1
can be used for real-time demanding applications
and CH-12 works well on the offline inference sce-
narios with more tolerance of latency.

5 Discussion

Our latency comparisons are benchmarked on the
same CPU device, while deep methods run faster
on CUDA devices. Besides, we can resort to a fast-
compiling language (e.g., C++) backed platform
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Figure 4: Loss convergence comparison for BERT-1 and
BERT-2 in cohort settings.

Figure 5: The trade-off of performance and speed.

or tailored toolchain (e.g., ONNX) to optimize the
serving speed. How to apply diversity modes to
different scenarios? Generally speaking, the coarse
mode is to perceive complete semantics, and the
fine mode is to perceive more extensive concepts.
For example, in the scenarios of search and recom-
mendation, the normal or coarse mode is employed
to process web pages to build inverted indexes. In-
dex mode is often used for query expansion, where
we disassemble queries into multiple granularities
to maximize recall of relevant documents.

6 Conclusion

In this work, we develop an efficient and general
framework, CWSeg, which enables the state-of-the-
art schemes of Chinese word segmentation better
prepared for industrial deployment scenarios. We
present Wasserstein distance-based cohort learn-
ing method and versatile decoding to facilitate the
trade-off between segmentation performance and
serving latency as well as the fast cross-domain
adaption. Comprehensive experiments are per-
formed to justify the efficiency and generalization
of CWSeg. We believe that our work can be extrap-
olated to other sequence labeling problems straight-
forwardly.

Limitations

This study has potential limitations. When the
CWSeg model is applied to a new domain, we
assume that words and phrases solely related to the
domain are available.
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A Appendix

A.1 Model Details

Cohort Model We set the SOTA CWS model ar-
chitecture BERT-CRF as cohort model implemen-
tations to exploit the PLM strength and transition
patterns of the labeling system.

For each character xi is mapped to xi ∈ Rde ,
where de is the embedding size. The PLM encoder

extract the contextual features hi ∈ Rdh automati-
cally for each character xi by

[h1,h2, ...,h|X |] = Encoder(X), (6)

where X ∈ Rde×|X | is the embedding matrix of
X , dh is the size of hidden features. There are
several prevalent choices for Encoder model, such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019).

There are rules in the labeling systems, such as
the I can only be after the B label. We thus utilize
the conditional random fields (CRF) (Lafferty et al.,
2001) to model the transition patterns, which can
be formulated as:

p(yi|xi) =
exp(WcW

⊤
o hi + bc)∑

yi−1yi
exp(WcW⊤

o hi + bc)
, (7)

where Wo ∈ Rdh×|T |, Wc ∈ R|T |×|T |, and bc ∈
R|T | are training parameters to model the transition
from yi−1 to yi.

Figure 6: Suppose two probability distributions P and
Q. ∀(x, y) ∈ P, x = 0, y ∼ U(0, 1); ∀(x, y) ∈ Q, x =
θ, 0 ≤ θ ≤ 1, y ∼ U(0, 1).

Wasserstein Distance As shown in Fig. 6, there
is no overlap between P and Q when θ ̸= 0, and:

KL(P ||Q) =
∑

x=0,y∼U(0,1)

1 · log1
0
= +∞,

KL(Q||P ) =
∑

x=θ,y∼U(0,1)

1 · log1
0
= +∞,

JS(P,Q) =

1

2
(

∑

x=0,y∼U(0,1)

1 · log 11
2

+
∑

x=0,y∼U(0,1)

1 · log 11
2

)

= log2,

W (P,Q) = |θ|,
(8)
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when θ = 0:

KL(P ||Q) = KL(Q||P ) = JS(P,Q) = 0,

W (P,Q) = 0 = |θ|, (9)

where KL(·) gives infinity when two distributions
are disjoint, and JS(·) is always a constant. And
they are both equal to 0 when θ = 0, so they both
have a sudden jump at θ = 0. While the Wasser-
stein distance provides a smooth measure, which
contributes to stable gradient descents.

Versatile Decoding Pseudocode ExtractBorders
aims to obtain the border indices of the prediction,
such as the borders of “中国 /科学技术 /大学” is
[0, 2, 6, 8]. CutBorders is designed to filter out the
candidates in C that cross the borders, such as “中
国科学技术大学” will be filtered out, and “科学”
“技术” will be preserved. LinkBorders is designed
to obtain all candidates in C that match one-skip or
multi-skip borders, such as “中国科学技术大学”
will be preserved for it skip two borders [2, 6].

# extract borders of the segmented token_list
def extract_borders(token_list):

borders = set()
for token in token_list:

borders.add(token.start_offset)
borders.add(token.end_offset+1)

return borders

# find candidates that no-cross borders
def cut_borders(token_list, borders):

cut_borders = []
cross_border = False
for token in token_list:

cross_border = False
for idx in range(token.start_offset+1,

token.end_offset+1):
if idx in borders:

cross_border = True
break

if not cross_border:
cut_borders.append(token)

return cut_borders

# find all candidates in token_list that match
one-skip or multi-skip borders

def link_borders(token_list, borders):
link_borders = []
for token in token_list:

if token.start_offset in borders and
(token.end_offset+1) in borders:
link_borders.append(token)

return link_borders
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Abstract

In conventional radiology practice, the radiolo-
gist dictates the diagnosis to the transcription-
ist, who then prepares a preliminary formatted
report referring to the notes, after which the
radiologist reviews the report, corrects the er-
rors, and signs off. This workflow is prone to
delay and error. In this paper, we report our
work on automatic radiology report generation
from radiologists’ dictation, which is in col-
laboration with a startup about to become Uni-
corn. A major contribution of our work is the
set of knowledge graphs (KGs) of ten abdomi-
nal organs- Liver, Kidney, Gallbladder, Uterus,
Urinary bladder, Ovary, Pancreas, Prostate,
Biliary Tree, and Bowel. Our method for con-
structing these KGs relies on extracting entity1-
relation-entity2 triplets from a large collection
(about 10,000) of free-text radiology reports.
The quality and coverage of the KGs are veri-
fied by two experienced radiologists (practicing
for the last 30 years and 8 years, respectively).
The dictation of the radiologist is automatically
converted to what is called a pathological de-
scription which is the clinical description of the
findings of the radiologist during ultrasonog-
raphy (USG). Our knowledge-enhanced deep
learning model improves the reported BLEU-3,
ROUGE-L, METEOR, and CIDEr scores of
the pathological description generation by 2%,
4%, 2% and 2% respectively. To the best of
our knowledge, this is the first attempt at rep-
resenting the abdominal organs in the form of
knowledge graphs and utilising these graphs
for the automatic generation of USG reports.
A Minimum Viable Product (MVP) has been
made available to the beta users, i.e., radiolo-
gists of reputed hospitals, for testing and evalua-
tion. Our solution guarantees report generation
within 30 seconds of running a scan.

1 Introduction

Radiology is an integral part of medical care. Radi-
ological imaging-based evidence (X-ray, MRI, CT,

USG, etc.) is crucial for determining the nature
of the treatment. The usual radiology process is
as follows: A patient gets scanned. Then the ra-
diologist prepares the diagnosis notes (referred to
as radiologist’s dictation) and handing them over
to a transcriptionist. The transcriptionist opens a
scan-specific standardised template (referred to as
normal report template) and edits it refering to
the notes in a more descriptive form (referred to as
pathological description).

Radiologists are in huge demand since the ra-
tio of radiologists to patients is very low. These
ratios in India, the US, and China are 1:100,000,
1:10000, and 1:14772, respectively (Arora, 2014).
These low ratios results in a very high patient in-
flow per radiologist volume, making radiologists
incredibly busy and stressed out. The currently
adopted transcriptionist-based workflow causes (i)
significant delays in report turnaround time, (ii) er-
rors in the reports, and (iii) burnout. To automate
the report generation process, domain knowledge
is necessary. Domain knowledge can be acquired
from already existing radiology free-text reports.
We need a structured format for knowledge to be
able to use it on a computer. Our research aims
to use Natural Language Processing (NLP) (a) to
construct abdominal-organ KG and (b) use these
KGs for automatically generating radiology reports.
Our work is in collaboration with a industry partner.
On this project, two experienced radiologists are
contributing their domain expertise to our work.

Our contributions are:

1. Knowledge graphs of ten abdominal organs-
Liver, Kidney, Gallbladder, Uterus, Urinary
bladder, Ovary, Pancreas, Prostate, Biliary
Tree, and Bowel. We will release these con-
structed KGs and the code for KG construc-
tion from free-text reports, for wide use.

2. A radiology dictionary containing 43,304 en-
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tries that are adapted from the Radlex-lexicon1

and enriched with terminology from all forms
of scans, viz., USG, CT, MRI, and X-ray.

3. A generic methodology2 to construct KGs
from reports of all kinds of scans, viz., CT,
MRI, and X-ray.

4. A fine-tuned KG-BART that is fine-tuned on
a parallel corpus of dictations and correspond-
ing pathological descriptions.

5. A radiology report generation pipeline that
identifies in a "normal" report the candidate
text span for replacement and the patient-
specific text that will replace the span.

2 Fundamental Definitions

Paulheim (2017) defines Knowledge Graph (KG)
as "A knowledge graph (i) mainly describes real-
world entities and their interrelations, organized in
a graph, (ii) defines possible classes and relations of
entities in a schema, (iii) allows for potentially in-
terrelating arbitrary entities with each other and (iv)
covers various topical domains." KGs are designed
with suitable ontology to store domain knowledge.
Ontologies are semantic data models that define the
types of things in a specific domain and the proper-
ties used to describe those types. Ontologies does
not include the details about specific individuals in
domain. Three main components of ontology are
Classes, Relationships, and Attributes. Domain
ontology and individual information together form
a Knowledge Base (KB). We have defined eight
logical relations as follows:

1. PartOf: It represents the relation between
anatomy and sub-anatomy. For example, right
lobe is part of liver.

2. TypeOf: It represents the relation between sim-
ilar type of entities. For example, cystic lesion
is TypeOf lesion.

3. ModifierOf: It denotes the descriptors of find-
ings, anatomical locations, property, etc. For
example, small is descriptor of size.

4. ObservationOf: It denotes the clinical obser-
vations observed for particular finding. For
example, acute pancreatitis denotes the pres-
ence of fluid collection.

5. DefaultObservationOf: It denotes the observa-
tion that associated by default with particular

1http://radlex.org/
RadLex is licenced freely for commercial and non-commercial
use.

2Our code to construct radiology KGs is located at https:
//github.com/kaverikale/RadiologyKGConstruction.

anatomical location or particular finding. For
example, peripancreatic fluid is observation
associated with acute pancreatitis by default.

6. PropertyOf: It denotes the relation between
entities (anatomical entities, finding entities,
observation entities, etc.) and their properties.
For example, echotexture is property of the
liver, size is the property of lesion, shape is
the property of kidney etc.

7. DefaultPropertyOf: It denotes the property that
exist by default with particular anatomical
location or particular finding. For example,
shrunken size is the property associated with
chronic pancreatitis.

8. FoundIn: It denotes the relation between find-
ings and corresponding anatomical location.
For example, lesion found in segment ii.

3 Related Work

Research is done for automatic radiology report
generation based on scanned images. Yuan et
al. (Yuan et al., 2019) propose an automated
structured-radiology report generation system us-
ing extracted features from images. Loveymi et
al. (Loveymi et al., 2021) proposed a system that
generates descriptions for natural images by image
captioning.

There is a wealth of research done on build-
ing medical KG from Electronic Medical Records
(EMR). Finlayson et al. (Finlayson et al., 2014)
builds a graph from medical text, clinical notes
etc. Graph nodes represents diseases, drugs, proce-
dures, and devices. Rotmensch et al. (Rotmensch
et al., 2017) uses the EMR to construct the graph
of diseases and symptoms. Researchers worked on
creating medical KG from EMR, but no one has
built a KG for the radiology domain except Zhang
et al. (Zhang et al., 2020). Graph embedding mod-
ule is proposed by Zhang et al. (Zhang et al., 2020)
that helps to generate radiology reports from image
reports. Each node in their KG represents disease.
Taira et al. (Taira et al., 2001) developed an NLP
pipeline to structure critical medical information.
Extracted information includes the existence, lo-
cation, properties, and diagnostic interpretation of
findings from radiology free-text documents. Infor-
mation is not integrated since they store the struc-
tured information for each report separately. Also,
this system does not accept reports with different
reporting styles. However, this is not always the
case. Every radiologist has his or her own dictation
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style and reporting style.
IE systems that are based on IE patterns are

surveyed by Muslea et al. (Muslea et al., 1999).
Ghoulam et al. (Ghoulam et al., 2015) extract
signs of lung cancer, their anatomical location, and
the relation between the signs and the locations
expressed in the radiology reports. Embarek &
Ferret (Embarek and Ferret, 2008) used a morpho-
syntactic patterns in their rule-based method to find
medical entities like symptoms, disease, exams,
medicaments, and treatment. Xu et al. (Xu et al.,
2009) explains that a pattern is a sub dependency
tree that indicates a relation instance. Pons et al.
(Pons et al., 2016) give an overview of NLP tech-
niques that can be used in radiology.

4 Methodology

As shown in figure 1, we first construct the KGs
for each abdominal organ from the ultrasound re-
port corpus. Then we use these constructed KGs
to generate ultrasound radiology reports from the
radiologist’s dictation. KGs are constructed from
anonymized radiology reports provided by our com-
pany collaborator. The anonymized report collec-
tion consists of approximately 10,000 reports of
ultrasound scans.

Triplets Extractor
Word or Phrase Processor

Dependency Parser

Semantic Analyser

Radiology 
Reports 
Corpus

Triplets to KGRadiology 
Ontology

Radiologist’s 
dictation

Report Generation
Generate 

Pathological 
Description

Replace in 
Normal Report 

Template

Normal 
Report 

Template

Patient 
Specific 
Report

KG

Figure 1: The architecture of our system. KG construc-
tion and patient-specific report generation are the two
main modules in our system.

4.1 Ontology Creation

We refer to the RadLex lexicon to create our
ontology, which we call "Radiology Ontology"
(Langlotz, 2006). Though called a "lexicon," the
RadLex is actually an ontology since it has a hierar-
chical structure. For example, "Solid Organ← Lob-
ular Organ← Liver" is a part of the RadLex term

and concept hierarchy. We will use "RadlLex Lexi-
con" to mean RadLex Ontology. The RadLex lexi-
con includes a total of 46,761 classes and 24,075
individuals. However, there are limitations in the
structure. Classes are defined at a very fine-grain
level. In our work, we do not need such fine granu-
larity. For example, liver is defined as one of the
classes in RadLex. Instead of treating it as a sep-
arate class, we can define it as an instance of the
anatomy class.

We have created our own ontology by integrating
several RadLex Lexicon class entities. We main-
tain a coarse level of granularity to ensure a generic
ontology. We have defined 8 logical relations as fol-
lows: PartOf, TypeOf, ModifierOf, ObservationOf,
DefaultObservationOf, PropertyOf, DefaultProp-
ertyOf, and FoundIn. Definitions and examples of
all these logical relations are given in appendix
2. Figure 2 shows the class hierarchy of radiology
ontology.

Figure 2: The class hierarchy of radiology ontology
that we have created.

4.2 Radiology Dictionary Creator:

Radiology reports contain a large number of medi-
cal terms like abbreviations, synonyms, and proper
names. The RadLex lexicon is used to create the ra-
diology dictionary. However, we cannot use radiol-
ogy terms from the RadLex lexicon as it is because
the RadLex lexicon contains long phrases, e.g., fat
homogeneous background echotexture which are
not at the right level of granularity for a knowledge
graph. Also, there are some radiological terms
that frequently appear in radiology reports but are
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not present in the RadLex lexicon (e.g., reflectiv-
ity and echopattern). Entities that are missing in
the Radlex lexicon have been added from the cor-
pus. Table 1 shows the examples of entities and
categories in our dictionary.

Entity Category
lesion observation
cirrhosis pathologic-finding
hepatitis inflammation
size property

Entity Category
small size-modifier
left lobe anatomy
ankle fracture injury
chronic liver disease disease

Table 1: Examples of entities and corresponding cate-
gories in our radiology dictionary.

4.3 Triplets Extraction

The Triplets-Extraction module extracts entities
and relations. For example, for the corpus sentence
Right kidney is normal in size, shape, location and
cortical echogenicity, Cortical and echogenicity are
linked by the relation ModifierOf. Also normal is
a modifier of size, shape, location, and echogenic-
ity. However, the state-of-the-art Open Information
Extraction tools like OpenIE3 are not capable of
extracting these relations from free-text (Etzioni
et al., 2008). Examples of triplets extracted using
OpenIE are given in the table 9 in appendix A.3.

Our triplet extraction method combines the
dictionary-match, rules and patterns to extract enti-
ties and relations. This methodology necessitates
the use of (i) Word and Phrase Level Processor, (ii)
Dependency Parser, and (iii) Semantic Analyser.

4.3.1 Word and Phrase Level Processor
The input to this stage is a sentence from the cor-
pus, and the output is the sentence-wise syntactic
and semantic features of each word and phrase in
the sentence. Features include POS tags, lemmas,
supersenses, and the root of a noun chunk.

Lexical Semantic Supersense Tagger: To ex-
tract the relation between two entities connected
by a preposition, the machine should understand
the meaning of that preposition. As shown in the
figure 3, the intuition of the in preposition in the
first sentence is characteristic and in the second
sentence is locus. Supersenses (Schneider et al.,
2015) help get disambiguated senses of these prepo-
sitions. We have integrated the pre-written code of
a Lexical Semantic Supersense Tagger (LSR)4 (Liu

3https://nlp.stanford.edu/software/openie.html
4https://github.com/nelson-liu/

lexical-semantic-recognition

et al., 2020) to assign supersense tags to preposi-
tions. Figure 3 shows the sentences that contain the
prepositions and their corresponding tags.

Figure 3: Lexical Semantic supersense Tagger tags all
words with the supersense tags. Supersenses of prepo-
sitions are highlighted in red. We see in tagged with
different supersenses.

We have mapped preposition supersenses to their
corresponding logical relations. Table 2 shows
the examples of supersense classes and their corre-
sponding logical relations.

Supersense Relation
Locus FoundIn
Gestalt PartOf
PartPortion PartOf

Supersense Relation
Whole PartOf
Manner PropertyOf
Purpose PropertyOf

Table 2: Examples of supersenses and their correspond-
ing logical relations.

Noun phrases are chunked to get the candidate
entity phrases. Table 3 shows the combined out-
put of the supersense tagger and the noun phrase
chunker.

4.3.2 Dependency Parser
The dependency parser links the entity phrases di-
rectly or indirectly. We write rules based on de-
pendency and POS-tags to extract the relations
between entities. Spacy5 APIs are used for de-
pendency parsing. Dependencies are established
between phrases instead of words. An example of
a dependency tree is given in figure 4.

4.3.3 Entities and Relations Extractor
Dictionary-matching-based Entity Extractor:
The noun chunker gives us noun phrases that are
candidate entity phrases. However, not all noun
phrases are radiological entities. Hence, to extract
proper entities from noun phrases, we search the
dictionary for matching entities. If a word or phrase
matches multiple dictionary entries through more
than one text span, we consider the longest text

5https://spacy.io/api/dependencyparser
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Noun Phrases/Words Token List Root Token POS Tags Lemmas Supersences

Non-enhancing hypo-
dense lesion

[Non, -, enhancing, hy-
podense, lesion]

lesion [ADJ, ADJ, VERB,
ADJ, NOUN]

[non, , enhance, hypo-
dense, lesion]

[B-ADV, I_, I ADJ, O-
ADJ, COGNITION]

noted [noted] noted [VERB] [note] [cognition]
in [in] in [ADP] [in] [Locus]
right lobe [right, lobe] lobe [ADJ, NOUN] [right, lobe] [OADJ, LOCATION]
of [of] of [ADP] [of] [Whole]
liver. [liver, .] liver [NOUN, PUNCT] [liver] [BODY, OPUNCT ]

Table 3: Output of the word and phrase level processing for the input Non-enhancing hypodense lesion noted in
right lobe of liver.

Figure 4: Dependency tree of input sentence Non-enhancing hypodense lesion noted in right lobe of liver.

span as the matched entry for entity extraction. For
example, in the phrase right lobe, although the indi-
vidual terms right and lobe exist in our dictionaries,
only the longest match, right lobe, is used for entity
extraction.

Pattern-based Relation Extractor: A single
noun phrase contains multiple entities. Table 4
shows the patterns to extract these entities. For
example, consider the noun phrase non-enhancing
hypodense lesion. As non-enhancing present in the
dictionary, it applies the pattern Modifier Observa-
tion and extracts the triplet (non-enhancing, Mod-
ifierOf, lesion). Hypodense does not exist in our
dictionary; hence, it applies the ADJ NOUN pat-
tern and extracts a triplet (hypodense, ModifierOf,
lesion).

Relation Extraction Using Preposition Super-
senses: If two entities are connected with the
preposition, then we consider its supersense to find
the relation. For example, lesion in right lobe, here
in represents the locus supersense and as shown
in the table 2, the locus is mapped to the FoundIn
relation. We add a new triplet ( lesion, FoundIn,
right lobe).

Relation Extraction Between Different Noun
Phrases: We have discussed how to extract en-
tities and relations between the entities present in
the single noun phrase. However, a relation exists
between the entities present in the two different
noun phrases. In the example shown in the figure 4,
there exists a relation between the lesion and right
lobe. We have written rules over the dependency

tree to get the candidate pair of noun phrases. A
list of patterns used to extract relations between
two entities is listed in the table 5.

4.3.4 Evaluation: Triplets Extraction Module
For each extracted triplet in a sentence, domain
experts manually check whether it is correct or not.
We calculate precision and recall for each sentence,
then calculate the average precision, recall, and F1-
Score. Figure 6 shows the evaluation results of our
IE and OpenIE systems.

4.4 From Extracted Triplets to the KG

Domain experts create preliminary KGs for each
organ containing higher-level entities (i.e., basic
hierarchical anatomy, merely 2-3 levels.), keeping
the organ name as the root node, e.g., liver for the
Liver KG. Figure 8 shows the liver preliminary
KG. We enhance preliminary KGs by adding ex-
tracted triplets to them. The file contains sentence-
wise triplets. KG augmentation algorithm steps are
below: i) Create a hierarchical graph representa-
tion for each sentence’s triplets. ii) Find matched
pathways in our preliminary KG for each sentence
graph path. iii) Add nodes and arcs that are missing
in static KG. Figure 5 shows the augmented KG of
the liver.

We build ontology using the Protégé6 (Musen,
2015) the well-known terminology and ontology
building and maintenance tool. Using transforma-
tion rules7 we load augmented KG triplets as indi-

6https://protege.stanford.edu/
7https://github.com/protegeproject/

cellfie-plugin
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Pattern Triplet Format Example Triplets
ADJ* NOUN/root (ADJ, ModifierOf, NOUN/root) simple clear cyst (simple, ModifierOf, cyst) (clear,

ModifierOf, cyst)
Anatomy Anatomy/root (Anatomy/root, PartOf, Anatomy) liver right lobe (right lobe, PartOf, liver)
Anatomy Finding/root (Finding/root, FoundIn, Anatomy) kidney calculus (calculus, FoundIn, liver)
Anatomy Observation/root (Observation/root, FoundIn, Anatomy) urinary bladder cyst (cyst, FoundIn, urinary bladder)
Modifier Observation/root (Modifier, ModifierOf, Observation/root) non-enhancing lesion (non-enhancing, ModifierOf, le-

sion)

Table 4: The list of some patterns and examples of triplets extracted from noun phrases when patterns are applied to
extract relations. /root represents the root entity of a noun phrase.

Pattern (entity1-category,
entity2-category)

Triplet Format Example (entity1, entity2) Triplets

(Anatomy, Anatomy) (entity1, PartOf, entity2) (right lobe, liver) (right lobe, PartOf, liver)
(Property, Anatomy) (entity1, PropertyOf, entity2) (echotexture, pancreas) (echotexture, PropertyOf, pancreas)
(Finding, Anatomy) (entity1, FoundIn, entity2) (medical renal disease, kid-

ney)
(medical renal disease, FoundIn,
kidney)

(Observation, Anatomy) (entity1, ObservedIn, entity2) (pseudo cyst, body) (pseudo cyst, ObservedIn, body)

Table 5: The list of some patterns and examples of triplets extracted when patterns are applied to extract relations
between two entities.

Figure 5: Knowledge Graph pertaining to the liver. Because to space constraints, we only display partial KG.

Precision Recall F1-Score
Our System 0.93 0.92 0.92
OpenIE 0.57 0.60 0.58

Table 6: The precision, recall, and F-Score for triplets
extracted by our system and OpenIE tool.

viduals/instances in the Protégé tool. The method
is explained in detail in appendix A.2.

4.5 Radiology Report Generation in 3 Stages

Generate Pathological Description: We fine-
tune the KG-BART (Liu et al., 2021) model to
generate the pathological description from the dic-
tation. KG-BART uses the constructed KGs of the
abdominal organs to get the domain knowledge

for generating the pathological description. The
fine-tuning dataset is the "parallel corpora," with
impressions on one side and pathological descrip-
tions on the other. This parallel corpus is created
from the same dataset that was used to construct
abdominals KGs. The parallel corpus is verified
and corrected by two radiologists. Samples from
the parallel corpus are given in the table 10 in ap-
pendix A.4.

Span Identification: The span identification
module identifies the span from the normal re-
port template that would be replaced with a gener-
ated pathological description. Normal report tem-
plates are fairly standardised and templated and use
"fixed" kinds of sentences. We give labels to these
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sentences. For example, we label normal sentence
Liver is normal in size and echotexture as liver1.
Figure 6 shows the normal report template with
a label for each sentence mentioned in brackets.
We create a dataset of pathological description sen-
tences, each of which is annotated with correspond-
ing normal sentence labels (i.e., liver1, liver2, etc.).
The span identification problem can now be for-

Figure 6: Ultrasound normal report template with a
unique label (highlighted in red) for each sentence.

mulated as a multilabel text classification problem.
Given the pathological description, we need to de-
cide which amongst the normal report sentences the
description targets for replacement. A BERT-based
multilabel text classifier takes the pathological de-
scription as input and gives multiple labels for the
pathological description. Further implementation
details are given in appendix A.5. Figure 7 shows
the examples of pathological descriptions and their
corresponding normal sentences to replace.

Figure 7: Examples of pathological descriptions and
corresponding normal sentences identified by span iden-
tifier. Labels are highlighted in red

Replacement: The candidate sentences returned
by the BERT classifier are replaced by the patho-
logical description in the normal report. If there
are multiple candidates, replace the first sentence
only and remove the other candidates. As shown
in the second example of the figure 7, for a single
sentence pathological description, there are two
normal candidate sentences to replace. In that case,

we replace the first normal sentence and remove
the second normal sentence.

5 Experiments

(Details about the training setup and implementa-
tion are in appendix A.4).

Baseline and Evaluation: We compare our fine-
tuned KG-BART model with T5-base/large (Raffel
et al., 2020) and BART-base/large (Lewis et al.,
2019) state-of-the-art pre-trained text generation
models. Gold standard pathological descriptions
extracted from reports and verified by radiologists
are used. Table 7 shows the BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004) and METEOR (Baner-
jee and Lavie, 2005) scores of generated pathologi-
cal descriptions by KG-BART, T5-base/large and
BART-base/large models.

Method
Automatic Evaluation Metrics

Bleu-1 Bleu-3 Rouge-L Meteor CIDEr

T5-large 0.873 0.780 0.897 0.902 0.892
BART-large 0.887 0.798 0.910 0.916 0.908
KG-BART 0.901 0.830 0.930 0.927 0.928

Table 7: The BLEU, ROUGE, METEOR and CIDEr
scores of the generated pathological description (best
results: bold, second best: underlined).

6 Summary, Conclusion and Future Work

We have given a systematic method to construct
organ-wise KGs from free-text radiology reports.
The KGs are stored in standard RDF format, en-
abling their application to various medical appli-
cations. One such example is the generation of
radiology reports, which we have described here.
Our KG-enhanced deep learning model improves
the reported BLEU-3, ROUGE-L, METEOR, and
CIDEr scores of the pathological description gener-
ation by 2%, 4%, 2% and 2% respectively. Our ap-
proach is generalized for other organs and scanned
procedures, as evidenced in the EACL paper8.

To the best of our knowledge, this is the first
attempt at automatic ultrasound report generation.
An MVP (minimum viable product) has been made
available to the beta users (practicing radiologists)
for testing and evaluation. We are continuously col-
lecting feedback on our system from radiologists
and continually refining the tool. We have observed
that it can generate a report within 30 seconds of
running a scan.

8https://aclanthology.org/2023.eacl-main.246/
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Ethics Statement

Anonymized radiology reports are used to build
KGs. The data itself is anonymized; hence, our
system does not reveal any patient-specific identity.
ML technologies for this kind of work have the
potential to gradually become the norm but will
always remain as assistive tools for medical prac-
titioners. Hence, while ML technologies of this
kind often veer towards the norm, the envisioned
assistive nature of this technology, where humans
will always have oversight, will address this issue.
We have evaluated the outputs of the KG-BART
model using automated metrics, but to contextual-
ize the results, a human evaluation metric would
have been useful; however, we left this work for
the future. An MVP (minimum viable product) has
been made available to the beta users (practicing
radiologists) for testing and evaluation. Manual
evaluation will be done by considering beta users
feedback.
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A Appendices

A.1 Data Preprocessing

To construct KGs, we use the information from the
free-text radiology reports. The data preprocessor
module takes radiology reports as input. Radiol-
ogy reports contain Header, Findings, History, and
Conclusion/Impression sections. We use simple
heuristics like regular expressions to fetch only
the Findings and Impression section. Furthermore,
we use regular expressions to separate the organ-
wise sentences in different datasets. We use Sym-
spell9 APIs to correct spelling mistakes, and word-
tokenization since the extracted sentences contain
spelling mistakes, unwanted punctuation marks,
etc. Table 8 shows the samples from the corpus,
which we extract from sample reports. In the cor-
pus, there are a lot of extra spaces and unwanted
punctuation marks found. We have removed these
unwanted characters from the corpus using regular
expressions.

For example, Liver is enlarged in size(16.
45cm)& normal in shape and shows raised echo
reflectivity. No focal or diffuse lesion is seen. The
portal and hepatic veins are normal. In the above
example, there is no space between size, (16.45cm)
and &. Also, there is no space between . and No
and therefore sentence tokenization is challenging.
Liver is enlarged in size ( 16.45 cm ) & normal in
shape and shows raised echo reflectivity. No focal
or diffuse lesion is seen. The portal and hepatic

9https://github.com/wolfgarbe/symspell

veins are normal. The text is then further divided
into sentences.

A.1.1 Spelling Correction
In corpus, there are a lot of spelling mistakes also.
To correct the spellings we have used the SymSpell
library.

Single Word Spelling Correction We have cre-
ated unigram and bigram dictionaries for corpus
text.
Unigram Dictionary: Dictionary of unique correct
spelling words, and the frequency count for each
word.
Bigram Dictionary: Dictionary of the unique cor-
rect spelling of a pair of words, and the frequency
count for each pair.

Levenshtein algorithm is used to compute edit
distance metric between two strings. Edit distance
algorithm finds the correct suggestion for words in
input text with words in unigram dictionary.

For example, enlaregd, billiary, radicals are the
incorrect words found in the corpus. In dictionary
enlarged, biliary, radicals these correct words are
present. Edit distance algorithm suggests enlarged
word for enlaregd. Similarly biliary for billiary
and radicles for radicals.

Multi-word Spelling Correction

• We remove mistakenly inserted spaces within
a correct word
Input: Liver is normal in size and reveals
diffuse hypo attenuation
Output: Liver is normal in size and reveals
diffuse hypoattenuation

• We add mistakenly omitted spaces between
two correct words
Input: Liver appears normal in size and re-
veals mild generalized increasedparenchymal
reflectivity.
Output: Liver appears normal in size and re-
veals mild generalized increased parenchymal
reflectivity.

Table 8 shows the organwise samples from text
corpus after data preprocessing.

A.2 Knowledge Graph Augmentation

Preliminary KGs enhanced using triplets extracted
by IE module. Steps involved in KG augmentation
are explained below:
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Samples from organ-wise corpus

Liver
the liver is normal in size and moderate
diffuse increase in hepatic echogenicity.
no focal lesion is seen.
intra-hepatic biliary radicals are not
dilated.
portal vein is normal.
grade ii fatty liver.
liver is normal in size and echotexture
show no focal areas of altered echotex-
ture or mass lesion.
no intra-hepic biliary radicals dilatation
seen.
Portal vein appears normal.

Uterus
uterus is anteverted and normal in size
and echotexture.
the endometrial echo is midline and reg-
ular.
endometrial thickness is dim mm.
uterus is normal in size of normal echo-
texture.
it measures about 6.7 x 3.1 x 4.5 cms in
size.
no focal mass seen.
endometrial echoes are normal.

Spleen
spleen is normal in size and echotexture.
spleen and Pancreas are normal in size and
echotexture.
no focal mass lesion noted.

Kidney
right kidney measures 10.2 cm in long axis.
left kidney measures 10.3 cm in long axis.
both kidneys are normal in size and
echotexture.
no evidence of hydronephrosis or calculi
seen.
both the Kidneys are normal in size and
echotexture.
corticomedullary differentiation well seen.
no hydronephrosis or stones seen.
right kidney measures about 11.2 x 4.0 cm.
parenchymal thickness is 1.4 cms.
left kidney measures about 10.5 x 4.5 cm.
parenchymal thickness is 1.3 cms.

Ovary
right ovary measures 1.2 x 2.3 cm.
left ovary measures 2.2 x 1.2 cm.
both the ovaries are normal.
no adnexal mass noted.
right ovary measures 2.1 x 1.4 cm.
left ovary measures 2.0 x 1.3 cm.

Pancreas
pancreas is normal in size and echotexture.
spleen and Pancreas are normal in size
and echotexture.
No focal mass lesion noted.

Gallbladder
the gallbladder is adequately distended.
gallbladder calculus noted measuring 7
mm with no pericholecystic fluid.
wall thickness appears normal.
the cbd is normal.
gallstone with no pericholecystic fluid.
gallbladder shows normal distention, no
evidence of stones seen or wall.

Urinary bladder
urinary bladder is normal with no
abnormal internal echoes and wall of
normal thickness.
urinary bladder appears normal.
no stone, mass or wall thickening noted.

Adnexa
no adnexal abnormality seen.

Table 8: Samples from the corpus following data preprocessing (all text is lower cased, removed unwanted
characters, corrected spellings, etc.). Samples for all organs are not listed here. For example, samples for prostate,
bowel etc. are not listed here.

• Step 1: Triplets are stored in the file against
its input sentence. For example, sentence from
corpus is, A lesion of increased echotexture in
the right lobe of liver. Triplets extracted cor-
responding to above sentence are, (increased,
ModifierOf, echotexture), (echotexture, Prop-
ertyOf, lesion), (right lobe, PartOf, liver), and
(lesion, FoundIn, right lobe).

• Step 2: Construct dynamic KG for sentence
triplets. Figure 9 shows the dynamic KG con-
structed for sentence triplets.

• Step 3: Find its appropriate matched path
in our already built preliminary (static) KG.
Figure 10 shows the entities from dynamic
KG path matched with static KG path.

• Step 4: If a triple is missing in the static KG,
then we add a new triple in the static KG.
Here in above example triple (increased, Mod-
ifierOf, echotexture) is missing in static KG.
Hence, we will add this triple in static KG.
Figure 11 shows the updated static KG.

This is how we update the static KG according
to our dynamic KG triplets. We repeat above steps
for all sentences in our corpus.

In a static KG, we have multiple instances of
the same observations, same properties, and same
modifiers. For example, acute hepatitis reveals
decreased echogenicity of the liver and chronic
liver disease reveals increased echogenicity of the
liver. Here for both the findings echogenicity is
the related observation but their related descrip-
tors/modifiers are not same. Decreased is the
echogenicity modifier associated with acute hep-
atitis and increased is the echogenicity modifier
associated with chronic liver disease. Therefore we
have created different instances of observation with
name echogenicity for both the findings. Hence, we
use a path from the dynamic KG to find the appro-
priate entity with identical names from the static
KG. In static KGs, we have arranged findings in
such a way that its parents represent the anatomical
location and its children represent the properties
or states of organs related to that finding. Figure 5
shows the augmented KG of the Liver.
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Figure 8: The augmented KG of the Liver is completed by information extracted from the radiology report corpus.
Newly added nodes are highlighted in yellow. This figure shows a partial KG since it is large and cannot represent it
in limited page size.

Figure 9: Dynamic KG constructed for the triplets of
sentence A lesion of increased echotexture in the right
lobe of liver.

We rely on Protégé10 (Musen, 2015) the well-
known terminology and ontology building and
maintenance tool. Extracted triplets are submit-
ted in a CSV file along with classes of entities and
relation types. The triplets are then ingested by Pro-
tégé to create the KG. We have created a rule-based
system to find the class of each entity from our con-
structed dictionary. For example, given the triplet
lesion-FoundIn-liver, the class-name for lesion is
Finding and that for liver is Anatomy. The follow-
ing are the stages for all triplets (entity1, relation,
entity2): i) Protégé creates instances of correspond-
ing classes for entity1 and entity2. ii) Protégé adds
the relation between two entities. Figure 5 shows
the KG of the liver.

10https://protege.stanford.edu/

Figure 10: The static KG at that instance. Yellow
highlighted nodes show the entities from the dynamic
KG path matched with the static KG path.

A.3 Datasets and Examples
Table 9 shows the triplets extracted by OpenIE
tool for given input sentences. As shown in the
table 9, for the sentence 1, OpenIE could not find
the relation between calculus and middle calyx,
middle calyx and right kidney and for the sentence
2, OpenIE does not consider the shape, location,
and cortical echogenicity.

A.4 Training Details: KG-BART
Table 10 shows the samples from the parallel (im-
pression and findings) dataset.

We have implemented our own algorithm for
KG-grounding task. We use pre-trained KG-
BART11 model which was trained for common-
sense reasoning on ConceptNet KG and common-
sense dataset. We fine tune this model on radiology

11https://github.com/yeliu918/KG-BART
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Figure 11: Updated static KG after adding new triple.
Newly added node highlighted in green.

Input Sentence Triplets Extracted Using OpenIE
A 5 mm calculus
is noted in an up-
per calyx and a 4
x 3 mm calculus is
noted in a middle
calyx of right kid-
ney.

(mm calculus, is noted in, upper calyx)

(mm calculus, is, noted)

(5 mm calculus, is noted in, calyx)

(5 mm calculus, is noted in, upper calyx)

(5 mm calculus, is, noted)

(mm calculus, is noted in, calyx)

Right kidney is
normal in size 9.6
x 4.0 cm, shape,
location and corti-
cal echogenicity.

(kidney, is, normal)

(right kidney, is, normal)

(right kidney, is normal in, size)

(kidney, is normal in, size)

Table 9: Examples of triplets extracted using OpenIE
tool for given input sentences

text dataset that we have constructed. We use byte-
pair encoding for tokenization with a maximum
length of 32 for the encoder and 64 for the decoder.
We set learning rate to 0.00001 and used AdamW
with 1 = 0.9, 2 = 0.98 for optimization. We set the
batch size to 32. We trained the KG-BART for 15
epochs, and the gradients are accumulated every 6
steps. We apply dropout with a probability 0.1 to
avoid over-fitting. We use beam search with beam
size 5 and length penalty with factor 0.6 while in-
ferencing. The training time took 7 hrs on a single
NVIDIA GeForce GTX 1080 Ti GPU with 11 GB
GDDR5X memory.

A.5 Implementation Details of Span Identifier
We use a BERT-based multilabel text classifier to
identify the normal sentences. The last layer uses
a sigmoid activation function to generate the prob-
ability of a sample belonging to the correspond-
ing class. We used pretrained BERT weights to
initialize our model. There are a total of 24 la-
bels, according to the number of nodes in the last
layer change. We train all the models on a DGX

A100-SXM-80GB GPU server. For all transformer
based models we use hugging face transformer li-
braries.12

A.6 Examples of Constructed KGs for
Abdominal Organs

A.7 Example of Normal Report and Patient
Specific Report

12https://huggingface.co/docs/transformers/
index
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Impression Pathological Description
Hepatomegaly with a tiny clear cyst seen in right lobe of
liver measuring 3 x 5 mm.

liver is enlarged in size with normal echopattern a tiny anechoic thin
walled cyst measuring 3 x 5 mm in right lobe of liver.

Right renal hemorrhagic cyst at upper pole measuring 9.4
x 8 mm.

A cortical cyst is noted at upper pole of right kidney measuring 9.4 x 8
mm showing internal mobile echoes.

Chronic pancreatitis with thick walled pseudo pancreatic
cyst measuring 8.6 x 6.4 cm vol 1.1 mm noted in region
of the tail of pancreas.

Pancreas is slightly small, reveals thin inhomogenous paranchyma.
the pancreatic duct is dilated measuring 1.1 mm. multiple intraductal
calculi seen. a thick walled 1.1 mm cyst measuring 8.6 x 6.4 cm vol
1.1 mm in the region of the tail of pancreas.

Table 10: Samples from dataset constructed using radiology report corpus.

Figure 12: The augmented KG of the Liver is completed by information extracted from the radiology report corpus.
Newly added nodes are highlighted in yellow. This figure shows a partial KG since it is large and cannot represent it
in limited page size.

Figure 13: The augmented KG of the Liver is completed by information extracted from the radiology report corpus.
Newly added nodes are highlighted in yellow. This figure shows a partial KG since it is large and cannot represent it
in limited page size.
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Figure 14: Left hand side shows normal report template of ultrasonography of the Abdomen and Pelvis, and the
right hand side shows a patient-specific report of ultrasonography of the Abdomen and Pelvis.
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Abstract

Patent applicants write patent specifications
that describe embodiments of inventions. Some
embodiments are claimed for a patent, while
others may be unclaimed due to strategic con-
siderations. Unclaimed embodiments may be
extracted by applicants later and claimed in con-
tinuing applications to gain advantages over
competitors. Despite being essential for cor-
porate intellectual property (IP) strategies, un-
claimed embodiment extraction is conducted
manually, and little research has been con-
ducted on its automation. This paper presents
a novel task of unclaimed embodiment extrac-
tion (UEE) and a novel dataset for the task.
Our experiments with Transformer-based mod-
els demonstrated that the task was challenging
as it required conducting natural language infer-
ence on patent specifications, which consisted
of technical, long, syntactically and semanti-
cally involved sentences. We release the dataset
and code to foster this new area of research.1

1 Introduction

Patents provide inventors the right to exclude oth-
ers from using their inventions in exchange for
disclosing how to make and use inventions by writ-
ing patent specifications. Patents have thus incen-
tivized innovation and benefited industries. Given
the increasing number of patent applications even
during the COVID-19 pandemic (WIPO, 2022b),
it is important to streamline patent application pro-
cesses with technologies.

A patent specification describes an invention
(Figure 1) by specifying one or more ways of em-
bodying the invention, so that people skilled in the
art can make and use it. A patent specification also
contains claims that specify which embodiment
applicants want to patent by stating the technical
features necessary for the embodiment. Here, an
invention refers to a mental construct inside the

1https://github.com/rakutentech/UEE_
ACL23

0001 This invention relates to a 
system for retrieving ... ✘

0002 Information retrieval technology 
in general is applied for ... ✘

0003 However, in the conventional 
retrieval system, ... ✘

0004 The information retrieval system 
of this invention comprises 
hierarchically structured search 
indices ...

✘

... ...

0008 This invention realizes a retrieval 
system using a computer system 
constituting CPU, RAM, ...

✘
... ...

0034 In another example, the retrieval 
system may repeatedly update the 
indices based on users’ ...

✔

1. A method, performed by 
at least one computer 
system, of retrieving 
documents in response 
to a search query that 
includes one or more 
phrases, the method 
comprising:

accessing search 
indices connected in 
a hierarchy such that 
...

...

Patent Specification

Claims Description

Labels indicate 
whether a given 
description 
paragraph 
contains an 
unclaimed 
embodiment.

0004 describes an 
embodiment, which is 
claimed in the claims 
and hence not an 
unclaimed embodiment.

0001 to 0003 do 
not contain any 
embodiment.

0008 is a boilerplate 
paragraph.

0034 describes 
an unclaimed 
embodiment.

Figure 1: Illustration of the unclaimed embodiment ex-
traction (UEE) task. A description paragraph is labeled
to indicate if it has an unclaimed embodiment. Our
dataset is in Japanese, though this example is written in
English for illustration purposes.

mind of the inventor, while the embodiment of the
invention is a physical form of the invention and
claims protect the embodiments (WIPO, 2022a).

A patent specification may describe a variety of
embodiments, some of which may be unclaimed
because claiming too diverse embodiments in a
patent application may violate the unity of inven-
tion, a requirement for a patent application to relate
to one invention only or to a group of inventions so
linked as to form a single general inventive concept
(USPTO, 2020b). Continuing application could
be utilized later to claim those unclaimed embod-
iments in the prior patent application (the parent
application). A continuing application can claim
any embodiments if they are written in its parent’s
description. Moreover, the filing date of continuing
application is the same as its parent’s, even if it is
filed years after the parent. Applicants can there-
fore utilize continuing applications strategically by,
for instance, writing as many diverse embodiments
as possible in the parent application and filing a
continuing application to claim unclaimed embodi-
ments in the parent. If the continuing application
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does not exhaust its parent’s embodiments, appli-
cants may have further continuing applications. In
so doing, applicants can adapt the claims of con-
tinuing application to new products and services
of their company, and even new products and ser-
vices of their competitors, enhancing their indus-
trial competitiveness.

Continuing application requires extracting un-
claimed embodiments from a patent specification.
This is tedious as it requires understanding a wide
variety of embodiments that are strategically ar-
ranged in the patent specification, a legal, technical
document that may consist of thousands of tokens
(Tab 1). Unclaimed Embodiment Extraction (UEE)
has nonetheless been conducted manually without
any technological support, and little research has
been conducted on UEE.

This paper introduces the novel task of UEE
(Figure 1) and the first publicly available dataset
for UEE. Besides its practical utility, UEE poses a
new NLP challenge as it involves two decisions to
make (§2), one of which, i.e. decision (ii), requires
matching embodiment text in the description with
claims to see if the embodiment has been claimed.
Decision (ii) can be seen as a real-world natural
language inference (NLI) (Bowman et al., 2015),
where the hypothesis is a description paragraph and
the premise is a set of claims. Although there have
been studies on NLI for real-world applications
(Holzenberger et al., 2020; Koreeda and Manning,
2021), decision (ii) involves a novel real-world NLI
due to the following challenge: The hypothesis and
the premise may consist of multiple long sentences
which are written in patentese and full of technical
terms in the target domain and whose syntactic
and semantic structures are hard to recognize for
non-IP specialists (Ferraro et al., 2014).

Although our UEE dataset has been created
based on Japanese patents, extracting unclaimed
embodiments from patent specifications is con-
ducted in other countries such as the U.S. This
paper gives examples in English for ease of expla-
nation. See Appendices for Japanese examples.

Our contributions are as follows:

1. We introduce UEE, a novel, real-world NLP
challenge.

2. We create and release the first dataset for UEE.

3. We conducted UEE experiments to demon-
strate its difficulty.

1st

2nd

i-th

I-th

...

I patent
specifications

...

Set	of	claims
𝐶!

...
...

𝐽! description	
paragraphs

𝑝!,#!

𝑝!,$!

𝑝!,%	

The i-th	patent	specification

𝑦!,%	

𝑦!,#!

𝑦!,$!

𝑓(𝑝!,%, 𝐶!)

...

𝑓(𝑝!,#! , 𝐶!)

𝑓(𝑝!,$! , 𝐶!)

Binary
label

We want to learn f.

Figure 2: Illustration of the formal definition of UEE.

4. We release code for reproducibility.

2 Task

Given a patent specification that comprises a set of
claims and a set of description paragraphs about
an invention, we want to determine whether each
paragraph in the description describes any embodi-
ment of the invention that has not been claimed in
the claims (Figure 1). This involves two decisions:

(i) Does a given paragraph describe an embodi-
ment of the invention?

(ii) Has the embodiment in a paragraph, if any,
been claimed in the claims already?

We thus need both a paragraph and a set of claims
to determine whether the paragraph contains an
unclaimed embodiment.

Formally, the task is defined as follows (Fig-
ure 2). Suppose we have I patent specifications
and the i-th patent specification has Ji description
paragraphs. Let pi,ji be the ji-th description para-
graph in the i-th specification, Ci be a set of claims
in the i-th specification, and yi,ji be a binary label
where yi,ji = 1 if pi,ji describes any embodiment
that is not claimed in Ci and yi,ji = 0 otherwise;
here, i = {1, ..., I} and ji = {1, ..., Ji}. Given
N =

∑
i Ji training instances, our goal is to learn

a function f(pi,ji , Ci)→ yi,ji .
The task involves the two decisions (i) and (ii)

and a UEE model may make the two decisions sep-
arately. Our UEE baseline models in §4.1, nonethe-
less, make the two decisions in a single step, as it
is more straightforward. We will explore different
architectures for better utilization of the nature of
the task (involving the two decisions) in the future.

In this study, we chose a paragraph as the unit
of embodiment description, because in the patent
applications, paragraphs are encouraged to be num-
bered to serve as the unit of work and indeed form a
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0004 The information retrieval system of this invention 
comprises hierarchically structured search indices ...

... ...

0008 This invention realizes a retrieval system using a 
computer system constituting CPU, RAM, ...

... ...

0034 In another example, the retrieval system may 
repeatedly update the indices based on users’ ...

1. A method, performed by at least one 
computer system, of retrieving 
documents in response to a search 
query that includes one or more 
phrases, the method comprising:

accessing search indices 
connected in a hierarchy ...

2. A method ... 

Parent Patent Specification

Claims Description

1. A method, performed by at least one 
computer system, of retrieving 
documents in response to a search 
query that includes one or more 
phrases, the method comprising:

accessing search indices which 
are repeatedly updated based on

2. A method ...

Continuing Patent Specification

Claims
NEGATIVE: CLAIM 1 in Parent
(0004 is claimed in the parent’s 

claim 1.)

NEGATIVE: NONE
(0008 has no embodiment.)

POSITIVE: CLAIM 1 in Cont.
(0034 is not claimed in the parent but 
in the continuing patent’s claim 1.)

Label Note

Figure 3: Annotation method. Paragraph 0004 of the parent patent is labeled as NEGATIVE because it describes an
embodiment claimed in the parent (as indicated by the left arrow). 0008 is NEGATIVE as it has no embodiment.
0034 describes an embodiment that is not claimed by the parent but claimed in the continuing patent from the parent
(as the right arrow indicates); 0034 is thus POSITIVE. CLAIM1 and NONE next to the labels are notes given by
human annotators to explain their annotation decisions. This example is given in English for illustration purposes.

meaningful unit. Other options would be a phrase,
clause, or sentence. We will identify the best unit
of embodiment description in the future.

3 Dataset

3.1 Data Source

We acquired source patent data from the Japan
Patent Office (JPO) via their web form.2 The data
from JPO contained Japanese patent specifications
from 1993 to 2022. We obtained both parent and
continuing patent specifications from this data. We
created the dataset from patent specifications that
had their corresponding continuing patents.

3.2 Annotation Method

As the task involves two decisions, (i) and (ii) in
§2, our annotation method is based on the two as
illustrated in Figure 3. Specifically, we label a para-
graph as negative if it has no embodiment (See
paragraph 0008 in Figure 3), or if the embodiment
is claimed in the parent patent to which the para-
graph belongs (0004 in Figure 3).

For positive annotation, we used the continuing
patent generated from the patent to which the tar-
get paragraph belonged. If a paragraph describes
an embodiment that is claimed in the continuing
patent but not in the parent, the paragraph is labeled
as positive (0034 in Figure 3). Although we can
identify unclaimed embodiments from the parent
patent, without relying on the continuing patent, it
helps us double-check positive paragraphs.

To use continuing patents, we collected patent
specifications with corresponding continuing
patents from the JPO data and made pairs of parent
and continuing patents as in Figure 3.

2https://www.jpo.go.jp/system/laws/
sesaku/data/download.html (Japanese)

We restricted target patents to those with Interna-
tional Patent Classification (IPC) codes3 that met
our business needs; specifically, we mainly chose
IPC codes for digital data processing (G06F), in-
formation and communication technology (G06Q),
and aeroplanes (B64C). IPC is used in over 100
countries to indicate the subject of the invention.4

We conducted manual annotation on pairs of
parent and continuing patents collected in this way.

On top of positive and negative labels, we leave
notes that clarify reasons for annotators’ labeling
decisions (e.g., CLAIM1 and NONE in Figure 3).
This is because labeling decisions would be based
on patent practitioners’ expertise, which may be
incomprehensible to researchers, and we expect the
notes to improve annotated labels’ interpretability.
A negative paragraph is given the claim ID of the
parent patent as the note if the paragraph’s embodi-
ment is claimed in the parent’s claims. A negative
paragraph is given the note NONE if it has no em-
bodiment. A positive paragraph is given the claim
ID of the continuing patent if its embodiment is
claimed in the continuing patent’s claims.

We use the notes for experiments of decision (i)
(§4.2) and decision (ii) (§4.3), too.

3.3 Annotators

Two experienced patent practitioners who were na-
tive speakers of Japanese were employed as annota-
tors. We split the 11,951 instances (each consisting
of a description paragraph and a set of claims) into
two separate sets. Each annotator was assigned to
only one set; no instance was annotated by both of
them due to our budget constraints.

We nonetheless measured inter-annotator agree-

3https://ipcpub.wipo.int/
4https://en.wikipedia.org/wiki/

International_Patent_Classification
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Total numbers
Labeled instances 11,951
Parent patents 971
Continuing patents 1,022

Average numbers
Tokens per desc. paragraph 88.73 (77.66)
Sentences per desc. paragraph 3.67 (1.96)
Tokens per desc. sentence 23.59 (21.61)
Claims per parent patent 11.37 (6.11)
Tokens per claim 106.44 (95.12)

Label distribution
POSITIVE:CLAIM 4,564 (38.19%)
NEGATIVE:CLAIM 1,619 (13.55%)
NEGATIVE:NONE 5,768 (48.26%)

Table 1: Statistics of the UEE dataset. In "Average num-
bers" the figures in parenthesis are standard deviations.
The "desc." stands for "description." The "CLAIM" and
"NONE" are the notes described in §3.2.

ment by asking another experienced patent prac-
titioner (a native speaker of Japanese) to annotate
309 instances that the above two annotators worked
on after removing their labels and notes. As a result,
Cohen’s kappa (Cohen, 1960) was 0.465, indicat-
ing moderate agreement (Landis and Koch, 1977).
According to the kappa score, experts may dis-
agree occasionally. The question is then how much
experts’ disagreement affects the performance, as
pointed out by an anonymous reviewer. We will
explore this question in the future.

3.4 The Dataset

The resulting UEE dataset has 11,951 instances.
We use 60% for training, 20% for development,
and 20% for testing. Table 1 shows the statistics of
the dataset. We used the tokenizer of our RoBERTa
in §4.1 to count tokens. In "Label distribution"
in Table 1, "POSITIVE:CLAIM"5 refers to a posi-
tive instance. The instance with paragraph 0034
in Figure 3 has this label. "NEGATIVE:CLAIM"
means a negative instance with an embodiment that
has already been claimed in the parent patent and
hence with a note of the corresponding claim ID.
"NEGATIVE:NONE" is a negative instance without
embodiment. The instances with paragraphs 0004
and 0008 in Figure 3 are examples of these two
types of negatives, respectively.

In Appendix A, we show an example data in-
stance of the UEE dataset in Japanese and English

5We may omit claim IDs of the notes, e.g. "1", hereafter.

Experiment Model F1
UEE

Baselines
RoBERTa 0.8670 (0.0034)
Longformer 0.7247 (0.0335)

Decision (i) RoBERTa 0.9259 (0.0057)

Decision (ii)
RoBuee 0.7218 (0.0110)
RoBjsnli A 0.4029 (0.1434)
RoBjsnli B 0.4384 (0.2472)

Table 2: F1 of all the models; (Top) the RoBERTa
and Longformer baselines for the UEE task reported
in §4.1; (Middle) RoBERTa model for decision (i) in
§4.2; and (Bottom) the RoBERTauee, RoBERTajsnli
Condition A, and RoBERTajsnli Condition B models in
§4.3 ("RoBERTa" is abbreviated as "RoB"). We report
the mean and standard deviation obtained by running
each experiment five times. The standard deviation is
written in parenthesis. See Appendix D for accuracy,
precision and recall for each method.

for illustration purposes.

4 Experiments

We conducted experiments of UEE with baseline
models based on Transformer (Vaswani et al., 2017)
to see the difficulty of the task (§4.1). We also
conducted experiments of making the decisions
(i) and (ii) in §2 as independent tasks for a better
understanding of the task (§4.2 and §4.3).

These experimental results show the following:

(A) Baseline Transformer-based models deliver
mediocre performances (§4.1).

(B) Despite patent specifications’ being long,
UEE models do not necessarily have to deal
with long documents (§4.1).

(C) The bottleneck in UEE is decision (ii) (§4.3).

4.1 UEE Baselines

We evaluated RoBERTa (Liu et al., 2019) and Long-
former (Beltagy et al., 2020) for the UEE task, be-
cause these are ones of standard Transformer-based
models, and Longformer is known to be able to deal
with long documents such as patent specifications.
However, we do not claim these are optimal models
for the task; we will explore better models in the
future. Our RoBERTa was built from a base-sized
one which we call Rinna RoBERTa6 and had been
pre-trained on Japanese CC-100 (Conneau et al.,

6https://huggingface.co/rinna/
japanese-roberta-base
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2020) and Japanese Wikipedia. The maximum
sequence length was 512. We fine-tuned Rinna
RoBERTa on the UEE training set for ten epochs
with the training batch size, the warm-up steps, and
the learning rate being set to 128, 100, and 5e-5,
respectively. We used AdamW (Loshchilov and
Hutter, 2019) for optimization. We will describe
the hyper-parameter settings of models we experi-
mented with in Appendix B, hereafter.

Our Longformer was converted from Rinna
RoBERTa following Beltagy et al. (2020).7 See
Appendix B.2 for its hyper-parameter setting.

The first two rows in Tab 2 labeled with §4.1
show F1 of the two baseline models on the UEE
test set. We fine-tuned and evaluated each model
five times. The reported figures are the mean and
standard deviation obtained from the five runs.

The result indicates that our baselines have non-
negligible room for improvement. Given Trans-
formers’ successes in many tasks (e.g., a base-
sized RoBERTa fine-tuned and evaluated on JSNLI
(Yoshikoshi et al., 2020), a Japanese NLI dataset,
delivers the F1 of 0.93 (Yanaka and Mineshima,
2022)), we think that UEE is challenging.

The result also indicates that RoBERTa outper-
forms Longformer. Actually, we expected the op-
posite result, because the input to UEE models, i.e.
a pair of a description paragraph and a set of claims,
tends to be long; the average number of tokens in a
description paragraph is 88.73 and that of tokens
in a set of claims is 1210.22 (= 106.44 × 11.37),
as Table 1 shows.

We suspect that this unexpected result is due to
the fact that, in the UEE dataset, more than 70% of
embodiments in description paragraphs with NEG-
ATIVE:CLAIM are claimed in the first three claims.
Models then do not always have to read through
all the claims. This is probably because of the pre-
ferred order of claims: Claims should preferably
be arranged in order of scope so that the first claim
presented is the least restrictive (USPTO, 2020a);
i.e. the most general claims should come first.

4.2 Decision (i)

We conducted experiments of making only the de-
cisions (i), i.e. whether a paragraph described any
embodiment, to see how difficult it was.

To train and test a model for decision (i), we
created training, development, and test sets for de-

7See convert_model_to_long.py in the supple-
mentary material for implementation.

cision (i) from the corresponding set of the UEE
dataset as follows.8 We regarded the instances in
the UEE dataset whose note is NONE as negative
and the rest as positive, because note NONE indi-
cates the corresponding paragraph has no embod-
iment as described in §3.2. The positive-negative
ratio was then about 52:48 as Tab 1 indicates.

We built a model from Rinna RoBERTa (§4.1)
again for this experiment. The experimental pro-
tocol was the same as our RoBERTa in §4.1. See
Appendix B.3 for its hyper-parameter setting.

The third row in Tab 2 labeled with §4.2 shows
F1 of the model on the test set. The reported figures
are the mean and standard deviation obtained from
five runs of fine-tuning and evaluation. This result
indicates that decision (i) is a modest task.

4.3 Decision (ii)
We also conducted experiments to make the deci-
sion (ii), i.e. whether the embodiment of a para-
graph has been claimed, as an independent task.

As discussed in §1, decision (ii) can be seen as
an NLI task where the hypothesis is a paragraph
and the premise is a set of claims. For training
and test of models for decision (ii), in order to
focus on its NLI aspect, we ignored UEE dataset
instances with NEGATIVE:NONE. This is because it
is obvious for a paragraph without any embodiment
to be unclaimed, i.e. not entailed by a set of claims.
Besides, we used not only parent patents but also
their continuing patents in the UEE dataset, as it is
straightforward to use them for decision (ii).

Accordingly, we created training, development,
and test sets for decision (ii) from the correspond-
ing set of the UEE dataset as follows. We generated
positive instances for decision (ii) from the UEE
dataset by pairing a paragraph of POSITIVE:CLAIM

and a set of claims in the continuing patent; e.g.
the pair of paragraph 0034 and the continuing
patent’s claims in Figure 3. We also generated
decision (ii) positives by pairing a paragraph of
NEGATIVE:CLAIM and a set of claims in the par-
ent patent; e.g. paragraph 0004 and the parent
patent’s claims in Figure 3.

Likewise, decision (ii) negatives were generated
by pairing a paragraph of POSITIVE:CLAIM and a
set of claims in the parent patent and also by pair-
ing a paragraph of NEGATIVE:CLAIM and a set of
claims in the continuing patent. In Figure 3, pair of

8For dataset creation for (i) and (ii), see: Decision1/
src/dataset.py and Decision2/src/dataset.
py in github.com/rakutentech/UEE_ACL23.

29

Decision1/src/dataset.py
Decision1/src/dataset.py
Decision2/src/dataset.py
Decision2/src/dataset.py
github.com/rakutentech/UEE_ACL23


Description 
Paragraph

If it is determined that 

the POS data has been 

received, the CPU 1 

classifies the sales data 

according to order time 

zone. The order time 

zone is, for example, but 

not limited to, 19 o'clock 

to 22 o'clock and 22 

o'clock to 24 hours.

Claim 1

The restaurant information provision system comprises: storage means for storing 

restaurant information including menu information on a menu of food and drink that can be 

provided by at least one restaurant, and a menu publication page constituting a restaurant 

information provision page group related to the restaurant and carrying at least a part of the 

menu information; and communication means for receiving POS data including at least one 

of a number, a sales amount, and a profit rate for each predetermined period in the 

restaurant from a POS system present in the restaurant., and a control means for updating 

the menu information on the menu carrying page based on the received POS data, wherein 

the menu carrying page has a menu information display column for each of a plurality of 

order time zones within the business hours of the restaurant, and the control means 

assigns the received POS data with an order time zone and updates the menu of the menu 

display column for each order time zone based on the POS data for each order time zone.

Claim 2

The information processing apparatus according to claim 1, wherein the control means 

updates, based on the POS data, the menu information on the menu publishing page to a 

predetermined number of menu information which has either the largest amount of sales, 

the largest sales proceeds, or the largest profit rate in the predetermined period.

Claim 3

The information processing apparatus according to claim 1, wherein the control means 

updates, based on the POS data, the menu information on the menu publishing page to a 

predetermined number of menu information which has either the smallest amount of sales 

or the smallest sales proceeds in the predetermined period. More claims follow.

Only a tiny fraction 
of text in a set of 
claims tends to 
correspond to the 
embodiment in a 
paragraph.

Figure 4: Example of a claimed embodiment, which
is translated to English for illustration purposes. See
Appendix C for the original Japanese example.

paragraph 0034 and the parent patent’s claims and
that of paragraph 0004 and the continuing patent’s
claims are decision (ii) negatives.

The positive-negative ratio was then 50:50.
We fine-tuned Rinna RoBERTa with this training

set. We call the resulting model RoBERTauee. The
experimental protocol was the same as the previous
experiments (§4.1 and §4.2).

Since decision (ii) is an NLI task, we also fine-
tuned Rinna RoBERTa using the JSNLI dataset9

for comparison. We call it RoBERTajsnli. We used
the same test set as RoBERTauee for evaluation.
RoBERTajsnli’s high performance for Japanese
NLI tasks has been shown in the literature (Yanaka
and Mineshima, 2022).

Note that while JSNLI is a ternary classification
task, i.e. entailment, contradiction, and neutral,
decision (ii) is binary, i.e. positive and negative.
We, therefore, need to align JSNLI’s labels with
our binary labels. We experimented with two label
alignment conditions: Condition A was to align
entailment with positive and contradiction and neu-
tral with negative. Condition B was the same as
Condition A, except that we ignored contradiction;
only neutral was aligned with negative. This is
reasonable because, even if an embodiment is not
claimed in a set of claims, it does not necessarily
imply that the two pieces of text are contradictory.

For the hyper-parameter setting and fine-tuning
of RoBERTajsnli, refer to Appendix B.5.

The last three rows in Tab 2 labeled with §4.3
show F1 of the models on the test set. Although
RoBERTauee was the best among them, it has a

9We used train_w_filtering.tsv of JSNLI 1.1.

large room for improvement. This indicates that
decision (ii) is difficult and is the bottleneck for
UEE. Looking closely at the data revealed that a
tiny fraction of text in a set of claims, which usu-
ally is a long document, tended to correspond to an
embodiment (Figure 4), because each claim may
consist of various technical features from more than
one description paragraph. This would make deci-
sion (ii) challenging, together with the other factors
discussed in §1; i.e. patent specifications consisting
of technical, long, syntactically and semantically
involved sentences written in patentese.

RoBERTajsnli delivered low performances un-
der both conditions, probably because of the do-
main discrepancy between the NLI task in JSNLI
and UEE. We think this result shows the necessity
of a dedicated dataset for UEE.

4.4 Discussion

The baselines delivered mediocre performances for
UEE. We observed that decision (ii) makes UEE
difficult. Nevertheless, we believe UEE is a wor-
thy challenge, as it would eventually contribute to
the industry by streamlining patent application pro-
cesses. We also believe that, to this end, utilizing
the outcomes of the current study would help.

5 Related Work

Patent Document Processing NLP systems
for real-world applications in, for instance, e-
commerce (Malmasi et al., 2021, 2022), medical
(Rumshisky et al., 2020; Naumann et al., 2022),
and legal areas (Aletras et al., 2021; Preotiuc-Pietro
et al., 2022) has gained attention, probably because
it has become more feasible to serve practical needs
thanks to the success of Transformer-based models
and pre-training methods (Devlin et al., 2019).

Patent document processing has also been stud-
ied extensively (Aras et al., 2019; Krestel et al.,
2021, 2022). Its most studied areas are machine
translation (Tsujii and Yokoyama, 2007; Utsuro
et al., 2019; Nakazawa et al., 2021, 2022) and in-
formation retrieval (Tait et al., 2008, 2009, 2010;
Risch et al., 2020).

There have recently been studies that would di-
rectly facilitate patent applications. Sharma et al.
(2019) created a dataset for summarizing patents
and proposed baselines. Tonguz et al. (2021) pro-
posed a method for claim generation formulated
as text summarization. Aslanyan and Wetherbee
(2022) created a dataset for phrasal matching for
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better patent similarity measurement. Gao et al.
(2022) proposed a method for predicting whether a
given patent application would be approved.

However, to the best of our knowledge, no study
has addressed UEE; we are the first to do that.

Natural Language Inference NLI has show-
cased the comprehension ability of NLP systems
(Wang et al., 2019; Nie et al., 2020; Poliak, 2020)
and provided datasets for their training (Conneau
et al., 2017; Reimers and Gurevych, 2019). In-
troducing diverse NLI tasks would then push the
boundary of NLP. Recent studies have introduced
new NLI tasks targeting real-world applications
(Romanov and Shivade, 2018; Holzenberger et al.,
2020; Koreeda and Manning, 2021; Sadat and
Caragea, 2022). Our decision (ii) is a novel real-
world NLI for patents that poses a new challenge.

6 Conclusion

We introduced UEE, a novel NLP challenge, and
created a corresponding dataset. Our experiments
showed that UEE was challenging due to the diffi-
culty of making the decision (ii). We hope that the
research community will address this challenge by
utilizing the UEE dataset and code that we created
and released.

Future Work We have not explored better ar-
chitectures for the task extensively. Although
RoBERTa performed reasonably well, more capa-
ble, human-instruction-aligned architectures have
been developed recently (Bahrini et al., 2023; Ope-
nAI, 2023). We will explore the capability of these
more recent large language models for the task.

7 Ethics Statement

The scope of this work is to introduce NLP tech-
nologies to the continuing patent application pro-
cess to make it more efficient. The outcomes from
our work would therefore have an industrial impact
through enabling organizations to file more contin-
uing patents with less time. There would then be a
risk that, if our technologies were available to only
particular organizations, fair competitions could
not be ensured. We therefore decided to release the
dataset and code to the public.

This work was intended to be beneficial to patent-
related processes and studies in artificial intelli-
gence, machine learning, and NLP. The outcomes
from this work should therefore be used only for
these purposes.

The coverage of the UEE dataset in terms of the
IPC subclass, language, and countries and regions
are limited. Care must be taken when using this
dataset, accordingly.

The dataset does not contain any personal infor-
mation, as it has been created from publicly avail-
able patent specifications. We nonetheless took
special care to check if any personal information
was included in the dataset by accident when creat-
ing the dataset.

All the data we used in this work are publicly
available. The pre-trained language model that
we used, i.e. RoBERTa, is also publicly available.
Our Longformer was converted from the RoBERTa
with a method that was also known to the public.
Besides, since we have released all the necessary
code and dataset along with the paper, all the ex-
perimental results in the paper are reproducible.

Regarding the hiring of the annotators (the ex-
pert patent practitioners), we negotiated with their
company in advance to fairly determine the charge,
which was the equivalent of the cost of hiring ex-
pert patent practitioners for patent search. We ex-
plained to the human annotators about the purpose
of the data annotation and how it would be used in
advance of the annotation.

Regarding the compute in our experiments, we
executed 30 fine-tuning processes, which took 57
hours in a single Nvidia A100 GPU in total.
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{
"appNum": "2021xxxxxx",
"paraNum": "0052",
"paraTxt": "The first data may be data available for

learning of the first model M1, and is not limited ..."
"claims": [

{
"claimNum": "1",
"claimTxt": [

"A processing execution system including:",
"a second classification information acquisition
unit for acquiring second classification ..."

]
},
{

"claimNum": "2",
"claimTxt": [

"The processing execution system of claim 1,",
"wherein the estimator estimates validity ..."

]
}

],
"label": "positive",
"note": [ "1" ],
"contAppNum": "2021yyyyyy",
"contClaims": [

{
"claimNum": "1",
"claimTxt": [

"A processing execution system including...",
]

},
}

Figure 5: Example data. Paragraph 0052 from the patent
specification for application 2021xxxxxx contains an
unclaimed embodiment (labeled as positive). This is
translated to English for illustration purposes.

A Example of the UEE Dataset

Figure 5 illustrates an entry of the dataset. Each
entry is a JSON object and consists of the appli-
cation number of the patent from which the tar-
get paragraph is extracted (appNum), the identi-
fier of the target paragraph (paraNum), the para-
graph text (paraTxt), a set of claims from the
same application (claims), the label (label),
the note (note), the application number of the con-
tinuing patent (contAppNum), and the continu-
ing patent’s claims (contClaims). claims and
contClaims consist of individual claims’ iden-
tifier (claimNum) and text (claimTxt).10 Here,
paraTxt, a set of claimTxts, and label cor-
respond to pi,ji , Ci, and yi,ji in §2, respectively.
Figure 6 shows the Japanese version of Figure 5.

B Hyper-parameter Setting

B.1 UEE Baseline Rinna RoBERTa
Although we described Rinna RoBERTa’s hyper-
parameter setting for the baseline experiment in
§4.1, we repeat it here for the sake of completeness.

The maximum sequence length was 512. We
fine-tuned Rinna RoBERTa on the UEE training

10claimTxt is a list of text. This is because a claim is
usually long and split into segments for readability. We keep
this structure in JSON format.

{
"appNum": "2021xxxxxx",
"paraNum": "0052",
"paraTxt": "第１データは、第１モデルＭ１の学習に利用可能なデータ
であればよく、ウェブページのタイトルに限られない。例えば、第１デ
ータはウェブページから作成された要約であってもよい。"

"claims": [
{

"claimNum": "1",
"claimTxt": [

"第１データと、当該第１データの分類に関する第１分類情報と、
の関係が学習された第１モデルに基づいて、第２データの分類に
関する第２分類情報を取得する第２分類情報取得部と、",
"前記有効性の推定結果に基づいて処理を実行する実行部と、",
"を含む処理実行システム。"

]
},
{

"claimNum": "2",
"claimTxt": [

"前記推定部は、前記第２モデルに基づいて有効性を推定する、",
"請求項１に記載の処理実行システム。"

]
}

],
"label": "positive",
"note": [ "1" ],
"contAppNum": "2021yyyyyy",
"contClaims": [

{
"claimNum": "1",
"claimTxt": [

"第１データと、当該第１データの...",
]

},
}

Figure 6: Example data in Japanese

Description 
Paragraph

ＰＯＳデータを受信した
と判断した場合、ＣＰＵ
１は、当該売上データを、
その注⽂時間帯毎に区分
けする。区分けされる注
⽂時間帯は、例えば１９
時台〜２２時台と、２２
時台〜２４時台であるが、

これに限られない。

Claim 1

少なくとも１つの飲⾷店が提供可能な飲⾷物のメニューに関するメニュー情報を含む飲⾷店情報
と、前記飲⾷店に関する飲⾷店情報提供ページ群を構成し前記メニュー情報のうち少なくとも⼀
部を掲載したメニュー掲載ページとを記憶する記憶⼿段と、前記飲⾷店に存在するＰＯＳシステ
ムから、当該飲⾷店における所定期間毎のメニュー毎の出数、売上⾦額、利益率のうち少なくと
も１つを含むＰＯＳデータを受信する通信⼿段と、前記受信されたＰＯＳデータに基づいて、前
記メニュー掲載ページ上の前記メニュー情報を更新する制御⼿段とを具備し、前記メニュー掲載
ページは、前記飲⾷店の営業時間内の複数の注⽂時間帯毎にメニュー情報表⽰欄を有し、前記制
御⼿段は、前記受信されたＰＯＳデータを前記注⽂時間帯毎に区分けし、当該注⽂時間帯毎のＰ

ＯＳデータに基づいて、前記注⽂時間帯毎のメニュー表⽰欄のメニューを更新する情報処理装置。

Claim 2

請求項１に記載の情報処理装置であって、前記制御⼿段は、前記ＰＯＳデータに基づいて、前
記メニュー掲載ページ上の前記メニュー情報を、前記所定期間において出数、売上⾦額及び利益
率のうち少なくとも１つが上位の所定数のメニュー情報へと更新する情報処理装置。

Claim 3

請求項１に記載の情報処理装置であって、前記制御⼿段は、前記ＰＯＳデータに基づいて、前
記メニュー掲載ページ上の前記メニュー情報を、前記所定期間において出数及び売上のうち少な
くとも１つが下位の所定数のメニュー情報へと更新する情報処理装置。 More claims follow.

Only a tiny fraction 
of text in a set of 
claims tends to 
correspond to the 
embodiment in a 
paragraph.

Figure 7: Claimed embodiment example in Japanese

set for ten epochs with the training batch size, the
warm-up steps, and the learning rate being set to
128, 100, and 5e-5, respectively. We used AdamW
(Loshchilov and Hutter, 2019) for optimization.

B.2 UEE Baseline Longformer

The maximum sequence length was 4,096. We
fine-tuned our Longformer on the UEE training
set for ten epochs with the training batch size, the
gradient accumulation steps, the warm-up steps,
and the learning rate being set to 16, 2, 200, and
2e-5, respectively, based on Beltagy et al. (2020).
We used the AdamW optimizer.

B.3 Decision (i) RoBERTa

The hyper-parameter setting for this model is the
same as the UEE Baseline Rinna RoBERTa in B.1.
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Sec. Model Accuracy Precision Recall F1

§4.1
RoBERTa 0.8979 (0.0025) 0.8453 (0.0047) 0.8899 (0.0065) 0.8670 (0.0034)
Longformer 0.8258 (0.0147) 0.8839 (0.0072) 0.6157 (0.0508) 0.7247 (0.0335)

§4.2 RoBERTa 0.9261 (0.0050) 0.9539 (0.0112) 0.8998 (0.0178) 0.9259 (0.0057)

§4.3
RoBERTauee 0.7238 (0.0047) 0.7274 (0.0152) 0.7175 (0.0339) 0.7218 (0.0110)
RoBERTajsnli A 0.5067 (0.0044) 0.5146 (0.0123) 0.3874 (0.2847) 0.4029 (0.1434)
RoBERTajsnli B 0.5098 (0.0072) 0.4088 (0.2286) 0.4776 (0.2779) 0.4384 (0.2472)

Table 3: Performances of all the evaluated models. In the last two rows, "A" and "B" stand for Condition A and B,
respectively. The figures are the mean and standard deviation from five runs.

B.4 Decision (ii) RoBERTauee
The hyper-parameter setting for this model is the
same as the UEE Baseline Rinna RoBERTa in B.1.

B.5 Decision (ii) RoBERTajsnli
We fine-tuned RoBERTajsnli for ten epochs with
the training batch size, the warm-up steps, and
the learning rate being 128, 500, and 3e-5, respec-
tively. We used the AdamW optimizer. Although
the instances in the JSNLI dataset have already
been tokenized, we re-tokenized them with Rinna
RoBERTa’s tokenizer.

C Japanese Example of a Claimed
Embodiment

Figure 7 shows the Japanese version of Figure 4.

D Full Evaluation Results

Table 3 shows accuracy, precision, recall, and F1
of all the evaluated models.
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Abstract
Large Language Models (LLMs) have limited
performance when solving arithmetic reason-
ing tasks and often provide incorrect answers.
Unlike natural language understanding, math
problems typically have a single correct an-
swer, making the task of generating accurate
solutions more challenging for LLMs. To the
best of our knowledge, we are not aware of
any LLMs that indicate their level of confi-
dence in their responses which fuels a trust
deficit in these models impeding their adop-
tion. To address this deficiency, we propose
‘MathPrompter’, a technique that improves per-
formance of LLMs on arithmetic problems
along with increased reliance in the predic-
tions. MathPrompter uses the Zero-shot chain-
of-thought prompting technique to generate
multiple Algebraic expressions or Python func-
tions to solve the same math problem in dif-
ferent ways and thereby raise the confidence
level in the output results. This is in contrast to
other prompt based CoT methods, where there
is no check on the validity of the intermedi-
ate steps followed. Our technique improves
over state-of-the-art on the MultiArith dataset
(78.7% → 92.5%) evaluated using 175B pa-
rameter GPT-based LLM.

1 Introduction

Recent advancements in natural language process-
ing (NLP) can be attributed to massive scaling of
Large Language Models (LLMs) (Vaswani et al.,
2017; Devlin et al., 2018; Raffel et al., 2020; Brown
et al., 2020; Rae et al., 2021; Chowdhery et al.,
2022; Thoppilan et al., 2022). A very interest-
ing recent discovery that the LLMs are naturally
good (in-context) Zero-shot or few-shot learners
turned out to be very useful (Brown et al., 2020;
Liu et al., 2021, 2023). This led to the development
of ‘prompting’ technique, where the user provides
a small context for solving the task at-hand to the
LLM. This conditioning of the models on a few
examples is termed as few-shot prompting, while

providing instructions to solve a task is known as
Zero-shot prompting. Extensive research efforts
are being poured into designing these prompts, ei-
ther manually (Schick and Schütze, 2020; Reynolds
and McDonell, 2021) or automatically (Shin et al.,
2020; Gao et al., 2020). Although quite successful
for single-step system-I tasks (Stanovich and West,
2000; Liu et al., 2023), the prompting techniques
were inadequate in their performance on system-II
tasks where multi-step reasoning is required (Rae
et al., 2021). As humans, we tend to break down
a problem and attempt to solve them step-by-step.
Extending this intuition to LLMs led to the de-
velopment of ‘chain-of-thought’ (CoT) prompting
technique (Wei et al., 2022; Wang et al., 2022). The
use of CoT has led to improved performance on a
range of NLP tasks (Talmor et al., 2018; Gao et al.,
2020; Patel et al., 2021; Cobbe et al., 2021; Geva
et al., 2021; Chowdhery et al., 2022; Srivastava
et al., 2022)

In this work, we investigate Zero-shot-CoT meth-
ods for solving mathematical reasoning tasks. To
the best of our knowledge, we found the recent
work by (Kojima et al., 2022) that proposed a Zero-
shot-CoT technique to be the state-of-the-art where
they demonstrated a remarkable accuracy improve-
ment on the ‘MultiArith’ (Roy and Roth, 2016)
data (17.7% → 78.7%). Now, we identify two
key aspects that lacks in the previous CoT prompt-
ing based SOTA, namely (1) Although, the chain-
of-thought followed by the model improved the
results, but there is no check on the validity of
the steps followed by the chain-of-thought prompt-
ing and (2) The confidence in the predictions of
LLMs are often not provided. In order to address
these gap to some extent, we derive inspiration
from how we humans solve a math question by
breaking it down to a simpler multi-step procedure
and make use of multiple ways to validate our ap-
proach at each step. Specifically, given a question
Q, (I) Generating Algebraic template: We first gen-
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Python prompt 
Write a python function that returns

the answer.

Algebraic prompt 
Write a mathematical equation and
generate the answer format starting

with `Answer =' 

LLM

Input Query 

(I) Generating
Algebraic template

(II) Math-Prompts

(III) Compute
Verification  

"Eval()"

(IV) Statistical
significance

Figure 1: MathPrompter flow. We outline the MathPrompter process with an example alongside.

erate its corresponding Algebraic expression Qt
that replaces the numerical entries by variables. (II)
Math-prompts: Then, we provide multiple prompts
P to the LLM that can solve Qt analytically in
different ways. For eg. P can be ‘Derive an Al-
gebraic expression’ or ‘Write a Python function’
etc. Following this procedure, we end up with P ex-
pressions that analytically solves Qt in terms of its
variables. (III) Compute verification: We then eval-
uate the P analytical solutions by allotting multiple
random values to the Qt variables. (IV) Statistical
significance: If the solutions of the P analytical
functions are in ‘consensus’ over N ∼ 5 different
variable choices, then we substitute the original val-
ues from Q to obtain the final solution. In the case
where there is no definite consensus, we repeat the
steps (II), (III) & (IV). Our method, MathPrompter,
uses 175B parameter LLM called GPT3 DaVinci
completion engine (Brown et al., 2020). We were
able to improve the accuracy on the MultiArith data
from 78.7%→ 92.5%.

2 Method

Since the LLMs are generative models, it becomes
very tricky to ensure that the generated answers
are accurate, especially for mathematical reasoning
tasks. We take clues from the process followed
by students to solve arithmetic problems. We nar-
rowed down a few steps that students take in order

to verify their solutions, namely

• Compliance with known results: By comparing
the solution to a known result, one can assess its
accuracy and make necessary adjustments. This is
particularly useful when the question is a standard
problem with a well-established solution.

• Multi-verification: By approaching a problem
from multiple perspectives and comparing the re-
sults helps to confirm the validity of the solution
and ensure that it is both sound and accurate.

• Cross-checking: The process of solving a prob-
lem is just as necessary as the final answer. Veri-
fying the correctness of the intermediate steps of
the process provide a clear understanding of the
thought process behind the solution.

• Compute verification: Utilizing a calculator or
computer to perform arithmetic calculations can
assist in verifying the accuracy of the final answer.

2.1 MathPrompter

Our proposed method, MathPrompter, is an attempt
to transfer some of this thought process to the
LLM answer generation process. Fig. 1 provides
a high-level overview of steps followed by Math-
Prompter to solve a mathematical reasoning prob-
lem. We use the state-of-the-art GPT-3 DaVinci
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completion engine (Brown et al., 2020) for the
question-answering tasks.

We use the following question ‘Q’ from the Mul-
tiArith dataset to demonstrate the problem solving
process followed by MathPrompter.

Q: At a restaurant, each adult meal costs
$5 and kids eat free. If a group of 15
people came in and 8 were kids, how
much would it cost for the group to eat?

(I) Generating Algebraic template: We begin by
transforming the question into its Algebraic form
by replacing the numeric entries with variables us-
ing a key-value mapping. In this particular instance,
the modified question ‘Qt’ becomes:

Qt: at a restaurant, each adult meal costs
A and kids eat free. if a group of B peo-
ple came in and C were kids, how much
would it cost for the group to eat?

Mapping: {A:5, B:15, C:8}

(II) Math-prompts: We build up on the intu-
ition provided by the multi-verification and cross-
checking thought processes mentioned above. We
generate analytical solutions of Qt using two differ-
ent approaches, Algebraic way and Pythonic way.
We give the following prompts to the LLM to gen-
erate additional context for Qt

Algebraic prompt: Write a mathematical
equation and generate the answer format
starting with ‘Answer =’

Python prompt: Write a Python function
that returns the answer.

The LLM model in response to the above
prompts generated the following output expres-
sions

# Algebraic expression output
Answer = A*(B-C)

# Python expression output
def total_price(A, B, C):

return A * (B-C)

The above generated analytical solutions gives
the user a hint into the ‘intermediate thought pro-
cess’ of the LLM. Incorporating additional prompts
will improve the accuracy and consistency of the
results. This will, in turn, enhance the Math-
Prompter’s ability to generate more precise and
effective solutions.

(III) Compute verification: We evaluate the ex-
pressions generated in the previous step using mul-
tiple randomized key-value mappings of the input
variables in Qt. To evaluate the expressions, we
used the Python’s eval() method. We compare
the outputs to see if we can find a consensus among
the answers. This also provides us with a higher
level of confidence that the answers are correct
and reliable. Once the expressions agree on their
outputs, we use the values of the variables in the
input Q to compute the final answer, as below

Algebraic-answer = 35
Pythonic-answer = 35

(IV) Statistical significance: In order to ensure
that consensus is reached among various expres-
sions’ output, in our experiments, we repeat the
steps (II) & (III) for N ∼ 5 times and report the
most frequent value observed for the answer.

3 Experiment

3.1 Dataset
We evaluate MathPrompter on Multi-
Arith dataset (Roy and Roth, 2016), which
is a subset of the Math World Problem Repository
(Koncel-Kedziorski et al., 2016). This dataset is
a collection of mathematical problems that are
specifically designed to test the ability of machine
learning models to perform complex arithmetic
operations and reasoning. These problems demand
the application of multiple arithmetic operations
and logical reasoning to be sucessfully solved.

3.2 Baseline
One of the popular baselines is the standard Zero-
shot model by (Brown et al., 2020). Their train their
models in a way that it is able to recognize and clas-
sify new objects or classes that it has never seen
before during training. This was achieved by utiliz-
ing the semantic relationships between classes.

We also compared against the state-of-the-art
Zero-shot-CoT prompting model by (Kojima et al.,
2022). This is a very recent approach that addresses
the limitations of the standard Zero-shot learning
by incorporating a ‘context of the task’ using CoT
to improve the performance. Briefly, their method
follows this procedure. Given a question Q, the
authors use the prompt ‘Lets think step-by-step’
followed by Q to generate a response Z. Then, they
use the prompt ‘The answer (Arabic numericals) is’
followed by Z to get their final result.
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Model Accuracy
Zero-shot 17.7
Zero-shot (PaLM 540B) 25.5
Zero-shot-CoT 78.7
Zero-shot-CoT (PaLM 540B) 66.1
Zero-shot-CoT + self consistency (PaLM 540B) 89.0
Zero-shot-CoT (MathPrompter) 92.5

Few-Shot (2 samples) 33.7
Few-Shot (8 samples) 33.8
Few-Shot-CoT (2 samples) 84.8
Few-Shot-CoT (4 samples) 90.5
Few-Shot-CoT (8 samples) 93.0
Zero-Plus-Few-Shot-CoT (8 samples) 92.8

Table 1: Accuracy on MultiArith dataset. MathPrompter outperforms all the Zero-shot & Zero-shot-CoT baselines. We
emphasize that our model’s performance is comparable to 540B parameter models as well as the SOTA Few-shot-CoT approaches.
(If not mentioned explicitly, the models in each row consists of 175B parameters. Results are borrowed from (Kojima et al.,
2022). They used Textdavinci-002 (175B) model along with the same 8 examples as described in (Wei et al., 2022) for Few-shot
and Few-shot-CoT settings.)

3.3 Results

3.3.1 Accuracy comparisons

Table 1 compares the performance of the Math-
Prompter against the baseline models. The results
of few-shot & zero-shot learning based approaches
are shown. Furthermore, we add the results for
models with different number of parameters to get
better highlight the significance of our approach.
Since, MathPrompter is a Zero-shot-CoT (175B
parameters) method, we choose the state-of-the-art
Zero-shot-CoT (175B parameters) model by (Ko-
jima et al., 2022) and a Zero-shot(175B parameters)
by (Brown et al., 2020) for fair comparison. We
report an accuracy of 92.5% which is a huge im-
provement to the other SOTA models with 78.7%
and 17.7% accuracy, respectively.

3.3.2 Example comparisons

Table 2 presents a sample set of questions and
their respective outputs, intermediate steps, and
final answers generated by both MathPrompterand
the current state-of-the-art model (Kojima et al.,
2022). For simplicity, only one output of Math-
Prompter for each question is shown for both the
Algebraic and Pythonic outputs.

The table highlights areas where (Kojima et al.,
2022) technique falls short, and where these can
be remedied with MathPrompter , which was de-
signed to address these issues. For example, the
generated answers sometimes have one step of er-
ror, which can be avoided by running the model
multiple times and reporting the consensus results.

Additionally, the reasoning steps in (Kojima et al.,
2022) can be excessively lengthy, but the Pythonic
or Algebraic methods can address this by typically
requiring fewer tokens. Furthermore, the reasoning
steps may be correct, but the final computation is
incorrect. MathPrompter address problem by using
the Python’s eval() method function.

In many cases, the MathPrompter generates cor-
rect intermediate and final answers. However, there
are a few cases, such as the last question in Table 2,
where both the Algebraic and Pythonic outputs are
in agreement, yet erroneous. We plan to address
these issues by incorporating additional methods to
further enhance the performance of MathPrompter .

4 Conclusions & Discussions

We introduced MathPrompter, a novel approach
that improves LLM performance on mathematical
reasoning problems. It also addresses an important
concern of building the user trust to some extent in
the LLM predictions. We translated our intuition on
how students solve arithmetic problems to a LLM
model by utilizing the Zero-shot chain-of-thought
prompting technique. MathPrompter incorporates
ideas like cross-checking the intermediate steps
and solving the same math problem using multiple
approaches in its design. We empirically show that
our model is comparable to SOTA Few-shot-CoT
models as well as the larger Zero-shot-CoT models
that have 540B parameters. In future, we plan to
further evaluate performance on additional datasets
and explore incorporating additional prompts into
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Table 2:

Example-based comparison between current state of art Zero-shot-CoT and MathPrompter .
Question SOTA Zero-shot-CoT MathPrompter
Q: At the fair Adam bought 13
tickets. After riding the ferris
wheel he had 4 tickets left. If
each ticket cost 9 dollars, how
much money did Adam spend
riding the ferris wheel?

A (ONE UNNECESSARY STEP ERROR): Let’s
think step by step. Adam bought 13 tickets. That
means he spent 13 * 9 = 117 dollars on tickets.
After riding the ferris wheel, he had 4 tickets left.
That means he used 9 tickets to ride the ferris wheel.
That means he spent 9 * 9 = 81 dollars on riding the
ferris wheel. So the answer is 117 - 81 = 36 dollars.
Therefore, the answer (arabic numerals) is 36. ✗

Mapping = {A:13, B:4, C:9}

# Algabraic answer
Answer = A*(B-C)
#Python code
def total_price(A, B, C):

return A * (B-C)

Answer = 81 ✓

Q: Each chocolate bar in a box
cost $3. If a box had 9 bars
total and Wendy sold all but 3
bars, how much money would
she have made?

A (OTHERS; MAXIMUM LIMIT OF TEXT
LENGTH): Let’s think step by step. Each chocolate
bar in a box costs $3. If a box had 9 bars total, then
Wendy sold all but 3 bars. How much money would
she have made? We can solve this problem using al-
gebra. Let’s start by creating a variable to represent
the number of chocolate bars Wendy sold. We’ll
call this variable "x". If Wendy sold "x" chocolate
bars, then she would have 9 - x chocolate bars left in
the box. We know that each chocolate bar costs $3,
so the total cost of the chocolate bars Wendy sold
Therefore, the answer (arabic numerals) is: Wendy
would have made $12. ✗

Mapping = {A:3, B:9, C:3}

# Algabraic answer
Answer = A x (B - C)
#Python code
def money_made(A, B, C):

return (B-C)*A

Answer = 18 ✓

Q: Jerry was helping the cafete-
ria workers pick up lunch trays,
but he could only carry 8 trays
at a time. If he had to pick up 9
trays from one table and 7 trays
from another, how many trips
will he make?

A (COMMONSENSE MISTAKE): Let’s think step
by step. Jerry can carry 8 trays at a time. There are
9 trays on the first table. That means Jerry will need
to make 2 trips to the first table. There are 7 trays
on the second table. That means Jerry will need
to make 1 trip to the second table. In total, Jerry
will make 3 trips. Therefore, the answer (arabic
numerals) is 3. ✗

Mapping = {A:8, B:9, C:7}

# Algabraic answer
Answer = (B+C)/A
#Python code
def numTrips(A, B, C):

trips = (B + C) // A
if (B + C) % A != 0:

trips += 1
return trips

Answer = 2 ✓

Q: Kaleb bought 14 boxes of
chocolate candy and gave 5 to
his little brother. If each box
has 6 pieces inside it, how many
pieces did Kaleb still have?

A: Let’s think step by step. Kaleb bought 14 boxes
of chocolate candy. This means that he had 84
pieces of chocolate candy. He gave 5 boxes to his
little brother, which means that he gave his little
brother 30 pieces of chocolate candy. Kaleb still
had 54 pieces of chocolate candy. Therefore, the
answer (arabic numerals) is 54 ✓.

Mapping = {A:14, B:5, C:6}

# Algabraic answer
Answer = A*C - B
#Python code
def candy_pieces(A, B, C):
return A*C - B

Answer = 79 (COMMONSENSE MIS-
TAKE)✗

MathPrompter.

5 Limitation

One of the limitations of our work is that while
we are running the MathPrompter multiple times
in different ways to increase the accuracy of our
results, this does not always guarantee the correct-
ness of the output. Both Algebraic and Pythonic
expressions have the potential to produce the incor-
rect results, even if the prompt outputs match each
other. This is the fail case as shown in the last row
of Table 2. Increasing the number of prompts will
mitigate this issue. We are currently investigating
techniques that can address this issue in a more
principled manner.
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Abstract

Recently, self-learning methods based on user
satisfaction metrics and contextual bandits
have shown promising results to enable con-
sistent improvements in conversational AI sys-
tems. However, directly targeting such met-
rics by off-policy bandit learning objectives
often increases the risk of making abrupt policy
changes that break the current user experience.
In this study, we introduce a scalable frame-
work for supporting fine-grained exploration
targets for individual domains via user-defined
constraints. For example, we may want to en-
sure fewer policy deviations in business-critical
domains such as shopping, while allocating
more exploration budget to domains such as
music. We present a novel meta-gradient learn-
ing approach that is scalable and practical to
address this problem. The proposed method
adjusts constraint violation penalty terms adap-
tively through a meta objective that encourages
balanced constraint satisfaction across domains.
We conducted extensive experiments on a real-
world conversational AI and using a set of re-
alistic constraint benchmarks. The proposed
approach has been deployed in production for a
large-scale commercial assistant, enabling the
best balance between the policy value and con-
straint satisfaction rate.

1 Introduction

Conversational AI systems such as Apple Siri,
Amazon Alexa, Google Assistant, and Microsoft
Cortana rely on multiple processing components
for speech recognition, natural language under-
standing (NLU), taking proper actions, and generat-
ing a response to the user. In such a system, a skill
routing block is responsible for selecting the right
skill and NLU interpretation to serve the request.
Skill routing is a challenging problem as thousands
of skills are present in real-world conversational
systems and new skills are being introduced every
day. In such scenario, gathering human annotations
is very expensive and suffers from high turn-around

times. Moreover, often more than one skill is ca-
pable of serving a request which makes human
supervision even more challenging due to the lack
of clear ground-truth assignments (Sarikaya, 2017).

Recently, self-learning methods have been pro-
posed that leverage customer experience signals
to define reward values and create a closed feed-
back loop (Karampatziakis et al., 2019). In con-
trast to more traditional methods that are based
on replication of rule-based systems or defect re-
labeling (Park et al., 2020), self-learning methods
continuously explore different routing alternatives
and leverage user feedback to improve their deci-
sions (Kachuee et al., 2022).

Despite their scalability and efficiency, because
self-learning approaches directly optimize routing
decisions to achieve highest rewards, they suffer
from instability issues impacting the user experi-
ence. Specifically, off-policy contextual bandits
frequently used as the policy learning algorithm
are susceptible to off-policy optimization errors,
resulting in potentially breaking the current user ex-
perience due to overestimation of action values or
excessive explorations (Swaminathan et al., 2016;
Joachims et al., 2018; Lopez et al., 2021). Such
instabilities and drastic changes in the agent’s be-
havior not only regress user retention and trust, but
also manifest as direct revenue loss for business-
critical domains such as shopping.

In a production system, it is crucial to not only
estimate but also control the changes of behavior
a new policy introduces when compared to the
current production policy. In the literature, this
problem has been studied under safe bandit up-
dates (Jagerman et al., 2020; Daulton et al., 2019;
Amani et al., 2019) and budgeted bandit learn-
ing (Hoffman et al., 2014; Guha and Munagala,
2007), usually targeting exploration budgets or en-
couraging a behavior resembling a baseline policy.

In the context of off-policy bandit updates, we
define exploration as any change in the model be-
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havior resulting from replacing a current produc-
tion policy with a new updated policy. This defi-
nition is broad and encloses stochastic exploration
actions as well as any behavior change when com-
paring the two consecutive policies. Furthermore,
we consider the scenario in which samples are nat-
urally classified into a set of domains, each rep-
resenting a unique data segment. Note that in a
task-oriented conversational agent, domains are
typically defined based on NLU interpretation of
the request (e.g. music, shopping, books).

While previous studies considered different as-
pects of constraining a bandit model, to the best
of our knowledge the problem of controlling off-
policy bandit behavior changes across subsequent
model updates with a fine-grained control on bud-
gets for different data segments (domains) remains
unaddressed. This study is the first to tackle the
aforementioned issues by providing a scalable and
practical approach. The main contributions of this
paper are as follows: (i) Introducing a formula-
tion for controlled exploration in the context of off-
policy contextual bandit learning considering fine-
grained control over domains based on user-defined
constraints. (ii) Presenting a solution based on
the primal-dual minimax constraint optimization
method that is effective but requires adjusting a few
hyperparameters. (iii) Proposing a novel meta gra-
dient algorithm to balance constraint satisfaction
and reward maximization that works out-of-the-box
and outperforms other methods with no need for
hyperparameter adjustment. (iv) Conducting ex-
tensive online and offline experiments on the skill
routing problem in a real-world conversational AI
agent using a set of realistic constraint benchmarks.

2 Related Work

2.1 Skill Routing in Conversational AIs

In contrast to traditional rule-based systems, model-
based skill routing approaches leverage machine
learning models to understand a user request and
predict the best action to serve the request (Li et al.,
2021; Park et al., 2020).

To improve scalability, self-learning methods
have been proposed that rely on user feedback
rather than human annotations to learn and improve
their skill routing policies in a closed-loop. The
recent work by Kachuee et al. (2022) is an excel-
lent example of such approach in which model-
based customer satisfaction metrics (Kachuee et al.,
2021) are used to define the reward function, then a

stochastic mixture of replication and bandit models
is used to control the exploration rate and safeguard
the user experience. Nonetheless, such design may
result in sub-optimal decisions as the bandit opti-
mization does not consider the exploration budgets,
the stochastic mixture may not be sufficiently fine-
grained to protect user experience in smaller traffic
segments, and deploying such architecture requires
dealing with additional complexity of maintaining
a separate replication model.

2.2 Constrained Bandit Learning

The majority of studies on controlled bandit
learning consider the case of simple multi-armed
stochastic bandits (i.e., without context) with prac-
tical applications in experiment design (Guha
and Munagala, 2007) and automated machine
learning (Hoffman et al., 2014). Hoffman et al.
(2014) suggested a Bayesian approach to two-phase
exploration-exploitation bandit learning in which
there is a pre-specified budget for exploration arm
evaluations. Another aspect is to ensure safe ex-
ploration actions, which is especially useful for
sensitive applications in industrial machine learn-
ing or healthcare. Amani et al. (2019) introduced
a solution in which an initial set of exploration ac-
tions is defined, then the exploration set is gradually
expanded to ensure minimal unexpected behavior.

For contextual bandits, constraints can be de-
fined in the action space or in terms of model up-
dates. For example, Daulton et al. (2019) solves
a two-metric setting in which the reward is being
maximized while enforcing a limit for regression
on an auxiliary metric compared to a baseline sta-
tus quo model. Balakrishnan et al. (2018) attempts
to learn behavioral constraints by balancing be-
tween replication of the current baseline policy and
making new actions that show promising rewards.
In (Jagerman et al., 2020) authors define safety in
terms of user experience metrics and suggest decid-
ing on deploying a new model based on conserva-
tive confidence bounds on the off-policy estimates
of such metrics.

3 Constrained Bandit Exploration

3.1 Problem Formulation

We consider the general framework of off-policy
contextual bandits in which a policy Π is used to
select an action a ∈ A given the observed con-
text vector (x) to maximize the scalar reward (r)
received from the environment. Here, we assume
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stochastic policies of the form Πθ(a|x) in which a
model parameterized by θ (e.g., a neural network)
is used to assign action selection probabilities to
each action given the context. Furthermore, we as-
sume that each sample belongs to a domain denoted
by k ∈ 1 . . .M provided as a feature in x.

In the off-policy setting, the policy is refreshed
after collecting a dataset of samples from the cur-
rent policy. We adopt a definition of exploration
which considers any change in the agent behavior
compared to the current policy as an exploration
action. Alternatively, we can consider replication
with respect to the current policy as the rate at
which the new policy makes similar decisions to
the current policy when both evaluated and sam-
pled stochastically. We define replication for Πθ

with respect to Π0 based on the L1-distance of their
action propensities given a context x:

Rθ(x) = 1− |Πθ(x)−Π0(x)|1
2

. (1)

In a production system, it is desirable to precisely
control the rate at which the new policy replicates
the current policy for each domain. This ensures
robust and controlled model updates for critical
domains while enabling exploration for others that
may benefit from an extra exploration budget. Ac-
cordingly, we define constraints to encourage the
desired behavior for samples of each domain, while
learning an off-policy bandit:

argmin
θ

Ex,a,r,k∼D LΠθ
,

s.t. cmin
k ≤ Rθ(x) ≤ cmax

k

(2)

where context, action, reward, and domain
(x, a, r, k) are sampled from a dataset collected
from the current policy. In (2), we use cmin

k

and cmax
k to indicate user-defined replication con-

straints for domain k.
LΠθ

can be any differentiable off-policy ban-
dit learning objective, for simplicity of discussion,
we consider the vanilla inverse propensity scoring
(IPS) objective:

LΠθ
(x, a, r) = −rΠθ(a|x)

Π0(a|x)
, (3)

where Π0 is the current policy and r is the observed
reward for taking action a collected in the dataset.

A common approach to optimize constrained
problems such as (2) is to use the penalty method,

translating constraints into penalty terms that en-
courage constraint satisfaction:

argmin
θ

Ex,a,r,k∼D [LΠθ
(x, a, r) +

euk max(0, cmin
k −Rθ(x)) +

evk max(0,Rθ(x)− cmax
k )] . (4)

Here, penalty terms are always non-negative and
increase if the new policy assigns action probabili-
ties that deviate from the current policy outside the
desired boundary. u ∈ RM and v ∈ RM are vari-
ables that adjust the weight of each constraint vio-
lation term. The exponentiation improves the sensi-
tivity to these parameters and ensures having non-
negative penalty terms. For (4) to actually solve the
original constrained problem of (2), proper values
for u and v need to be used that enable the best bal-
ance between constraint satisfaction and the policy
value. In the constrained optimization literature,
various methods have been suggested to solve this
form of problem. In this paper, to solve this prob-
lem, we use the primal-dual minimax method sug-
gested by Nandwani et al. (2019) (Section 3.2) as
well as a novel meta-learning method (Section 3.3).

3.2 Minimax Primal-Dual Method

Nandwani et al. (2019) suggested a formulation of
the augmented Lagrangian method that supports
inequality constraints. They solve the dual problem
which is optimizing the dual maximin problem to
improve the scalability:

min
θ

max
u,v

Ex,a,r,k∼D [LΠθ
(x, a, r) +

euk max(0, cmin
k −Rθ(x))+

evk max(0,Rθ(x)− cmax
k )] . (5)

Algorithm 1 shows an outline of the policy train-
ing using the minimax method. This method has
four hyperparameters controlling the max player
optimization via adjusting the update frequency,
learning rate, and decay factors.

Intuitively, the min player is trying to update the
policy while the max player is increasingly penal-
izing it for any constraint violation. A stable point
of this algorithm would be to gradually reduce the
max player update rate as the min player is getting
better at satisfying the constraints, eventually satis-
fying all constraints resulting in a zero loss for the
max player due to the zero hinge penalty terms.
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Algorithm 1: Minimax constrained bandit
input :D (dataset), η (max learning rate), γ (max

learning rate decay), τ (max update
frequency), ξ (max update frequency decay)

u,v, t← 0; Initialize(Πθ)
for x, a, r, k ∼ D do

/* loss function of (5) */
L← Loss(x, a, r, k, θ,u,v)
if t%τ is 0 then

/* gradient ascent, max player */
u← u+ η∇uL
v← v + η∇vL
/* lr/update decay */
η ← γ × η
τ ← ξ × τ

end
/* optimize Πθ, min player */
θ ← f(θ,∇θL)
/* increment counter */
t← t+ 1

end

3.3 Meta Gradient Method
Theoretically, the primal-dual minimax method is
capable of achieving Pareto optimal solutions (Jin
et al., 2019; Nandwani et al., 2019). However, in
practice, it is infeasible to train for an infinite num-
ber of iterations, and therefore approximate inner
optimization loops are being used. To find the right
balance between constraint satisfaction and policy
improvement for the minimax algorithm, it is nec-
essary to carefully adjust multiple hyperparameters.
Note that an extensive hyperparameter search is un-
desirable in many real-world scenarios as it entails
not only significant compute costs associated with
the search but also increases the turn-around time
to deploy refreshed models. To mitigate this issue,
we suggest a meta-gradient optimization idea that
adapts u and v based on a meta objective within
the training process.

Specifically, we define the the meta objective as:

Lmeta = Ex,a,r,k∼D (1− λ)LΠθ
(x, a, r)+

λ
max(0, cmin

k −Rθ(x)) + max(0,Rθ(x)− cmax
k )

p(k)
(6)

where λ is a hyperparameter to balance between
the bandit objective and the constraint penalty
terms. The second term is the macro average of
violation penalties, in which p(k) is the prior proba-
bility of samples belonging to domain k that can be
easily pre-computed for a large batch of samples.

Note that (6) is not directly dependent on u and
v, instead we rely on online cross-validation (Sut-
ton, 1992; Xu et al., 2018) to update these variables.

We define an inner objective the same as the min
optimization problem of (5), do a differentiable
optimization step, evaluate the meta objective on
another batch of data, then update u and v by tak-
ing the derivative of the meta objective through the
inner optimization trace.

Algorithm 2 presents an outline of the meta gra-
dient optimization method. Due to practical is-
sues of dealing with high-order gradients, we only
consider the immediate impact of a single inner
loop update on the meta objective. We found that
discarding the vanilla gradient descent used for
the inner optimization and using a more advanced
optimizer (e.g., Adam) to update Πθ works best.
Regarding the λ hyperparameter, we found that
simply setting λ = 1 works well in practice. It
effectively means that the meta-gradient solution
does not require any hyperparameter adjustments
(experimental evidence presented in Section 4.4).

Algorithm 2: Meta-grad constrained bandit
input :D (dataset), η (learning rate), λ (penalty

weight)
u,v← 0; Initialize(Πθ)
for x, a, r, k ∼ D and x′, a′, r′, k′ ∼ D do

/* clone parameters */
θ′ ← clone(θ)
/* inner loss with θ′ */
Linner ← Lossinner(x, a, r, k, θ

′,u,v)
/* grad. descent on cloned model */

θ′ ← θ′ − η∇θ′Linner

/* compute meta loss */
Lmeta ← Lossmeta(x

′, a′, r′, k′, θ′, λ)
/* diff. through inner update */

Compute∇uLmeta and∇vLmeta

/* use any optimizer for u,v */
u← f(u,∇uLmeta)
v← f(v,∇vLmeta)
/* inner loss with θ */
L← Lossinner(x, a, r, k, θ,u,v)
/* use any optimizer for Πθ */
θ ← f(θ,∇θL)

end

Intuitively, at each training iteration, the inner
objective naturally minimizes the bandit loss that
is penalized by constraint violation terms propor-
tional to the current u/v. Then, the meta objec-
tive computes a validation loss that measures the
impact of the inner policy update and u/v on the
macro-averaged constraint violations. Finally, by
computing the meta-gradient of the meta objective
through the inner optimization loop, u and v are
updated to better encourage the constraint satisfac-
tion for the next policy update iteration. Thanks to
the online cross-validation update for u and v, the

46



Figure 1: Model architecture overview: a set of hypoth-
esis are encoded as vectors and fed to a bi-directional
LSTM followed by a shared MLP and a softmax layer
to get the candidate selection probabilities .

meta-gradient method adjusts the penalty weights
such that their value does not unnecessarily keep
increasing when it does not result in further im-
provements to the constraint satisfaction.

4 Experiments

4.1 Setup

In a commercial dialogue agent, making controlled
policy updates is crucial because any change in the
skill routing policy directly impacts the user expe-
rience. Making abrupt policy changes may nega-
tively impact user retention and in certain business-
critical domains may result in loss of revenue.

Figure 1 shows an overview of the model archi-
tecture used in our experiments. Input to the model
is a set of routing candidates i.e., a combination of
embedded ASR, NLU, and context vectors as well
as skill embeddings. The output is the softmax-
normalized propensity of selecting each candidate
to handle the user request. The final model has
about 12M trainable parameters consisting of a lan-
guage model to encode utterance, embeddings for
contextual signals, and fully-connected layers. As
our architecture closely follows the design choices
from Kachuee et al. (2022), we refer interested
readers to that paper for details.

To train and evaluate our models, we use logged
data from a current production policy. The ob-
served reward is based on a curated function of
user satisfaction metrics (Kachuee et al., 2021).
Our dataset consists of about 40M samples divided
into 85% training, 10% validation, and 5% test sets
covering 27 domains with imbalanced number of
samples. Data used in this work was deidentified
to comply with our customer privacy guidelines.

4.2 Benchmarks

In our experiments, we use three different
benchmarks for the constraint settings: global,
critical, and exploration. The global bench-
mark aims to constrain the new policy to be within
an exploration limit for all domains. In addition
to the global constraint, critical assert stronger
limits for a set of critical domains defined based on
the expert knowledge. The exploration bench-
mark extends the critical benchmark by adding
constraints to encourage exploration for domains
that may benefit from additional exploration. Each
benchmark is a list of constraints consisting of a
short description, applicable domain, and the de-
sired replication range. We provide the exact con-
straint configurations in the appendix.

4.3 Baselines and Metrics

As the first baseline, we consider the vanilla IPS
objective which disregards the constraints. Addi-
tionally, we build on the IPS baseline for constraint
optimization approaches: quadratic (uniform con-
stant penalty weight), minimax (Algorithm 1), and
meta-gradient (Algorithm 2). Unless expressed oth-
erwise, we use Adam optimizer with the default
configuration (Kingma and Ba, 2014) .

Regarding hyperparameters, for the penalty
weight of the quadratic method we use values from
{0.1, 1, 10, 100, 1000}. For the minimax method
(Algorithm 1), we found that setting τ and ξ to one
while adjusting η and γ presents very similar re-
sults to adjusting all four hyperparameters. Conse-
quently, we use a grid search of η ∈ {1, 0.1, 0.01}
and γ ∈ {1, 0.999, 0.995} to find the best settings
for each benchmark. For the meta-gradient method
(Algorithm 2), we found that simply using λ equal
to one in the meta objective (i.e., meta objective
only focusing on the constraints) outperforms other
works. As a result, it does not require adjusting
any hyperparameter and the same setting is used
across all benchmarks. We provide additional ex-
periment details, sensitivity analysis, and the final
hyperparametersin Appendix A.2, A.3, and A.4.

Regarding the evaluation metrics, we use the
expected off-policy reward as well as the rate of
change in constraint violations averaged over all
samples (i.e., micro-averaged) and individual do-
mains (i.e., macro-averaged). To comply with our
privacy and business guidelines, in all instances, we
only report relative and normalized results which
do not represent the actual scales or metric values.
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Benchmark
global critical explore

Method reward violation reduction reward violation reduction reward violation reduction

(%) macro (%) micro (%) (%) macro (%) micro (%) (%) macro (%) micro (%)

IPS 89.45±0.01 0 0 89.45±0.01 0 0 89.45±0.01 0 0

Quadratic 88.95±0.01 63.67±0.46 63.67±0.46 88.94±0.01 50.13±0.90 69.29±0.67 88.36±0.04 28.37±4.62 65.24±2.30

Minimax 88.91±0.01 63.28±0.08 63.28±0.08 88.93±0.01 37.88±0.49 62.51±0.21 88.11±0.01 61.51±0.59 81.50±0.24

MetaGrad 88.94±0.01 75.91±0.49 75.91±0.49 88.94±0.01 60.63±0.95 79.69±0.85 88.41±0.01 78.23±0.17 89.95±0.20

Table 1: A comparison of the baseline IPS method with the quadratic, minimax, and meta-gradient constrained
optimization methods on different benchmarks. We report the normalized percentage of reduction in the number of
constraint violations compared to the IPS method.

Method reward Violation Reduction Replication

(%) (%) (%)

RPDR -0.01 (p>0.05) 0 98.13

MetaGrad +0.19 (p<0.05) 38.05 99.11

Table 2: Comparison of the proposed method (Meta-
Grad) and the robust self-learning method by Kachuee
et al. (2022) (RPDR) using an online A/B experiment.
We report: percentage of change in the reward compared
to a control model, violation reduction for the MetaGrad
normalized by the RPDR result, and percentage of repli-
cation compared to the control policy actions.

4.4 Results

4.4.1 Offline Experimentation
Table 1 shows a comparison of results for the IPS,
quadratic, minimax, and meta-gradient methods
on all benchmarks. For each case, we report the
expected reward and the percentage of reduction
in the rate of violations compared to the simple
IPS objective. The meta-gradient approach consis-
tently shows the best results across all benchmarks.
The simple quadratic method behaves very compet-
itively to minimax, except for the explore bench-
mark which requires a more fine-grained control on
multiple constraints . The meta-gradient method,
while having the highest reduction in constraints
violations, also has very competitive performance
in terms of the reward metric.

4.4.2 Online Experimentation
We conducted an A/B experiment to compare the
proposed method with the stochastic gating method
of Kachuee et al. (2022) for robust self-learning
(indicated by RPDR in the table). We conducted
our A/B in two phases, deploying and comparing
each approach to a baseline skill routing production
system. Each phase took one week and consisted
of traffic from about 6M customers (3M control

and 3M treatment). For the RPDR method, we
used a target replication rate of 99% for each do-
main. The meta-gradient model was trained with
the global benchmark, constraining to a similar
99% replication. For both RPDR and MetaGrad
models, we used the same training set which was
collected from the control model behavior and fol-
lowed the same model architecture.

Table 2 presents the results of the A/B experi-
ment. For each method we report the percentage
of changes in the achieved reward compared to
the control model. For violation reduction, we
report the percentage of reduction for MetaGrad
compared to the RPDR method. For the replication
metric, we simply report the percentage of time
that each policy makes actions that replicate the
control model decision. As we can see from the
results, MetaGrad approach not only shows more
stable behavior by better constraint satisfaction and
replication rates, but it also achieves statistically
significant improvements in the reward value.

5 Conclusion

This paper studied the problem of controlled explo-
ration to control the policy updates in self-learning
skill routing systems. We presented a constrained
optimization formulation that enables defining the
boundary of the desired exploration rate for individ-
ual domains. We proposed a scalable and practical
solution based on meta-gradient learning which
provides the highest constraint satisfaction rates
without any extensive hyperparameter adjustment.
Finally, we conducted experiments on a real-world
conversation system for the skill routing problem.
The proposed method was deployed in the produc-
tion as it showed not only more control over policy
changes but also gains in the policy value.
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Limitations

While we conducted extensive experiments and
demonstrated the effectiveness of the suggested
approach for controlled bandit learning in the con-
text of the skill routing problem, there are multi-
ple directions of improvement for future studies.
We believe one of the limitations of the suggested
constrained optimization framework is that it re-
lies on expert-defined conditions on an arbitrary
segmentation of samples. It entails the need for
human intervention and manual constraint defini-
tion/optimization which can be challenging. An-
other limitation we faced was during our experi-
ments which showed additional compute overhead
of between 2 to 3 times for different constrained op-
timization methods due to additional optimization
objectives, inner loops, and backward passes.

Ethics Statement

The presented work is focused on improving robust-
ness of off-policy bandit updates in conversational
systems by introducing robustness constraints on
the policy behavior. We do not believe there is
any additional risk associated with this work when
using the suggested platform on constraints that en-
courage controlled deviations from a current base-
line. Regarding human data handling practices, we
ensured anonymity of data samples used in this
study and did not reveal any specifics that would
violate our internal policies or our customer privacy
policies.
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A Appendix

A.1 Constraint Benchmarks
Figure 2 presents the definition of constraint bench-
marks used in this paper: global, critical, and
explore. The global benchmark sets a general
minimum replication rate for all domains. The
critical benchmark defines a tighter minimum
replication rate for three business-critical domains
(home automation, shopping, and notifications)
and a more relaxed default case for all other do-
mains. In the explore benchmark, we extend
the critical benchmark to include exploration
encouragement for the knowledge and music do-
mains.

(a) global benchmark

(b) critical benchmark

(c) explore benchmark

Figure 2: The constraint benchmarks used in this paper:
(a) global, (b) critical, and (c) explore.

A.2 Training Details
We train each model until convergence or reach-
ing 32 epochs and take the best performing model
based on the macro-averaged violation rate mea-
sured on the validation set. Each experiment was

run four times using different random seeds for
data sampling and weight initialization to report
the mean and standard deviation of each result.
We used a cluster of 32 NVIDIA V100 GPUs to
process a mini-batch size of 32K samples. Each
individual run took between 4 to 24 hours.

A.3 Selected Hyperparameters

Table 3 shows the final selected hyperparameters
for each benchmark and method. The definition of
each hyper-parameter is presented in Algorithm 1
and 2.

Benchmark
Method global critical explore

Quadratic w 10 1000 1000

Minimax
η 0.1 0.1 1

γ 1 0.999 1

Meta-Grad λ 1 1 1

Table 3: The selected hyperparameters for each bench-
mark and method.

A.4 Impact of Hyperparameters

To study the impact of hyperparameters, we con-
ducted an experiment using the critical bench-
mark by training minimax and meta-gradient
based models using different hyperparameter
values. Specifically, we train minimax mod-
els (Algorithm 1) using η ∈ {1.0, 0.1, 0.01}
and γ ∈ {1.0, 0.999, 0.995}. For the meta-
gradient method (Algorithm 2), we use λ ∈
{0.01, 0.05, 0.1, 0.5, 0.75, 0.95, 1.0}. Figure 3
shows the results of such experiment. Based on
this experiment, the minimax approach shows a
much higher sensitivity to its two hyperparameters,
showing a significant impact on both the reward
and violation reduction metrics. However, the meta-
gradient method shows much less sensitivity to the
λ hyperparameter. We found that simply setting
λ = 1 works very well in practice. It can be very
desirable for real-world large-scale settings such
as conversational systems which require frequent
model updates as new features are on-boarded ev-
ery day, and having a dependency on an extensive
hyperparameter search is very costly, if not imprac-
tical.
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Figure 3: Comparing the hyper-parameter sensitivity for the minimax and meta-gradient methods on the critical
benchmark. For the minimax method: (a) reward and (b) macro violation reduction wrt. different η and γ settings.
For the meta-gradient method: (c) reward and (d) macro violation reduction wrt. different λ settings.

A.5 Analysis of Penalty Weights
To dive deeper into the reason behind the better
performance for the meta-gradient algorithm com-
pared to the minimax approach, we investigated the
constraint penalty weight value for the first 3,000
iterations of training using the global benchmark.
From Figure 4, we can see the minimax method is
monotonically increasing the penalty weight with
each iteration which is a behavior consistent with
the gradient ascent update rule in Algorithm 1. In
other words, as long as there are any constraint vi-
olations, minimax will keep increasing the penalty,
which in our opinion is the reason for high sensi-
tivity to the hyperparameters. On the other hand,
the meta-gradient approach is using a validation
signal to dynamically adjust the penalty weight.
Consequently, it may keep the penalty term near
zero for an initial phase, rapidly increase it, then
decay when violations are reduced and getting a
higher reward is preferred.
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Figure 4: The constraint penalty weight values for the
first 3,000 iterations of training using the global bench-
mark.
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Abstract

Large pre-trained language models based
on transformer architecture have drastically
changed the natural language processing (NLP)
landscape. However, deploying those models
for on-device applications in constrained de-
vices such as smart watches is completely im-
practical due to their size and inference cost.
As an alternative to transformer-based architec-
tures, recent work on efficient NLP has shown
that weight-efficient models can attain com-
petitive performance for simple tasks, such
as slot filling and intent classification, with
model sizes in the order of the megabyte. This
work introduces the pNLP-Mixer architec-
ture, an embedding-free MLP-Mixer model
for on-device NLP that achieves high weight-
efficiency thanks to a novel projection layer.
We evaluate a pNLP-Mixer model of only one
megabyte in size on two multi-lingual semantic
parsing datasets, MTOP and multiATIS. Our
quantized model achieves 99.4% and 97.8% the
performance of mBERT on MTOP and multi-
ATIS, while using 170x fewer parameters. Our
model consistently beats the state-of-the-art
of tiny models (pQRNN), which is twice as
large, by a margin up to 7.8% on MTOP.

1 Introduction

Large language models based on transformer ar-
chitecture have been fueling the latest successes
in natural language processing (NLP). Nowadays,
fine-tuning pre-trained models represents the de-
facto framework to tackle diverse NLP tasks, even
those with limited amounts of annotations.

While the merit of large pre-trained language
models is undeniable, using models of several gi-
gabytes and billions of parameters is not always
practical or even possible due to computational and
memory requirements. In addition, there are many
simple and yet important tasks, such as slot filling

∗Work done during a research stay at IBM Research.

in home assistants, which do not require the com-
plex linguistic knowledge encoded by large pre-
trained models and for which smaller models may
reach competitive performance at a much lower
cost. Reducing model sizes to the order of the
megabyte is a necessity for resource constrained
devices, such as smart watches, and in general it is
attractive for edge use cases as i) updating models
at the edge requires pushing updates to potentially
millions of devices, and ii) multiple models solving
different tasks can be deployed even on embedded
devices with limited memory capacity.

Transformer-based architectures are not suit-
able to downscale to such ultra small model sizes,
mostly due to the space required to store embed-
ding tables (Zhao et al., 2021). Projection-based
models (Ravi, 2017) have shown that the dense rep-
resentations learned as part of the training process
and stored in the embedding tables can be replaced
by non-trainable representations computed on-the-
fly over the text, hence the name embedding-free.

In this work, we introduce the pNLP-Mixer,
a novel embedding-free architecture for ultra-
small NLP models targeting on-device applica-
tions. Our architecture relies on a novel projec-
tion layer which creates text representations for
individual tokens by combining the MinHash fin-
gerprints (Broder, 2000) corresponding to each sub-
word unit. The projected features are given as input
to a MLP-Mixer (Tolstikhin et al., 2021), which
grants our model architecture linear scalability in
the sequence length and seamless hardware accel-
eration. To the best of our knowledge, this is the
first work combining subword-unit tokenization
and MinHash fingerprints in projection networks.

Our evaluation on two semantic parsing datasets
representative of on-device applications, MTOP
and multiATIS, showcases that the pNLP-Mixer
beats the current state-of-the-art for ultra-small
models, pQRNN (Kaliamoorthi et al., 2021), by
up to 7.8% on sequence tagging tasks. On MTOP,
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a pNLP-Mixer model with only one million pa-
rameters achieves 99.4% of the performance of
mBERT, which has 170x more parameters.

2 Related Work

Since the introduction of transformer-based lan-
guage models such as BERT (Devlin et al., 2019),
model sizes have been increasing at unprecedented
pace (Brown, 2020; Goyal et al., 2021; Lample
and Conneau, 2019). Using current large language
models for on-device applications is simply not
feasible due to the size and computational require-
ments, especially in resource constrained devices
such as smart watches. Transformer-based mod-
els optimized for smartphone use cases, such as
DistilBERT (Sanh et al., 2019), TinyBERT (Jiao
et al., 2020), and MobileBERT (Sun et al., 2020)
have shown that by combining knowledge distilla-
tion (Hinton et al., 2015) and quantization (Jacob
et al., 2018), one can achieve model sizes in the
order of tens to hundreds of megabytes in size. Em-
bedded devices, such as wearables, require instead
model sizes in the order of the megabyte, a target
that is very challenging to achieve with transformer-
based architecture, mostly because of the size of
the embedding tables (Zhao et al., 2021).

Embedding-free model architectures have been
introduced to completely eliminate the dependency
on large embedding tables from models. Instead
of learning embeddings at training time, text repre-
sentation are computed on-the-fly using solely the
surface forms of the tokens by means of locality-
sensitive hashing (LSH) (Charikar, 2002) tech-
niques. This way tokens that are similar at the
surface level have similar representations. The
idea of replacing trainable parameters stored in
embedding tables with LSH-based projections
has been introduced in Ravi (2017) and Ravi
(2019). Follow up research work on model ar-
chitectures targeting ultra-small model sizes has
resulted in several model architectures including
SGNN (Ravi and Kozareva, 2018), SGNN++ (Ravi,
2019), Prado (Kaliamoorthi et al., 2019), and
pQRNN (Kaliamoorthi et al., 2021). Our model
architecture belongs to the same line of research,
but introduces a linguistically informed projec-
tion layer which combines subword-unit tokeniza-
tion (Sennrich et al., 2016) with LSH principles.
In our work, we evaluate and compare multiple
LSH techniques, including SimHash (Manku et al.,
2007) and MinHash (Broder, 2000). In our projec-
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Figure 1: Our pNLP-Mixer model has a non-trainable
projection layer which feeds a MLP-Mixer architec-
ture with rich text features representing MinHash finger-
prints in a Counting Bloom Filter.

tion layer, by exploiting the associativity property
of MinHash, fingerprints of individual tokens can
be efficiently computed from the fingerprints of
their subword units.

Our model does not use attention mechanisms,
as it feeds the representations to a MLP-Mixer (Tol-
stikhin et al., 2021) model. While using MLP only
architectures is not new in the NLP landscape (Liu
et al., 2021; Yu et al., 2022), this work is the first
proposing an all-MLP architecture for ultra-small
models. There are numerous studies around effi-
cient transformer-based models (Tay et al., 2022)
and solutions to make them scale linearly with the
sequence length. However, none of those work
targets models of the size of the single megabyte.

3 pNLP-Mixer: a Projection MLP-Mixer

The pNLP-Mixer has been designed from the
ground up as an efficient architecture suitable for
both edge cases, memory and latency constrained,
and as a backbone for complex NLP pipelines.

Figure 1 depicts the model architecture at high
level. The pNLP-Mixer falls into the category of
projection-based models: instead of storing large
embedding tables, like transformer-based models
do, our model uses a projection layer which cap-
tures morphological knowledge from individual
tokens using non-trainable hash functions. This
projection layer can be seen as a feature extrac-
tor that produces a representation from input text.
Once the input features are computed, they are
passed through a trainable linear layer called bot-
tleneck layer. The output of the bottleneck layer is
the input of a series of MLP blocks of a standard
MLP-Mixer architecture (Tolstikhin et al., 2021).

There are several advantages of using an all-
MLP architecture for language processing. In con-
trast to attention-based models, the MLP-Mixer
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captures long-range dependencies without intro-
ducing a quadratic cost on the sequence length.
Further, by using only MLPs, the model becomes
simple to implement and has out-of-the-box hard-
ware acceleration in devices ranging from mobile
phones to server-grade inferencing accelerators.

The main contribution of our work is to show
that a simple model like the MLP-Mixer represents
a valid alternative to transformer-based models in
NLP, even in setups where large embedding tables
are replaced with projections computed on the fly.
The key to achieve competitive performance with
such small and computationally efficient models is
to feed them with high-quality input features.

3.1 Projection Layer

Our projection layer builds upon the notion of local-
ity sensitive hashing (LSH) (Indyk and Motwani,
1998) to create representations from text. While
LSH has been introduced in previous works, e.g., in
pQRNN (Kaliamoorthi et al., 2021), our approach
is completely novel. In particular, we combine
subword-unit tokenization (Schuster and Nakajima,
2012; Sennrich et al., 2016) and the associativity
of MinHash (Broder, 2000) to efficiently compute
features of any token as a combination of the fea-
tures corresponding to its subword unit. Subword
tokenization, which is commonly used in trans-
formers, ensures that any text can be represented
as a sequence of subwords units, i.e., there are no
out-of-vocabulary words. In our context, using sub-
word tokenization provides two main advantages:
i) linguistic knowledge can be injected by train-
ing domain-specific subword-unit tokenizers, and
ii) the representation of each subword unit can be
precomputed and cached to reduce inference costs.

Our projection layer calculates the MinHash fin-
gerprint F t of each input token t by reusing the
fingerprint of individual subword units belonging
to the vocabulary V (see Figure 2). A finger-
print F ∈ Nn is an array of n positive integers
F0 to Fn−1, computed with n distinct hash func-
tions h0(x) to hn−1(x) mapping strings to posi-
tive integers. This way, the first step of our pro-
jection is tokenization, which transforms each in-
put token into a list of subword units. Then, for
each subword unit u, we calculate its fingerprint
F u. Each element F u

i , with 0 ≤ i < n, is ob-
tained by first applying a hash function hi(x) to
each of the trigrams v0 to vk−1 extracted from
the subword u, with k ≥ 1. Then, F u

i is ob-

Bring
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38 78 67 78

rin

ing

ℎ" ℎ# ℎ$ ℎ%
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MinHash
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N-grams
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Figure 2: The MinHash fingerprint of a subword unit
contains the minimum hash values computed over the
trigrams, for each hash function H0−3. Fingerprints for
a given token are computed by aggregating the finger-
prints of its subword units in a similar way.

tained as the minimum hash value across trigrams:
F u
i = min(hi(v0), ..., hi(vk−1)). For example, for

the subword unit “Bring”, FBring
i is computed as

FBring
i =min(hi(“Bri”), hi(“rin”),hi(“ing”)).
When a subword is a continuation, e.g.,

“##ing”, we skip the trigram extraction and calcu-
late the hash hi(x) directly on the full subword unit
u. The fingerprint F u is built by calculating F u

i for
each of the n hash functions h0(x) to hn−1(x).

Finally, the fingerprint F t of a token t made of
several subword units u0 to uj−1, e.g., “Bringing”
→ [“Bring”, “##ing”], is simply obtained by
setting each element F t

i to the minimum across
the j subword fingerprints F u0

i to F
uj−1

i . In our
example, FBringing

i = min(FBring
i , F##ing

i ).
In practice, if the fingerprint of each subword

unit u in the vocabulary V is precomputed and
cached, inference does not require any hashing
on strings but only computing the minimum be-
tween integer sets. In our setup, we use the mini-
mum operator as described in the original MinHash
paper (Broder, 2000), which also contains the re-
quired theoretical foundations. What we introduce
in our work is a method that elegantly exploits the
associativity property of MinHash to avoid comput-
ing hash functions over strings at runtime.

For each input token t, we do not use the finger-
prints directly as input to the bottleneck layer but,
instead, we use them to populate an array Ct ∈ Rm

of m float counters initially set to zero. In detail,
given the fingerprint F t corresponding to the to-
ken t, for each of the n MinHash values F t

i , we
increase by one the value in position p of the array
of counters Ct, where p = F t

i mod m. Therefore,
the extracted feature from each token is essentially
a Counting Bloom Filter (Fan et al., 2000) storing
the set of integers part of its MinHash fingerprint.
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Caching fingerprints for subword-units is en-
tirely optional. The memory required to enable
caching is given by an integer matrix storing |V |
fingerprints of size n, where |V | is the vocabulary
size and n the number of hash functions. In prac-
tice, caching costs just a few megabytes of memory
with vocabularies from pre-trained models and fin-
gerprints with, e.g., 64 hashes. Note, that there is
a fundamental difference between the embedding
matrices stored in transformers and our cached fin-
gerprints. In contrast to embedding tables, which
in transformer-based models are task specific as a
result of the fine-tuning process, the fingerprints
are not trainable and they are not directly involved
in any matrix multiplication. Since fingerprints are
not trainable, they can be reused across different
models, i.e., a single cache can serve n models. In
complex NLP pipelines to be executed on embed-
ded devices at the edge, this architecture provides
substantial opportunities for optimizations. First,
the same token fingerprint can be reused to perform
the inference with distinct models, which means
that the cost of computing the projection can be
easily amortized. Second, as long as tokenizer and
hashing scheme do not change, distinct models can
be independently updated, while keeping the cache
of subword-unit fingerprints unmodified on the de-
vice. Third, having a cache that is shared among
models means that the memory costs required to
enable caching are also amortized. It is worth to
remark that the advantages offered by our architec-
ture are not limited to edge use-cases. Large-scale
natural language processing platforms running in
data-centers can equally benefit from the resource
optimization and granular deployment opportuni-
ties offered by our architecture.

3.2 MLP-Mixer

The MLP-Mixer (Tolstikhin et al., 2021) is a sim-
ple architecture that consists exclusively of mixer
blocks. Each block has two multi-layer perceptrons
(MLPs) interleaved by a transposition operation.
The transposition of the output of the first MLP
lets the second operate on the sequence dimension,
effectively mixing information across tokens. Our
model follows the original work.

In our case, the matrix C ∈ Rs×m produced by
the projection layer, where s the sequence length
and m the size of the counting bloom filter, is
passed through a bottleneck layer: a dense layer fol-
lowed by an activation function and a normalization

layer, that outputs a matrix B ∈ Rs×h, where h is
the hidden size. B is fed to the MLP-Mixer, which
in turn produces an output O ∈ Rs×h. We apply a
classification head on top of O to generate the pre-
dictions. In the case of semantic parsing this head
is a linear layer applied on each token, while for
classification tasks, we use a max pooling instead.

4 Experimental Setup

Our architecture is designed as an alternative to
transformer-based models for ultra-small models
(i.e., one megabyte) targeting on-device applica-
tions. In the league of extremely small models,
common evaluation datasets used by research and
industry are not the same as the ones used for eval-
uating the generalizability of large pre-trained lan-
guage models (e.g., GLUE (Wang et al., 2018)), but
datasets for simpler tasks, that are more realistic ap-
plications for tiny models. Thus, we align to prior
works on tiny models for on-device applications
(Kaliamoorthi et al., 2019, 2021) that assess models
on two multilingual semantic parsing datasets.

MTOP (Li et al., 2021). It covers six languages,
English, Spanish, French, German, Hindi, and Thai.
It was created by translating from English to the
other languages. The train, dev, and test set for
each language contain 10k, 1.5k, and 3k samples.
We assess the models on slot parsing (named entity
recognition) on 78 different slot labels. We report
the exact match accuracy score, computed as the
number of instances whose all tokens have been
correctly labeled over the number of instances.

multiATIS (Xu et al., 2020). It is a multilin-
gual version of the ATIS dataset (Price, 1990),
that contains queries related to air travel in nine
languages: English, Spanish, French, German,
Hindi, Japanese, Portuguese, Turkish, and Chi-
nese. Each language except Hindi and Turkish
consists of 4, 488/490/893 samples for train, dev,
and test sets; for Hindi and Turkish the splits are
1, 440/160/893 and 578/60/715. We evaluate on
intent classification: determining the intent of a
query from 18 labels, and we report the accuracy.

Training Details. In our experiments, we aim
for model sizes in the order of one million pa-
rameters (one megabyte with 8-bit quantization).
All trained models are approximately of this size.
For the pNLP-Mixer, the projection of each token
is a feature vector of dimension 512 filled with
256 hashes. The bottleneck consists of one MLP
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MTOP EN multiATIS EN
Projection Exact Match Acc. Intent Acc.

Binary 80.58 97.97
TSP 80.33 98.17
SimHash 80.99 98.38
MinHash (Ours) 82.51 98.57

Table 1: Comparison of different projection layers fol-
lowed by the bottleneck and MLP-Mixer on the valida-
tion set of English MTOP and multiAtis.

with a Leaky ReLU as the activation function (Xu
et al., 2015) followed by a normalization layer (Ba
et al., 2016). Finally, we use 5 Mixer layers where
each block contains 256 hidden dimensions for the
token-mixing, channel-mixing, and classification
head. We use the tokenizer of BERT-base multi-
lingual cased. We tune the learning rate, weight
decay, and dropout with a batch size of 128 and
using early-stopping with a patience of 5 epochs.
We select the models reaching the best exact match
and intent accuracy on the validation set. We report
their performance on the test set.

5 Model Investigation

We provide detailed insights on the impact of differ-
ent projection layers and other architectural com-
ponents as well as a comparison to alternative ar-
chitectures. We perform the experiments on the En-
glish variant of the MTOP and multiATIS datasets.

5.1 Projection Comparison
First, given the pNLP-Mixer model of Section 4
with input features fixed to 512, we compare differ-
ent feature extraction strategies. Specifically:

• Binary. We compute 256 hash values for each
token. Given a token and a bitmap of size m = 512
set to zero, for each hash value hv, we set to 1 the
bit in position p = hv mod m of the bitmap. The
token feature is a float tensor storing the bitmap.

• TSP. For each token a 1024-bits hash is computed
and then represented as ternary feature of size 512
as described in Kaliamoorthi et al. (2019).

• MinHash. Our projection layer (Section 3.1).

• SimHash. We compute the hashes of subword
units as in MinHash, but we combine them using
SimHash (Manku et al., 2007; Shrivastava and Li,
2014). The extracted feature is a binary feature of
size l, where l is the size (in bits) of the hashes
applied to n-grams or entire subword units. The
value at index 0 ≤ p < l of the feature is the sign

MTOP EN multiATIS EN
Model # Param. Exact Match Acc. Intent Acc.

Projection-only 0.2M 49.15 81.54
CNN 1.0M 73.74 97.77
LSTM 1.2M 76.92 97.77
Transformer 1.0M 74.05 97.97
MLP-Mixer 1.0M 82.51 98.57

Table 2: Comparison of different architectures using
the MinHash projection layer on the validation set of
English MTOP and multiATIS.

of the value ϕp stored at index p of a histogram ϕ
of length l. The histogram, initialized to 0, is popu-
lated by summing or subtracting 1 to ϕp whenever
a hash value has a 1 or 0 in position p.

In Table 1, we report the best scores obtained
after tuning each configuration. Overall, our pro-
jection layer MinHash obtains the best exact match
accuracy and intent accuracy, with an absolute im-
provement over SimHash of +1.52 and +0.19. Bi-
nary and TSP obtain the worst performance: −1.93
and −2.18 on the MTOP compared to MinHash,
and −0.60 and −0.4 on multiATIS. Those differ-
ences confirm the limitation of binary and ternary
features and highlight the importance of carefully
designing the projection layer and justifies an ef-
fort for further research on projection algorithms.
Given these results, we only consider our MinHash-
based projection for the rest of the experiments.

5.2 Model Comparison
Now, we investigate whether the MLP-Mixer is
the optimal architecture to process this representa-
tion. First, we remove the MLP-Mixer and connect
the output of the bottleneck layer to the classifica-
tion heads (Projection-Only). Then, we replace the
MLP-Mixer with three alternative architectures: a
convolutional neural network (CNN) (LeCun et al.,
2015), a long short-term memory recurrent neu-
ral network (LSTM) (Hochreiter and Schmidhuber,
1997), and a transformer (Vaswani et al., 2017).

Table 2 shows that using the projection-layer di-
rectly as input to the classification heads without a
model in between, results in very poor performance.
From the alternative models, all perform signifi-
cantly worse than the MLP-Mixer: −8.77, −5.59,
and−8.46 in terms of exact match accuracy for the
CNN, LSTM, and transformer models, respectively.
This last result is remarkable: for the same num-
ber of parameters, the MLP-Mixer outperforms the
transformer while having a linear complexity on
the input length instead of a quadratic one. Overall,
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Intent Accuracy

Model # Param. EN ES FR DE HI JA PT TR ZH Avg

LSTM 28M 96.1 93.0 94.7 94.0 84.5 91.2 92.7 81.1 92.5 91.1
mBERT 170M 98.3 97.4 98.6 98.5 94.5 98.6 97.4 91.2 97.5 96.9

Transformer 2M 96.8 92.1 93.1 93.2 79.6 90.7 92.1 78.3 88.1 89.3
pQRNN 2M(8bit) 98.0 97.0 97.9 96.6 90.7 88.7 97.2 86.2 93.5 94.0

pNLP-Mixer 1M(8bit) 98.1 97.1 98.1 97.3 90.7 92.3 97.2 87.3 95.1 94.8

Table 3: Intent accuracy across languages on the test sets of multiATIS. For each language we underline the best
overall result and we mark in bold the best performance among the tiny models.

Exact Match Accuracy

Model #Param. EN ES FR DE HI TH Avg

XLU 70M 78.2 70.8 68.9 65.1 62.6 68.0 68.9
XLM-R 550M 85.3 81.6 79.4 76.9 76.8 73.8 79.0
mBERT 170M 84.4 81.8 79.7 76.5 73.8 72.0 78.0

Transformer 2M 71.7 68.2 65.1 64.1 59.1 48.4 62.8
pQRNN 2M(8bit)

78.8 75.1 71.9 68.2 69.3 68.4 71.9
- distilled 79.4 75.4 73.0 68.6 70.2 69.5 72.7

pNLP-Mixer 1M(8bit) 84.0 78.3 75.2 76.9 76.5 74.1 77.5

Table 4: Exact match accuracy across languages on the
test sets of MTOP. We underline the best overall result
for each language and mark in bold the best perfor-
mance among the tiny models.

the evaluation shows that the MLP-Mixer is weight-
efficient for processing the projection output and
reaching high performance.

6 Evaluation

Finally, we run a complete evaluation on the
test sets of MTOP and multiATIS. We compare
our pNLP-Mixer with three very large models:
XLU (Lai et al., 2019), which is a bi-LSTM model
with pretrained XLU embeddings, and two pre-
trained multilingual models: XLM-R (Conneau
et al., 2020) and multilingual BERT (mBERT) (De-
vlin et al., 2019). We also include two small
models: pQRNN (Kaliamoorthi et al., 2021) and
a simple transformer using the same projection
as pQRNN. pQRNN is an embedding-free Quasi-
RNN (Bradbury et al., 2017) model that shares
the same philosophy of our proposed pNLP-Mixer:
a small and task-specific model that learns di-
rectly from the text. For a fair comparison against
pQRNN, we quantize our pNLP-Mixer models and
report the performance on the 8-bit version. Fi-
nally, we include pQRNN distilled with mBERT
on MTOP (the original study did not distill pQRNN
on multiATIS). The performance values of all the
baselines are taken from Kaliamoorthi et al. (2021).

MTOP. Table 4 shows that the large pre-trained
models, XLM-R and mBERT, obtain the highest
scores. Notably, from the smaller alternatives, our
pNLP-Mixer with only 1M parameters, 8-bit quan-
tization and no pretraining, i.e., 680x smaller than
mBERT, reaches an average exact match accuracy
only 0.5 and 1.5 points lower than mBERT and
XLM-R. It even beats mBERT in the non-European
languages. With those results, the pNLP-Mixer
beats a twice larger pQRNN model across all lan-
guages by 7.8% in average. It even beats a pQRNN
model distilled from mBERT by 6.6% in average.

multiATIS. Table 3 shows a similar trend com-
pared to the MTOP dataset. On average, the pNLP-
Mixer performs better than pQRNN while being
twice as small. Remarkably, the pNLP-Mixer sig-
nificantly outperforms the transformer model and
the larger LSTM. Moreover, it reaches 97.8% of the
performance of mBERT while being 680x smaller.

Discussion. The results show that the pNLP-
Mixer represents a very competitive model for the
settings where the maximum model size is limited
due to either memory or latency requirements. Our
pNLP-Mixer models, with only 1M parameters and
a size of one megabyte when quantized, reaches
competitive scores in both datasets compared to
mBERT, which is a 680x larger model. This rep-
resents an important step towards ultra-small mod-
els for NLP. To put numbers in perspective, for the
non-quantized pNLPN-Mixer model, the inference
latency with batch size 1 on a single CPU core is
as little as 2.4ms,1 with the projection layer taking
0.4ms. Finally, we could not compare pNLP-Mixer
with pQRNN in terms of FLOPS or latency because
the authors did not make the code available; we are
unable to produce comparable predictive perfor-
mance with our implementation of pQRNN.

1We report the average latency across 100 samples on a
Xeon E5-2690v4 processor and a PyTorch runtime.
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7 Conclusion

We introduce pNLP-Mixer, the first embedding-
free model based on the MLP-Mixer architecture.
Our main contribution is an efficient and yet effec-
tive projection layer which combines MinHash fin-
gerprints and subword-unit tokenization to create
rich token representations. Our evaluation shows
that the pNLP-Mixer beats the state-of-the-art of
tiny NLP models, pQRRN, and offers sequence
tagging performances that are up to 7.8% higher
while using half of the parameters. The results
are remarkable: a pNLP-Mixer model of only
1 million parameters provides a performance of
99.4% and 97.8% on MTOP and multiATIS, re-
spectively, compared to mBERT which is a a pre-
trained model with 170x more parameters. Our
pNLP-Mixer model is simple to implement and
accelerate, and provides competitive performance
even without pre-training or distillation. Our work
demonstrates the importance of projection methods
and embedding-free architectures to advance the
field of ultra-small models.
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Abstract

Extracting dense representations for terms and
phrases is a task of great importance for knowl-
edge discovery platforms targeting highly-
technical fields. Dense representations are used
as features for downstream components and
have multiple applications ranging from rank-
ing results in search to summarization. Com-
mon approaches to create dense representa-
tions include training domain-specific embed-
dings with self-supervised setups or using sen-
tence encoder models trained over similarity
tasks. In contrast to static embeddings, sen-
tence encoders do not suffer from the out-of-
vocabulary (OOV) problem, but impose sig-
nificant computational costs. In this paper,
we propose a fully unsupervised approach to
text encoding that consists of training small
character-based models with the objective of re-
constructing large pre-trained embedding matri-
ces. Models trained with this approach can not
only match the quality of sentence encoders in
technical domains, but are 5 times smaller and
up to 10 times faster, even on high-end GPUs.

1 Introduction

Large pre-trained language models are extensively
used in modern NLP systems. While the most typi-
cal application of language models is fine-tuning
to specific downstream tasks, language models are
often used as text encoders to create dense features
consumed by downstream components. Among
the many use cases of dense text representations
there is search, question answering, and classifica-
tion (Yang et al., 2020).

Static embeddings, trained with algorithms such
as Word2Vec (Mikolov et al., 2013), can exploit
existing information extraction pipelines to cre-
ate representations for entities, phrases, and terms
present in text corpora. Static embedding matrices
are trained with self-supervised approaches at reg-
ular intervals, either when additional data is avail-

*Equal contribution.

able or to leverage improvements in information
extraction models. Pre-trained embedding matrices
can be considered as static feature stores, provid-
ing dense representations for entries belonging to a
fixed vocabulary. Representations for entries out-
side of the vocabulary are not available, leading to
the out-of-vocabulary (OOV) problem.

In contrast, contextualized word embeddings
leverage sentence encoders (Cer et al., 2018;
Reimers and Gurevych, 2019) to dynamically cre-
ate dense representations for any input text by
performing a forward pass over a large language
model. Specifically, a word embedding is com-
puted at inference time based on its context, unlike
static word embeddings that have a fixed (context-
independent) representation. In practice, sentence
encoders solve the out-of-vocabulary (OOV) prob-
lem which affects static embeddings at the cost
of high computational requirements and stronger
dependencies on supervised datasets for similarity.

Despite the popularity of sentence encoders,
large pre-trained embedding matrices are still
widely adopted in the industry to encode not only
individual tokens but also multi-token entities ex-
tracted with in-house NLP pipelines. Once those
embedding matrices are trained, the text representa-
tion for single- and multi-token entries encountered
at training time can be looked up in constant time.

In this paper, we describe an effective approach
taken to provide high-quality textual representa-
tions for terms and phrases in a commercially avail-
able platform targeting highly-technical domains.
Our contribution is a novel unsupervised approach
to train text encoders that bridges the gap between
large pre-trained embedding matrices and computa-
tionally expensive sentence encoders. In a nutshell,
we exploit the vast knowledge encoded in large
embedding matrices to train small character-based
models with the objective of reconstructing them,
i.e., we use large embedding matrices trained with
self-supervision as large training datasets mapping
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text to the embedding vectors.
Our approach is extremely attractive for indus-

trial setups as it leverages continuous improve-
ments, testing, and inference costs of existing infor-
mation extraction pipelines to create large datasets
to train text encoders. This way, the return on
investment for annotations, development, and in-
frastructure costs are maximized.

In our evaluation, we highlight that by com-
bining unsupervised term extraction annotators
and static embeddings we can train lightweight
character-based models that match the quality of
supervised sentence encoders and provide substan-
tially better representations than sentence encoders
trained without supervision. Our models not only
provide competitive representations, but are up to
5 times smaller and 10 times faster than sentence
encoders based on large language models.

2 Existing Approaches

The mission of our industrial knowledge discovery
platform is to extract knowledge from large cor-
pora containing highly-technical documents, such
as patents and papers, from diverse fields ranging
from chemistry, to physics, to computer science.
Information extraction is extremely challenging
given the large variety of language nuances and the
large cost of human annotations in such specialized
domains. Therefore, it is of extreme importance to
minimize the dependencies on annotated data and
to use unsupervised approaches whenever possible.

A recurring requirement from many internal
components of our platform is the ability to ex-
tract high-quality dense representations for techni-
cal terms, entities, or phrases which can be encoun-
tered in many distinct technical fields. High-quality
representations are extremely valuable to imple-
ment semantic search, to influence the ranking, or
to be used directly as model features.

In modern industrial systems, it is often the case
that static and context-dependent embedding tech-
nologies coexist on the same platform to extract rep-
resentations. While static embeddings are trained
in a self-supervised fashion, sentence encoders are
often built by fine-tuning pre-trained models on
similarity tasks using annotated datasets. Having
two separate approaches for text encoding is subop-
timal as those systems are completely independent
and embed terms into distinct embedding spaces.

To reconcile those two worlds, we propose an
approach where static embeddings and text en-

coders are mapping text into the same embedding
space. Our intuition is that static embedding matri-
ces storing embeddings for single tokens, but also
multi-token terms, entities, or phrases, represent
an invaluable source of information to train text
encoders. While those matrices are built with self-
supervision, they can leverage existing annotators,
supervised or not, which are commonly available
in large text processing platforms.

Our novel approach consists of using pre-trained
embedding matrices as a training set, and training
character-based models, called CharEmb, to predict
the embedding vector for a text. This means that
the character-based models will enable to project
any sequence of characters in the same embedding
space as the pre-trained embedding matrices.

2.1 Static Embeddings

Algorithms to train static word embeddings, such
as Word2Vec (Mikolov et al., 2013), have been
introduced to efficiently compute the representa-
tions for words or entire phrases extracted from
large text corpora. To create the representation of
entire phrases, the original Word2Vec paper sug-
gested to simply preprocess the text to make sure
that phrases are treated as distinct words in the
vocabulary. In a nutshell, the preprocessing step
involves merging the tokens of which a phrase is
composed into a unit which is not split by the to-
kenizer, e.g., [“machine”, “learning”] becomes
[“machine_learning”].

In a typical industrial setup, this approach can
be naturally generalized to leverage the large set
of annotators that are commonly available in large-
scale natural language processing platforms. This
way one can create domain-specific embeddings
not just for single tokens, but for entities, terms,
phrases which are extracted in a natural language
processing platform. Combining self-supervised
word embedding algorithms together with existing
sequence tagging models is extremely attractive.
First, one can fully leverage the constant enhance-
ments of in-house models to improve the quality of
the embeddings for all the entities of interests. Sec-
ond, since the sequence tagging models are built
in-house and independently evaluated, using them
to build embedding matrices means reducing the
time spent in quality assurance (QA). Third, since
the model inference is anyway computed over large
amount of textual data while the natural language
processing platform is operating, one can amortize
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Figure 1: Illustration of the data flow for our approach. We introduce CharEmb, a character-based model that
projects a given text into the same embedding space of a large pre-trained embedding model. CharEmb uses the
pre-trained embedding only at training to learn the projection function between a text and the its embedding vector.

that compute costs to accelerate another task, i.e.,
providing high-quality text representation.

2.2 Sentence Embeddings
Static embedding matrices built with the previous
approach can provide representations for several
hundred millions entries when trained over large
text corpora pre-processed with several name en-
tity recognition (NER) models. Despite the large
size, one can still experience the problem of out-
of-vocabulary (OOV), which means, downstream
components might require text representations for
text entries which are not present in the vocabulary.

Text encoders have been introduced to solve
the OOV problem. They provide ways to create
embeddings that are not static but contextualized,
which means that the embedding vector must be
created on the fly via a model inference. Contextu-
alized embeddings can be created using pre-trained
models trained with self-supervised setups such as
BERT (Devlin et al., 2019) or with text encoders
which are still based on large pre-trained models,
but fine-tuned with task similarity datasets. Sen-
tence encoders trained with supervised setups using
for example the NLI datasets (Bowman et al., 2015;
Williams et al., 2018), such as S-BERT (Reimers
and Gurevych, 2019) are well known to perform
well in practice to create representations for entire
sentences or features for finer grained text snip-
pets. The limitation of supervised approaches for
sentence encoding is that creating large annotated
datasets for similarity is extremely expensive, es-
pecially in technical fields. Therefore, improving
the sentence encoder themself requires substantial
investments in annotations. Unsupervised sentence
encoder approaches (Gao et al., 2021; Wang et al.,
2021), on the other hand are well known to offer

poorer performance than supervised counterparts.

3 Our Model: CharEmb

Instead of having two completely disjoint systems
to create text representations, we use character-
based models trained over large static embedding
matrices, that project a sequence of text into the
same embedding space as the embedding matrices
used as training data. In practice, we approach
text encoding as a compression problem, where
character-based models are trained to reconstruct
the pre-trained static embedding matrices, as shown
in Figure 1. This training approach can rely on
supervised sequence tagging models or can be im-
plemented using fully unsupervised methods, such
as the term extraction technologies described in the
literature (Fusco et al., 2022). As we highlight in
the evaluation section, a text encoder trained with-
out any supervision can match the performance of
supervised sentence encoders in creating represen-
tations for words or phrases in technical domains.

To train our models, we consider a static pre-
trained embedding matrix as gold dataset. An indi-
vidual training sample associates a single- or multi-
token text to an embedding vector. To leverage the
dataset we train a text encoder model to minimize
the cosine similarity between the produced vector
and the original vector stored in the static embed-
ding matrix. The models rely on character-level
tokenization to generalize better on unseen inputs
in technical domains. Figure 2 highlights a simple
yet effective LSTM-based model architecture. The
pre-trained static embedding matrix (on the right)
contains |V | embedding vectors of size k, where
V is the vocabulary of the static embedding matrix.
The model receives as input the text t, tokenize it
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Figure 2: CharEmb is trained to predict an embedding
that has a close cosine similarity with the target one.

in characters, for which an embedding matrix is
trained. Character-level embeddings are used as
input for a Long Short-Term Memory sequence
model. The last state of the LSTM layer is used
to produce, via a Multi-Layer Perceptron, a vec-
tor of dimension k that represents the embedding
for the text t. The network is trained to minimize
the cosine distance between the predicted embed-
ding and the original one stored in the embedding
matrix. The number of distinct training samples
is |V |, which means that embeddings with large
vocabularies correspond to bigger training datasets.

4 Evaluation

In this section, we compare our text representations
using the Patent Phrase Similarity Dataset built by
Google (Aslanyan and Wetherbee, 2022). Given
two multiword technical concepts (called anchor
and target), the task consists of predicting a simi-
larity score between the two terms. Unlike general-
purpose sentence datasets, such as STS-B (Cer
et al., 2017) or SICK (Marelli et al., 2014), we
focus on technical concepts in the patent and scien-
tific domains. The dataset contains 38, 771 unique
concepts and 36, 473, 2, 843, and 9, 232 concept
pairs with humanly-annotated similarity scores for
the train, validation, and test sets, respectively.

In our case, we are only interested in the zero-
shot scenario, and thus, we only consider the test
set and ignore the train and validation sets. We eval-
uate the quality of the text representations using the
same approach described in Aslanyan and Wether-
bee (2022): we compute the Pearson and Spearman
correlation between the cosine similarity of the two
embeddings and the human-annotated scores.1

1For reproducibility purposes, we include all experimental
details and the hyperparameters in Appendix A.

4.1 Static Pre-trained Word Embeddings

First, we compare the performance of publicly-
available pre-trained embedding matrices with em-
beddings trained with in-domain data. Following
the approach described in Aslanyan and Wetherbee
(2022), we compute the representation for concepts
consisting of multiple tokens as the average of the
embedding vectors of each unigram.

To highlight the importance of in domain-data,
we train static embedding matrices using a rela-
tively small corpus consisting of 120 million sen-
tences sampled from the the ArXiv (Clement et al.,
2019) and the HUPD (Suzgun et al., 2022) datasets.
To train our embeddings, we pre-process the text af-
ter running term-extraction using the unsupervised
method described in Fusco et al. (2022). This way,
our method can be considered fully unsupervised,
and its evaluation does not depend on proprietary
annotations and model architectures.

The size of the text after pre-processing is 18 Gi-
gabytes accounting for 1.9 billion tokens with term-
extraction enabled and 2.2 billion tokens with-
out. We train the static embeddings using CBOW
(Mikolov et al., 2013). Training for one epoch takes
25 minutes on a 16-core AMD EPYC 7742, which
corresponds to less than 10 dollars of compute
costs with current cloud offerings. We do not con-
sider the term extraction as part of the overall train-
ing costs since in practice, the large amount of an-
notations that a large-scale NLP platform produces
during its execution can be entirely reused.

Finally, we train three variants. The first contains
unigrams and multiword expressions extracted with
our term extractor represented with one token (i.e.,
“machine learning”→ “machine_learning”). The
second considers only unigrams (i.e., with the term-
extraction component disabled). For the third we
use FastText (Bojanowski et al., 2017) instead.

We compare our embedding matrices with the
official pre-trained models for GloVe (Pennington
et al., 2014), Word2Vec (Bojanowski et al., 2017),
and FastText (Bojanowski et al., 2017). Those are
trained on corpora that are substantially larger than
our ArXiv-HUPD dataset (up to 300 times).

Table 1 reports the Pearson and Spearman corre-
lations when using the representations of the static
word embedding matrices. Not surprisingly the
embeddings trained over the ArXiv-HUPD corpus,
which contains text of the same domain, provide
substantially better results than embeddings pre-
trained over corpora that are out-of-domain, such
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Correlation

Pre-trained embedding |Voc.| Size (MB) Dim. Pear. Spear.

GloVe (6B) 0.4M 458 300 42.37 43.95
GloVe (42B) 1.9M 2,194 300 40.30 45.83
GloVe (840B) 2.2M 2,513 300 44.83 49.71
FastText wiki-news (16B) 1.0M 1,144 300 39.01 46.03
FastText crawl (600B) 2.0M 2,289 300 47.36 49.32
Word2Vec news (100B) 3.0M 2,861 250 44.04 44.72

ArXiv-HUPD (Ours)
- uni (FastText) (2.2B) 5.3M 6,006 300 51.25 49.92
- uni (Word2Vec) (2.2B) 1.8M 1,403 200 50.82 52.97
- uni + terms (1.8B) 5.2M 3,984 200 51.62 53.91

Table 1: Static context-independent word embeddings.
Brackets denote the number of token of the corpus.
Training static embeddings on ArXiv-HUPD improves
significantly the correlation with the human annotations.

Pearson Correlation

Models Original Reconstr. ∆ Compression

CharEmb Small 13MB
51.62

49.70 −3.7% 306x
CharEmb Base 38MB 54.33 +5.3% 236x
CharEmb Large 86MB 55.97 +8.4% 46x

Table 2: Reconstructed static word embeddings. We re-
port the correlation of the original ArXiv-HUPD embed-
dings (uni + terms) and the reconstructed ones inferred
by our models. CharEmb Base achieves a compression
by a factor of 236 and an improvement of +5.3%.

as news and crawled websites. Our embeddings
trained on only 2 billion tokens outperform embed-
dings trained over corpora that are up to 2 order of
magnitude larger. Further, we see that our static-
embedding matrices including terms are providing
only a marginal improvement, as the terms do not
necessarily cover concepts present in the dataset.

After focusing on the raw embedding matrices,
we evaluate the quality of our CharEmb models
as compressors. In practice, we repeat the same
experiments when the best ArXiv-HUPD word em-
bedding matrix is fully reconstructed by project-
ing each vocabulary entry using a character-based
model trained with our approach. We report corre-
lations for models based on the Long Short-Term
Memory (Hochreiter and Schmidhuber, 1997), be-
cause in our experiments, it offered significantly
better results than Gated Recurrent Unit (Chung
et al., 2014) and Transformer (Vaswani et al., 2017).
We report the performance for three model sizes:
Small (13MB), Base (38MB), and Large (86MB).

Table 2 shows that our base (38MB) and large
(86MB) models compress the embedding matrix
they are trained on and improve its quality accord-
ing to the Pearson correlation (similar trend with

Correlation

Models Size (MB) Dim. Pear. Spear.

BERT (Unsup.) 1,344 1,024 43.07 41.40
Patent-BERT (Unsup.) 1,344 1,024 54.00 54.47
SimCSE (Unsup.) 438 768 53.35 51.91
Patent-SimCSE (Unsup.) 438 768 50.51 48.33
Sentence-BERT (Sup.) 438 768 59.82 57.66
SimCSE (Sup.) 438 768 56.63 56.81

ArXiv-HUPD - unigrams (Word2Vec) (Ours)
CharEmb Small (Unsup.) 13

200
41.68 39.55

CharEmb Base (Unsup.) 38 47.57 46.16
CharEmb Large (Unsup.) 86 47.58 45.60

ArXiv-HUPD - unigrams + terms (Ours)
CharEmb Small (Unsup.) 13

200
55.53 56.73

CharEmb Base (Unsup.) 38 58.53 59.66
CharEmb Large (Unsup.) 86 59.84 60.52

Table 3: Sentence-based word embeddings via predic-
tions. CharEmb is unsupervised, at least 5x smaller, and
outperforms large supervised and unsupervised base-
lines. Training CharEmb on ArXiv-HUPD that contains
unigrams clearly underperforms, showing how impor-
tant multiword expressions are during training.

Spearman). This means that a model of solely 38
MB not only can fully reconstruct the 3.98 GB
matrix it has been trained on, given only its vo-
cabulary (236x space reduction), but also that the
reconstructed matrix provides a correlation gain of
+5.3% compared to the original one.

4.2 Sentence (Contextualized) Embeddings

In Table 2 we use our models to reconstruct an orig-
inal embedding matrix. The reconstructed matrix
is used as a static pre-trained embedding matrix:
given a phrase in the test of the patent dataset, we
compute the representation as the average of the
unigrams. Instead, in this section we use our mod-
els as text encoders, which means performing the
inference with our CharEmb models to extract rep-
resentations of the phrases present in the test set.

Following Aslanyan and Wetherbee (2022), we
compare our CharEmb variants with the follow-
ing pre-trained models used as text encoders:
BERT (Devlin et al., 2019), Patent-BERT, and
the sentence encoder Sentence-BERT (Reimers
and Gurevych, 2019) trained on the natural lan-
guage inference datasets (Bowman et al., 2015;
Williams et al., 2018). We augment the pro-
posed baselines with a popular sentence-encoding
method SimCSE (Gao et al., 2021), which can
be trained with supervision (similarly to S-BERT)
or in an unsupervised manner. For the latter,
we include the publicly-available variant trained
on Wikipedia (Unsupervised SimCSE) and train
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our own model over the small ArXiv-HUPD
dataset (Patent-SimCSE).2

In Table 3, we report the Pearson and Spear-
man correlation when using text encoders to pro-
duce text representations via inferencing to a model.
Thanks to our approach, lightweight LSTM-based
models outperform larger BERT-based models in
a zero-shot setup. Our large model is 5x smaller
than Sentence-BERT and SimCSE and yet provides
better representations. Training CharEmb does not
require any manual annotation, since embeddings
are trained with self-supervision and the term ex-
traction is fully unsupervised. Our smallest model
outperforms all unsupervised approaches. Fur-
thermore, we note that term extraction is a funda-
mental component for the creation of high-quality
CharEmb models. When training over unigram-
only embeddings, our models performance drops
significantly to the levels of BERT.

Finally, in Figure 3 we show that our models not
only provide the best representations, but also of-
fers substantially lower inference latencies on both
high-end GPUs and a single-core CPU. Moreover,
training CharEmb Large on an embedding matrix
with a vocabulary of five million entries takes only
three hours on a single NVIDIA Tesla A100, which
is a negligible time compared to the 10 days re-
quired to train SimCSE on the same dataset.

5 Related Work

Static embeddings trained with self-supervised se-
tups became popular with word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014). While
those algorithms have been originally introduced
to embed individual tokens, the approach can be
generalized to entire phrases or multiple token en-
tities by preprocessing training corpora such that
multiple tokens are merged into one. FastText (Bo-
janowski et al., 2017) can be seen as an extension
to Word2Vec which relies on n-grams to extract
representations of unseen text.

Contextualized embeddings (e.g., Elmo (Peters
et al., 2018)) are created by taking into account the
contex of each token. Sentence encoders (Schuster
et al., 2019; Cer et al., 2018) are a generalization
of contextual embeddings. They can be trained on
sentence-level tasks using supervised datasets, such
as NLI, or with unsupervised methods (Gao et al.,
2021; Wang et al., 2021). Our method to train text

2Additional results when training CharEmb on GloVe, Fast-
Text, and Word2Vec embeddings are shown in Appendix B.

53 55 57 59 61
Spearman Correlation

100

101

102

103

L
at

en
cy

(m
s)

Patent-BERT (1344MB)

S-BERT (438MB)
SimCSE (438MB)

CharEmb S (13MB)
CharEmb B (38MB)
CharEmb L (86MB)

CPU (single-core of an AMD EPYC 7763)
Latency (ms)

225.3

71.5

65.1

35.1

18.0

5.6

53 55 57 59 61
Spearman Correlation

0

5

10

15

L
at

en
cy

(m
s)

Patent-BERT (1344MB)

S-BERT (438MB)
SimCSE (438MB)

CharEmb S (13MB) CharEmb B (38MB)
CharEmb L (86MB)

GPU (NVIDIA Tesla A100)
Latency (ms)

11.4

7.6

7.1

1.4

1.2

0.9

Figure 3: Inference latencies with batch size 1 on a Tesla
A100 GPU and a single-core CPU. Our models provide
high-quality embeddings on a low-compute budget.

encoders is fully unsupervised and provides higher-
quality representations than supervised encoders.

Embedding compression is a topic of great in-
terest not only for natural language processing
(Pansare et al., 2022; Liao et al., 2020), but also
in recommender systems (Zhang et al., 2020; Kim
et al., 2020; Shi et al., 2020). The primary goal
of our work is not to reduce the size of a static
embedding matrix, but rather to generalize the em-
beddings to entries not seen at training time.

Work has been done to align embedding spaces
coming from different models (Joulin et al., 2018;
Schuster et al., 2019; Grave et al., 2019). Instead
of aligning spaces coming from static embeddings
and sentence encoders, we introduce text encoders
trained to project text in the same space of a static
embedding matrix used as a training dataset.

6 Conclusion

Creating embeddings for terms and phrases is
of paramount importance for complex natural
language processing platforms targeting highly-
technical domains. While out-of-the-box pre-
trained sentence encoders are often considered as
baselines, representations of similar quality can
be obtained with substantially lighter and simpler
character-based models which are 5 times smaller
in size and 10 times faster at inference time, even
on high-end GPUs. The key to obtaining such
results is to realize that large static embedding ma-
trices storing representations for tokens and terms
constitute a very rich supervised dataset to train text
encoders working at the character level. Since both
term extraction and embedding training can be per-
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formed without any labeled data, we have proposed
a method to train text encoders which does not re-
quire any label. Those models are trained with the
objective of reconstructing the original embedding
matrix and can not only be used as lighter alter-
natives to sentence encoders, but also as lossless
compressors for large embedding matrices.
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A Training Details

To perform the experiments described in Table 3
we use pre-trained models publicly available in
HuggingFace:

• BERT:
bert-large-uncased.

• Patent-BERT:
anferico/bert-for-patents.

• Sentence-BERT:
sentence-transformers/all-mpnet-base-v2.

• Supervised-SimCSE:
princeton-nlp/sup-simcse-bert-base-uncased.

• Unsupervised-SimCSE:
princeton-nlp/unsup-simcse-bert-base-uncased.

Regarding hyperparameter tuning, the baselines
do not need any tuning since all experiments are in
a zero-shot fashion. For EmbChar, we only tune
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Correlation

Original Reconstr. Context.

Pre-trained embedding |Voc.| Size (MB) Dim. Pear. Spear. Pear. Spear. Pear. Spear.

GloVe (6B) 0.4M 458 300 42.37 43.95 36.82 41.15 27.36 31.36
GloVe (42B) 1.9M 2,194 300 40.30 45.83 29.89 42.93 20.66 21.35
GloVe (840B) 2.2M 2,513 300 44.83 49.71 39.32 47.39 18.97 22.79
FastText wiki-news (16B) 1.0M 1,144 300 39.01 46.03 30.72 45.66 28.82 27.47
FastText crawl (600B) 2.0M 2,289 300 47.36 49.32 45.91 49.79 34.49 35.67
Word2Vec news (100B) 3.0M 2,861 250 44.04 44.72 40.77 45.28 45.54 46.09
ArXiv-HUPD uni (2.2B) 1.8M 1,403 200 50.82 52.97 54.28 55.21 47.58 45.6

ArXiv-HUPD uni + terms (1.8B) 5.2M 3,984 200 51.62 53.91 55.97 57.27 59.84 60.52

Table 4: Additional results when training CharEmb Large (86MB) on standard pre-trained word embedding matrices.
Without multiword expression, the reconstruction and contextualized via prediction performance are limited.

the encoder by using LSTM, GRU, or Transformer
on the validation set. More specifically, we split the
word embedding matrix into train and validation
sets with a ratio of 80-20. No other hyperparam-
eters have been explored. We stop the training of
EmbChar using early-stopping on the validation
set when the average cosine similarity has not been
improved since 10 epochs.

Our hyperparameters are shown in Table 5. We
train our word embedding with Word2Vec with
CBOW and a window size of 8 and 25 epochs. For
FastText, we kept the default parameters.

All experiments have been run on the following
hardware:

• CPU: AMD EPYC 7763 64-core processor.

• RAM: 1.96 TB.

• GPU: NVIDIA Tesla A100.

• OS: Red Hat Enterprise Linux 8.6.

• Software: PyTorch 1.12.1, CUDA 11.6.

We emphasise that we train the word embedding
matrices on a 16-core virtual machine hosted on
AMD EPYC 7742. An epoch takes approximately
25 minutes. Training our embedding matrix ArXiv-
HUPD uni + terms requires less than 10 dollars of
compute budget in the cloud. Training our model
EmbChar Large thereafter takes a few hours on a
single NVIDIA Tesla A100, costing approximately
$5 to $103. In contrast, training SimCSE on the
same dataset takes around 10 days.

3The hourly pricing for spot instances with one A100 GPU
is in the range $1.25-$1.5 in public cloud offerings.

EmbChar EmbChar EmbChar
Hyperparameter Small Base Large

Hidden dimension 512 512 768
Number of layers 1 2 2
Bidirectional True True True
Dropout 0.2 0.2 0.2
Learning rate 0.001 0.001 0.0005
Weight decay 1e-8 1e-8 1e-8
Batch size 256 256 256

Table 5: The hyperparameter for all EmbChar variants.

B Additional Results

In Table 4 we report the results for the experi-
ments in Section 4 when training our CharEmb
Large (86MB) on different word embedding ma-
trices. For each of the embedding matrix consid-
ered, we measure the Pearson and Spearman cor-
relation for the three setups: i) the original embed-
ding matrix (Original), ii) an embedding matrix
reconstructed using the same vocabulary of the
original one (Reconstr.), and iii) when the embed-
ding of given terms are contextual, i.e., predicted
with a CharEmb model trained over the original
matrix (Context.). The table showcases multiple
important findings. First, among the pre-trained
models, the vocabulary size plays a significant role
to achieve high correlation, with the Word2Vec
model with a vocabulary of 3 million entries outper-
forming embedding matrices that have been trained
over larger datasets (e.g., Glove 840B or FastText
crawl). Second, the domain of the corpus used to
train the embeddings plays a significant role. By
training with a corpus of only 2 billion in-domain
tokens, an embedding matrix with a vocabulary
of 1.8 million entries achieves similar correlation
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of much larger embedding matrices. Third, our
CharEmb model achieves the best performance
when trained with an embedding matrix containing
embeddings for terms. Predicting the embeddings
with our CharEmb model allows to achieve signif-
icantly higher correlation than the original matrix
containing terms.
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Abstract

Large-scale pre-trained text-image models with
dual-encoder architectures (such as CLIP (Rad-
ford et al., 2021)) are typically adopted for
various vision-language applications, includ-
ing text-image retrieval. However, these mod-
els are still less practical on edge devices or
for real-time situations, due to the substan-
tial indexing and inference time and the large
consumption of computational resources. Al-
though knowledge distillation techniques have
been widely utilized for uni-modal model com-
pression, how to expand them to the situation
when the numbers of modalities and teach-
ers/students are doubled has been rarely stud-
ied. In this paper, we conduct comprehen-
sive experiments on this topic and propose the
fully-Connected knowledge interaction graph
(Cona) technique for cross-modal pre-training
distillation. Based on our findings, the result-
ing ConaCLIP achieves SOTA performances
on the widely-used Flickr30K and MSCOCO
benchmarks under the lightweight setting. An
industry application of our method on an e-
commercial platform further demonstrates the
significant effectiveness of ConaCLIP.1

1 Introduction

Text-image retrieval (TIR) aims at retrieving a list
of the most relevant images from a large image
collection when a specific text query is given. With
the rapid development of information interaction
and social intercourse, it has been regarded as a
crucial component of cross-modal applications and
required by various real-world scenarios, such as
e-commercial platforms (sites).

Recently, inspired by the great success of pre-
trained language models (Devlin et al., 2019; Liu

∗Contribution during internship at Alibaba Group.
†Co-corresponding authors.

1Related resources will be publicly available in the
EasyNLP framework (Wang et al., 2022a). URL: https:
//github.com/alibaba/EasyNLP.

et al., 2019; Brown et al., 2020), research on large-
scale vision-language pre-training (Tan and Bansal,
2019; Li et al., 2020; Radford et al., 2021; Li et al.,
2022; Wang et al., 2022b, 2023) has achieved re-
markable progress on a variety of vision-language
tasks, including text-image retrieval. These exist-
ing methods can be typically classified into two cat-
egories according to the model architecture: cross-
encoder and dual-encoder. Cross-encoder typi-
cally adds additional Transformer (Vaswani et al.,
2017) layers to model the deep interaction between
image and text representations. It can generally
boost the retrieval performance, while resulting in
an unbearably slow retrieval speed when applied to
the entire image collection since the cross-modal
costs are required for each image sample whenever
a new text query is given. In contrast, dual-encoder
encodes the visual and textual inputs in a wholly
decoupled manner. The image representation is
allowed to be pre-computed and re-used indepen-
dent of the text queries. Such approaches can also
utilize fast approximate nearest neighbor (ANN)
search (Muja and Lowe, 2009; Jegou et al., 2010;
Johnson et al., 2019) at runtime.

Although dual-encoder is usually preferred for
real-world applications, the existing related models
such as CLIP (Radford et al., 2021) are still less
practical on edge devices with limited computing
resources, or for the dynamic indexing scenario,
e.g., private photos/messages collections (sites). To
address this issue, we aim to start from the large-
scale pre-trained dual-encoder models and focus
on the pre-training distillation to present a series
of much smaller, faster, and effective counterparts.
Knowledge distillation (KD) (Hinton et al., 2014)
is proposed to transfer knowledge with soft targets
from a teacher to a student in the same modality.
MoTIS (Ren and Zhu, 2022) simply repeats intra-
modal InfoNCE-based (Oord et al., 2018) learn-
ing in both text and image domains for distillation.
Nevertheless, when the number of modalities dou-
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bles for dual-encoder structure, which means text
and image teachers as well as text and image stu-
dents, these methods still only involve intra-modal
teacher-student knowledge interaction learning. In-
stead, in this paper, we comprehensively explore
the fully-Connected knowledge interaction graph
(Cona) between every possible teacher-student or
student-student pair. As shown in Fig. 1, each
two-way arrow represents the knowledge interac-
tion learning between the two models it points to.
And the aforementioned KD and MoTIS belong
to a single blue arrow and the two blue arrows,
respectively. Moreover, in order to better explore
the potential of Cona, we implement and inves-
tigate various supervision strategies to guide the
model optimization, which finally makes each type
of learning contribute to the overall improvement.

We release various sizes of lightweight dual-
encoder models named ConaCLIP for different
real-world scenarios. Compared with the pre-
vious SOTA method (Ren and Zhu, 2022), our
ConaCLIP achieves 10.6/12.9/12.8 R@1 gains on
Flickr30K/MSCOCO (1K)/MSCOCO (5K) bench-
marks under the same model setting. We have also
verified its effectiveness on an e-commerce plat-
form. It can achieve 1.44×/1.92∼4.86× inference
speed-up with competitive performances given im-
age/text queries. The main contributions of this
paper can be summarized as follows:

• We propose a new pre-training distillation
method with the fully-connected knowledge
interaction graph (Cona) for lightweight dual-
encoder models.

• We release a series of lightweight Cona-
CLIP models to the open-source commu-
nity, which can significantly surpass previous
SOTA models on the widely-used Flickr30K
and MSCOCO benchmarks.

• We provide a real-world application of this
method in real industrial scenarios to further
demonstrate its practical values.

2 Related Work

Cross-encoder (Tan and Bansal, 2019; Li et al.,
2019; Chen et al., 2020; Li et al., 2020; Chen
et al., 2022) refers to multiple layers of dense cross-
modal interactions, e.g., cross-attention (Vaswani
et al., 2017), are typically employed to image and
text representations for more fine-grained merge

and alignment. Although it often achieves superior
retrieval accuracy thanks to the patch/token-level
integration, the high memory cost and computation
inefficiency make it impractical under time-critical
real-world settings.

Oppositely, for dual-encoder (Zhang et al., 2020;
Jia et al., 2021; Radford et al., 2021; Dou et al.,
2022), image and text features are encoded into a
joint embedding space separately, and the modality
interaction is only handled by a simple cosine sim-
ilarity of the final image and text feature vectors.
Such approaches can be regarded as scalable and
indexable: the specific choices of encoder archi-
tectures can be independent and dynamic, and the
late-interaction scheme allows for efficient large-
scale searching.

Pre-training distillation for lightweight dual-
encoder architecture has been rarely studied.
Vanilla knowledge distillation (Hinton et al., 2014)
can be referred to as the knowledge transfer from
a teacher to a student in the same modality based
on soft targets. However, it is a general proce-
dure without awareness and pertinence for cross-
modal learning. MoTIS (Ren and Zhu, 2022) sep-
arately compresses text or image encoder with an
intra-modal contrastive objective that aligns the
output embeddings of the student and teacher of
each modality, which can be seen as an alternative
form of knowledge distillation. Nevertheless, these
methods ignore or do not find an appropriate ap-
proach to leverage the cross-modal distillation pro-
cess. Further than them, our method is dedicated
to exploring the fully-connected knowledge inter-
action graph for dual-encoder distillation, which is
a natural and effective extension.

3 Methodology

In this section, we first give the preliminary knowl-
edge, then propose our pre-training distillation
framework with Cona. Finally, we introduce vari-
ous supervision strategies.

3.1 Preliminary

For the sake of explanation, we abbreviate text,
image, teacher and student as T , I , tch and stu re-
spectively. F represents the L2-normalized feature
vector outputted by the encoder architecture E.

Before student learning, the teachers ET
tch and

EI
tch are commonly first pre-trained using an ob-

jective that pushes the embeddings of matched
text-image pairs closer while pushing those of non-

72



Text
Teacher

Image
Teacher

Image
Student

Text
Student

intra-modal
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inter-modal
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inter-modal
stu-stu learning

intra-modal
stu-stu learning

Figure 1: Our dual-encoder pre-training distillation
framework with Cona. Each color of two-way arrows
represents a type of knowledge interaction learning. At
this stage, the teacher encoders are frozen.

matched ones apart, with large model capacity and
massive data. Specifically, CLIP (Radford et al.,
2021) takes the InfoNCE (Oord et al., 2018) loss
as the supervision form. Without losing general-
ity, given two outputted feature vectors F a and
F b ∈ RN×d, we define that:

pi,j(F
a, F b) =

exp(F a
i F

b
j
⊤
/τ)

∑
k exp(F

a
i F

b
k
⊤
/τ)

, (1)

LInfoNCE
Fa→F b = − 1

N

N∑

i=1

log(pi,i(F
a, F b)), (2)

where N is the mini-batch size, d is the channel
size and τ is the temperature hyper-parameter. The
final loss of CLIP can be formulated as:

LCLIP = LInfoNCE
FT
tch→F I

tch
+ LInfoNCE

F I
tch→FT

tch
. (3)

Next, the pre-training distillation of students
ET

stu and EI
stu begins, with parameters of teach-

ers ET
tch and EI

tch frozen. MoTIS (Ren and Zhu,
2022) also adopts the InfoNCE-based loss at this
stage, and implements it in both text and image
domains separately:

LMoTIS = LInfoNCE
FT
stu→FT

tch
+ LInfoNCE

F I
stu→F I

tch
. (4)

According to the subscript in Eq. (4), it is easy to
see that MoTIS only involves intra-modal teacher-
student learning.

3.2 Pre-training Distillation with Cona
Unlike existing works, our method introduces
the fully-connected knowledge interaction graph

(Cona) for pre-training distillation. Apart from
intra-modal teacher-student learning, our method
also includes intra-modal student-student learn-
ing, inter-modal teacher-student learning and inter-
modal student-student learning, as shown in Fig. 1.
This fully-connected learning graph established for
students ET

stu and EI
stu serves as an integration of

multi-view and multi-task learning schemes, which
can strengthen the robustness and effectiveness
(Caruana, 1997; Luong et al., 2016; Aghajanyan
et al., 2021) required by pre-trained models.

We suggest that each type of learning process
in Cona should be concretely implemented in de-
tailed supervision strategies. Therefore, we pro-
pose and investigate various supervision strategies
in the next subsection.

3.3 Supervision Strategies

Here we continue to use F a and F b (prediction)
along with F̃ a and F̃ b (target) as placeholders for
illustration, and present the following effective su-
pervision strategies:
InfoNCE loss is a type of contrastive loss function.
It has been formulated in Eq. (2), and successfully
applied for distillation by Eq. (4).
Feature-wise distance (FD) loss directly mini-
mizes the distance between feature vectors. We
utilize squared L2-norm as the measure:

LFDFa⇔F b =
1

2

1

Nd

N∑

i=1

d∑

j=1

(F a
i,j − F b

i,j)
2. (5)

Similarity-wise distance (SD) loss minimizes the
distance criterion between similarity matrices:

LSD
Fa→F b⇔F̃a→F̃ b

= 1
2

1
N2

N∑
i=1

N∑
j=1

(F a
i F

b
j
⊤ − F̃ a

i F̃
b
j

⊤
)2.

(6)

Since F a, F b, F̃ a and F̃ b have been L2-
normalized, the values of cosine-similarities

F a
i F

b
j
⊤ and F̃ a

i F̃
b
j

⊤
are in the range [−1, 1]. The

distance between prediction F a
i F

b
j
⊤ and target

F̃ a
i F̃

b
j

⊤
needs to be shortened. Hence, the squared

L2-norm is also adopted here.
KL-Div loss uses the Kullback–Leibler divergence
to measure the difference between the predicted
and the target probability distributions. Given pi,j
acquired by softmax operation shown in Eq. (1), it
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F I
stu→FT

stu

LFD
FT
stu⇔F I

stu

LSD
FT
stu→F I

stu⇔FT
tch→F I

tch

+LSD
F I
stu→FT

stu⇔F I
tch→FT

tch

LKL-Div
FT
stu→F I

stu∥FT
tch→F I

tch

+LKL-Div
F I
stu→FT

stu∥F I
tch→FT

tch

\ \

intra-modal tch-stu learning
LInfoNCE
FT
stu→FT

tch

+LInfoNCE
F I
stu→F I

tch

LFD
FT
stu⇔FT

tch

+LFD
F I
stu⇔F I

tch

LSD
FT
stu→FT

tch⇔FT
tch→FT

tch

+LSD
F I
stu→F I

tch⇔F I
tch→F I

tch

LKL-Div
FT
stu→FT

tch∥FT
tch→FT

tch

+LKL-Div
F I
stu→F I

tch∥F I
tch→F I

tch

LSD
FT
stu→FT

tch⇔F I
stu→F I

tch

LKL-Div
FT
stu→FT

tch∥F I
stu→F I

tch

+LKL-Div
F I
stu→F I

tch∥FT
stu→FT

tch

inter-modal tch-stu learning
LInfoNCE
FT
stu→F I

tch

+LInfoNCE
F I
stu→FT

tch

LFD
FT
stu⇔F I

tch

+LFD
F I
stu⇔FT

tch

LSD
FT
stu→F I

tch⇔FT
tch→F I

tch

+LSD
F I
stu→FT

tch⇔F I
tch→FT

tch

LKL-Div
FT
stu→F I

tch∥FT
tch→F I

tch

+LKL-Div
F I
stu→FT

tch∥F I
tch→FT

tch

LSD
FT
stu→F I

tch⇔F I
stu→FT

tch

LKL-Div
FT
stu→F I

tch∥F I
stu→FT

tch

+LKL-Div
F I
stu→FT

tch∥FT
stu→F I

tch

Table 1: Detailed loss functions of all combinations of knowledge interaction learning and supervision strategies.
"Sym-" is the symmetric version loss function. "\" indicates the combination is meaningless.

minimizes the following optimization objective:

LKL-Div

Fa→F b∥F̃a→F̃ b
= 1

N

N∑
i=1

N∑
j=1

pi,j(F
a, F b)log

pi,j(F
a,F b)

pi,j(F̃a,F̃ b)
.

(7)

It is worth noting that, when performing the
learning process indicated by an arrow shown in
Fig. 1, the common practice is to use teachers’
outputs F T

tch and F I
tch as target in Eq. (6)(7) that

students learn from. While in our case with two
modalities available, we propose to use the paired
arrow as the target, and we call this the symmet-
ric version (for SD loss and KL-Div loss). For
example, inter-modal teacher-student learning im-
plemented with KL-Div loss can be formulated as

LKL-Div
FT
stu→F I

tch∥FT
tch→F I

tch
+ LKL-Div

F I
stu→FT

tch∥F I
tch→FT

tch
,

(8)

while its symmetric version is

LKL-Div
FT
stu→F I

tch∥F I
stu→FT

tch
+ LKL-Div

F I
stu→FT

tch∥FT
stu→F I

tch
.

(9)

This modification deepens the interaction between
the four encoders during optimization.

So far, any one of the learning types can be con-
cretely implemented by any one of the supervision
strategies, except for a few meaningless combina-
tions. Detailed loss functions are listed in Tab. 1.

4 Experiments

4.1 Setup
We use Conceptual Caption (CC3M) (Sharma et al.,
2018) and Conceptual 12M (CC12M) (Changpinyo
et al., 2021) for pre-training distillation, which con-
sist of 3M and 12M noisy text-image pairs respec-
tively. During fine-tuning, we use MSCOCO (Lin

et al., 2014) and Flickr30K (Plummer et al., 2015)
as benchmarks. MSCOCO has 113,287 images for
training, 5K images for validation, and both 5K
and 1K for testing. Flickr30K has 28,783 images
for training, 1K images for validation, and 1K for
testing. Following previous works, we use recall
R@k (k=1,5,10) as the main metric.

We use the open-source CLIP (Radford et al.,
2021) with ViT-B/32 (Dosovitskiy et al., 2020) as
the teacher model. Its image encoder is a 12-layer
ViT with the hidden size to be 768 and 12 attention
heads. Its text encoder is a 12-layer Transformer
with hidden size to be 512 and 8 attention heads.

For the student model, we use ViT-S/16 with
hidden size to be 384 as the image encoder, and ini-
tialize it from the pre-trained weights on ImageNet-
21K (Ridnik et al., 2021). For the text encoder,
we experiment with 2, 4 and 6-layer Transformer,
of which the weights are initialized from the first
corresponding layers of the teacher’s text encoder.
The details of model settings are shown in Tab. 6.

In pre-training distillation, we train the student
models in 4 epochs using AdamW (Loshchilov and
Hutter, 2018) with a batch size of 1024 for both
images and texts, the learning rate of 3e-4, and the
weight decay of 0.1. We employ a cosine learning
rate scheduler with 10,000 warm-up steps. In fine-
tuning, we use the same optimization setting as
in MoTIS (Ren and Zhu, 2022). Experiments are
conducted on 4 NVIDIA TESLA V100 32G GPUs.

4.2 Ablation Study

Considering our complete pre-training distillation
takes a relatively long time, we follow the setup
of (Ren and Zhu, 2022) and train ConaCLIP on
CC3M for 1 epoch with batch size 84 to conduct
the ablation study. Taking Eq. (4) as the naive
baseline, we aim to find out which of the proposed
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Learning Type
Supervision Strategies

InfoNCE FD SD KL-Div Sym-SD Sym-KL-Div

intra-modal stu-stu learning \ \ 58.8/83.7/90.1 57.1/82.7/88.8 57.1/82.0/89.2 56.8/81.6/88.6

inter-modal stu-stu learning 34.7/58.7/69.9 56.6/82.1/88.8 58.6/83.6/90.0 56.5/82.4/88.9 \ \
intra-modal tch-stu learning 57.6/82.4/89.0† 57.6/82.0/88.4 58.5/83.2/89.6 55.1/80.0/87.4 58.7/83.4/89.9 56.3/81.5/88.3

inter-modal tch-stu learning 51.4/76.3/83.8 50.0/80.7/88.4 57.6/82.5/88.6 56.9/81.8/88.7 56.9/81.8/88.7 59.1/83.4/89.8

Table 2: Ablation study of text-image retrieval R@1/5/10 on Flickr30K. †Baseline. Bold denotes all R@ks have
obvious improvements. All five losses in bold will be added to the baseline loss to finally serve as our framework.

Model
Text

Encoder
Image

Encoder
Flickr30K MSCOCO (1K) MSCOCO (5K)

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

(a) Fair Comparisons

InfoNCE-based

CLIP’s[512/6] ViT-S/16[384/12]

38.4 68.0 78.0 53.3 85.3 93.5 31.5 60.3 73.3
Cross-modal KD 41.1 70.6 80.0 54.9 86.0 93.6 33.4 61.9 74.4
MoTIS 57.0 82.1 88.8 62.7 88.2 94.5 42.6 69.6 79.4
ConaCLIP (Ours) 60.6 85.2 91.2 68.6 92.4 96.7 47.3 76.1 85.2

(b) Model Zoo and Benchmarks

ConaCLIP-6L (Ours) CLIP’s[512/6]
ViT-S/16[384/12]

67.6 89.6 94.4 75.6 94.6 97.4 55.4 83.5 89.9
ConaCLIP-4L (Ours) CLIP’s[512/4] 67.0 89.3 94.2 75.4 94.6 97.4 55.3 83.1 89.9
ConaCLIP-2L (Ours) CLIP’s[512/2] 65.6 89.2 93.9 74.7 94.3 97.3 54.1 82.2 89.4

Table 3: (a) Fair comparisons of text-image retrieval results on Flickr30K and MSCOCO (1K and 5K). (b) Our
model zoo and the corresponding benchmarks. Bold indicates the best performance. "[m/n]" represents n layers
with the hidden size to be m.

combinations of learning types and supervision
strategies can bring further improvements. The
fine-tuned results on Flickr30K is shown in Tab. 2.

We can make some observations that: 1) With
an appropriate choice of detailed supervision strate-
gies, each type of learning can further bring ob-
vious improvements on the basis of the baseline.
2) The effect of each learning type is greatly af-
fected by the implemented loss function. It also
indicates that the pre-training distillation process
should be carefully explored regarding the supervi-
sion strategy. 3) Our proposed symmetric version
losses (Sym-SD and Sym-KL-Div) can generally
achieve superior performances to the standard ones
for (intra/inter-modal) teacher-student learning.

We can also attain several findings that: 1) For
(intra/inter-modal) student-student learning where
students first make knowledge interaction and then
learn together from teachers, SD loss performs the
best. Because the actual retrieval application uses
this cosine similarity to rank candidates, it can help
students acquire goal-oriented knowledge more di-
rectly. It also relaxes the learning task of students
from teachers’ feature space to the similarity space.
2) For (intra/inter-modal) teacher-student learning,
our proposed symmetric version losses are more

suitable. Compared with the standard losses, they
make the knowledge interaction between teachers
and students closer during optimization. In this
regard, student encoders can cooperate more inti-
mately in downstream tasks. 3) Although the naive
intra-modal teacher-student learning with InfoNCE
loss can serve as a competent baseline, the addi-
tion of SD and Sym-SD losses of the same learning
type can complement its effectiveness. On the other
hand, the other three different learning types with
proper loss choices can also benefit the effect of
pre-training distillation. More findings on distilling
intermediate layers are shown in A.2.

Our method has been established with the further
integration of the highlight (in bold) combinations
in Tab. 2 based on the baseline. The effect after full
integration is shown in Tab. 3(a).

4.3 Performance
Fair Comparisons. In order to better verify the
effectiveness of ConaCLIP, besides the previous
SOTA, we also experiment with two strong baseline
methods. As shown in Tab. 3(a), InfoNCE-based in-
dicates the naive cross-modal contrastive learning
procedure. Cross-modal KD represents distilling
the cross-modal in-batch probability distribution
of teachers into students. All these experiments
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Model
Text-Image Retrieval Image-Text Retrieval

Disk Space (MB) QPSt QPSi

R@1 R@5 R@10 R@1 R@5 R@10

CLIP 16.5 48.0 61.3 18.0 49.7 62.2 578 1.00× 1.00×
EC-CLIP 25.0 63.5 76.0 25.9 64.1 75.7 578 1.00× 1.00×
EC-ConaCLIP-6L 24.3 62.4 75.6 24.8 62.4 73.9 254 1.92× 1.44×
EC-ConaCLIP-4L 23.6 61.1 74.3 22.0 59.7 72.2 230 2.71× 1.44×
EC-ConaCLIP-2L 23.0 60.7 73.5 21.8 59.3 72.0 206 4.86× 1.44×

Table 4: Performance of the industry application. "EC-" is the e-commercial version of our model. QPSt/QPSi

indicates the acceleration rate of QPS.

are conducted under the pre-training setup of (Ren
and Zhu, 2022) for fair comparisons. As can be
observed, 1) Cross-modal KD which introduces
the knowledge distillation process obviously out-
performs the standard InfoNCE-based approach.
2) MoTIS greatly surpasses InfoNCE-based and
Cross-modal KD. This reveals the superiority of
intra-modal teacher-student learning over inter-
modal student-student learning in the case of dual-
encoder distillation. 3) Our ConaCLIP shows sig-
nificant improvements compared with competitors
on all evaluation metrics: 3.6/3.1/2.4 R@1/5/10
gains on Flickr30K, 5.9/4.2/2.2 R@1/5/10 gains on
MSCOCO (1K) and 4.7/6.5/5.8 R@1/5/10 gains on
MSCOCO (5K). This fully demonstrates the effec-
tiveness of our distillation framework with Cona.

Model Zoo and Benchmarks. In order to bet-
ter promote the development of cross-modal text-
image research, we release a series of lightweight
dual-encoder models. Their benchmark results are
shown in Tab. 3(b). In this case, the power of Cona-
CLIP is further unlocked and brings further im-
provements. Specifically, even ConaCLIP-2L can
achieve 8.6/7.1/5.1 R@1/5/10 gains on Flickr30K,
12.0/6.1/2.8 R@1/5/10 gains on MSCOCO (1K)
and 11.5/12.6/10.0 R@1/5/10 gains on MSCOCO
(5K) compared with the previous SOTA. We have
also found that the capacity of the text encoder may
have limited effects on these performances. For
example, ConaCLIP-4L can achieve competitive
results with ConaCLIP-6L, and ConaCLIP-2L
has only minor drops.

5 Industry Application

We apply the proposed technique to end-to-end
cross-modal retrieval in an e-commerce platform,
where we vectorize the search queries and the prod-
ucts and then perform product retrieval and rank-
ing with nearest-neighbor search (Muja and Lowe,

2009; Jegou et al., 2010; Johnson et al., 2019),
as shown in Fig. 2. We first collect massive data
of text-image pairs from e-commerce products in
our platform, where the titles of products can act
as text information. We utilize most of the data
to pre-train an e-commerce version of the CLIP
model (denoted as EC-CLIP) with ViT-B/32 as the
image encoder, which is overly large for online de-
ployment. For the remaining data, we utilize 3M
pairs for distilling the lightweight EC-ConaCLIP.
To evaluate its effectiveness, we hold out a sepa-
rate set of 100K pairs for fine-tuning and 5K/5K
pairs used in validating/testing. In this set of experi-
ments, we train EC-ConaCLIP for 20 epochs in pre-
training distillation, and fine-tune both EC-CLIP
and EC-ConaCLIP for 5 epochs. The remaining
settings are the same as in Section 4.1.

In apart to the R@k metric, we also report the
disk space (MB) and the acceleration rate of Query
Per Second (QPSi for image and QPSt for text)
to evaluate model’s memory footprints and infer-
ence speed. In Tab. 4, we report the averaged
results where the inference speed is tested on an
NVIDIA TESLA V100 (16G) GPU. As seen, the
compressed EC-ConaCLIP-6L only takes 44%
disk space (254MB) of EC-CLIP meanwhile be-
ing 1.44×/1.92× faster with image/text queries.
It also performs on par with EC-CLIP. Our EC-
ConaCLIP-2L can further achieve up to 4.86×
inference speed-up with text queries, and 64% size
reduction (from 578MB to 206MB). We provide
some case studies in A.4.

6 Conclusion

In this paper, we propose Cona for pre-training
distillation with dual-encoder architecture. It gath-
ers every type of knowledge interaction learning
with appropriate supervision choice to benefit the
cross-modal distillation. The resulting ConaCLIP
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achieves superior performances on both general
benchmarks and industry applications.

For future work, we will explore more variants
of visual encoders, and continue to tap the potential
of dual-encoder distillation.
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A Appendix

A.1 Model Settings
We give detailed parameters on the settings of our
ConaCLIP models in Tab. 6, such as the number of
parameters, layers, heads, etc.

Model Setting ConaCLIP-6L ConaCLIP-4L ConaCLIP-2L

Number of Parameters 66M 60M 53M

Text Encoder Layers 6 4 2
Text Encoder Heads 8 8 8
Text Encoder Hidden Size 512 512 512
Vocabulary Size 49408 49408 49408
Text Length 77 77 77

Image Encoder Layers 12 12 12
Image Encoder Heads 6 6 6
Image Encoder Hidden Size 384 384 384
Image Patch Size 16 16 16
Image Size 224 224 224

Table 6: Detailed parameters on the settings of our
ConaCLIP models.

A.2 Negative Results on Distilling
Intermediate Layers

We also present an exploratory study on distilling
the knowledge of intermediate layers from teacher
encoders. We first evenly divide the encoder of
each student/teacher into six parts along the num-
ber of layers, and then perform our distillation tech-
nique on the feature representations of each part.
The experiment results are shown in Tab. 5.

We can observe that additional distillation with
features of the intermediate layers does not bring
about positive improvement. This inspires us
that we should mainly focus on the representation
matching ability of the output of the last layer for
the cross-modal retrieval task. Due to the differ-
ence of capabilities between models of different
sizes, they can choose different paths to learn the
goal-oriented features in the same task during dis-
tillation (Li et al., 2021; Zhu and Wang, 2021; Xu

Applied Parts R@1 R@5 R@10

6th (Baseline) 60.6 85.2 91.2
5-6 59.5 84.2 90.7
4-6 59.5 84.3 90.9
3-6 57.9 83.5 90.2
2-6 58.6 84.1 90.9
1-6 59.2 84.5 90.8

Table 5: An exploratory study on distilling intermediate
layers. The R@1/5/10 results on Flickr30K are listed.
Each student/teacher encoder is evenly divided into six
parts along the number of layers, and distillation is
performed on the feature representations of each part.

et al., 2022). In our application, we suggest that it
can be inappropriate to force small models to learn
the same path as the large ones.

A.3 Application in E-Commerce Product
Retrieval

We apply the proposed distillation technique to
end-to-end cross-modal retrieval in an e-commerce
platform, where we vectorize the search queries
and the products and then perform product retrieval
and ranking with nearest-neighbor search. The
whole framework is shown in Fig. 2.
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Figure 2: The application of our ConaCLIP in e-
commerce retrieval.

A.4 Case Study

Case Query CLIP EC-ConaCLIP (Ours)

1

Waterproof large capacity
lightweight fashion unicorn
cartoon kids girl middle
school backpack.

2

Stainless steel induction
steamers pot, 2 layers
double handle food
cooking pots with lid.

3
Children’s sand hammer
wooden bell multi-color
children’s development toy.

4
Hot red large size sports
tights high waist yoga
pants.

5
Tempered glass waterproof
platform 5kg digital food
electric kitchen scale.

Table 7: Case studies in e-commerce retrieval. Given
the same text query, we show the image retrieval results
of the open-source CLIP and our EC-ConaCLIP.

Tab. 7 shows the case studies in our e-commerce
retrieval scenario. For the same text query, we
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show the top-1 image retrieval results of the open-
source CLIP model and our EC-ConaCLIP model
respectively.

From these cases, we can find that our model
can better capture conceptual and fine-grained fash-
ion information during cross-modal text-image re-
trieval, and maintain the cross-modal alignment
effect of text-image samples after the lightweight
distillation. For example, in Case 1, our model
more accurately captures the cartoon subject in the
target commodity as "unicorn". In Case 2, our
model pays more attention to fine-grained informa-
tion "2 layers double handle", while maintaining
the correct perception of other information such as
"Stainless steel", "steamers pot" and "with lid". In
Case 3, our EC-ConaCLIP better captures the color
clue of "Hot red". Although the retrieval result of
CLIP also conforms to the information of "sports
tights high waist yoga pants", its color is more like
"dark red".

Based on our distillation technique, the resulting
model can sufficiently learn the perception abil-
ity of the teacher model about commodity fashion
concepts and reduce matching errors.
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Abstract

Various Vision-Language Pre-training (VLP)
models (e.g., CLIP, BLIP) have sprung up
and dramatically improved the benchmarks of
public general-domain datasets (e.g., COCO,
Flickr30k). Such models typically learn the
cross-modal alignment from large-scale well-
aligned image-text datasets. Adapting these
models to downstream applications in specific
domains, such as fashion, requires fine-grained
in-domain image-text datasets. However, such
datasets are usually less semantically aligned
and smaller in scale, which requires more effi-
cient pre-training strategies. In this paper, we
propose a knowledge-guided fashion-domain
language-image pre-training (KG-FLIP) frame-
work that focuses on learning fine-grained rep-
resentations in the e-commerce domain and
utilizes external knowledge (i.e., product at-
tribute schema) to improve the pre-training ef-
ficiency. Experimental results demonstrate that
KG-FLIP outperforms previous state-of-the-art
VLP models on Amazon data and the Fashion-
Gen dataset by large margins. KG-FLIP has
been successfully deployed in the Amazon cat-
alog system to backfill missing attributes and
improve the customer shopping experience.

1 Introduction

Modern e-commerce websites exhibit products
with multi-modal information (e.g., product im-
ages, product titles, and product bullet points) to
inform customers’ purchase decisions. The effec-
tive exploitation of such multi-modal product infor-
mation is crucial for product understanding and
downstream vision-language (VL) applications,
such as product categorization, search, and recom-
mendation. Meanwhile, recent large-scale vision-
language pre-training (VLP) models have led to
impressive performance improvements on many
general-domain VL tasks (Radford et al., 2021; Yu
et al., 2022). As a result, there has been a surge of

*Work done during internship at Amazon.

interest in adapting such VLP models to facilitate
various applications in e-commerce scenarios.

Unlike the well-aligned coarse-grained language-
image datasets in the general domain, the paired
data in the e-commerce domain have two character-
istics. First, both of the product titles/descriptions
and the images contain richly detailed (i.e., fine-
grained) product information compared to datasets
in the general domain. Second, the product textual
information and images usually share only partial
information while containing complementary infor-
mation (i.e., not well-aligned). Thus, an effective
pre-training method needs to align the common
portion and fuse the distinct facts from each modal-
ity in a fine-grained manner. Rather than aligning
the entire image and text pair at a global level us-
ing contrastive loss as CLIP (Radford et al., 2021)
does, we designed our pre-training tasks to focus
on a finer level of text tokens and image patches.

In addition, previous VLP methods relied solely
on the inductive bias of the model to align cross-
modality representations through vast amounts of
paired data. Such an approach is data-hungry, in-
efficient, and disregards the availability of struc-
tured product knowledge. Thus, we propose to
leverage existing knowledge in the e-commerce
catalog to facilitate such alignment. Specifically,
for each type of product (e.g., dress), the catalog
stores its applicable attributes (e.g., neckline style)
and enumerated attribute values (e.g., v-neck, crew-
neck). Such attribute knowledge can serve as an-
chor points to help VLP models efficiently acquire
salient semantic relations between modalities.

To address the above challenges, we propose
KG-FLIP: a knowledge-guided Fashion-domain
Language-Image Pre-training to improve the VLP
models for e-commerce data. The design of KG-
FLIP is inspired by the state-of-the-art general-
purpose VLP model BLIP [6]. We adapt its de-
sign for our use case by 1) replacing the widely-
used image-text contrastive (ITC) objective with
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the masked language-image modeling (MLIM) pre-
training objective, to facilitate multi-model fusion
at the token level instead of cross-model alignment;
2) leveraging the structured knowledge of prod-
uct attribute schema information to guide the pre-
training process, and facilitate the VLP model to
learn more fine-grained product representations.
These enhancements can be generalized to other
real-world applications, where image-text pairs are
not well-aligned in semantics and external knowl-
edge can be leveraged to guide the pre-training.

2 Related Work

2.1 Vision-Language Pre-training

The emergence of large-scale pre-training models
(e.g., BERT (Devlin et al., 2018), ViT (Kim et al.,
2021)) has significantly advanced the state of the art
across various uni-modal domains, such as natural
language processing (NLP), computer vision (CV),
and speech recognition (SR). Recently, researchers
have introduced the pre-training and-then fine-
tuning paradigm into the vision-language (VL) do-
main for solving multi-modal tasks, which requires
models to comprehend both the input image and
text contents (Dou et al., 2022). Existing vision-
language pre-training (VLP) models (e.g., CLIP
(Radford et al., 2021), ALIGN (Jia et al., 2021),
Flamingo (Alayrac et al., 2022)) have proven to be
highly effective on various downstream VL tasks,
such as image retrieval (IR), text retrieval (TR), and
visual question answering (VQA). Consequently,
VLP has become the de facto practice to tackle
multi-modal problems because of its superior per-
formance (Dou et al., 2022; Chen et al., 2023).

Existing VLP models can be divided into two cat-
egories: object-detector (OD)-based VLP models
(e.g., LXMERT (Tan and Bansal, 2019), UNITER
(Chen et al., 2020), OSCAR (Li et al., 2020)) and
end-to-end VLP models (e.g., ALIGN (Jia et al.,
2021), ALBEF (Li et al., 2021), METER (Dou
et al., 2022)). OD-based VLP models rely on pre-
trained object detectors to extract region-based im-
age features, and then utilize a multi-modal en-
coder to fuse the image features with text tokens.
While OD-based VLP models have brought impres-
sive performance, crafting the pre-trained object
detectors for them is both annotation-expensive
and computation-expensive, because it requires
bounding box annotations for pre-training and high-
resolution images during inference (Li et al., 2021).
On the other hand, end-to-end VLP models directly

feed image patch features into a pre-trained ViT
model, which eliminates the need for costly anno-
tations and significantly improves inference speed,
and have been adopted by the more recent work
(Chen et al., 2021; Kim et al., 2021). Thus, we
focus on end-to-end VLP models in this work.

2.2 Knowledge-enhanced Vision-Language
Pre-training

Recently, there has been a surge of interest in uti-
lizing domain knowledge (e.g., knowledge graph,
keywords) to guide VLP in order to reach better per-
formance and improve the pre-training efficiency.
For example, Chen et al. (2021) proposed to in-
corporate knowledge graph (KG) embeddings into
VLP models to enhance the learning of seman-
tically aligned and knowledge-aware representa-
tions. Although their experimental results demon-
strated that KG could benefit VLP, it requires object
tags in each image to construct domain-specific
KGs. Zhu et al. (2021) presented a knowledge-
perceived multi-modal pre-training model in e-
commerce that uses product attribute information
as the third modality in addition to the visual and
linguist modalities. However, this approach re-
quires complete and low-noise product attribute
information, and its downstream tasks also require
such quality product attribute information to be
available as input. This implies increased annota-
tion costs and reduces the scope of the VLP model
for use on downstream tasks or data. Considering
that product attribute information is usually incom-
plete and noisy in the real world, we think existing
knowledge-enhancement approaches are not opti-
mal, because they either require additional labeling
efforts or introduce additional noise to VLP models.
Thus, we propose to use attribute information to
improve the pre-training efficiency of VLP.

3 Method

This section delineates KG-FLIP. Section 3.1 in-
troduces the architecture of KG-FLIP. Then, Sec-
tion 3.2 presents pre-training objectives of the
model. Finally, Section 3.3 explains how we in-
ject attribute knowledge into KG-FLIP.

3.1 FLIP Architecture

We use the BLIP (Li et al., 2022) architecture as our
backbone model, which is now one of the state-of-
the-art general-purpose VLP models. We choose
BLIP for the following reasons: 1) instead of using
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a pre-trained object detector as the image encoder,
BLIP uses ViT (Dosovitskiy et al., 2020), which is
more computing-friendly and eliminates the need
for bounding box annotations; 2) BLIP has a spe-
cially added text decoder – thus can be utilized for
both VL understanding (e.g., multi-modal attribute
classification) and VL generation (e.g., image cap-
tioning) downstream tasks in e-commerce; 3) train-
ing a VLP model from scratch is time-consuming
and expensive. Reusing a pre-trained checkpoint,
which has been empirically demonstrated to be very
effective, can conspicuously reduce the R&D time
and expenses of our proposed KG-FLIP model.

Women's Dress Sweet & Cute V-Neck Bell Sleeve

KG-MLIM

Image
Encoder

Feed Forward

Self Attention

N x
Cross Attention

Self Attention

Feed Forward

KG-ITM

Cross Attention

Self Attention

Feed Forward

LM

Cross Attention

Causal Attention

Feed Forward

Image-grounded
 Text Decoder

Image-grounded
 Text Encoder

Multi-modal
Text Encoder

[CLS] + Women's Dress Sweet
& Cute [Masked] Bell Sleeve

[Masked] = V-neck

[ENC] + Women's Dress Sweet
& Cute [scoop neck] Bell Sleeve

Matched / Not matched

[DEC] + Women's
[Next token?] ...

[Next token?] = Dress 

Figure 1: The architecture of KG-FLIP. It consists of
an image encoder, an image-grounded text encoder,
a multi-modal text encoder, and an image-grounded
text decoder. Three pre-training tasks at the top are:
knowledge-guided masked language-image modeling
(KG-MLIM); knowledge-guided image-text matching
(KG-ITM); and language modeling (LM). Components
with the same color use the hard-parameter sharing.

As illustrated in Figure 1, KG-FLIP contains an
image encoder, an image-grounded text encoder, a
multi-modal text encoder, and an image-grounded
text decoder. Similar to BLIP, we craft the im-
age encoder using the visual transformer (ViT-
B/16) (Dosovitskiy et al., 2020). The text encoders
are built upon BERT (Devlin et al., 2018), but we in-
sert an additional cross-attention layer, which helps
to fuse visual and linguistic information, between
the self-attention layer and the feed-forward layer
of each block. The text decoder is similar to the text
encoder, except that we replace the self-attention
layers with the causal self-attention layers to auto-
regressively predict next tokens. In the following,
we describe each of the components mentioned.

Image encoder: encodes input images and maps
them into visual information representations. Con-
cretely, each input image is first segmented into
patches, and then ViT takes these patches as input

and encodes them into a sequence of embeddings.
The embeddings carry all visual information per-
ceived from the image, and are finally mapped into
the key matrix (K) and value matrix (V) for com-
puting the cross-attention scores with the text.

Image-grounded text encoder: fuses the vi-
sual and linguistic information through the cross-
attention layer of each transformer block. Specif-
ically, the output of the self-attention layer in
each block, which carries linguistic information
obtained from the text input, is mapped into the
query matrix (Q). Then, in each cross-attention
layer, we use the query matrix (Q) together with
the key matrix (K) and the value matrix (V), both
coming from the ViT, to produce the output.

Multi-modal text encoder: has the same struc-
ture as the image-grounded text encoder. A special
token is prepended to the beginning of the input
text, and its output is used as the global representa-
tion of the fused visual and linguistic information.

Image-grounded text decoder: which is em-
ployed for performing VL generation downstream
tasks (e.g., captioning). The causal self-attention
layers enable the decoder to generate text in an
auto-regressive manner. Specifically, a special to-
ken [DEC] is used as the start signal, and then the
module iteratively generates the next token based
on generated or supervised tokens in previous steps,
until it reaches the end-of-sequence token.

We follow BLIP’s design of parameter sharing
between three branches to reduce model size with
demonstrated performance gain. (Li et al., 2022)

3.2 Pre-training Objectives

KG-FLIP jointly optimizes three pre-training objec-
tives: knowledge-guided masked language-image
modeling (KG-MLIM), knowledge-guided image-
text matching (KG-ITM), and language modeling
(LM). Similar to BLIP, we use two understanding-
based pre-training objectives and one generation-
based pre-training objective. These three objectives
activate different functionalities while contributing
to each other through hard-parameter sharing. We
first describe the three pre-training objectives of
the model without the knowledge guidance (KG):

Masked Language-Image Modeling Loss
(MLIM): is similar to MLM in pre-training lan-
guage models (e.g., BERT), but it utilizes both the
image and the contextual text to predict the masked
tokens (Chen et al., 2022), which helps the model
to learn cross-modal alignment at the token level
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instead of instance level as in ITC. Formally, the
MLIM loss can be represented by,

Lmlim = − E
(I,T )∈D

E
M⊂T


∑

ti∈M
log p(ti|I, T̂ )


 ,

where one uniformly samples an image I and its
corresponding text T from the dataset D, masks
a random token subsetM from T , and predicts it
given the image and the masked text T̂ .

Image-Text Matching Loss (ITM): aims to
learn joint VL embeddings that effectively fuse
the information from input image-text pairs. ITM
facilitates the model to produce more effective and
fine-grained VL representations by using these rep-
resentations to judge whether image-text pairs are
matched (positive pairs) or not matched (negative
pairs). The ITM loss can be expressed as:

Litm = − E
(I,T )∼psamp(I,T |D)

[log p(yI,T |I, T )] ,

where psamp is a distribution that samples posi-
tive and negative training examples, yI,T ∈ {0, 1}
represents whether the image I and the text T are
matched, and log p(yi,T |I, T ) is the output of the
[ENC] token in multi-modal text encoder followed
by a classification layer.

Language Modeling Loss (LM): aims to auto-
regressively generate desired textual information
given an image (e.g., for captioning) or an image-
text pair (e.g., for Visual Question Answering). It
optimizes the loss,

Llm = − E
(I,T )∈D


∑

ti∈T
log p(ti|I, T<i)


 ,

where each token ti is predicted given the image I
and all text tokens in T before position i.

3.3 Knowledge Guidance
To facilitate KG-FLIP to fuse two modalities more
effectively, we utilize attribute knowledge to guide
MLIM and ITM objectives, as described below:

Knowledge-guided MLIM (KG-MLIM): uti-
lizes attribute information to guide MLIM by ame-
liorating the masking policy, as illustrated in Fig-
ure 2. The original policy of BERT (Devlin et al.,
2018) uniformly chooses 15% of input tokens, of
which 80% are replaced with a special masked to-
ken [MASK], 10% are replaced with a random
textual token, and 10% remain unchanged. Rather

Product Title

Women’s Dress Sweet & Cute
V-neck Bell Sleeve

MLIM

Women’s Dress [Masked] & Cute
V-neck Bell Sleeve

KG-MLIM

Women’s Dress Sweet & Cute
[Masked] Bell Sleeve

Product Title

Women’s Dress Sweet & Cute
V-neck Bell Sleeve

Negative Text in ITM

Summer Casual Loose Crewneck
Boho Dress

Negative Text in KG-ITM

Women’s Dress Sweet & Cute
V-neck Half Sleeve

Figure 2: KG-MLIM vs. MLM, KG-ITM vs. ITM.
(Left) Comparing to MLM which randomly selects 15%
of words to mask, KG-MLIM prioritizes masking at-
tribute words (e.g., crew neck, sleeveless). (Right) Gen-
eral ITM forms a negative pair by replacing the paired
text with another text sample in the batch. By contrast,
KG-ITM synthesizes a “harder” negative example by
replacing the attribute word in the paired text with an-
other value of the same attribute.

than treating all tokens the same, masking product
attribute words allows the VLP model to focus on
learning salient product information and provide
anchor points to align both modalities, thus pro-
ducing more effective VL representations than the
original 15% random masking policy.

To this end, we propose to use knowledge (i.e.,
product attribute schema) to guide MLIM to mask
significant attribute tokens rather than random-
selected tokens. Concretely, we use the enumerated
attribute values (e.g., “v-neck”, “sleeveless”) from
the catalog system to identify significant words in
the text that match our attribute value names. After
that, we maintain an overall masking ratio of 15%,
and if the number of detected significant attribute
words exceeds 15%, we randomly select a subset
of them to be masked. Otherwise, we randomly
mask other tokens to fill up to 15%. In this way,
we implement KG-MLIM, which enables VLP to
focus on noteworthy attribute words.

Knowledge-guided ITM (KG-ITM): leverages
attribute knowledge to synthesize “harder” nega-
tive image-text pairs, letting KG-FLIP determine
whether the image-text pairs are matched or not
matched. Specifically, in the standard ITM objec-
tive, psamp typically utilizes the input image-text
pairs in each batch as positive samples (Chen et al.,
2022), and creates negative ones by replacing the
image or text in each paired sample with randomly
selected from other samples. The next step is to
predict whether each image-text pair is matched.
However, since images or text of different products
are typically disparate, the negative samples are

84



usually too facile to train the model effectively.
Hence, we propose to leverage attribute knowl-

edge to synthesize “harder” negative image-text
pairs for the ITM loss. Similar to KG-MLIM, we
use attribute values to search for salient attribute
words in the text. If any attribute word in the text is
detected, we synthesize a negative text string by re-
placing each identified word with another random
attribute word from the same attribute class (e.g.,
“blue”→ “red”, “v-neck”→ “crew neck”). Other-
wise, if we do not spot any attribute word, we se-
lect a random text to construct the negative sample.
Thus, these “more difficult” synthesized negative
samples force KG-FLIP to produce more effective
VL representations that capture subtle (i.e., fine-
grained) distinctions between samples.

4 Experiments

4.1 Experimental Setup

We initialized all parameters with a BLIP check-
point (Li et al., 2022), and then pre-trained KG-
FLIP using a dataset of 1.9M pairs of Amazon
product images and product texts (title and bullet
points) in the fashion domain (viz., dresses and
shoes). To investigate the potential promise of KG-
FLIP, we tested KG-FLIP on two most common
VL downstream tasks in e-commerce: we perform
product attribute extraction on the Amazon product
attribute dataset and product categorization on the
Fashion-Gen dataset (Rostamzadeh et al., 2018),
which we describe in detail below.

The Amazon product attribute dataset: con-
tains a sample of products in our pre-training
datasets that also have corresponding attribute val-
ues in the catalog. We further annotated another
600 image-title pairs as the validation and test set,
which are used for hyper-parameter tuning and per-
formance evaluation, respectively.

The Fashion-Gen dataset*: incorporates
293,008 fashion data pairs. The dataset contains
48 main categories (e.g., “Dresses”, “Jeans”) and
121 sub-categories (e.g., “Short Dresses”, “Leather
Jackets”). We tested KG-FLIP by performing the
sub-category classification based on visual and lin-
guistic modalities. In our experiments, we use the
same training and testing data as used in Kaleido-
BERT (Zhuge et al., 2021) and CMA-CLIP (Liu
et al., 2021). The numbers of training and testing

*Note that the Fashion-Gen dataset was only used to bench-
mark and illustrate the advance we made. It was not involved
in building or optimizing our deployed model.

samples are 260,480 and 32,528, respectively.

4.2 Results

Product attribute extraction: The attribute-
extraction task aims to automatically infer product
attribute information (e.g., color, neck style) from
product images and textual information such as title
and description. Following (Liu et al., 2021), we
formulate this problem as a multi-task classification
task. We add a multi-layer perception (MLP) head
for each attribute in Table 1 on top of the [ENC] out-
put embedding from the multi-modal text encoder
and fine-tune them simultaneously. We compare
the results with CMA-CLIP, BLIP, and an unguided
version of KG-FLIP, which was pre-trained with
standard MLIM and ITM without knowledge guid-
ance. All models are pre-trained and fine-tuned on
the same datasets. Table 1 below shows the recall
at 90% precision (R@90P) on the test set.

Table 1: Recall at 90% precision on the Amazon product
attribute dataset. (attribute names are anonymized for
compliance reasons)

Attribute CMA-
CLIP BLIP unguided

KG-FLIP
KG-
FLIP

dress attribute 1 29.1 53.1 52.1 57.3
dress attribute 2 42.3 41.0 52.6 48.7
dress attribute 3 57.3 61.1 65.9 67.9
dress attribute 4 33 36.7 44.1 42.1
dress attribute 5 71.5 65.1 71.8 74.1

shoe attribute 1 89.2 94.6 92.7 94.1
shoe attribute 2 90.0 92.0 91.0 92.0
shoe attribute 3 78.5 85.2 82.8 85.6
shoe attribute 4 98.7 99.0 98.7 99.0

Average 65.51 69.75 72.32 73.42

Product categorization: The task of product
categorization is to automatically determine the
sub-category for each product given its image-text
pair. Similarly, we also formulate this problem as a
classification task and stack an MLP head on top.
Each VLP model in Table 2 was fine-tuned on the
Fashion-Gen training set, and we then reported the
accuracy of the categorization on the test set.

Overall, the results in Table 1 and Table 2 show
that KG-FLIP outperforms all other VLP models
on both datasets. For the Amazon product attribute
dataset, KG-FLIP and unguided-FLIP offer per-
formance gains of 3.67% and 2.57% in terms of
R@90P, respectively, over BLIP. For the Fashion-
Gen dataset, KG-FLIP can outperform the current
benchmark (i.e., FashionViL) and BLIP in terms
of accuracy by 2.1% and 0.36%, respectively. In
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Table 2: Accuracy (%) on the Fashion-Gen dataset.

Method Accuracy

ImageBERT (Qi et al., 2020) 80.11
FashionBERT (Gao et al., 2020) 85.27
OSCAR (Li et al., 2020) 84.23
KaleidoBERT (Zhuge et al., 2021) 88.07
CMA-CLIP (Liu et al., 2021) 93.60
FashionViL (Han et al., 2022) 92.23
BLIP (Li et al., 2022) 93.96

unguided KG-FLIP 94.15
KG-FLIP 94.32

summary, KG-FLIP has demonstrated its eminent
performance, which makes it a compelling VLP so-
lution for partially semantically aligned real-world
VL data in e-commerce scenarios.

5 Model Deployment

Currently, we have successfully deployed our KG-
FLIP model in a real-world application to back-
fill missing product attributes in the e-commerce
catalog. E-commerce websites curate their prod-
uct information in their catalog system. In addi-
tion to unstructured information (e.g., product ti-
tles and descriptions), structured product attributes
(e.g., color and size) play an essential role in var-
ious downstream applications, including search
and recommendation. For example, customers
can filter search results by product attribute values
and quickly identify their desired products. How-
ever, missing product attribute values are common,
given the large number of products offered on e-
commerce websites. Improving the coverage of
product attributes with high accuracy is critical to
improving the customer experience and maintain-
ing customer trust. In addition, complete and accu-
rate product attribute information can also improve
the performance of various downstream applica-
tions (e.g., alternative product recommendations).

Compared to previous image-only and text-only
models, KG-FLIP can infer product attributes from
both modalities and increase precision and recall
by large margins. Another advantage is that it can
predict thousands of product attributes in a single
model, which implies that model development and
maintenance efforts are significantly reduced com-
pared to single attribute models. However, train-
ing thousands of attributes in one model makes
single-machine training infeasible because of the
massive size of the training data. To overcome this
challenge, we have developed our own distributed
training infrastructure to support large-scale model

training. Our infrastructure leverages the power of
AWS Batch† Multi-Node Parallel, and the Deep-
Speed framework, which allows us to automati-
cally launch, configure, and manage a cluster of
GPU instances, and train our model on 100 mil-
lion image-text pairs for 10 epochs within a week
with twenty p3.16xlarge instances. We also auto-
mated the process of launching a distributed job
with just one command, which enables any indi-
vidual to conduct distributed training tasks on their
own and accelerates the experiment speed by reduc-
ing 90% of manual efforts. The model deployment
is through AWS SageMaker‡. We leveraged AWS
Batch to perform large-scale batch mode inference
to backfill billions of product-attribute pairs with
high accuracy since mid-2022.

6 Conclusion

In this paper, we introduced a knowledge-guided
fashion-domain language-image pre-training
framework for e-commerece, dubbed KG-FLIP.
By utilizing the product attribute knowledge to
guide MLIM and ITM pre-training objectives, our
KG-FLIP model facilitates the vision-language
pre-training and enhances the product representa-
tion learning for e-commerce data that are partially
aligned while also containing complementary
information. The evaluation results have demon-
strated its prominent performance against other
state-of-the-art benchmarks on both Amazon and
Fashion-Gen datasets. The KG-FLIP model has
been deployed in a real-world application and
improved the customer shopping experience.

7 Limitations

There are two main limitations to this study. First,
because of the lack of downstream datasets, we did
not evaluate KG-FLIP on other downstream VL
tasks in e-commerce (e.g., substitute recommenda-
tion). Therefore, the robustness of the KG-FLIP
model on other downstream tasks requires further
investigation. Second, the experimental results em-
pirically show that the proposed knowledge-guided
pre-training objectives are more effective in produc-
ing VL representations that capture subtle distinc-
tions between samples than the standard objectives.
However, a theoretical analysis of the effectiveness
of our knowledge-guidance strategies is lacking.

†https://aws.amazon.com/batch/
‡https://aws.amazon.com/sagemaker/
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8 Ethics Statement

We discuss ethical issues from these aspects:
Intended Use. If the technology is function-

ing as intended, both sellers and customers of e-
commence platforms could benefit from the KG-
FLIP model. KG-FLIP could help customers to
quickly identify their desired products (e.g., by fil-
tering search results by product attribute values). It
could also help sellers by reducing their manual ef-
forts when listing new products (e.g, the platforms
can automatically recommend the attribute values).

Failure modes. In case of failure, KG-FLIP
might output inaccurate product attribute informa-
tion. Such non-factual information may harm cus-
tomers’ shopping experience. For example, the
substitute recommendation system, which may use
the incorrect product information provided by KG-
FLIP, may recommend a non-desired product to
our customers and hurt their shopping experience.
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Abstract

Due to the democratization of e-commerce,
many product companies are listing their
goods for online shopping. For periodic
buying within a domain such as Grocery,
consumers are generally inclined to buy
certain brands of products. Due to a large
non-English speaking population in In-
dia, we observe a significant percentage
of code-mix Hinglish search queries e.g.,
sasta atta. An intuitive approach to deal-
ing with code-mix queries is to train an
encoder-decoder model to translate the
query to English to perform the search.
However, the problem becomes non-trivial
when the brand names themselves have
Hinglish names and possibly have a literal
English translation. In such queries, only
the context (non-brand name) Hinglish
words needs to be translated. In this pa-
per, we propose a simple yet effective
modification to the transformer training
to preserve/correct Grocery brand names
in the output while selectively translat-
ing the context words. To achieve this,
we use an additional dataset of popular
Grocery brand names. Brand names are
added as tokens to the model vocabu-
lary, and the token embeddings are ran-
domly initialized. Further, we introduce
a Brand loss in training the translation
model. Brand loss is a cross entropy loss
computed using a denoising auto-encoder
objective with brand name data. We warm-
start the training from a public pre-trained
checkpoint (such as BART/T5) and fur-
ther adapt it for query translation using
the domain data. The proposed model is
generic and can be used with English as
well as code-mix Hinglish queries allevi-
ating the need for language detection. To
reduce the latency of the model for the pro-
duction deployment, we use knowledge
distillation and quantization. Experimen-
tal evaluation indicates that the proposed
approach improves translation results by

preserving/correcting English/Hinglish
brand names. After positive results with
A/B testing, the model is currently de-
ployed in production.

1 Introduction

Due to the democratization of e-commerce,
online shopping has evolved in recent times,
where most customers choose to shop online.
As an effect, the majority of product compa-
nies are keen on making their products avail-
able for online shopping. When it comes to
domains such as Grocery, where users have to
shop periodically, they typically have a prefer-
ence for buying products of certain brands.
Hence, for Grocery, it was observed that a
significant portion of search queries contain
brand names. Due to a large non-English-
speaking population in India, we observe a
significant percentage of code-mix Hinglish
search queries. A Hinglish query is where
one or more Hindi words are written in En-
glish, e.g., sasta atta. Since there are no stan-
dard spellings, we observe a large variation
in the Hinglish words. We also observe many
queries where brand names are misspelled.

An intuitive approach to deal with code-mix
queries is to train an encoder-decoder model
to translate the query to English and use an
English search API to retrieve the products
(Kulkarni et al., 2022). However, the problem
becomes more challenging when the brand
names themselves are Hinglish words and pos-
sibly have a valid English translation. We
observe that in the Grocery domain, many
brand names have Hinglish names, e.g. aashir-
vaad, gowardhan, veer, navratna etc. In such
queries, only the context (non-brand name)
Hinglish words need to be translated, and
brand names (though Hinglish) must not be
altered in the translation. E.g. for the query,
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’sasta dabur lal tel’, a literal translation would
be ’cheap dabur red oil’. However, the ex-
pected translation is ’cheap dabur lal oil’ since
’dabur lal’ is a brand name. Although most of
the words in the query are Hinglish, only the
first and last words need to be translated. If
a brand name gets altered during the transla-
tion, it will lead to non-ideal search results.
In some cases, the query does not need a
translation even though it contains a Hinglish
brand name, e.g., veer brand oil. If an En-
glish/Hinglish brand name is misspelled, it
needs to be corrected in the translation. In
general, the seq2seq model should be able to
handle the following scenarios.

• the query has only English words with no
spell errors: the model should output the
query as it is

• the query has only English words with
spell errors in either brand names or con-
text words: the model should only correct
the spell errors

• the query contains Hinglish words with-
out brand names: the model should trans-
late all Hinglish words to English

• the query contains Hinglish words with
brand names: the model should selec-
tively translate the Hinglish words with-
out altering brand names. It should cor-
rect the brand names if it is misspelled.

To ensure such behavior, one would need
large manually labeled data inclusive of many
brand names. In this paper, we propose a
simple yet effective modification to the trans-
former training to preserve/correct brand
names in the output while selectively trans-
lating the context words. To achieve this, we
use an additional dataset of high-demand Gro-
cery brand names provided by the product
team. First, to output brand names as a whole,
we add them as tokens to the model vocabu-
lary and randomly initialize the correspond-
ing token embeddings. Further, we introduce
a brand loss for training the translation model.
Brand loss is a cross entropy loss computed
using a denoising auto-encoder objective with
brand name data. We warm-start the training
from a generic pre-trained checkpoint (such

as BART/T5) and further adapt it for query
translation using the domain data. Results in-
dicate that introducing brand loss significantly
improves accuracy by preserving/correcting
brand names in the translation. We also ver-
ify that introducing brand information as the
loss is more effective than introducing it as
the training data. The model is generic and
can be used with English as well as code-mix
Hinglish queries, alleviating the need for lan-
guage detection. Further, to reduce the latency
of the model for the production use-case, we
use knowledge distillation and quantization.
Using a large model as the teacher, we ob-
tain pseudo-labels for a large set of unlabeled
queries. We then train a small student open-
nmt (Klein et al., 2017) model on this dataset.
We are able to achieve more than 28x reduction
in the latency with a slight drop in accuracy.
Experimental results demonstrate the efficacy
of the proposed approach.

2 Related works

Transformers (Vaswani et al., 2017) is the
current state-of-the-art model for translation.
Large-scale self-supervised pre-training of
encoder-decoder models followed by domain-
specific fine-tuning can significantly improve
the translation quality with a limited labeled
set (Lewis et al., 2019) (Raffel et al., 2020).

Search query translation is essential for
Cross-Lingual Information Retrieval (CLIR).
Bhattacharya et al. (Bhattacharya et al., 2016)
use word vector emebedding and clustering
to find groups of words representing the same
concept from different languages. These multi-
lingual word clusters are then used to perform
query translation for CLIR between English,
Hindi and Bengali. Kulkarni et al. (Kulkarni
and Garera, 2022) proposes an approach to
perform vernacular query translation without
using any parallel corpus. Authors only utilize
unlabeled query corpus from two languages,
a pre-trained multilingual translation model,
and train it with cross-language training to
translate vernacular search queries to English.
For code mix query translation, multilingual
and English pre-trained encoder-decoder mod-
els have been explored (Jawahar et al., 2021)
(Kulkarni et al., 2022). Kumar et al. (Kumar
et al., 2020) explored statistical and neural ma-

90



Query Ground truth Without Brand loss With Brand loss
asribad ata aashirvaad atta ashirwad atta aashirvaad atta
dabber lal tel dabur lal oil dabber lal oil dabur lal oil
emni rice brand oil emami rice bran oil emni rice bran oil emami rice bran oil
daadis peanut khakra daadi’s peanut khakhra grapes peanut seeds daadi’s peanut khakra
goverdhan desi ghee gowardhan desi ghee goverdhan desi ghee gowardhan desi ghee
detol original dettol original original detol dettol original
farnely all product farmley all product free all product farmley all product
veer brand oil veer brand oil mustard oil veer brand oil
all out mosquito refill all out mosquito refill eri mosquito refill all out mosquito refill
ice cream kwality walls ice cream kwality walls ice cream kwality ice cream kwality walls

Table 1: Effect of brand loss on accuracy. With the brand loss, the model preserves/corrects brand
names and provides translation better aligned with the ground truth. Brand names are

highlighted in boldface.

chine translation models for generating natu-
ral language questions from a given keyword-
based query.

Few techniques have been explored to pre-
serve some of the input tokens as it is in out-
put. CopyNet (Gu et al., 2016) enables se-
lective use of generate and copy mode. In
the copy mode, an RNN-based model can
choose sub-sequences from the input sequence
to put them at appropriate places in the out-
put sequence. While in generate mode, the
model can generate new tokens. On similar
lines, See et al. (See et al., 2017) proposed a
hybrid pointer-generator network-based ap-
proach with an ability to copy words from in-
put to the output while retaining the ability to
produce novel words through the generator.

In contrast to these approaches, we enforce
the model to copy brand names using an addi-
tional loss component computed on the brand
name data. The model still has a default gen-
erate ability which helps in correcting mis-
spelled brand names.

3 Proposed Approach

In the following sections, we provide details
of the dataset and training methods.

3.1 Dataset

We use a manually tagged dataset for training
the model. We have a total of ~116k manually
tagged query set, which contains Hinglish as
well as English queries. To make use of pre-
viously tagged queries, the dataset consists
of queries from Grocery and other domains

such as fashion, mobile, footwear, etc. From
this, we use randomly chosen 5k samples as
the validation set and ~111k for the training.
We use a list of 2226 high-demand Grocery
brand names to compute the brand loss. The
list was provided by the product team. As the
test dataset, we use 10715 manually tagged
queries from the Grocery domain.

3.2 Training details

For training the translation model, we make
two modifications as follows. First, we add
a list of high-demand brand names as tokens
in the model vocabulary and randomly ini-
tialize the corresponding token embeddings.
Brand names are converted to lowercase be-
fore adding to vocab. This ensures that when
a brand name is outputted in the translation, it
would be outputted as a single entity, avoiding
incorrect brand name variations.

We introduce a brand-specific loss in the
model training. The translation model is
trained with a combination of three loss com-
ponents as follows.

L = lSupervised + lDataAug + λ lBrand (1)

where λ indicates the weighting factor for
the brand loss. lSupervised indicates the stan-
dard cross entropy loss with parallel corpus.
lDataAug indicates the loss calculated with spell
and auto-encoder data augmentations as de-
scribed in section 3.3.

For calculating lBrand, we use cross-entropy
loss with denoising autoencoder objective
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with brand name data using simple CharDrop
data augmentation. Since non-English speak-
ers attempt to spell the words based on the
phoneme sound of it, we noticed that typi-
cally the first and last character of the brand is
spelled correctly while the spelling mistakes
are present in the middle of the word. To emu-
late this, we randomly drop a character from
30-50% of the brand name words and use orig-
inal brand names as the target. Following are
some of the brand name training examples.

Noisy Brand name Target
asirwaad ashirwaad

milky freh milky fresh
dabur vaika dabur vatika

Table 2: Brand name augmentations

lBrand is computed with the teacher forcing
technique. We set λ to 1 for all experiments.
We also experimented by increasing and de-
creasing the value of λ, however, it did not
lead to any significant change in the accuracy.

We use a pre-trained BART-base model to
warm-start the training and fine-tune it fur-
ther on the manually tagged data. The model
is fine-tuned using AdamW optimizer with
a learning rate of 1e-5 and batch size of 16.
The model is trained till the validation loss
does not improve for three consecutive epochs.
We use label smoothing (Vaswani et al., 2017)
during the training, where we set the label
smoothing parameter to 0.1 for all the experi-
ments. We use beam search decoding during
the inference, where the beam size is set to 3.
The model has ~141M trainable parameters
post adding the brand tokens.

3.3 Data Augmentations

We experimented with Autoencoder and spell
augmentation to compute data augmentation
loss (lDataAug). For Autoencoder, we use target
English text as the input and train the model
to reconstruct it. Though simple, it has shown
to be effective in query translation since it
provides an advantage similar to a language
model regularizer (Kulkarni et al., 2022). For
the batch of labeled queries, we add spell aug-
mentations to the source (Ma, 2019) and train
the model with the same target. For each batch

of queries, data augmentation is chosen ran-
domly.

Setting BLEU
With Brand loss 70.9

Without Brand loss 68.8

Table 3: BLEU score comparison result

4 Results

Table 3 shows the BLEU score comparison of
different model settings on the test set. In
the first experiment, we verify the effective-
ness of additional brand loss during the train-
ing. We train the model with and without
brand loss. From the BLEU score comparison,
it can be seen that brand loss training provides
good improvements in test accuracy. In table
1, we show the comparison of query transla-
tion results with and without brand loss. With
the brand loss, the model corrects the brand
names whenever it is entered wrongly (first
7 examples). It also preserves brand names
better when it’s entered correctly (last 3 exam-
ples). Overall, the model provides translations
better aligned with the ground truth.

4.1 Using brand names as data

Intuitively, it’s possible to input the brand
name information as the parallel corpus,
where we can add CharDrop augmentation to
the brand names, and the original brand name
can be used as the target. Hence, we wanted to
verify the effectiveness of introducing brand
information through the loss compared to in-
putting it through the training data. We cre-
ated additional training data from the brand
names with CharDrop augmentations and ap-
pended it to the original training set. We use
50 augmentations for each brand name. Table
5 shows the BLEU score comparison result. We
notice that adding brand info as a loss is more
effective than adding it as training data. This
could be because, with the brand as loss, the
model is able to translate context words more
effectively. Table 4 shows the query translation
comparison result. Note that brand as loss is
better at correcting misspelled brand names
while providing better translations of context
words.
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Query Ground truth Brand as data Brand as loss
nabrtan tel navratna oil olive oil navratna oil

cubes spice masala cubes spice masala cake spice masala cubes spice masala
fitme ka face pauder fit me face powder face powder offitme fit me face powder
dabur gulab jal 1 litre dabur gulab jal 1 litre dabur rose water 1 litre dabur gulab jal 1 litre
colgeat charcol offer colgate charcoal offer coffee charcol offer colgate charcoal offer
boork bond taja tea brooke bond taaza tea boork bond tea brooke bond taaza tea
fiama soap all mox fiama soap all mix fiama soap all mox fiama soap all mix
kesar ka sabudana kesar sabudana saffron seeds kesar sabudana

Table 4: Comparison result for inputting brand information as loss vs inputting through training
data. Note that with the brand as a loss, context words are better translated.

Setting BLEU
Brand info as data 69.6
Brand info as loss 70.9

Table 5: BLEU score comparison for brand
as loss vs brand as data

4.2 Comparison with T5

We compared the results of BART-base with
T5-base and T5-small models under similar
training settings, i.e., adding brand tokens to
the vocab and training with brand loss. Table
6 shows the comparison result. We noticed
that BART works significantly better as com-
pared to T5. This could be because denoising
training objectives such as brand loss and data
augmentation are more aligned with the BART
pre-training than T5. Hence, BART can pro-
vide good results with a limited labeled set, es-
pecially when brand token embeddings need
to be learned from scratch.

Setting BLEU
T5-base 59.8
T5-small 57.2

BART-base 70.9

Table 6: Comparison with T5 model

4.3 Pre-training on large query

Since the search model would be witnessing
large traffic and a variety of queries, we pre-
train BART-base model on a large query par-
allel corpus to make it suitable for production
use case. We collected a large Hindi (Devana-
gari) unlabeled query corpus from the internal

database. Since our Hindi search model cur-
rently supports different verticals such as fash-
ion, mobile, footwear, etc., we suspect only a
small percentage of Grocery related queries in
the dataset. The Hindi queries are detected
using a simple script-based detection. If any
of the characters in the query are from Devana-
gari unicode range, the query is termed Hindi.
We then use an in-house Hindi to English
query translation model to create a parallel
corpus from the unlabeled set. Further, we use
an in-house transliteration model to convert a
Hindi query to a Hinglish query. This way, we
obtained a ~38M Hinglish to English query
parallel corpus for training. The model is
trained using AdamW optimizer with a learn-
ing rate of 5e-6. We pre-trained the BART-base
model on this large set and then finetuned
on the manually tagged set in the same man-
ner described in section 3.2. Table 7 shows
the result of the experiment. Pre-training on
the large set gives a significant boost to accu-
racy. To verify if brand loss based finetuning
still complements the advantage provided by
the pre-training, we finetuned the query pre-
trained model without the brand loss. It can
be seen that training with brand loss boosts
accuracy in addition to the pre-training.

Query-pretraining Brand loss BLEU
Included Included 73.1

Not included Included 70.9
Included Not included 71.5

Table 7: Effect of large scale query
pre-training
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5 Knowledge distillation for improved
latency

The search query translation models are user-
facing and need to have low latency to sup-
port high throughput. Though the BART-base
model with query pre-training and fine-tuning
provided good accuracy on the test set, it was
not sufficient for production deployment due
to the latency constraints. We observed that
the p95 latency of the BART-base model with
PyTorch implementation was ~200 ms, which
is not acceptable for the production use-case.

To reduce the latency of the model, we use
knowledge distillation with open-nmt (Klein
et al., 2017) framework. Open-nmt provides a
Ctranslate wrapper for faster inference, mak-
ing it a good choice for low latency use-cases.
Our approach is to train a small open-nmt stu-
dent model using Grocery BART-base model
as the teacher model. Since the student model
resides in another programming framework,
we use a pseudo-labeling approach to transfer
knowledge from the teacher to the student. To
create a parallel corpus for open-nmt model
training, we obtain translation labels on ~38M
query set using the teacher model. We then
train the open-nmt model on this large paral-
lel corpus and the manually tagged set. We
use a single layer open-nmt model with a vo-
cab size of 18k and a hidden dimension of
384. The model has ~23M trainable param-
eters. For open-nmt model as well, we add
the brand name tokens to the vocab. We use
weight quantization during model inference.
Table 8 shows the BLEU score comparison re-
sult with the open-nmt student model. The
student model provides more than 28x speed
up for the inference with just a 0.2 drop in the
BLEU score. The reason a single layer student
model could be providing comparable results
to the teacher model can be two-fold. First,
search queries rarely have grammar and hence
may not a deeper network for translation. Sec-
ond, the teacher through pseudo labeling is
providing cleaner and consistent labels for the
student to learn from.

We performed A/B testing of the open-nmt
student model w.r.t. an earlier model which
does not use brand loss. We observed 10 ba-
sis points (bps) improvement in search Click-
Through-Rate (CTR) and improved search con-

version. The model is currently deployed
in production and serves a large volume of
queries.

Setting BLEU p95 latency
BART Teacher 73.1 ~200 ms

open-nmt student 72.9 ~7 ms

Table 8: Knowledge distillation with
open-nmt

6 Conclusion

In this paper, we proposed a simple yet ef-
fective approach for domain-specific query
translation. For the grocery domain, it was
noticed that a significant percentage of queries
contained brand names due to user pref-
erences and periodic buying. We also ob-
served a significant percentage of code-mix
Hinglish queries and queries with grammat-
ical errors. Since some grocery brand names
are themselves Hinglish words, we wanted a
brand-aware query translation model. To bet-
ter preserve brand names in translation, we
added brand name tokens to the model vo-
cab and introduced an additional brand loss
in transformer training. The modification im-
proved translation accuracy by depicting de-
sired brand name preserving effect. To reduce
the latency of the model for the production
deployment, we used knowledge distillation
with the open-nmt student. Using a large
model as a teacher and with pseudo labeling,
we trained a single layer open-nmt student
model. We could obtain more than a 28x re-
duction in latency with a slight drop in accu-
racy. After positive results with A/B testing,
the model was deployed in production.
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Abstract

To provide a convenient shopping experi-
ence and to answer user queries at scale,
conversational platforms are essential for
e-commerce. The user queries can be pre-
purchase questions, such as product speci-
fications and delivery time related, or post-
purchase queries, such as exchange and
return. A chatbot should be able to under-
stand and answer a variety of such queries
to help users with relevant information.
One of the important modules in the chat-
bot is automated intent identification, i.e.,
understanding the user’s intention from
the query text. Due to non-English speak-
ing users interacting with the chatbot, we
often get a significant percentage of code
mix queries and queries with grammati-
cal errors, which makes the problem more
challenging. This paper proposes a sim-
ple yet competent Semi-Supervised Learn-
ing (SSL) approach for label-efficient intent
classification. We use a small labeled cor-
pus and relatively larger unlabeled query
data to train a transformer model. For
training the model with labeled data, we
explore supervised MixUp data augmenta-
tion. To train with unlabeled data, we ex-
plore label consistency with dropout noise.
We experiment with different pre-trained
transformer architectures, such as BERT
and sentence-BERT. Experimental results
demonstrate that the proposed approach
significantly improves over the supervised
baseline, even with a limited labeled set. A
variant of the model is currently deployed
in production.

1 Introduction

An automated conversational chatbot is essen-
tial to provide a seamless shopping experi-
ence and answer product-related questions
at scale. An effective chatbot can assist and
answer pre-purchase queries such as product

specifications, offers, discounts, delivery time,
and stock availability, as well as post-purchase
queries such as exchange and return. Due
to users from diverse backgrounds interact-
ing with the chatbot and minimizing a human
agent transfer, a chatbot should be able to un-
derstand and handle a variety of user queries.

One of the important ML components in
the chatbot is automated intent identification,
i.e., understanding the user’s intention from
the query text. Post the correct intent iden-
tification, an appropriate dialog-flow can be
initiated. An incorrect intent prediction neg-
atively affects the dialog-flow and, hence the
overall user experience. Further, due to non-
English speakers interacting with the chatbot,
we observe a significant percentage of code-
mix Hinglish queries ( 30%) and queries with
grammatical errors, making intent detection
even more challenging. Training a supervised
intent classification model under such a sce-
nario would require a large amount of manu-
ally tagged data. However, due to internet-
scale operations, we have unlabeled query
data available in a relatively large volume.

This paper proposes a simple yet competent
Semi-Supervised Learning (SSL) approach for
label-efficient intent classification. SSL has
been proven effective in leveraging unlabeled
data when only a small labeled set is avail-
able. Specifically, we train a transformer BERT
model on a small labeled corpus along with a
larger unlabeled query data. Starting with lim-
ited labeled queries, we explore supervised as
well as unsupervised data augmentation tech-
niques. For the supervised data augmentation,
we explore MixUp (Zhang and Vaidya, 2021)
and simple label preserving NLP augmenta-
tions (Ma, 2019). For training with unlabeled
data, typically, SSL algorithms rely on an ex-
tra smoothness constraint which enforces the
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model to make consistent predictions on an
unlabeled sample and its slightly perturbed
version. Moreover, it is observed that the type
of noise/perturbation plays an important role
and a trivial noise may not provide desired im-
provements (Xie et al., 2020). Recently, a sim-
ple noise such as dropout has shown promis-
ing results for contrastive learning (Gao et al.,
2021). We explore label consistency loss with
dropout noise to train the BERT model with
unlabeled data. The model is trained with the
linear combination of supervised and unsuper-
vised loss components. One of the challenges
with a limited labeled set is how to halt the
training when the validation set is not avail-
able; otherwise, it may result in over-fitting.
In our experiments, we perform the model
updates till the training loss is converged. In-
terestingly, training with dropout label con-
sistency loss is less prone to over-fitting even
with no validation set. We also noticed that the
choice of label consistency loss has a promi-
nent effect on the accuracy. For warm starting
the training, we experiment with pre-trained
BERT and sentence-BERT architectures. Ex-
perimental results demonstrate that, over the
supervised baseline, the intent classification
accuracy can be boosted significantly with the
proposed semi-supervised approach.

2 Related works

SSL approaches have been extensively stud-
ied in the literature. Instead of providing an
extensive list of references, we only cite a few
relevant prior works in this section. An ex-
tensive survey can be found in (Yang et al.,
2021).

Unsupervised Data Augmentation (UDA)
(Xie et al., 2020) has shown promising results
for learning with unlabeled data along with a
small labeled corpus. The idea is to enforce la-
bel consistency between two augmentations of
the unlabeled sample. The authors also point
out that the type of augmentation used signifi-
cantly affects the accuracy of the model, and a
trivial augmentation (such as adding Gaussian
noise) may not lead to desired improvements.
Recently, a contrastive learning approach that
uses dropout noise has been shown to work
well for self-supervised learning with textual
data (Gao et al., 2021). Since dropout is inher-

ently present in pre-trained transformer mod-
els, this provides a simple yet efficient method
for data augmentation. Interpolation Consis-
tency Training (ICT) (Verma et al., 2022) is a
computationally efficient approach to train the
model with SSL. ICT encourages the predic-
tion at an interpolation of unlabeled points
to be consistent with the interpolation of the
predictions at those points. For classification
problems, ICT moves the decision boundary
to low density regions of the data distribution.

For the supervised classification, MixUp has
been found to be an effective data augmen-
tation technique (Jindal et al., 2020). MixUp
is performed in the representation space for
the text classification with transformers and is
known to provide better regularization, and
model calibration (Sun et al., 2020).

3 Proposed approach

In this section, we describe details of the
dataset, loss functions experimented with, and
model training.

3.1 Dataset

Our intent classification dataset consists of
queries from the pre-defined set of 28 intents.
The queries consist of pre-purchase as well
as post-purchase user questions. For each in-
tent, we have 250 manually labeled samples;
hence, the train set comprises 7k labeled exam-
ples. As the test set, we use a manually tagged
dataset of 7569 samples. Table 1 shows exam-
ples of the queries from the test set and corre-
sponding ground truth intents. Note that the
test set consists of code-mix Hinglish queries
and queries with grammatical errors. For the
unlabeled data, we use a query corpus of size
~925k obtained from the internal database. For
all the queries (labeled and unlabeled), we con-
vert them to lowercase and remove punctua-
tion (if any). We do not apply any further
pre-processing.

3.2 Loss functions experimented

We experiment with the following loss func-
tions and their linear combination to train the
model.

3.2.1 Supervised cross-entropy loss (ls)
For a small set of labeled data, we use the
standard supervised cross entropy loss for the
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Samples intent class
when will it be delivered if i order today

this product satrday give me
sir mujhe ye phone kab tak mile ga delivery_time

when will we get discount
it was 11000 near about 12000 at a time when it was offer

phone ka price kab kem hoga offers_and_discounts
is there debit card emi available

emi process not full details show it option
sorry sir card payment kaise karna hai payment_options

is this boot washable
sir this phone is good or but sir this phone prosser

display kaise h ise mobile ki product_spec
how much amount i will get into exchange of my mobile
high what if the mobile i am replesing can be switched on

mobile ka screen touch kharab hai exchange ho jaega product_exchange
how to return my order

my parking sensor not yet delvered
humko black colour mila hai grey ke jagah post_purchase

Table 1: Example queries and intent labels from the test dataset. Note that the test data contains
code-mix Hinglish queries and queries with grammatical errors.

training. We use label smoothing while train-
ing where the smoothing parameter is set to
0.1. This loss function is included in all the
experiments.

3.2.2 Supervised Grammar loss (lsg)

For the batch of labeled data, we add gram-
mar augmentations to the input queries, such
as spell errors and word swaps, to create ad-
ditional train data (Ma, 2019). We use cross
entropy loss and label smoothing for this.

3.2.3 Supervised MixUp loss (lsm)

The idea behind supervised MixUp is to create
an additional labeled train set through linear
interpolating of the features and correspond-
ing one-hot labels. For the transformer models,
MixUp is performed on the feature represen-
tations of the queries in the following manner.

x̃ = λ xi + (1− λ) xj

ỹ = λ yi + (1− λ) yj
(1)

Here, λ ∼ U(0, 1). xi and xj indicates the
features from last hidden layer. We use cross
entropy loss for this.

3.2.4 Unsupervised Dropout loss (lud)
We use dropout noise for enforcing predic-
tion label consistency to train the transformer
model on unlabeled data. We sample a batch
of queries from the unlabeled query corpus
and make two independent forward passes
through the transformer to obtain two label
predictions. The label consistency loss is then
calculated to minimize the distance measure
D between these predictions.

lud = Eu∼U(x) D(pθ(y1|u), pθ(y2|u)) (2)

Here, y1 and y2 indicate predicted labels for
an unlabeled batch u. For D, we experimented
with Cross Entropy (CE) and Mean-Square-
Error (MSE) loss. For text classification, UDA
uses round-trip back-translation as the data
augmentation (Xie et al., 2020). They keep one
copy of the network weights fixed while up-
dating another copy. For the dropout, label
predictions are calculated with the current net-
work parameters, and the same is updated
during training.

3.3 Training details

For the pre-trained BERT model, we use bert-
base-uncased while for the pre-trained sentence-
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(a) BERT results (b) Sentence-BERT results

Figure 1: F1-score comparison of BERT and Sentence-BERT results under different train settings.

BERT model, we use paraphrase-mpnet-v2. Both
bert-base-uncased and paraphrase-mpnet-v2 are
12 layers models with ~109M trainable param-
eters. For the BERT model, we use a feature
corresponding to the [CLS] token from the last
hidden layer (without tanh activation) as the
query representation. For the sentence-BERT
model, we use a mean-pooled representation
of the token embeddings from the last hid-
den layer. The mean pooling uses an attention
mask to avoid averaging representations from
the padding tokens.

For the supervised losses (ls, lsg, lsm), we
use a batch size of 32, while for unsupervised
loss (lud), we use a batch size of 96. We use
AdamW optimizer with a constant learning
rate of 1e-5. One major challenge with limited
labeled sets is to halt the training without the
validation set. In our experiments, we stop the
training when the absolute difference in the
train loss from the consecutive epochs remains
below the threshold (ϵ) for a certain number
of epochs (patience). In all our experiments,
we use ϵ of 0.1 and patience of 5.

The models are trained under three different
settings.

• Only with labeled loss, LS = ls

• With labeled loss (LS) and supervised
data augmentation loss, LSD = lsg + lsm

• With labeled loss (LS), supervised data
augmentation loss (LSD) and unsuper-
vised dropout label consistency loss
LUD = lud. We use log probabilities along
with MSE loss for LUD and a weight factor
α of 10 (to match the scales).

Figure 1 shows the comparison results for
BERT and sentence-BERT models for varying
number of labeled samples. We make a few ob-
servations from these results. Sentence-BERT
works better than BERT, especially with a low
number of labeled samples. Our findings align
with the recent work demonstrating the effec-
tiveness of Sentence-BERT for few shot learn-
ing (Tunstall et al., 2022). Supervised data
augmentations (grammer + mixup) provide
only a slight advantage over purely super-
vised baseline (Figure 1 (b)). We suspect it
is happening due to over-fitting because of a
small labeled corpus and lack of validation set
to stop the training. We validate this hypothe-
sis with an additional experiment, using some
validation data to halt the training. Results
are provided in the ablation study section 5.1.
Unsupervised label consistency with dropout
noise and MSE loss provides a significant ad-
vantage over the supervised baseline. Interest-
ingly, even though the models are updated till
the train loss is converged, training with this
loss provides better regularization and is less
prone to over-fitting. We also observe that the
choice of unsupervised loss has a prominent
effect on the accuracy. Section 5.3 in the abla-
tion study shows the comparison results with
different loss functions for lud.

Since Hinglish constitutes a significant per-
centage (30%) of queries, we specifically com-
pared the performance of BERT and sentence-
BERT models for Hinglish query classification.
First, we detect Hinglish queries from the test
set using an approach proposed in (Kulkarni
et al., 2022) and calculate F1-score on these
queries with the semi-supervised approach.
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Figure 2: F1-score comparison of BERT and
Sentence-BERT for Hinglish query classification.

Figure 2 demonstrates the result. We observe
that sentence-BERT inherently provides better
accuracies for Hinglish queries.

We also compare the Expected Calibration
Error (ECE) on the test set for the BERT and
sentence-BERT models. For this, we use the
prediction result for the model trained on all
the labeled samples. Table 2 shows the result.
sentence-BERT achieves better calibration as
compared to the BERT model.

setting ECE
bert-base-uncased 0.0411

paraphrase-mpnet-v2 0.0134

Table 2: Comparison of Expected
Calibration Error (ECE)

4 Comparison with Unsupervised
MixUp approach

We compare the dropout label consistency ap-
proach with another SSL method: Unsuper-
vised MixUp. Verma et al. (Verma et al.,
2022) proposed a MixUp approach for train-
ing with unlabeled data. Feature MixUp is
performed on the transformer representations
for the two batches of unlabeled samples. For
labels, MixUp on model predictions for the
same unlabeled batches is used. We randomly
sample two batches (u1, u2) from unlabeled
queries and calculate their feature representa-
tion (x1, x2). The Unsupervised MixUp loss
(lum) is then calculated as follows.

lum = Eu1,u2∼U(x) D( fθ(Mixλ(x1, x2)),
Mixλ( fθ′(x1), fθ′(x2))) (3)

As suggested in (Xie et al., 2020), for cal-
culating the second term in the equation, we
use a fixed copy (θ′) of the network, and the
update is applied to the current copy of the
weights (θ). At the end of each epoch, a fixed
copy is replaced with the current weights. The
model is trained with supervised losses and
the Unsupervised MixUp loss. We use MSE
loss and α of 10. Figure 3 indicates the com-
parison result. Despite being simple, dropout
label consistency performs better than Unsu-
pervised MixUp. This could be because, at the
start of the training, the predictions from the
models may not be accurate. Hence, the up-
dates to the model with Unsupervised MixUp
loss are computed against noisy labels. On
the contrary, the dropout consistency loss only
enforces the smoothing constraint on the label
predictions.

Figure 3: Comparison with Unsupervised MixUp.

5 Ablation study

In this section, we report ablation study results
with different experimental settings.

5.1 Comparison of with and without
validation loss monitoring

Since supervised MixUp provided only a
slight improvement over the purely super-
vised baseline with sentence-BERT, we suspect
that it is happening because of over-fitting
since we do not have validation loss based
stopping criteria during training. To confirm
this, we conducted an additional experiment
using a validation set (of size 8318) and halted
the training when validation loss did not im-
prove for five consecutive epochs. Figure 4
shows the F1-score comparison with and with-
out validation monitoring. The plot indicates
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that the supervised MixUp, when trained with
a low number of labeled samples and without
validation monitoring, is prone to over-fitting.
Hence, it alone might not lead to good im-
provements for the limited labeled scenario.

Figure 4: F1-score comparison for with and with-
out validation loss monitoring. The result confirms
that supervised MixUp is prone to over-fitting un-
der low labeled data regime.

5.2 Choice of label consistency loss

We observed that the choice of loss used for
dropout label consistency has a prominent ef-
fect on the model accuracy. Figure 5 shows the
comparison of CE and MSE loss. For CE loss,
we use α of 1, while for the MSE loss, α is set
to 10 (to match the scales). It can be seen that
the MSE loss consistently outperforms the CE
loss.

Figure 5: Effect of the choice of label consistency
loss.

5.3 Effect of varying dropout probability

To understand whether model dropout prob-
ability affects the accuracy, we performed
an experiment where we trained a sentence-
BERT model with varied dropout probability.

Sentence-BERT has a default dropout proba-
bility of 0.1. In this experiment, we set the
dropout value to a lower (0.05) and a higher
(0.2) value and trained the model with super-
vised and dropout label consistency losses.
Figure 6 shows the resulting plot. We observe
that increasing or decreasing the dropout prob-
ability does not significantly affect the model
accuracy.

Figure 6: Effect of varying dropout probability.

6 Conclusion

This paper proposes a simple yet compe-
tent semi-supervised learning approach for
label-efficient conversational intent classifica-
tion. We trained different transformer models
with labeled as well as unlabeled data. We
explored supervised MixUp data augmenta-
tion for training with labeled samples, while
for training with unlabeled samples, we ex-
perimented with label consistency loss with
dropout. The results demonstrated that clas-
sification accuracy could be improved signif-
icantly over the supervised baseline with the
proposed semi-supervised approach. Specifi-
cally, sentence-BERT was observed to perform
better with a small number of labeled sam-
ples and even with code-mix Hinglish queries.
Even without validation loss monitoring, it
was noticed that training with dropout la-
bel consistency is less prone to over-fitting.
Through the ablation study, we studied the
effect of the choice of label consistency loss
and dropout probability on the accuracy. Ex-
perimental results demonstrated the efficacy
of the proposed approach. A variant of the
model is currently deployed in production.
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Abstract

Product Question Answering (PQA) systems
are key in e-commerce applications to provide
responses to customers’ questions as they shop
for products. While existing work on PQA fo-
cuses mainly on English, in practice there is
need to support multiple customer languages
while leveraging product information available
in English. To study this practical industrial
task, we present xPQA, a large-scale anno-
tated cross-lingual PQA dataset in 12 languages
across 9 branches, and report results in (1) can-
didate ranking, to select the best English can-
didate containing the information to answer
a non-English question; and (2) answer gen-
eration, to generate a natural-sounding non-
English answer based on the selected English
candidate. We evaluate various approaches in-
volving machine translation at runtime or of-
fline, leveraging multilingual pre-trained LMs,
and including or excluding xPQA training data.
We find that (1) In-domain data is essential as
cross-lingual rankers trained on other domains
perform poorly on the PQA task; (2) Candidate
ranking often prefers runtime-translation ap-
proaches while answer generation prefers mul-
tilingual approaches; (3) Translating offline to
augment multilingual models helps candidate
ranking mainly on languages with non-Latin
scripts; and helps answer generation mainly on
languages with Latin scripts. Still, there re-
mains a significant performance gap between
the English and the cross-lingual test sets.1

1 Introduction

Product question answering (PQA) is a key technol-
ogy in e-commerce applications. Given a question
about a product, a PQA system searches the prod-
uct webpage and provides an instant answer, so
that customers do not need to traverse the page by
themselves or seek help from humans (Li et al.,

1The xPQA dataset is released under https://github.
com/amazon-science/contextual-product-qa/ for re-
search purposes.

या कपड़ा 'सला हुआ 'मलेगा (Will the cloth be available stitched)

oomph! women's unstitched georgette 
salwar suit dupatta material - navy blue

नह1ं। यह कपडा 'सला हुआ नह1ं 'मलेगा।
(No. This cloth will not be available stitched.)

Answer:

Figure 1: Cross-lingual PQA: The user asks questions about
a product in their language (such as Hindi), then the system
searches for product information in English and generates an
answer in the same language as the question.

2017; Carmel et al., 2018). In our globalized world,
it is essential to enable this technology for cus-
tomers from different backgrounds. However, ex-
isting research focuses predominantly on English
and leaves aside other language users. One of the
biggest obstacles is the lack of datasets, which pre-
vents us from training, evaluating and developing
non-English PQA systems. Despite the growing
number of multilingual QA datasets, their main
focus is on general domains such as Wikipedia,
which generalize poorly when applied to the PQA
task, as we show in our experiments.

To address this, we present xPQA, the first large-
scale dataset for cross-lingual PQA enabling non-
English questions to be answered from English
content. Most comprehensive product information
is usually available in a majority language such
as English. Therefore, searching for relevant in-
formation in English often has a better chance of
finding an answer.2 This paper explores how to
effectively train systems that retrieve information
from English and generate answers in the question
language to allow users to ask questions in any
language. Fig 1 shows an example.

Most existing multilingual QA datasets are cre-
ated by translating English questions, introduc-

2Prior work (Asai et al., 2021b) also shows the effective-
ness of using English data as a knowledge source for cross-
lingual QA. It is nevertheless helpful to also support searching
in all languages, which we leave for future work.
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ing translation artifacts and discrepencies from
native speakers’ real information-seeking behav-
iors (Clark et al., 2020a). Instead, we collect ques-
tions from the original market places as written by
native speakers, hire bilingual annotators to check
the relevant product information and write the fi-
nal answers in their target languages. This elimi-
nates the need for translations and ensures that the
information-seeking behaviors of native speakers
are accurately represented.

Based on the collected dataset, we report base-
line results on two subtasks: (a) candidate ranking,
which selects the best English candidate that con-
tains the information to answer the non-English
question; (b) answer generation, which generates
a natural-sounding non-English answer to present
to the user based on the selected English candi-
date. We find that applying a cross-lingual ranker
trained on a Wikipedia-based QA dataset gener-
alizes poorly to the product domain. The perfor-
mance is even worse than training a multilingual
ranker on the English in-domain data, suggesting
that domain transferability is even more crucial
than language transferability. The translation-based
approach is the most effective for candidate ranking
while the multilingual-finetuning works the best
for answer generation. Nonetheless, on both tasks,
there is a substantial gap between the English-based
and cross-lingual performances. In the following,
we first elaborate on the problem formulation for
the cross-lingual PQA task (§2), then explain the
xPQA data collection process (§3), and present
experiment results (§5.2) and conclusions (§6).

2 Problem Formulation

Task There are two important tasks for a cross-
lingual PQA system: candidate ranking and an-
swer generation. In candidate ranking, given a
question in a target language and a list of candidates
in English, the ranker predicts a relevance score for
every candidate and selects the top one. Candidate
ranking is necessary because a given product web-
page may contain hundreds of information pieces
about the product, so as a practical matter we select
the top candidate to use in generation. After getting
the top candidate, an answer generator takes it as
input together with the question and produces an
answer in the question language. This step is cru-
cial in order to deploy a user-friendly PQA system
since the candidate is neither in the user language
nor written specifically to answer the question.

Language Branch Script Market

German (DE) Germanic Latin Germany
Italian (IT) Romance Latin Italy
French (FR) Romance Latin France
Spanish (ES) Romance Latin Spain
Portuguese (PT) Romance Latin Brazil
Polish (PL) Balto-Slavic Latin Poland
Arabic (AR) Semitic Arabic SA
Hindi (HI) Indo-Aryan Devanagari India
Tamil (TA) Dravidian Tamil India
Chinese (ZH) Sinitic Chinese China
Japanese (JA) Japonic Kanji;Kana Japan
Korean (KO) Han Hangul US

Table 1: Languages in the xPQA dataset.

Scenario We consider two scenarios for both
tasks: zero-shot and fine-tuned. Zero-shot assumes
that we do not have any labeled data and must
rely on transfer learning from the English-based
PQA dataset 3. Fine-tuned assumes that we can fur-
ther finetune models on a limited number of cross-
lingual PQA annotations. Both are realistic sce-
narios as annotations are usually more abundant in
English than in other languages (Shen et al., 2023).
In our experiments, we use ePQA as the English-
based PQA dataset, which is an extension of the
dataset in Shen et al. (2022a) with coverage and
quality improvements. Details are in Appendix A.

3 xPQA Dataset Collection

To train and evaluate our two tasks, the xPQA
dataset contains annotations for (1) question-
candidate relevance to label whether every can-
didate is relevant to the question or not, and (2) an-
swers where a natural-sounding answer is manually
written if the candidate contains enough informa-
tion to address the question. The collection process
follows the steps below:

1. Question Collection For our question set,
we crawl publicly-available community questions
from Amazon.com product pages in 11 markets,
obtaining questions in 12 different languages. For
each language, we choose the corresponding mar-
ket, then sample 2,500 unique questions. From
these sampled questions, we select 1500 questions
for each language that are manually verified by our
annotators as being in the target language, informa-
tion seeking, and containing no offensive content.

2. Candidate Collection For every valid ques-
tion, we link its corresponding product page in the

3Another option is transfer learning from cross-lingual
datasets in other domains, as we evaluate later.
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US market (except for Hindi and Tamil which di-
rectly use the India market) and extract all English
candidates from product information sources (de-
tails in Appendix B.2). Then, we translate every
question into English with AWS translate,4 feed the
translated question into an English-based ranker 5

and obtain top-5 candidates from its candidate set.

3. Relevance Annotation The top-5 English can-
didates and the non-English original questions are
passed to annotators to judge their relevance. Each
candidate is marked with one of three labels: “fully
answering” (contains enough information to ad-
dress the question), “partially answering” (contains
useful information to partially address the ques-
tion), and “irrelevant” (does not provide any help-
ful information). Guidelines are available in Ap-
pendix B.3.

4. Answer Search To increase the answer cover-
age, questions for which none of the top-5 candi-
dates are marked as “fully answering” are given to
annotators who are asked to actively search for the
answer on the Amazon product page. If they find
candidates fully answering the question, these are
included with the label “fully answering”.

5. Answer Generation For candidates marked
as “fully answering”, annotators are then asked to
write natural, direct answers based on them.

All annotators are bilingual, hired through
the centific platform 6. The constructed xPQA
dataset is split into 1000/400/100 questions as the
test/train/dev sets for each language. Table 1 shows
all languages included in the xPQA dataset. The
detailed annotation process, payment, and statistics
are explained in Appendix B.

4 Approaches

For each task, we experiment with three types
of baseline approaches: translate-test, translate-
train, and multilingual (Hu et al., 2020). Fig 2
provides a summary of these approaches.

Translate-test The essential idea here is to rely
exclusively on English-centric models and datasets.
In the zero-shot scenario, models are trained on
the ePQA dataset. In the fine-tuned scenario, we
must translate questions and answers in the xPQA

4https://aws.amazon.com/translate/
5An ELECTRA (Clark et al., 2020c)-based binary classi-

fier model pretrained on large amounts of pseudo labels plus
human annotations optimized for the English ranking task.

6https://www.centific.com/

dataset into English as this is an English-centric
model. This translated dataset, termed xPQA_MT
is used to further fine-tune the zero-shot models.
At runtime, we use an external machine translation
model to translate the question into English and
apply the ranker to select the best candidate. Af-
terwards, an English-based generator produces an
answer in English, which is then post-translated
to the target language. Translate-test is a com-
mon approach in industry as it uses well-trained
English-based models and off-the-shelf translation
tools without further modifications. However, such
a pipelined process introduces runtime latency and
can lead to error propagation if translation quality
is not perfect.

Translate-train In contrast to the above, here we
apply all translation processes in training, or offline,
so that no additional latency is added at runtime.
In the zero-shot scenario, we machine-translate all
questions and answers in the ePQA dataset into
each of the 12 languages we consider. The result-
ing dataset, termed ePQA_MT, is used to train a
multilingual model. In the fine-tuned scenario, we
further finetune the model on the xPQA dataset.
As the model is defined to be multilingual, it can
directly take input questions in their original lan-
guages and output answers in the target languages
without any translation process.

Multilingual Finally, this approach is similar to
the translate-train one in that both use multilin-
gual models rather than an English-only model, but
the difference is that the multilingual approach re-
quires no translations at training time. In the zero-
shot scenario, it trains a multilingual pretrained
model directly on the English-only ePQA dataset
and relies only on its own pretrained multilingual
knowledge to adapt to other languages. In the fine-
tuned scenario, we further fine-tune the model on
the xPQA dataset. Note that this approach still
requires runtime post-translation of the generated
English answer into the target language. This is
because we find that multilingual models can only
generate English answers when trained only on
English datasets. Although special decoding con-
straints could be use to restrict output vocabulary
to that of the target language, zero-shot multilin-
gual adaptation in generation tasks is still an open
challenge (Chen et al., 2022; Zhang et al., 2022).

It is worth mentioning that the three types of
approaches can be combined. For example, we
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Question: does the latch come in white?
Candidate: it only comes in black …
Label: fully answering
Answer: no, it comes only in black.

Question: a trava vem em branco?
Candidate: it only comes in black …
Label: fully answering
Answer: não, só vem na cor preta

Question: é a prova dgua?
Candidate: i thought they were waterproof but …
Label: fully answering
Answer: Não. Eu realmente achei …

Question: is it waterproof?
Candidate: i thought they were waterproof but …
Label: fully answering
Answer: do not. I really …

Translate question/answer into 12 languages Translate question/answer into English

Approach Zero-shot Fine-tune Inference Process

Translate-test ePQA2MT xPQA_MT Question à pre-translate à model à English answer à post-translate

Translate-train ePQA_MT xPQA2MT Question à model à answer

Multilingual ePQA2MT xPQA2MT Question à model à answer (à post-translate)** 

ePQA_MT

ePQA xPQA

xPQA_MT

Figure 2: Summary of experimented approaches. The ePQA_MT (and xPQA_MT) set is the translated version of ePQA (and
xPQA) into all non-English languages (and English). **indicates that post-translate is only required for the zero-shot model.

could follow the translate-train approach to train
the candidate ranker and follow the multilingual
approach to train the answer generator. Details of
the model implementation are in Appendix C.

5 Experiment

5.1 Evaluation

Although many QA works report end-to-end per-
formances, we chose not to report them because (1)
Most product questions, as well as the information
sources such as reviews and customer answers, are
subjective. The correctness of answers depends on
the specific candidates for which there is no uni-
versal ground truth (McAuley and Yang, 2016); (2)
Only providing answers grounded on references is
a critical requirement for an online PQA deploy-
ment. When candidate ranking fails to provide
suitable candidates in the first stage, even if the an-
swer generator manages to make a good guess,7 it
is still considered a failure. Therefore, end-to-end
evaluations are not suitable and the evaluation of
answer generation has to be candidate-dependent.

We evaluate the ranker with Precision of the top-
1 candidate, P@1, as the generated answer is based
on the top-1 candidate. To remove the effects of
language-specific answering ratios, we report P@1
scores only on the answerable questions where at
least one candidate is marked as “fully answering”.
The generator is evaluated with the sacreBLEU
score 8. The generations are produced and evalu-
ated only from candidates marked as “fully answer-

7As the answer depends on the information of the specific
product, the chance of guessing the correct answer without
proper candidates is close to random and fully unreliable.

8https://github.com/mjpost/sacrebleu

ing” since otherwise, the ground truth is undefined.

5.2 Main Results

Task 1: Candidate Ranking Table 2 shows P@1
of different candidate ranking approaches and their
average scores. Translate-test performs the best,
and its advantage is particularly prominent in the
zero-shot scenario. In the fine-tuned scenario, how-
ever, the other two approaches can also perform
similarly. The translate-train approach outper-
forms the multilingual approach mainly for lan-
guages that do not use Latin scripts. Even for low-
resource languages, such as Tamil whose transla-
tion quality is far from satisfactory, translating the
training corpus still helps the multilingual model
adapt to the target language. This implies existing
pre-trained multilingual models are already good
at adapting to new languages with Latin scripts.
Translating the training corpus is mainly help-
ful to adapt the model into new scripts (Lauscher
et al., 2020). Fine-tuning an English BERT on the
ePQA training set leads to a P@1 of 70.7% on the
monolingual English test set, which is significantly
higher than all other languages except Polish, sug-
gesting scope for substantial improvement.9

Task 2: Answer Generation Table 3 shows the
BLEU score of different answer generation ap-
proaches and their average scores. In the zero-shot
scenario, the translate-test approach often per-
forms the best on languages with non-Latin scripts
and the translate-train approach performs the best

9Note that this does not mean the system works better for
Polish than English. As the question set for each language
is distinct and not comparable, it could be simply that the
sampled Polish questions are easier than English ones.
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Model DE IT FR ES PT PL AR HI TA ZH JA KO AVG

Zero-shot Scenario
Translate-test 48.7 48.6 59.7 63.8 56.9 63.6 49.2 60.2 44.6 56.1 50.7 48.9 54.2
Multilingual 48.4 46.2 59.1 59.8 55.5 60.0 45.1 42.7 40.4 53.0 45.0 45.4 50.1
Translate-train 47.7 47.8 57.4 60.8 57.0 58.7 48.7 50.9 44.1 55.8 47.8 49.8 52.2

Fine-tuned Scenario
Translate-test 51.7 55.1 64.8 66.8 64.0 68.0 57.3 68.4 50.0 61.9 57.9 60.2 60.5
Multilingual 52.7 53.5 64.8 65.7 63.5 70.6 54.7 67.6 49.0 60.3 51.6 57.8 59.3
Translate-train 52.1 54.0 63.4 67.1 62.1 71.6 55.1 67.4 51.3 64.2 54.7 60.6 60.3

Table 2: P@1 of candidate ranking for each language and the averaged score (AVG) on answerable questions in xPQA testset.

Model DE IT FR ES PT PL AR HI TA ZH JA KO AVG

Zero-shot Scenario
Translate-test 7.0 17.1 14.3 11.5 19.4 11.7 18.5 8.9 5.1 19.8 12.9 8.5 12.9
Multilingual 6.0 14.2 11.6 10.1 18.3 9.9 16.3 7.0 4.8 17.8 11.7 5.9 11.1
Translate-train 16.9 17.1 20.5 14.1 19.5 18.8 15.9 15.8 4.4 16.6 12.8 7.4 15.0

Fine-tuned Scenario
Translate-test 8.9 25.3 15.4 14.2 21.0 16.6 17.3 16.3 7.1 21.7 12.3 8.8 15.4
Multilingual 27.2 27.1 22.5 31.3 20.0 32.3 13.4 26.0 16.7 26.2 31.6 44.0 26.5
Translate-train 32.9 31.6 26.6 36.6 24.4 40.1 16.0 28.5 18.5 30.3 33.7 51.6 30.9

Table 3: BLEU score of answer generation for each language and the averaged score (AVG) on the xPQA test set.
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Transfer Learning with XOR-TyDi v.s. ePQA
ePQA-Zeroshot
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ePQA-Finetuned
XOR-TyDi-Finetuned

Figure 3: Comparison of transfer learning datasets. The
English-only in-domain ePQA data is more useful than the
cross-lingual out-of-domain XOR-Tydi dataset.

on languages with Latin scripts. The translate-
train approach outperforms the multilingual ap-
proach with a few exceptions. Interestingly, all the
exceptions happen in languages using non-Latin
scripts, which contradicts the findings in candidate
ranking. We hypothesize that the used pre-trained
multilingual model is better at understanding non-
Latin scripts than actually generating them because
generating the text requires more advanced knowl-
edge of grammar, which cannot be easily distilled
from imperfect machine translators (Adelani et al.,
2022). Fine-tuning models on the xPQA training
data leads to big improvements across approaches,

especially for multilingual and translate-train
which do not rely on machine translators at run-
time. The translate-test approach, due to the error
propagation from two machine translation steps,
significantly underperforms the other two. Fine-
tuning an English T5 model on the ePQA train-
ing set leads to a BLEU score of 49.7%; although
BLEU scores are related to language-specific tok-
enizers and questions, we believe this consistent
gap implies large opportunities for improvement.

5.3 Analysis

Domain vs Language Transferability There are
cross-lingual QA datasets in other domains. When
building a system for xPQA, is it better to use
an English-only in-domain QA dataset or a cross-
lingual out-of-domain QA dataset? To answer this
question, we train a new multilingual ranker on the
XOR-TyDi dataset (Asai et al., 2021a), which is a
representative cross-lingual QA dataset with real
questions from the Wikipedia domain. We treat the
gold passage containing the correct answer span as
positive and randomly sample 5 other passages as
negative. The comparison with our existing mul-
tilingual approach trained on the ePQA dataset is
shown in Figure 3. We can see that fine-tuning mod-
els on the ePQA dataset leads to significantly better
performance on all languages with few exceptions,
suggesting domain differences are even more cru-
cial than language differences for the candidate
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Figure 4: Precision and recall with varying thresholds. The
red line is for the English model and the other lines are for the
average score of the cross-lingual model. Vertical bars are the
standard deviations across all languages.

Language P@1 AUPC MAP MRR

DE (MT) 48.7 61.8 64.4 66.4
DE (HT) 48.8 (↑0.1) 61.9 64.5 66.5
TA (MT) 44.6 59.7 60.0 62.3
TA (HT) 54.2 (↑9.6) 69.8 66.3 69.1

Table 4: Comparison of translate-test approach (candidate
ranking) using Machine (MT)/human translation (HT) .

ranking task in xPQA. It is necessary to collect
in-domain annotations for good performance.

Answerability Prediction As the amount of in-
formation differs among products, it is very likely
that many questions are not answerable with exist-
ing candidates and the model should not attempt to
answer given the available information. A common
practice is to use the model score as a predictor for
the answerability confidence. To see how effective
this is, we visualize the change of precision and
recall with varying model score thresholds in Fig-
ure 4. We can see that in the zero-shot scenario,
there is a larger performance variance across lan-
guages, especially for the multilingual approach
which solely relies on the knowledge from the pre-
trained model. The multilingual approach is also
more sensitive to the threshold and its recall drops
much faster than the other two approaches. Fine-
tuning the xQA training data reduces the gaps be-
tween the three approaches. The English model, as
expected, consistently performs better, especially
in the low-confidence region.

Effects of Translation Quality To investigate
the effects of the translation quality in the translate-
test approach, we select German and Tamil as two

Pre-Translate Rank Generate Post-Translate

74.1ms 21.3ms 532.4ms 91.3ms

Table 5: Latency of each component. Generating and trans-
lating cost much more time than ranking.

languages with very different translation qualities
and obtain manual translations of their questions.
Comparisons to machine-translated questions are
shown in Table 4. Apart from P@1, we also show
AUPC (Area Under Perturbation Curve), MAP
(Mean Average Precision) and MRR (Mean Recip-
rocal Rank) scores. We can see that the improve-
ment from using human translations is negligible
in German but substantial in Tamil. Even with hu-
man translations, we can still see a big gap between
performances on English monolingual (70.7%) and
xPQA test sets (48.8% and 54.2%), suggesting that
question-shape shifts can be even a bigger chal-
lenge than language shifts for the candidate rank-
ing task. The problem of language shifts might be
crucial only for low-resource languages without
decent MT systems such as Tamil.

Runtime Latency Table 5 shows the runtime la-
tency of every component tested in one AWS P3.16
instance. We feed questions in all languages one by
one to simulate an online environment. As seen, the
candidate ranker is fast and the computation over
multiple candidates can be easily parallelized. The
pre/post-translate costs more time, but the main
bottleneck is the answer generation step, which is
25× slower than the ranking. This is clearly more
than the latency budget of most online applications
and can be the focus of future research. Poten-
tial improvements could be in non-autoregressive
decoding, efficient attention, or distillation into a
smaller model (Tang et al., 2021, 2022; Li et al.,
2022).

6 Conclusion

This paper presents xPQA, a dataset for cross-
lingual PQA supporting non-English questions to
be answered from English product content. We
report baseline results and findings for three ap-
proaches: translate-test, multilingual, and translate-
train. Experiments show that the translate-test ap-
proach performs the best for the candidate ranking
task while the translate-train approach performs the
best for the answer generation task. However, there
remains significant room for improvement relative
to an English-based monolingual PQA system. We
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hope that future research can benefit from our work
to improve cross-lingual PQA systems.

Limitations

While the xPQA dataset is created to be as close
to the real-world scenario as possible, it has two
major drawbacks. Firstly, the candidate set in the
dataset does not include the full candidates for a
given product because annotating all candidates is
prohibitively expensive. The subjectivity of prod-
uct questions and candidates also makes it hard
to get ground-truth short-span answers, which pre-
vents a straightforward end-to-end evaluation over
the full candidate set. A potential fix is to run hu-
man evaluations on the top-1 candidate over the full
candidate set from each model, but it’d be costly
to do so. A more realistic solution is to have an
online evaluation for the best model only, which we
leave for future work. Secondly, the answer anno-
tation is based only on a single candidate because
handling information from multiple candidates re-
quires careful instructions on conflicting informa-
tion and summarization skills. This might limit
the model in answering complex questions that re-
quire inference over multiple candidates. However,
we find this case to be very rare in real customer
questions. Furthermore, as we do not summarize
multiple candidates, the returned answer can be bi-
ased toward the opinion of a single customer. Our
evaluation also has potential limitations in that (1)
We did not extensively evaluate the quality of gener-
ated answers with manual annotation. It is known
that BLEU scores might not correlate well with
human evaluations on generation tasks, and they
can be misleading in certain cases; (2) We only
compared major types of baseline algorithms and
did not explore the effects of leveraging existing
larger, more powerful pre-trained language models
such as mT0 (Muennighoff et al., 2022) and Flan-
T5 (Chung et al., 2022). Conclusions might change
if we hire annotators to perform more human eval-
uations or change the model architecture.

Ethics Statement

E-commerce has been increasingly popular these
years. Nonetheless, a big amount of people cannot
benefit much from it because most E-commerce
websites only support a few major languages. De-
ploying an xPQA system can have a broad impact
across a wide range of non-English speakers to as-
sist them in their shopping experience. With a well-

developed xPQA system, we only need to maintain
comprehensive product information in one major-
ity language, but allow non-English speakers easily
get access to the product information. This can
significantly reduce the maintenance cost and ben-
efit the democratization of AI. Nevertheless, there
are two major caveats before deploying a safe, re-
liable xPQA system: (1) The answer generator
needs to be fairly evaluated by humans in terms of
faithfulness. While answer generation can greatly
improve user-friendliness, it also brings potential
risks of providing false information; (2) The users
should be well noticed that the provided answer
is drawn from the opinion of a single customer
or other sources. It cannot reflect the opinion of
the vendor, or seller nor imply any trend from the
public.
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A Difference with Previous Datasets

Product Question Answering Product question
answering (PQA) differs from general-knowledge
QAs in that questions often seek subjective opin-
ions on specific products, so earlier research usually
treated it as an opinion mining problem (Moghad-
dam and Ester, 2011; Yu et al., 2012). Recent
advances in neural networks propagated the use of
dense retrieval and generation models to provide
direct answers. Many relevant datasets are curated
to facilitate this study (Chen et al., 2019; Xu et al.,
2020; Gao et al., 2021; Deng et al., 2022; Shen
et al., 2022b,c). However, they are either based
on simulated questions, or community question-
answers where the answers are noisy and have no
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direct connection with product information candi-
dates (Lai et al., 2018; Xu et al., 2019; Barlacchi
et al., 2022). The only exception is Shen et al.
(2022a) where exact annotations are provided for
both candidate relevance and answer generation,
but it focuses only on one product category and
the annotation quality is not good enough. Specif-
ically, we sample about 2000 question-candidate
pairs then perform an in-house annotation and find
around 20% of the annotations are incorrect. As a
result, we construct the ePQA dataset with the fol-
lowing main differences from the dataset in Shen
et al. (2022a): (1) It has higher annotation quality
with rounds of verifications. In our in-house anno-
tation, the error rate is less than 5%; (2) It does not
restrict the product categories, while the original
dataset focuses only on the toys and games prod-
ucts; (3) It defines finer-grained 3-class labels for
each candidate, while the original dataset contains
only binary labels; (4) Every candidate is checked
with its context (surrounding sentences) to make
sure the label is correct.

To the best of our knowledge, all existing PQA
datasets are monolingual and questions are usually
in high-resource languages such as English or Chi-
nese, which leads to our motivation of building a
cross-lingual PQA dataset.

Cross-Lingual Question Answering Recently,
many non-English question answering (QA)
datasets in the general Wikipedia domain have been
proposed (Lewis et al., 2020; Artetxe et al., 2020;
Clark et al., 2020b; Hardalov et al., 2020). Several
datasets focus on the open-retrieval (open-domain)
setting, where a gold document or paragraph is not
pre-given and a system needs to search documents
to answer questions (Liu et al., 2019; Asai et al.,
2021a; Longpre et al., 2021). Importantly, all of
those prior datasets are created based on Wikipedia
or school exams, and there is no prior work on
cross-lingual product QA.

Notably, ePQA contains 131,52/1,000/2,000
questions in the train/dev/test sets respectively,
which is significantly larger than xPQA (as in re-
alistic scenarios). It can be used to analyze the
performance gap between mono-lingual PQA and
cross-lingual PQA.

B Dataset Collection

B.1 Question Collection
In the question collection phase, questions are kept
if they fulfill the following criteria: (1) It is identi-
fied as the target language through Amazon Com-
prehend 10; (2) It contains no URL links; (3) It
contains at most one question mark so as to avoid
multiple questions; (4) It contains at least 3 words
and less than 20 words; (5) Its corresponding prod-
uct is also available in the US market. 11

B.2 Candidate Processing
Our candidates come from 6 information sources:
(1) product title, (2) semi-structured attributes, (3)
product bullet points, (4) product description, (5)
community answers (excluding the answer that di-
rectly replies to the question); (6) user reviews.
Every product title and attribute is treated as a sin-
gle candidate. For the other product information,
we split them into sentences and treat each sentence
as the candidate. For candidates from community
answers, We further concatenate them with the cor-
responding community questions to provide more
context. All candidates are lower cases and emojis
are removed. Numbers from the semi-structured
attributes are further normalized to keep at most 2
decimals.

B.3 Relevance Annotation
Each candidate is marked with one of three labels:
“fully answering” (it contains enough information
to address the question), “partially answering” (it
contains useful information to partially address the
question), and “irrelevant” (it’s not useful in an-
swering the question at all). To make sure the
candidate is properly understood, we also provide
its context (surrounding sentences) to the annota-
tors. The exact definitions for the three labels and
guidelines used are:

• Fully answering. Meaning that the response
contains clear information to tell about the
answer. It can take some inference step to
get the answer, but it must contain enough
information to help come to the answer.

• Partially answering (relevant but not fully an-
swering). Meaning that the response contains

10https://aws.amazon.com/comprehend/
11This is to ensure we can get English candidates for these

products. It does not apply to Hindi and Tamil because the
official language in the India market is already English.
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Figure 5: UI of the annotation task. Annotators will be shown a question in one of the 13 languages we considered and a
candidate extracted from product information. Annotators can also see the title, and picture of the product, as well as context
(surrounding sentences of the candidate with the actual candidate being highlighted), to provide a more accurate annotation.

useful information that help one understand
more, and narrow down the range of the an-
swer, yet not enough to get the exact answer
from it.

• Irrelevant. Meaning that the response does not
provide useful relevant information at all, and
a customer will not get anything new about
their question after reading it.

Note that in this step, annotators do NOT need
to consider factual correctness. For the question
“what color is it?”, it does not matter if the response
is saying it is blue or red. Annotators should focus
on the content only but not the factual correctness.
Besides, even if it contains other extra information
or the response is not natural, as long as the proper
information is included, then it is considered as
fully answering.

Specifically, Fully answering means the response
contains enough information to let one draw the
answer. The criteria of fully answering should NOT

be overly strict. Annotators can be lenient with the
word choice, as long as the response conveys the
proper meaning. For example:

Question: is it an awesome gift for my girl
friend? Response: it is a nice valentine gift for
your partner.

In this case, the difference between “awesome”
and “nice” is not relevant, as the response is either
way saying that it is a good gift for your girl friend
or partner, and thereby should be judged as “fully
answering”.

Another example:
Question: is it comfortable to sleep on for a 6”

tall man? Response: It is comfortable to lie down
for tall people.

Annotators should not be overly strict about
whether 6” can be considered as “tall” and whether
“lie down” is equivalent to “sleep on”, etc. Based
on common sense, if the immediate impression
after reading the response provides the needed in-
formation, one should NOT overthink other ways
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Figure 6: Annotation process and quality control of the task.

of interpreting this response.
Helpful but not fully answering means the re-

sponse contains helpful information, but is not
enough to answer the question, or it can fully an-
swers the question but the information is uncertain.
“Helpful” means it provides useful information to
help you know more about the question or narrow
down the scope of the answer.

For example: -question: Is it good for my 3-
year-old kid? -response: my 5-year-old son likes
it.

It cannot fully tell whether a 3-year-old will like
it, but knowing that a 5-year-old likes it is helpful
information. It helps you narrow down the range of
the answer — You know it is for kids but not adults,
just not sure if it works exactly for 3-year-old.

“irrelevant” means the response provides zero
useful information about the question, and is totally
useless. Imagine you are a customer that raises this
question, you should only select this option when
you cannot find any useful information from the
response.

B.4 Answer Generation
During the answer annotation, annotators are in-
structed to provide a natural, informative, and com-
plete sentence to directly answer the user questions
given the provided information in the response.
The provided answer is required to be:

• natural. It should be a fluent, natural-sounding
sentence.

• informative. It should provide key informa-
tion or explanations for users to better under-

stand the question. It cannot be a single word
like “Yes” or “No” without further content.

• complete. It should be a complete sentence
that provides more context instead of a short
span.

There is also a caveat to avoid copying the can-
didate exactly. Annotators should always extract
useful information from it and show the reasoning
step in the answer to make it a natural reply. If
the candidate is from a customer-provided content,
they are further instructed to write from a third-
party viewpoint. For user-provided contents, the
answer will be in the form of “A customer says he
feels ...” instead of “I feel ...”.

B.5 Quality control and annotation cost

Annotations are done through the centific plat-
form 12. The whole annotation process is summa-
rized in Figure 6. From the Home of the webapp,
we can see the status of the task (how many hits
have been done and how many hits remain to be
annotated). In the Quality Assessment mode, the
assessor could search and select annotators and
then check the completed hits at any time. When
the assessor checks the hits, they can correct them
directly and give feedback to the annotators, to
improve annotation quality. The annotation cost
differs among languages and tasks. Table 6 pro-
vides a summary.

12https://www.centific.com/
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Task DE IT FR ES PT PL AR HI TA ZH JA KO EN

Zero-shot Scenario
Relevance Annotate 0.30 0.22 0.30 0.22 0.22 0.24 0.22 0.13 0.19 0.09 0.32 0.38 0.18
Answer Generation 0.27 0.20 0.27 0.19 0.20 0.24 0.20 0.12 0.19 0.10 0.29 0.38 0.24
Answer Search 2.00 1.50 1.85 1.35 1.35 1.35 1.35 0.85 1.15 0.65 2.15 2.15 -
Translation 1.05 - - - - - - - 0.55 - - - -

Table 6: Annotation cost per unit for each task (in US dollars). The answer search task for English questions is annotated
in-house so there is no external cost. The translation annotation is only conducted for German and Tamil.

Language Branch Script Market Train + Dev Test
#Inst #Ans #Inst #Ans %Full %Rel

English (EN) Germanic Latin US 131,520 24,928 20,142 4,392 84.1 95.2

German (DE) Germanic Latin Germany 5,110 806 10,201 1,504 73.4 86.8
Italian (IT) Romance Latin Italy 5,081 571 10,168 1,316 60.6 79.9
French (FR) Romance Latin France 5,047 838 10,135 1,684 71.1 96.7
Spanish (ES) Romance Latin Spain 5,055 1,003 10,112 1,961 78.5 91.5
Portuguese (PT) Romance Latin Brazil 5,064 896 10,120 1,775 78.9 98.4
Polish (PL) Balto-Slavic Latin Poland 5,053 925 10,101 1,873 76.7 90.1
Arabic (AR) Semitic Arabic SA 5,097 752 10,178 1,544 71.3 84.6
Hindi (HI) Indo-Aryan Devanagari India 5,175 922 10,319 1,670 91.7 95.3
Tamil (TA) Dravidian Tamil India 5,076 892 10,166 1,584 73.4 81.7
Chinese (ZH) Sinitic Chinese China 5,095 1,028 10,148 1,865 81.2 91.5
Japanese (JA) Japonic Kanji;Kana Japan 5,111 939 10,201 1,748 81.2 88.5
Korean (KO) Han Hangul US 5,060 642 10,116 1,277 59.6 70.5

Table 7: Statistics of the ePQA and xPQA Datasets. #Inst/#Ans is the number of question-candidate pairs with relevance
labels/manually written answers. %Full/%Rel is the percentage of questions that can be fully/partially answered.

B.6 Dataset Statistics

To increase the number of negative samples, for
every question we further randomly sample 5 can-
didates from the candidate set of corresponding
products. These negative candidates, together with
the annotated candidates, will form a closed-pool
candidate set to evaluate the candidate ranker. Ta-
ble 7 shows the statistics of the ePQA and xPQA
datasets.

C Experiments

For the candidate ranking task, we initialize our
model with Bert-base (Devlin et al., 2019) in
translate-test and mBert-base in the other two ap-
proaches. Following the common practice, we con-
catenate the question and candidate (split by the
<SEP> token) and then feed it into the encoder. An
MLP layer is added on top of the first <CLS> token
to output three logits. These logits go through the
softmax layer to represent the probability of three
labels. At runtime, we use the probability of “fully
answering” as the score for each candidate.

For the answer generation task, we initialize our
model with T5-base (Raffel et al., 2020) for the
translate-test approach and mT5-base (Xue et al.,
2021) for the other two approaches. The input is the

question concatenated with the candidate and the
output is the ground-truth answer. At runtime, we
generate the output with beam search (beam size as
5). Both the ranker and generator are trained with
standard cross entropy loss.

We implement all models based on the Hug-
gingface Transformers library 13 with PyTorch 14.
Models are optimized with the Adam opti-
mizer (Kingma and Ba, 2014). We truncate the
total input length to 128 subword tokens and select
the learning rate from [5e-6, 1e-5, 3e-5, 5e-5, 1e-4].
The warm-up step is selected from [5%, 10%, 20%,
50%] of the whole training steps. For the ranker,
we choose the best configuration based on the ac-
curacy of the validation set. For the generative
model, we choose the best configuration based on
the perplexity of the validation set. In the end, we
set the learning rate of the ranker as 3e-5 and that
of the generator as 1e-5. The warm-up steps are set
to 20% for both. The batch size is set as 64. We
evaluate the model performance every 1% of the
whole training step to select the best checkpoint.
All models are trained on one AWS P3.16 instance
which includes 8 Nvidia V100 GPUs. The random
seed is set as 42.

13https://huggingface.co/
14https://pytorch.org/
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Abstract

Fake news detection has been a critical task
for maintaining the health of the online news
ecosystem. However, very few existing works
consider the temporal shift issue caused by the
rapidly-evolving nature of news data in prac-
tice, resulting in significant performance degra-
dation when training on past data and testing on
future data. In this paper, we observe that the
appearances of news events on the same topic
may display discernible patterns over time, and
posit that such patterns can assist in selecting
training instances that could make the model
adapt better to future data. Specifically, we de-
sign an effective framework FTT (Forecasting
Temporal Trends), which could forecast the
temporal distribution patterns of news data and
then guide the detector to fast adapt to future
distribution. Experiments on the real-world
temporally split dataset demonstrate the superi-
ority of our proposed framework. The code is
available at https://github.com/ICTMCG/FTT-
ACL23.

1 Introduction

Automatic fake news detection, which aims at dis-
tinguishing inaccurate and intentionally misleading
news items from others automatically, has been a
critical task for maintaining the health of the online
news ecosystem (Shu et al., 2017). As a comple-
ment to manual verification, automatic fake news
detection enables efficient filtering of fake news
items from a vast news pool. Such a technique
has been employed by social media platforms like
Twitter to remove COVID-19-related misleading
information during the pandemic (Roth, 2022).

Over the past decade, most fake news detection
researchers have followed a conventional paradigm
of collecting a fixed dataset and randomly dividing
it into training and testing sets. However, the as-
sumption that news data subsets are independent

∗∗Corresponding author.

Text: Anyone in Lanzhou know Yang 
Guilan? Her admission ticket was lost on the No.104 
bus, and is currently at the dispatching booth of Xinxi
Station. (please forward if you see it)

Topic 2: College Entrance Exam
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Text: Yang Guilan, whose admission 
letter was forgotten on the No. 818 bus, and now it is 
placed at the dispatching booth of Xinxi Station, 
please forward (from Suiyang County).

2019Q3

2020Q3

Text: A tragedy occurred in Longgang! 
Yesterday, a man accidentally fell from ...Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
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Topic 3:  Falling Accident
Text: Netizens reported that this 

morning a girl fell from the apartment building of ...
2016Q2

Text: A girl fell from the 11th floor of 
a hotel because of a broken relationship.
2017Q4

2020Q1

Topic 1: Child Trafficking
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Text: Over 100 people have arrived 
around Funing County to steal children. More than 20 
children have been lost in Funing County.

Text: Over 10,000 foreigners from 
Sanya and have arrived in Shulan, Jilin, Changchun, 
more than 2,000 children was lost.

2016Q1

Text: Over 100 foreigners have come 
from Sanya and have arrived in Baoding City, Hebei 
Province. They specialize in children trafficking.

2017Q1

2018Q1

Figure 1: Topic-level statistics of news items across five
years in our data. We see that different topics present
diverse temporal patterns such as decrease (Topic 1),
periodicity (Topic 2), and approximate stationery (Topic
3), which we rely on to forecast temporal trends for
better fake news detection in the future. The case texts
are translated from Chinese into English.

and identically distributed often does not hold true
in real-world scenarios. In practice, a fake news
detection model is trained on offline data collected
up until the current time period but is required
to detect fake news in newly arrived online data
at the upcoming time period. Due to the rapidly-
evolving nature of news, news distribution can vary
with time, namely temporal shift (Du et al., 2021;
Gaspers et al., 2022), leading to the distributional
difference between offline and online data. Recent
empirical studies (Zhang et al., 2021; Mu et al.,
2023) evidence that fake news detection models
suffer significant performance degradation when
the dataset is temporally split. Therefore, the tem-
poral shift issue has been a crucial obstacle to real-
world fake news detection systems.

The temporal shift scenario presents a more sig-
nificant challenge than common domain shift sce-
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narios. Most existing works on the domain shift in
fake news detection focus on transfer among pre-
defined news channels (e.g., politics) (Silva et al.,
2021b; Mosallanezhad et al., 2022; Lin et al., 2022;
Nan et al., 2022). However, consecutive data slices
over time have various types of temporal depen-
dencies and non-explicit distributional boundaries,
making the temporal shift challenging. Moreover,
these works assume the availability of target do-
main data, which is impossible for the temporal
shift scenarios. Under such constraints, our aim is
to train a model using presently available data to
generalize to future online data (corresponding to
temporal generalization task; Wang et al., 2022).
Others that improve the generalizability to unseen
domains learn domain-invariant features by adver-
sarial learning (Wang et al., 2018) and domain-
specific causal effect removal (Zhu et al., 2022a),
but do not consider the characteristics of temporal
patterns of news events.

In this paper, we posit that the appearance of
news events on the same topic presents diverse tem-
poral patterns, which can assist in evaluating the
importance of previous news items and boost the
detection of fake news in the upcoming time period.
In Figure 1, we exemplify this assumption using the
statistics of news items on three topics in the Chi-
nese Weibo dataset: Topic 1 presents the temporal
pattern of decrease, where news about child traf-
ficking becomes less frequent. Topic 2 presents the
periodicity of news related to the college entrance
exam which takes place annually in the second
quarter (Q2).1 In Topic 3, news items about falling
accidents appear repeatedly and exhibit an approx-
imate stationary pattern. Such temporal patterns
indicate the different importance of news samples
in the training set for detection in future quarters.
For instance, instances of Topic 2 in the training set
are particularly important for effectively training
the detector to identify fake news in Q3.

To this end, we propose to model the temporal
distribution patterns and forecast the topic-wise
distribution in the upcoming time period for bet-
ter temporal generalization in fake news detection,
where the forecasted result guides the detector to
fast adapt to future distribution. Figure 2 illus-
trates our framework FTT (Forecasting Temporal
Trends). We first map training data to vector space
and perform clustering to discover topics. Then

1We denote the four quarters of a calendar year as Q1-Q4,
respectively. For instance, Q1 stands for January through
March.

we model the temporal distribution and forecast
the frequency of news items for each topic using
a decomposable time series model. Based on the
forecasts, we evaluate the importance of each item
in the training data for the next time period by
manipulating its weight in training loss. Our con-
tributions are summarized as follows:

• Problem: To the best of our knowledge, we
are the first to incorporate the characteristics
of topic-level temporal patterns for fake news
detection.

• Method: We propose a framework for
Forecasting Temporal Trends (FTT) to tackle
temporal generalization issue in fake news de-
tection.

• Industrial Value: We experimentally show
that our FTT overall outperforms five com-
pared methods while maintaining good com-
patibility with any neural network-based fake
news detector.

2 Related Work

Fake News Detection. Fake news detection is
generally formulated as a binary classification task
between real and fake news items. Research on
this task could be roughly grouped into content-
only and social context-based methods. Content-
only methods take the news content as the input
including texts (Sheng et al., 2021), images (Qi
et al., 2019), and videos (Bu et al., 2023), and aim
at finding common patterns in news appearances.
In this paper, we focus on textual contents but
our method could be generalized to other modali-
ties. Previous text-based studies focus on sentiment
and emotion (Ajao et al., 2019; Ghanem et al.,
2021), writing style (Przybyla, 2020), discourse
structure (Karimi and Tang, 2019), etc. Recent
studies address the domain shift issues across news
channels and propose multi-domain (Nan et al.,
2021; Zhu et al., 2022b) and cross-domain (Nan
et al., 2022; Lin et al., 2022) detection methods.
Zhu et al. (2022a) design a causal learning frame-
work to remove the non-generalizable entity sig-
nals. Social context-based methods leverage crowd
feedbacks (Kochkina et al., 2018; Shu et al., 2019;
Zhang et al., 2021), propagation patterns (Zhou
and Zafarani, 2019; Silva et al., 2021a), and social
networks (Nguyen et al., 2020; Min et al., 2022),
which have to wait for the accumulation of such
social contexts.

Considering the in-time detection requirement,
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Figure 2: Architecture of the proposed FTT (Forecasting Temporal Trends) framework.

our proposed framework falls into the category of
content-only methods, where we provide a new per-
spective for addressing the temporal generalization
issue by forecasting temporal trends.

Temporal Generalization. The temporal gener-
alization issue presents a situation in that models
are trained on past data but required to perform
well on unavailable and distribution-shifted future
data. It has been addressed in a variety of appli-
cations such as review classification (Huang and
Paul, 2019), named entity recognition (Rijhwani
and Preotiuc-Pietro, 2020), and air quality predic-
tion (Du et al., 2021). Recently, Gaspers et al.
(2022) explore several time-aware heuristic-based
instance reweighting methods based on recency
and seasonality for an industrial speech language
understanding scenario. Our work follows this line
of instance reweighting, but we attempt to model
the temporal patterns and forecast topic-wise distri-
bution to better adapt to future data.

3 Proposed Framework

Our framework FTT is presented in Figure 2, where
the instances from past consecutive time periods in
the original training set are reweighted according
to the forecasted topic-wise distribution for gener-
alizing better in the upcoming time period. In the
following, we first provide the problem formulation
and subsequently, detail the procedures.

3.1 Problem Formulation

Given a dataset D = {Dq}Qq=1 consisting of Q
subsets that contain news items from Q consecutive
time periods, respectively, our goal is to train a
model on {Dq}Q−1

q=1 that generalizes well on DQ.

In D, an instance is denoted as (xi, yi) where the
ground-truth label yi = 1 if the content xi is fake.

In practice, we retrain and redeploy the fake
news detector at a fixed time interval to reflect the
effects of the latest labeled data. We set the interval
as three months (i.e., a quarter) since a shorter
interval does not allow sufficient accumulation of
newly labeled fake news items. In the following,
we set Dq as the subset corresponding to news in a
quarter of a calendar year.

3.2 Step 1: News Representation

We first transform the news content into a vec-
tor space to obtain its representation, which will
be used for similarity calculation in the sub-
sequent clustering step. We employ Sentence-
BERT (Reimers and Gurevych, 2019), which is
widely used for sentence representation (e.g.,Shaar
et al., 2020). For instance xi, the representation
vector is xi ∈ R768.

3.3 Step 2: Topic Discovery

We perform clustering on news items based on the
representation obtained in Step 1 to group news
items into distinct clusters which correspond to
topics. Due to the lack of prior knowledge about the
topic number, we adopt the single-pass incremental
clustering algorithm which does not require a preset
cluster number. We first empirically set a similarity
threshold θsim to determine when to add a new
cluster. When an item arrives, it is assigned to
the existing cluster whose center is the nearest to
it if the distance measured by cosine similarity is
larger than θsim. Otherwise, it will be considered
as an item on a new topic and thus be in a new
independent cluster.
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3.4 Step 3: Temporal Distribution Modeling
and Forecasting

Based on the clustering results, we model the tem-
poral distribution of different news topics and fore-
cast the topic-wise distribution in the upcoming
time period in this step. Note that we do not con-
sider the clusters with news items less than the
threshold θcount since they are too small to present
significant temporal patterns.

Modeling. Assuming that T topics are preserved,
we first count the number of news items per quarter
within each topic. The counts of the same quarter
are then normalized across topics to obtain the quar-
terly frequency sequence of each topic (denoted as
f ). To model the temporal distribution, we adopt a
decomposable time series model (Harvey and Pe-
ters, 1990) on the quarterly sequences and consider
the following two trends (exemplified using Topic
i):

1) General Trend. A topic may increase, de-
crease, or have a small fluctuation in terms of a
general non-periodic trend (e.g., Topics 1 and 3
in Figure 1). To fit the data points, we use a piece-
wise linear function:

gi(fi,q) = kifi,q +mi, (1)

where ki = k+a(q)Tδ is the growth rate, fi,q is the
frequency of Topic i in Quarter q, and mi = m+
a(q)Tγ is the offset. k and m are initial parameters.
a(q) records the changepoints of growth rates and
offsets while δ is the rate adjustment term and γ is
a smoothing term.

2) Quarterly Trend. For topics having quarterly
periodic trends like Topic 2 in Figure 1, we add four
extra binary regressors corresponding to Q1~Q4
to inform the regression model the quarter that a
data point in input sequence belongs to. For Topic
i and Quarter q, we obtain the quarterly seasonality
function si(fi,q) by summing the four regression
models.

Forecasting. We fit the model using the time se-
ries forecasting tool Prophet (Taylor and Letham,
2018) with the temporal distribution of topics from
Quarter 1 to Quarter Q-1. To forecast the trend of
Topic i in the upcoming Quarter Q, we sum up the
two trend modeling functions:

pi(fi,Q) = gi(fi,Q) + si(fi,Q). (2)

3.5 Step 4: Forecast-Based Adaptation
Based on the topic-wise forecasts of frequency dis-
tribution in Quarter Q, we apply instance reweight-
ing to the training set and expect the model trained
using the reweighted set would better adapt to the
future data in Quarter Q.

We first filter out topics that do not exhibit ob-
vious regularity. Specifically, we remove the top-
ics which have a mean absolute percentage error
(MAPE) larger than a threshold θmape during the
regression fitting process. For a Topic i in the pre-
served set Q′, we calculate and then normalize the
ratio between the forecasted frequency of Topic i
pi(fi,Q) and the sum of all forecasted frequencies
of the preserved topics:

wi,Q = Bound

(
pi(fi,Q)∑

i∈Q′ pi(fi,Q)

)
, (3)

where Bound is a function to constrain the range
of calculated weights. We set the weight smaller
than θlower and larger than θupper as θlower and
θupper, respectively, to avoid the instability during
the training process. For those that are not included
in Q′, we set their weights as 1.

The new weight of the training set instances of
Topic i, wi,Q, corresponds to our forecasts of how
frequent news items of this topic will emerge in the
upcoming period Q. If the forecasted frequency of
Topic i indicates a decreasing trend, the value will
be smaller than 1 and thus instances of this topic
will be down-weighted; conversely, if the fore-
casted distribution indicates an increasing trend,
the value will be greater than 1 and the instances
will be up-weighted. In the next step, we will show
the reweighting process during training.

3.6 Step 5: Fake News Detector Training
Our framework FTT could be compatible with any
neural network-based fake news detector. Here, we
exemplify how FTT helps detectors’ training us-
ing a pretrained BERT model (Devlin et al., 2019).
Specifically, given an instance xi, we concatenate
the special token [CLS] and xi, and feed them into
BERT. The average output representation of non-
padded tokens, denoted as oi, is then fed into a
multi-layer perception (MLP) with a sigmoid acti-
vation function for final prediction:

ŷi = sigmoid(MLP(oi)). (4)

Our difference lies in using the new weights based
on the forecasted temporal distribution to increase
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or decrease the impact of instances during back-
propagation. Unlike most cases that use an aver-
age cross-entropy loss, we minimize the weighted
cross-entropy loss function during training:

L = − 1

N

N∑

i=1

wi,QCrossEntropy(yi, ŷi), (5)

where wi,Q is the new weight for instance xi and
yi is its ground-truth label. N is the size of a mini-
batch of the training set.

4 Evaluation

We conduct experiments to answer the following
evaluation questions:

• EQ1: Can FTT bring improvement to the fake
news detection model in temporal generaliza-
tion scenarios?

• EQ2: How does FTT help with fake news
detection models?

4.1 Dataset
Our data comes from a large-scale Chinese fake
news detection system, covering the time period
from January 2016 to December 2020. To meet
the practical requirements, the data was divided by
quarters based on the timestamp. Unlike the exist-
ing academic datasets (Shu et al., 2020; Sheng et al.,
2022), the dataset is severely imbalanced. To avoid
instability during training, we randomly undersam-
pled the subset of each quarter to achieve a ratio
of 1:1 between fake and real news. Identical to the
real-world setting, we adopt a rolling training ex-
perimental setup. If we train a model to generalize
well in the time period Q, the training, validation,
and testing sets would be {Di}Q−2

i=1 , DQ−1, and
DQ, respectively. If the target is Q + 1, then the
three subsets would be {Di}Q−1

i=1 , DQ, and DQ+1.
Here we use the four quarterly datasets from 2020
as the testing sets and conduct experiments on the
four sets separately.

4.2 Experimental Settings
Compared Methods. We compared our pro-
posed FTT with five existing methods (including
the vanilla baseline model), in which the second
one is to remove non-generalizable bias and the last
three are to introduce heuristic rules for adapting
to future data.

• Baseline follows a normal training strat-
egy where all training instances are equally
weighted.

• EANNT (Wang et al., 2018) is a model that en-
hances model generalization across events by
introducing an auxiliary adversarial training
task to prevent the model from learning event-
related features. For fair comparison, we
replaced the original TextCNN (Kim, 2014)
with a trainable BERT as the textual feature ex-
tractor, and utilized publication year labels as
the labels for the auxiliary task following Zhu
et al., 2022a. We removed the image branch
in EANN as here we focus on text-based fake
news detection.

• Same Period Reweighting increases the
weights of all training instances from the same
quarter as the target data. It models the sea-
sonality in the time series data.

• Previous Period Reweighting increases the
weights of all training instances from the last
quarter. It could capture the recency in the
data distribution.

• Combined Reweighting combines the two
reweighting methods mentioned above. The
last three methods are derived from (Gaspers
et al., 2022).

Implementation Details. We used a BERT
model, hfl/chinese-bert-wwm-ext (Cui et al.,
2021) implemented in HuggingFace’s Transformer
Package (Wolf et al., 2020) as the baseline fake
news detection classifier. In the training process,
we used the Adam optimizer (P. Kingma and Ba,
2015) with a learning rate of 2e-5 and adopted the
early stop training strategy, and reported the testing
performance of the best-performing model on the
validation set. We employed grid search to find
the optimal hyperparameters in each quarter for
all methods. In Q1 and Q2, the optimal hyperpa-
rameters of FTT are θsim = 0.65, θcount = 30,
θmape = 0.8, θlower = 0.3, and θupper = 2.0; and
in Q3 and Q4, they are θsim = 0.5, θcount = 30,
θmape = 2.0, θlower = 0.3, and θupper = 2.0.

We report the accuracy, macro F1 (macF1), and
the F1 score for real and fake classes (F1real and
F1fake).

4.3 Performance Comparison (EQ1)

Table 1 shows the overall and quarterly perfor-
mance of the proposed framework and other meth-
ods. We observe that:

120



2020 Metric Baseline EANNT
Same Period
Reweighting

Prev. Period
Reweighting

Combined
Reweighting FTT (Ours)

Q1

macF1 0.8344 0.8334 0.8297 0.8355 0.8312 0.8402
Accuracy 0.8348 0.8348 0.8301 0.8359 0.8315 0.8409

F1fake 0.8262 0.8181 0.8218 0.8274 0.8237 0.8295
F1real 0.8425 0.8487 0.8377 0.8435 0.8387 0.8509

Q2

macF1 0.8940 0.8932 0.8900 0.9004 0.8964 0.9013
Accuracy 0.8942 0.8934 0.8902 0.9006 0.8966 0.9014

F1fake 0.8894 0.8887 0.8852 0.8953 0.8915 0.8981
F1real 0.8986 0.8978 0.8949 0.9055 0.9013 0.9046

Q3

macF1 0.8771 0.8699 0.8753 0.8734 0.8697 0.8821
Accuracy 0.8776 0.8707 0.8759 0.8741 0.8707 0.8827

F1fake 0.8696 0.8593 0.8670 0.8640 0.8582 0.8743
F1real 0.8846 0.8805 0.8836 0.8829 0.8812 0.8900

Q4

macF1 0.8464 0.8646 0.8464 0.8429 0.8412 0.8780
Accuracy 0.8476 0.8647 0.8476 0.8442 0.8425 0.8784

F1fake 0.8330 0.8602 0.8330 0.8286 0.8271 0.8707
F1real 0.8598 0.8690 0.8598 0.8571 0.8553 0.8853

Average

macF1 0.8630 0.8653 0.8604 0.8631 0.8596 0.8754
Accuracy 0.8636 0.8659 0.8610 0.8637 0.8603 0.8759

F1fake 0.8546 0.8566 0.8518 0.8538 0.8501 0.8682
F1real 0.8714 0.8740 0.8690 0.8723 0.8691 0.8827

Table 1: Performance of the baseline method, four existing methods, and our method in fake news detection. The
best result in each line is bolded.

1) FTT outperforms the baseline and four other
methods across all quarters in terms of most of the
metrics (the only exception is F1real in Q2). These
results demonstrate its effectiveness.

2) The average improvement of F1fake is larger
than that of F1real, suggesting that our method
helps more in capturing the uniqueness of fake
news. We attribute this to the differences in tempo-
ral distribution fluctuation: fake news often focuses
on specific topics, while real news generally covers
more diverse ones. This makes the topic distribu-
tion of fake news more stable, which allows for
better modeling of topic-wise distributions.

3) The three compared reweighting methods
show inconsistent performances. In some situa-
tions, the performance is even lower than the base-
line (e.g., Same Period Reweighting in Q1). We
speculate that the failure is caused by the com-
plexity of the news data. Considering the rapidly-
evolving nature of news, single heuristic methods
like recency and seasonality could not fast adapt to
future news distribution. In contrast, our FTT per-
forms topic-wise temporal distribution modeling
and next-period forecasting and thus has a better
adaption ability.

Subset of the test set Metric Baseline FTT (Ours)

Existing Topics

macF1 0.8425 0.8658
Accuracy 0.8589 0.8805

F1fake 0.7997 0.8293
F1real 0.8854 0.9023

New Topics

macF1 0.8728 0.8846
Accuracy 0.8729 0.8846

F1fake 0.8730 0.8849
F1real 0.8727 0.8843

Table 2: Breakdown of the performance on the testing
set according to the existence of their topics.

4.4 Result Analysis (EQ2)

Statistical Analysis. To analyze how FTT im-
proves fake news detection performance, we ana-
lyze the testing instances by recognizing their top-
ics. Specifically, we run the single-pass incremen-
tal clustering algorithm used in Step 2 again on
the testing instances based on the clusters on the
training set. If a news item in the testing set could
be clustered into an existing cluster, it will be rec-
ognized as an item of the existing topics; otherwise,
it will be in a new topic. Based on the results, we
show the breakdown of the performance on the test-
ing set in Table 2. Compared with the baseline, our
framework achieves performance improvements on
both the Existing Topics and the New Topics sub-
sets. This could be attributed to our reweighting
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Text: Google Maps is suspected of blocking

SIM cards of domestic operators. Recently,
some netizens broke the news that Google
Maps began to detect the SIM card of
domestic operators to stop the service.
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Text: Barcelona officially confirmed that

Umtiti's COVID-19 test result was positive.
As an asymptomatic patient he has begun
home isolation. Umtiti did not follow the
team to the UCL due to injury.
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Text: The Second Xiangya Hospital and

Huaxi Hospital all issued documents
refusing the admission of traditional
Chinese medicine because of the frequent
occurrence of quality problems.
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Figure 3: Three cases from the testing set. The forecasts
by FTT about the frequency of the topics in the upcom-
ing quarter are highlighted with red dashed bars. The
case texts are translated from Chinese into English.

strategy where we not only increase the weights
of news items belonging to a topic of an increas-
ing trend but also decrease the weights of those
belonging to the fading topics. With such a design,
the model will be more familiar with news items
in existing topics and more generalizable to news
items in new topics.

Case Study. Figure 3 shows three cases from the
testing set. According to the forecasted results of
the frequencies of these topics in the testing time
period, our framework assigns positive weights
(greater than 1) to items in these topics. After
training on the reweighted set, the detector flips its
previously incorrect predictions. In Topic 1, the
frequency of Big Tech-related news items demon-
strated an increasing trend over time. FTT captures
this pattern and provides a forecast close to the true

value for the target quarter. In Topic 2, there is
an explosive growth of Infectious Diseases-related
news items in early 2020, followed by sustained
high frequency in the subsequent quarters. FTT
successfully captures this change. In contrast to
the other two topics, the frequency of Medication
Safety-related news items in Topic 3 exhibits both
an overall increasing trend and a certain periodic
pattern since 2019, which roughly follows a “smil-
ing curve” from Q1 to Q4 in a single year. FTT
effectively models both of these patterns and helps
identify the importance of news items in this topic
for the testing time period.

5 Conclusion and Future Work

We studied temporal generalization in fake news
detection where a model is trained with previous
news data but required to generalize well on the
upcoming news data. Based on the assumption that
the appearance of news events on the same topic
presents diverse temporal patterns, we designed a
framework named FTT to capture such patterns
and forecast the temporal trends at the topic level.
The forecasts guided instance reweighting to im-
prove the model’s generalizability. Experiments
demonstrate the superiority of our framework. In
the future, we plan to mine more diverse temporal
patterns to further improve fake news detection in
real-world temporal scenarios.

Limitations

We identify the following limitations in our work:
First, our FTT framework captures and models

topic-level temporal patterns for forecasting tempo-
ral trends. Though the forecasts bring better tem-
poral generalizability, FTT could hardly forecast
the emergence of events in new topics.

Second, FTT considers temporal patterns based
on the topic-wise frequency sequences to identify
patterns such as decrease, periodicity, and approx-
imate stationery. There might be diverse patterns
that could not be reflected by frequency sequences.

Third, limited by the scarcity of the dataset that
satisfies our evaluation requirements (consecutive
time periods with a consistent data collection cri-
terion), we only performed the experiments on a
Chinese text-only dataset. Our method should be
further examined on datasets of other languages
and multi-modal ones.
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Abstract

Getting a good understanding of the user intent
is vital for e-commerce applications to surface
the right product to a given customer query.
Query Understanding (QU) systems are essen-
tial for this purpose, and many e-commerce
providers are working on complex solutions
that need to be data efficient and able to capture
early emerging market trends. Query Attribute
Understanding (QAU) is a sub-component of
QU that involves extracting named attributes
from user queries and linking them to exist-
ing e-commerce entities such as brand, mate-
rial, color, etc. While extracting named entities
from text has been extensively explored in the
literature, QAU requires specific attention due
to the nature of the queries, which are often
short, noisy, ambiguous, and constantly evolv-
ing. This paper makes three contributions to
QAU. First, we propose a novel end-to-end ap-
proach that jointly solves Named Entity Recog-
nition (NER) and Entity Linking (NEL) and
enables open-world reasoning for QAU. Sec-
ond, we introduce a novel method for utilizing
product graphs to enhance the representation
of query entities. Finally, we present a new
dataset constructed from public sources that
can be used to evaluate the performance of fu-
ture QAU systems.

1 Introduction

Search queries are the main point of interaction
between the customer and the search system. As
such, extracting information from the queries is
pivotal in surfacing the relevant products, making
the task directly responsible for the quality of the
overall customer experience. Query Understand-
ing (QU) not only inherits all the challenges of
standard natural language understanding but poses
additional difficulties: queries are short and lack
context, which makes them challenging to under-
stand. They often contain implicit knowledge that

*These authors contributed equally to this work

is difficult to capture without external reference.
For example, the query "M2 laptop" refers to Ap-
ple laptops since M2 processors are only sold by
Apple. Furthermore, customers do not have techni-
cal writing skills, which can result in queries that
are noisy or use inappropriate search terms.

In this work, we focus on the task of Query At-
tribute Understanding (QAU), which aims to ex-
tract the attribute values from the queries and make
them usable for other downstream applications in
the Search Engine (see fig. 1). QAU is related to
another important task, Document Attribute Under-
standing (DAU), which aims to extract attributes
from product descriptions. DAU has received sig-
nificant attention from the community in the past
years ((Zheng et al., 2018; Xu et al., 2019; Dong
et al., 2020; Karamanolakis et al., 2020)) and does
not suffer from the difficulties mentioned above and
that are specific to queries. Both QAU and DAU are
specific instances of Named Entity Recognition and
Linking (NER/NEL), which aims to extract typed
mentions from text. However, in contrast to classic
NER, which usually handles fewer attribute types
(such as Person, Location, and Organization), QAU
and DAU deal with a larger number of attribute
types (which can reach thousands in e-commerce
as noted in (Xu et al., 2019)).

We claim that three critical elements need to
be addressed to get a practical solution to QAU.
Firstly, named entity recognition should be per-
formed jointly with entity linking, in order to map
the detected entities to our knowledge base. Solv-
ing these tasks separately is not practical in an
industrial context, as it leads to error propagation
(linking module cannot make up for a wrong at-
tribute prediction by the NER module) and more
generally hidden technical debt (see (Sculley et al.,
2015)). Furthermore, separating the tasks precludes
the possibility of inductive transfer, which has been
shown to be crucial in related tasks (Zhang and
Yang, 2021; Caruana, 1997; Ruder, 2017).
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Figure 1: Overview of the task. We ultimately want to
detect that this query contains three mentions: (brown
chocolate), (boot) and (suede). The first annotation row
shows the ground truth for the attribute value extraction
task, while the second one shows that of the normaliza-
tion step, which may be understood as entity linking
over the detected mentions.

Secondly, product graphs (PG) are becoming a
new standard to represent e-commerce concepts
and the relations between searchable products.
Therefore, QAU systems should be able to lever-
age this new source of knowledge to improve their
performance. Finally, QAU systems should always
be designed with an "open-world" setup in mind
to deal dynamically with new concepts. For in-
stance, if we consider the query ‘Sony A95K TV’,
we should be able to detect that ‘A95K’ is a men-
tion representing a product line even if this product
does not exist in our knowledge base.

Note that extreme classification (Jain et al., 2016)
is a possible alternative to classic NER/NER stack-
ing, but it does not consider the coarse-grained
nature of attributes (entities belong to different at-
tribute types) and does not easily take into account
the open-world nature of the task. Users can search
for attribute values that are not yet in the knowledge
base or not associated with any known product,
making it difficult to predict normalized attribute
values directly.

Overview of our approach

To overcome the aforementioned limitations of ex-
isting approaches, we propose an end-to-end multi-
task approach that jointly predicts mentions, at-
tribute types and entities. We build a shared repre-
sentation of the text spans via a pre-trained trans-
former architecture (Liu et al., 2019). The shared
span representation is used to determine the prob-
ability of the span being a mention, containing a
particular attribute type, and representing a spe-
cific entity instance of that attribute. Our method
can handle an open-world scenario where an at-
tribute value does not have a matching entity in
the knowledge base. In such cases, the model can
still predict the attribute type of the value. Note

that this approach is also data-efficient and can
effectively utilize weakly labeled data points with-
out entity annotations. Importantly, the end-to-end
approach avoids error propagation since the entity-
level prediction is conditioned but not solely reliant
on the attribute-level information. Additionally,
our approach can handle overlapping spans with-
out requiring additional adjustments. Finally, if the
entities are structured in a knowledge graph, our
approach can leverage its topology to enrich the
entity embeddings.

In order for our approach to be tested in scenar-
ios with varying difficulties we need a dataset of
queries of controllable complexity, along with a
knowledge graph involving the entities there men-
tioned. To this end, we propose leveraging the
products in the Amazon Berkeley Objects dataset
(Collins et al., 2022) to construct a knowledge
graph consisting of products related to their at-
tribute values by relations encoding the attribute
type. The product graph is used both as knowl-
edge base for the approach and as starting artifact
to generate a dataset of public synthetic queries.
As public, non-confidential resources, we aim to
release both artifacts for reproducibility and to en-
courage research in the field. Summarizing, our
contributions are three-fold:

1. we propose AVEN, a novel end-to-end method
that can effectively solve QAU in an open world
setting;

2. we propose a way to use Product Graph to enrich
the representation of the entities

3. we present a novel evaluation that combines
a public product graph with a set of synthetic
queries involving associated entities, aimed at
promoting research on knowledge-based meth-
ods for QAU.

2 Related work

Document Attribute Understanding As previ-
ously noted, Query Attribute Understanding (QAU)
shares similarities with Document Attribute Under-
standing (DAU), which has been previously ad-
dressed in the literature. (Zheng et al., 2018) pro-
posed an early solution based on a classic NER
pipeline that assigns each attribute type with a set
of BIO (Beginning, Inside, Outside) tags. However,
this approach suffers from scalability issues when
dealing with a large number of attributes, and also
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hinders data sharing between head attributes (such
as color) and tail attributes (such as glass color).

To solve this issue, several approaches (Xu
et al., 2019; Dong et al., 2020) based on Question
Answering were pushed in the subsequent years.
These approaches consider each attribute as a sepa-
rate question to be answered leveraging the product
description. The main advantage of Question An-
swering approaches is that they do not require a
specific set of BIO tags for each attribute and are
therefore more scalable. However, they are also
harder to train and highly depend on the semantic
representations of the attribute types. In practical
cases in which the detected entity mentions must
also be linked to normalized entities, Entity Link-
ing is performed independently over the output of
the NER step. While all these works consider an
attribute value to be just a span of unstructured text,
we aim to directly obtain normalized entities as
attribute values, hence requiring performing Entity
Linking over the detected spans.

Entity Linking Entity Linking has been mostly
studied in scenarios involving long documents with
lot of context, while only few works exist for short
sentences like queries. Most relevant to our work is
ELQ (Li et al., 2020), in which a bi-encoder is em-
ployed to jointly perform mention detection and EL
in a multi-task setup. Analogously, in Oliya et al.
(2021) mention detection and entity linking are
coupled with question answering in an end-to-end
pipeline. We take inspiration from both works to
tackle AVEN by injecting a new stage in the end-to-
end mention detection and entity linking pipeline,
responsible for classifying the span attribute.

Query Attribute Understanding While it may
be tempting to view Query Attribute Understand-
ing (QAU) as a simplified version of Document
Attribute Understanding (DAU), this assumption
overlooks the unique challenges posed by queries,
such as their inherent noisiness, lack of context,
and ambiguity. To the best of our knowledge, the
only existing work that deals with both attribute
value extraction and subsequent entity linking is
QUEACO (Zhang et al., 2021). Differently from
our approach, QUEACO is a fragmented model that
stacks a user-behavior based normalization module
over a NER pipeline. While we use user behavior
in the data collection, we don’t require it for the
training and inference pipelines.

3 Data

In order to have a controlled ground for experimen-
tation, we need (i) a dataset of user queries, and
(ii) a Knowledge Graph containing most entities
involved in the user queries. Knowledge Graphs
involving products and relative information are usu-
ally called product graphs.

3.1 Product Graphs

A Product Graph is a Knowledge Graph involving
a set of products and their corresponding attributes.
Formally, it is a bipartite graph consisting of a
vertex set V = (P ∪ A) containing products P
and attribute values A connected by edges E =
R1 ∪ R2 ∪ · · · ∪ Rm, where R1, R2, . . . , Rm are
set of edges for the different m attribute types. In
practice, a triple (p, r, a) relates a product p with
an attribute value a through an attribute relation r.

3.2 Synthetic data

Given the lack of a public Product Graph, we con-
structed one by leveraging the Amazon Berkeley
Objects (ABO)1 dataset (Collins et al., 2022). The
constructed graph not only lends itself to the overall
inference pipeline, but can also be used to generate
a set of synthetic queries that involve the entities
of interest by construction. The generation proce-
dure simply constructs queries as bag of attributes
by starting from product nodes and walking the
relations related to the attributes of interest, then
discarding the product node in the final query and
only keeping its attribute values along with the at-
tribute type annotations. The generation pipeline is
formalized in appendix C. To increase the complex-
ity of the dataset, we also replace product types
with synonyms found in the same WordNet synsets
(Fellbaum, 1998).

3.3 Real user queries

Given the huge number of possible attribute values,
manual annotation of user queries with attribute
and entity-level labels is unfeasible. For this rea-
son, we leverage a pre-trained NER model to obtain
the attribute-level labels and employ a determin-
istic heuristic to label the corresponding attribute
values with entity-level annotations. Let P be a set
of purchased items, and Q be the queries that led to
the purchase. First, we create a Product Graph PG

1https://amazon-berkeley-
objects.s3.amazonaws.com/index.html
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from P by creating a triple (p, r, a) for each prod-
uct p connected to an attribute value a through at-
tribute type r. Then, for each query q ∈ Q, we iter-
ate over each NER-annotated span (r, v, s), where
span s holds value v for attribute type r. We now
want to annotate the span s with two annotations,
one at the attribute level and one at the entity level.
For the former, we can keep the one detected from
NER r. For the entity-level annotation instead, we
choose to annotate s with the entity a such that
(p, r, a) ∈ PG. In other words, given that NER has
predicted the span to refer to an attribute type r, we
annotate the span with the entity corresponding to
the attribute value for r of the product that the user
bought after searching for the query q. Assume for
instance that an user looked for ‘red Nike shoes’
and eventually bought some product p referring to
a specific pair of shoes that are, in fact, red. In this
case, the span s0,1 with value ‘red’ can be anno-
tated to be a color as predicted by NER, while the
entity label will be that of the value for p for the
attribute color, which is the node corresponding to
the value ‘red’ in the knowledge base. Of course,
the user may also have eventually bought a black
pair of shoes instead: in this case, the heuristic
makes a mistake, and therefore the annotation is
expected to be noisy. Nevertheless, assuming the
query keywords to encode strong preferences when
present, these cases are expected to be rare enough
for the model to eventually learn to discard them
as noise.

4 Approach

The overall architecture of AVEN contains three
different sub-modules, each responsible for a dif-
ferent task: (i) a mention detection module; (ii) an
attribute classification module; (iii) an entity dis-
ambiguation module.

The three modules are learnt jointly as shown
in fig. 2 and each of them contributes to the final
loss. The latter is obtained as a weighted sum of the
three losses. While the coefficients are currently
set to 1 for all the three tasks, we aim to eventually
use GradNorm (Chen et al., 2018) to tune the loss
weights.

More formally, let us define q = q1, . . . , qn as
an input query with n tokens/words. We denote by
s[i,j] the sub-span qiqi+1 . . . qj . We are interested
in three different quantities: Mij refers to span
s[i,j] being a mention, Aa

ij refers to the same span
being an attribute value for attribute a, and finally

Ee
ij refers to s[i,j] being an instance of entity e. In

the next sections, we will review the three different
components.

Mention Detection
For a span s[i,j], we denote the span embedding by
sij = fθ(s[i,j]). A simple version of fθ(s[i,j]) is
the mean of the RoBERTa (Liu et al., 2019) em-
beddings of the tokens in s[i,j]. We can define the
probability of span s[i,j] being an actual mention to
be

P (Mij) = σ (gµ(sij)) ,

where σ is the sigmoid function and gµ(·) is a para-
metric function taking in input the span representa-
tion and returning an unnormalized score. In our
current implementation, this is realized as a Multi-
Layer Perceptron (MLP). Note that we employ the
sigmoid as we assume that the probability of a span
s[i,j] to be a mention does not depend on the proba-
bility of another span s[k,l] to be a mention. Note
that, this assumption is questionable, especially as
soon as s[i,j] and s[k,l] have a non-null intersection.
Nevertheless, this choice allows the model to detect
overlapping spans when faced with cases such as
those exemplified in section 1. Note that it’s al-
ways possible to add a Non-Maximum Suppression
(NMS) step if we want to avoid producing overlap-
ping annotations. The mention detector is trained
by minimizing a Binary Cross Entropy loss ℓMD.

Attribute classification
We are now interested in the probability that a span
s[i,j] has attribute type a knowing that it is a men-
tion

P
(
A

(a)
i,j |Mij

)
=

exp
(
h
(a)
ν (si,j)

)

∑
a′∈A exp

(
h
(a′)
ν (si,j)

) ,

where h
(·)
ν () is a parametric function taking into

input the span representation. As for the mention
detector, we employ a MLP. Note that we adopt a
multi-task approach where we use the exact same
span representation for the three different tasks,
fostering information transfer among the latter. The
attribute classifier is trained with a simple cross
entropy loss ℓAC and only considers actual ground-
truth mentions at train time.

Entity disambiguation
In the entity disambiguation module, our goal is to
estimate the probability P

(
E

(e)
ij |Mij

)
. Given the
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Figure 2: Our multi-task architecture with the three corresponding losses ℓMD, ℓAC and ℓED

fact that each entity e is associated with an unique
attribute type a = type (e), we can argue that this
is actually equivalent to estimating the joint prob-
ability P

(
E

(e)
ij , A

(a)
ij |Mij

)
Since the probability

of a span to be type a is already given by the at-
tribute classifier, we can just estimate for each pos-
sible attribute a

P
(
E

(e)
ij | A

(a)
ij ,Mij

)
=

exp
(
v
(a)
ξ (si,j , e)

)

∑

e′∈E
exp

(
v
(a)
ξ (si,j , e

′)
) ,

where v
(a)
ξ (·) is a parametric function taking into

input the span representation and the entity e to be
scored. The main advantage of this last expression
is that it allows us to adopt a divide-and-conquer
approach since for each attribute a, we only have
to consider its compatible entities. Similarly to
the attribute classifier, the entity disambiguator is
learnt with a simple cross entropy loss ℓED on ac-
tual groundtruth mentions. Our first implemen-
tation of v

(a)
ξ (·) is a simple similarity scorer be-

tween the span representation and the embedding
of the considered entity. Entity embeddings are
computed by embedding a textual representation
of their neighborhood in the knowledge graph, as
illustrated in Figure 3.

Inference

To compute the probability of each span s[i,j] being
a mention of entity e at inference time, we simply
multiply the mention probability by the entity clas-
sification score. To improve efficiency, we exclude
all spans s[i,j] with a mention probability P (Mij)
lower than a pre-defined threshold pmin, such as
0.5 in our experiments.

Advantages
Our approach shares the span representation across
all three tasks: mention detection, attribute clas-
sification, and entity disambiguation, benefiting
from the effectiveness of multi-task learning (Caru-
ana, 1997; Ruder, 2017) in transferring knowledge
between similar tasks. This is particularly rele-
vant for our method as the tasks require differ-
ent levels of label details: mention detection only
requires weak labeling, while the attribute/entity
tasks rely on associations between mentions and
knowledge graph entities. Sharing the representa-
tion allows the entity disambiguation module to
leverage weakly-labeled mention data, leading to a
more data-efficient approach.

5 Experimental Results

In this section, we present experimental results
on two datasets described in section 3.2 and sec-
tion 3.3. We provide a brief overview of the proto-
col used in both cases.

5.1 Considered metrics
Mention Detection
We report both (micro) Precision and Recall for
the mention detection task to validate the perfor-
mance of the mention detector. The percentage
of recalled mention will be a natural upper bound
for the following metrics on attribute classification.
Indeed, if we are not able to retrieve a mention, we
will consider that we cannot be right at the subse-
quent tasks.

Attribute Classification
We report the multiclass Accuracy for the attribute
classification task; This metric is computed on the
set of ground-truths mentions and thus ignoring
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Figure 3: We use predefined templates to format encoded relations in the graph into natural language sentences
for each entity. These sentences are then embedded using RoBERTa (Liu et al., 2019) to obtain an in-sentence
representation, which is further averaged to obtain an overall entity representation.

wrongly detected mentions (for which no attribute
exists). We also present a complementary version
of this metric, which focuses exclusively on ground-
truth mentions that contain previously unseen "un-
known" entities. This metric is only applicable
to the second, more realistic dataset that includes
novel entities in the test set.

Entity Disambiguation
We report the multiclass Accuracy for the entity
disambiguation task; This one is computed only
on the subset of ground-truth mentions containing
entities seen at train time.

5.2 Baselines
We consider the following models (i) NER+Dict:
A RoBERTa-based NER baseline with dic-
tionary lookup over the detected attributes.
(ii) NER+NN: A RoBERTa-based NER base-
line with nearest neighbor between detected
attribute embeddings and entity embeddings.
(iii) AVEN/AVEN-NC/AVEN-GR: Our end–
to-end approach in three different flavours: with
plain entity embedding, with plain entity embed-
ding and no contextual span embedding and with
product-graph based embeddings.

5.3 Results
We report in fig. 4 (resp. fig. 5) the results from the
synthetic dataset described in section 3.2 (resp. the
actual user queries described in section 3.3). Over-
all, our AVEN- methods outperform the "stacked"
methods (NER + separate entity linker), partic-
ularly on the task of known entity classification.
Among our methods, AVEN-NC has a lower men-
tion recall due to the lack of contextual span em-
bedding. However, our methods are effective in
predicting the attribute type of unseen entities, as

Model
Mention Attribute Entity

Precision Recall Accuracy Accuracy

NER+Dict 98.5 97.9 97.6 68.3
NER+NN 98.1 97.7 97.5 64.3
AVEN 95.2 93.5 93.3 83.2
AVEN-NC 69.8 96.2 95.3 89.5
AVEN-GR 97.8 97.4 97.2 76.3

Figure 4: Results on synthetic data (see section 3.2)

Model
Mention Attribute Entity

Precision Recall Acc. Acc. (unseen) Acc.

NER+Dict 89.9 93.6 93.2 88.1 81.5
NER+NN 91.6 92.5 92.3 86.6 81.9
AVEN 96.3 94.0 90.2 89.4 93.0
AVEN-NC 88.2 93.8 91.5 82.4 95.3
AVEN-GR 96.0 95.4 93.0 89.7 93.9

Figure 5: Results on real user queries (see section 3.3)

evidenced by their performance on this task. It is
worth noting that the attribute classification per-
formance is lower for unseen attributes, which is
expected.

6 Conclusions and future directions

In this paper, we introduced a novel approach to
tackle QAU in a multi-task fashion. We demon-
strated its effectiveness on two datasets, compared
to some simple baselines. However, further abla-
tion studies on more datasets / baselines (e.g. Ay-
oola et al. 2022) are necessary to assess its general-
ization power. Additionally, future work will focus
on improving the multitasking efficiency of AVEN,
for instance by implementing (Chen et al., 2018).
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A Limitations

Despite the promising results achieved by our ap-
proach, some limitations must be acknowledged.
First, the use of product graphs as a knowledge
source is a double-edged sword. Indeed, while it
provides a valuable resource to exploit, the constant
evolution of product graphs may create a strong
coupling between the algorithm and the knowledge
source, thus reducing the method’s robustness over
time. Second, our method’s span-based approach
makes it computationally expensive, requiring set-
ting a maximum span size to circumvent this issue

B Ethics Statement

Our approach aims to boost the effectiveness of e-
commerce search engines. However, by jointly op-
timizing multiple tasks, we run the risk of creating
a less transparent system that could be susceptible
to biases. These biases may lead to certain less fre-
quent entities being overlooked or misclassified as
more common ones, thereby reducing the overall
fairness and accuracy of the system.

C Synthetic queries generation

Algorithm 1 outlines the synthetic query generation
procedure.

Algorithm 1 Synthetic queries generation.

1: procedure GENERATE QUERIES(pg: Product-
Graph)

2: P ← pg.products
3: Acons ← considered attributes
4: Q← [] ▷ queries
5: for all product p in P do
6: Ap ← [] ▷ attributes for the product
7: T ← all triples (p, ∗, ∗) in pg
8: for all triple (p, a, r) in T do
9: if a in Acons then

10: Ap ← Ap ∪ a ▷ attribute
values

11: Rp ← Rp ∪ r ▷ attribute types
12: end if
13: end for
14: shuffle Ap and Rp accordingly
15: qtext = str(Ap) ▷ query is a bag of

attribute values
16: qann = Rp ▷ annotations
17: end for
18: return Q
19: end procedure

D Prediction inspection

We present in fig. 6, an example of our qualitative
evaluation within the QAU framework we have
presented.

Groundtruth Attributes

Groundtruth Entities

Predicted Attributes

Predicted Entities

Figure 6: Predictions over one sample, with each row
consisting of query text and corresponding annotations.
The first two rows represent ground truth attributes and
entities, while the last two represent predicted attributes
and entities.
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Abstract

Currently, the reduction in the parameter scale
of large-scale pre-trained language models
(PLMs) through knowledge distillation has
greatly facilitated their widespread deployment
on various devices. However, the deployment
of knowledge distillation systems faces great
challenges in real-world industrial-strength ap-
plications, which require the use of complex
distillation methods on even larger-scale PLMs
(over 10B), limited by memory on GPUs and
the switching of methods. To overcome these
challenges, we propose GKD, a general knowl-
edge distillation framework that supports dis-
tillation on larger-scale PLMs using various
distillation methods. With GKD, developers
can build larger distillation models on memory-
limited GPUs and easily switch and combine
different distillation methods within a single
framework. Experimental results show that
GKD can support the distillation of at least
100B-scale PLMs and 25 mainstream methods
on 8 NVIDIA A100 (40GB) GPUs. 1

1 Introduction

Pre-trained language models, such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
their variants, have achieved excellent success in
natural language processing (NLP) tasks when they
usually have hundreds of millions of parameters.
Considering computationally expensive resource
constraints, a wide range of real-world applica-
tions are often impeded. Knowledge distillation
(Hinton et al., 2015), as a method for compressing
large-scale pre-trained language models, is attract-
ing more and more attention. As large-scale PLMs
continue to grow in scale, and with advancements

*This work was done when the author visited Zhipu.AI.
†Corresponding authors.
The other authors also include Yang Yang, Hongyin Tang,

Keqing He, Jiahao Liu, and Jingang Wang from Meituan.
1The code is available at https://github.com/aitsc/

GLMKD.

in knowledge distillation methods, it becomes in-
creasingly pressing to apply knowledge distillation
research in controlled laboratory settings to the real
world.

The field of knowledge distillation for language
models has witnessed a phenomenal progress in
recent years, particularly with regards to the reduc-
tion of model size, leading to the development of
a plethora of sophisticated distillation techniques
(Liu et al., 2022; Wu et al., 2022) and a comprehen-
sive toolkit (Yang et al., 2020b). However, despite
these rich research outcomes, there are still major
challenges in deploying knowledge distillation sys-
tems for real-world industrial-strength applications,
including:

• Obstacles to Distilling Ultra-large-scale
PLMs. Contrary to distillation in controlled
laboratory settings aimed at models with bil-
lions of parameters, many industrial-strength
applications (Yu et al., 2022) rely on ultra-
large-scale PLMs (on the order of 10B or
even larger). The training of ultra-large-scale
PLMs is already challenging, and the distilla-
tion process requires simultaneous training of
both large and small models, leading directly
to difficulties in distillation of ultra-large-scale
PLMs. Furthermore, there are also methods
(Wu et al., 2021a; Yuan et al., 2021) for distill-
ing multiple large models into a single small
model, which pose significant challenges in
memory-constrained GPU environments.

• Obstacles to Switching Distillation Meth-
ods. Deploying a knowledge distillation sys-
tem requires the implementation of numerous
distillation methods to meet different require-
ments, but due to the differences in implemen-
tation of these methods, it is difficult to switch
and combine them easily within a framework.
It is important to have an architecture that
accommodates a range of distillation meth-
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ods while ensuring efficient training, such as
avoiding excessive extraction of intermediate
features that lead to memory waste. Thus, a
compatible and efficient architecture is cru-
cial for successful deployment of knowledge
distillation systems.

To overcome these challenges, we present a gen-
eral knowledge distillation framework (GKD) for
deploying knowledge distillation systems that sup-
port various scale PLMs and methods. To over-
come the obstacles to distilling ultra-large-scale
PLMs, GKD leverages the techniques of training
large transformer models to the distillation process
that requires training multiple large (teacher) and
small (student) models simultaneously, incorporat-
ing the latest model and data parallel strategies.
To overcome the obstacles to switching distillation
methods, GKD employs a dynamic hook mech-
anism and auxiliary model to extract and operate
intermediate layer features and inference process of
models in each iteration. While being compatible
with various methods, it avoids the waste of mem-
ory caused by extracting all intermediate layers.
GKD presents the first exploration of knowledge
distillation for language models in industrial sce-
narios. Specifically, our main contribution lies in:

• Larger-scale Model Distillation. We pro-
pose a teacher-student parallel strategy based
on advanced memory optimization methods,
addressing the challenge of distilling ultra-
large-scale PLMs (over 10B) due to memory
constraints. The proposed strategy supports
distillation of at least 100B-scale PLMs on 8
NVIDIA A100 (40GB) GPUs.

• More Compatible Method Architecture.
We propose an efficient adaptive architecture
compatible with various methods, addressing
the challenge of switching and using different
distillation methods within a single framework
with difficulty. The proposed architecture sup-
ports at least 25 model distillation methods.

• Easy-to-use Open Source Toolkit. We have
open-sourced the required toolkit for GKD,
which provides a command-line interface for
25 distillation methods, facilitating developers
to deploy knowledge distillation systems for
ultra-large-scale PLMs.

2 Related work

In recent years, knowledge distillation for com-
pressing PLMs has gained increased attention.
These works studied ways of better utilizing lan-
guage model features for transferring knowledge
from large teacher models to a smaller student
model, involving hidden layers (Jiao et al., 2020),
attention layers (Wang et al., 2021), soft labels
(Jafari et al., 2021), and hard labels (Jafari et al.,
2022). These works validated their methods with
PLMs of hundreds of millions of parameters, such
as BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019), etc. However,
deployment of the distillation system on GPUs with
limited memory has been hindered by the reliance
on ultra-large-scale PLMs (10B or even larger). An
offline distillation method (Liu et al., 2021) that
saved teacher features before training the student
individually reduced memory pressure, but was
limited to methods with smaller feature scales and
without teacher-student interaction. In this work,
GKD was compatible with ultra-large-scale PLMs
distillation via the introduction of Megatron-LM
(Shoeybi et al., 2019) based on model parallelism
and Zero Redundancy Optimizer (ZeRO) (Rajbhan-
dari et al., 2020) based on data parallelism.

While some code for knowledge distillation
methods focused on language models was made
public (Sanh et al., 2019; Jiao et al., 2020; Sun
et al., 2020), there was a lack of a general frame-
work for deploying knowledge distillation sys-
tems. TextBrewer (Yang et al., 2020b) packaged
some abstract and simple distillation processes and
loss functions, but lacked implementation of many
methods and was difficult to adapt to increasingly
complex distillation methods. There were signif-
icant differences in the implementation of these
methods, such as DIITO (Wu et al., 2022) requiring
dynamic intervention of the intermediate layer com-
putation in the model; SID (Aguilar et al., 2020)
changing the intermediate layer features during
training; Continuation-KD (Jafari et al., 2022) al-
tering the loss calculation method as the epoch
increased, and so on. These differences in imple-
mentation made it difficult for them to be easily
switched and combined within a single framework,
hindering the application of various advanced meth-
ods in knowledge distillation systems. In this work,
GKD accommodated various advanced knowledge
distillation methods through a dynamic hook mech-
anism and auxiliary models.
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Figure 1: The framework of the GKD. From the user requirements to the model deployment on the device, the GKD
includes the six main processes involved in the deployment of the knowledge distillation system.

3 GKD

In this section, we first introduce the overview
framework of the proposed GKD, then delve into
the details of how GKD implements larger-scale
model distillation and a more compatible method
architecture, from the perspective of model build-
ing and training.

3.1 Overview Framework

Figure 1 shows the overview framework of GKD,
which consists of six main processes:

(1) User Requirements: This process begins with
the user specifying their requirements and forming
a configuration file, which includes the choice of
training task, distillation method, teacher model,
student model, etc.

(2) Model Building: This process addresses the
obstacles to distilling ultra-large-scale PLMs by
implementing a teacher-student parallel strategy
that combines Megatron-LM (Shoeybi et al., 2019)
and ZeRO (Rajbhandari et al., 2020). The process
involves selecting and executing parameter initial-
ization strategies for the student model, such as
initializing the student model with a pre-trained
student, a truncated parameter teacher, random ini-
tialization methods, or other distilled students. It
also includes initializing the training data with a
tokenizer.

(3) Model Training: This process addresses the
obstacles to switching distillation methods by im-
plementing an efficient adaptive architecture that
is compatible with various methods. This process
includes the initialization of methods to extract
and compute different model features based on the
requirements of different methods at different itera-
tion numbers.

(4) Multiple Training: This process is utilized
for methods that require multiple training, such
as task-specific methods (Jiao et al., 2020) that
necessitate distillation in the task-specific stage
after distillation in the pre-training stage.

(5) Analysis: This process confirms the compli-
ance of the distilled student model with deployment
requirements through analysis, such as examining
the performance on the test set and other phenom-
ena that can be utilized to enhance the model.

(6) Deployment: This process deploys the stu-
dent model on the corresponding device, such as
low-computing mobile devices or services with
higher load deployment under equal computing
power.

These six processes are performed in sequence
to form the workflow of the knowledge distilla-
tion system. The greatest contribution of GKD lies
in the design of the model building and training,
as the other processes do not pose a challenge to
the deployment of the knowledge distillation sys-
tem. In the following sections, we will provide a
detailed description of how GKD enables larger-
scale model distillation in the model building and
more compatible method architectures in the model
training.

3.2 Model Building

The challenge in building models lies in allocating
ultra-large-scale PLMs, consisting of a student and
one or more teacher models, on a GPU with only
several tens of GB of memory. To address this
challenge, we propose a teacher-student parallel
strategy that splits the model parameters to differ-
ent GPUs while preserving the feature distance
computation between the teacher and student mod-
els. This strategy is inspired by the optimization of
single ultra-large-scale PLMs, including Megatron-
LM (Shoeybi et al., 2019) which splits each pa-
rameter matrix in the transformer across multiple
GPUs, and ZeRO (Rajbhandari et al., 2020) which
partitions each layer of transformers sequentially
across multiple GPUs.

As shown in Figure 2, we demonstrate the com-
parison between the previous strategy and our pro-
posed teacher-student parallel strategy using an
example. The example includes the allocation of
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Figure 2: This comparison between the previous strat-
egy and the proposed teacher-student parallel strategy
is demonstrated through an example, where it can be
observed that the teacher-student parallel strategy sig-
nificantly reduces the memory utilization of each GPU.

two 6-layer transformer teacher models and one 4-
layer transformer student model on the GPU. The
current methods allocate all the model parameters
on each GPU, severely limiting the training of ultra-
large-scale PLMs and multiple models. To reduce
the memory usage on each GPU without compro-
mising the interaction between the teacher and the
student, our teacher-student parallel strategy evenly
distributes the parameters of the teacher and student
on different GPUs, with each GPU corresponding
to the matching parameters of the teacher and stu-
dent. With the model parallel and data parallel
count being 2, the memory usage can be reduced
by at least half. If utilizing ZeRO-Offload (Ren
et al., 2021), the optimizer states can further be
stored in CPU memory to reduce the utilization of
GPU memory.

3.3 Model Training

The challenge in training models lies in how to
easily switch and use different distillation meth-
ods within a single framework. To address this
challenge, we propose an efficient adaptive archi-
tecture that is compatible with various methods. It
implements the operation of different methods and
the calculation of features through a dynamic hook

Micro-batch Extraction hooks 
Operation hooks

T TS

Auxiliary model

Optimize

data and hooks

features

hooks

loss

Figure 3: A workflow for efficient adaptive architecture
compatible with various methods in a single iteration.

mechanism and an auxiliary model, respectively.
As shown in the workflow in Figure 3, the dynamic
hook mechanism constructs extraction hooks for
extracting model features and operation hooks for
modifying the model inference process during each
iteration. These hooks are described by a config-
uration file similar to JSON, which only requires
recording the operations required by the method
and playing a role during the model inference pro-
cess. The auxiliary model calculates the loss func-
tion based on these hooks and the returned model
features. Table 1 describes the features that this
architecture can adapt to existing methods.

It is worth noting that GKD can achieve method
combination by integrating hooks from different
methods. GKD can also record all model features
through extraction hooks and save the distance of
teacher and student features in the auxiliary model
for later analysis of the correlation between feature
distance and task performance in the distillation
process.

4 Experiments

In this section, we verified that GKD, which is used
for distillation of language models, can support at
least 100B-scale parameters and 25 mainstream
methods on 8 NVIDIA A100 (40GB) GPUs.

4.1 Experimental Setup

Datasets All methods that require distillation
in the pre-training stage use BooksCorpus (Zhu
et al., 2015) and English Wikipedia as training data
(19GB). For the task-specific stage (fine-tuning),
we evaluate different distillation methods using the
more challenging SuperGLUE benchmark (Wang
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Compatible features Representative methods
Modify the inference process of the
model

DIITO (Wu et al., 2022), LRC-BERT (Fu et al., 2021), Theseus (Xu et al., 2020)

Dynamically modify the feature extrac-
tion or inference process

SID (Aguilar et al., 2020), Theseus (Xu et al., 2020)

Additional trainable parameters TinyBERT (Jiao et al., 2020), RAIL-KD (Haidar et al., 2022), Universal-KD (Wu et al.,
2021b), LRC-BERT (Fu et al., 2021)

Dynamically change loss function Annealing-KD (Jafari et al., 2021), Continuation-KD (Jafari et al., 2022), MobileBERT (Sun
et al., 2020)

Complex intermediate layer calculation CKD (Park et al., 2021), MGSKD (Liu et al., 2022), ALP-KD (Passban et al., 2021)
Train student by multiple teachers TMKD (Yang et al., 2020a), MT-BERT (Wu et al., 2021a), RL-KD (Yuan et al., 2021),

Uncertainty (Li et al., 2021)
Multiple training reduces teacher until
student scale

TAKD (Mirzadeh et al., 2020), DGKD (Son et al., 2021)

Other simple methods KD (Hinton et al., 2015), PD (Turc et al., 2019), PKD (Sun et al., 2019), DistilBERT (Sanh
et al., 2019), MiniLM (Wang et al., 2020), MiniLMv2 (Wang et al., 2021)

Table 1: The compatible features and representative methods of our proposed adaptive architecture.

et al., 2019).

Methods We tested 22 distillation methods
specifically designed for language models, as well
as three classic methods (KD, TAKD, and DGKD)
from computer vision, which are listed in Ta-
bles 1 and 2. The implementation of the teacher-
student parallel strategy was carried out using the
Megatron-LM (Shoeybi et al., 2019) and Deep-
Speed (Rasley et al., 2020) framework.

Models The commonly used BERT (Devlin et al.,
2019) lacks open-source ultra-large-scale PLMs,
so we employed a more advanced GLM (Du et al.,
2022), which boasts open-source models of 10B-
scale or even 130B-scale (Zeng et al., 2023), signif-
icantly reducing the deployment cost of the knowl-
edge distillation system. The scale of teachers and
students are presented in Tables 2 and 3.

Refer to Appendix C for more implementation
details.

4.2 Results

More Compatible Method Architecture To ver-
ify the proposed adaptive architecture can effec-
tively be compatible with various methods, we
tested 25 mainstream distillation methods and
present the results in Table 2. The results demon-
strate that these methods can be easily switched and
utilized in GKD. It is worth noting that TinyBERT
(without data augmentation) outperformed all the
latest methods in our setup. This suggests that the
latest methods may not necessarily be the most ef-
fective, and different requirements may necessitate
different methods. Additionally, the reliability of
GKD is further validated from the perspective of
loss function values in Appendix B.1.

Larger-scale Model Distillation To verify the
proposed teacher-student parallel strategy can sup-
port distillation of 100B-scale model on 8 NVIDIA
A100 (40GB) GPUs, we present the memory and
time consumption of different strategies for distill-
ing models of varying scale in Table 3. The results
indicate that previous strategies encountered GPU
memory overflow when distilling 6B-scale models,
whereas our strategy is capable of supporting the
distillation of 100B-scale models. The results in
rows 9, 10, and 11 respectively demonstrate that
GPU memory consumption can be reduced through
splitting the model parameters, optimizer states, or
storing the optimizer states in CPU memory. If not
limited to 8 GPUs, our strategy has the potential
to distill even larger models. Appendix B.2 further
examines the trade-off between memory and time
consumption.

4.3 Further Exploration

In addition to compatibility with various methods,
GKD also allows for effortless combination of dif-
ferent methods. In Appendix A.1, we have dis-
covered a method that achieves SOTA results by
combining the advantages of different distillation
methods. Appendix A.2 presents a tool that ana-
lyzes the correlation between feature distance and
task performance through GKD, enhancing the in-
terpretability of the distillation process.

5 Conclusions

In this paper, we propose a general knowledge dis-
tillation framework, GKD, for deploying knowl-
edge distillation systems targeting large-scale
PLMs. GKD satisfies the demands of real-world
applications by employing a parallel strategy and
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Methods ReCoRD COPA WSC RTE BoolQ WiC CB MultiRC avgF1/Acc. Acc. Acc. Acc. Acc. Acc. F1/Acc. F1a/EM
GLMBase (teacher, 110M) 72.80/72.17 66.00 77.88 72.92 79.39 66.14 88.19/91.07 72.32/26.34 71.72
GLMLarge (teacher, 340M) 80.08/79.54 78.00 81.73 79.78 82.63 70.06 86.33/89.29 76.39/37.67 77.11

Single-teacher: Teacher (GLMBase)⇒ Student (66M)
KD (Hinton et al., 2015) 22.66/21.99 61.67 63.46 54.63 66.07 57.05 61.75/72.02 51.98/2.41 52.41
PD (Turc et al., 2019) 54.36/53.59 65.67 66.67 59.45 69.82 59.20 80.13/81.55 65.97/15.29 62.03
PKD (Sun et al., 2019) 61.77/60.99 60.00 65.38 68.83 77.73 65.78 82.76/85.12 69.99/22.67 66.17
DistilBERT (Sanh et al., 2019) 59.79/59.05 65.00 68.59 60.89 73.39 60.34 77.48/83.33 66.98/17.38 63.78
Theseus (Xu et al., 2020) 57.07/56.33 61.67 66.35 68.11 77.81 64.37 89.14/87.50 69.08/21.79 66.09
TinyBERT (Jiao et al., 2020) 65.60/64.88 70.33 75.00 71.96 77.97 67.87 89.58/89.88 71.37/25.74 70.83
MobileBERT† (Sun et al., 2020) 59.29/58.61 65.33 68.59 58.97 74.61 63.85 86.65/88.69 66.87/19.41 65.14
SID (Aguilar et al., 2020) 27.17/26.19 65.00 65.06 58.12 69.33 57.16 51.02/73.81 59.26/14.55 55.08
MiniLM (Wang et al., 2020) 60.00/59.24 62.00 63.46 67.63 75.88 64.99 67.63/79.17 67.36/19.66 63.81
MiniLMv2 (Wang et al., 2021) 60.88/60.16 62.00 62.82 66.67 76.73 63.69 66.38/76.79 68.68/21.65 63.65
ALP-KD (Passban et al., 2021) 57.72/56.90 60.67 64.74 68.11 77.20 64.79 74.82/79.76 68.21/19.90 64.27
LRC-BERT (Fu et al., 2021) 55.10/54.44 65.67 66.67 56.56 74.86 57.63 80.27/81.55 65.75/16.16 62.25
Annealing-KD (Jafari et al., 2021) 56.08/55.39 69.33 66.67 58.97 70.57 59.82 85.78/85.12 66.26/13.92 63.33
CKD (Park et al., 2021) 56.35/55.65 65.00 66.67 61.25 71.63 58.83 88.61/84.52 66.11/15.22 63.33
Universal-KD (Wu et al., 2021b) 58.67/57.83 58.67 66.67 70.16 77.56 65.52 87.52/85.71 69.96/22.63 66.22
DIITO (Wu et al., 2022) 63.71/63.00 72.00 69.23 65.46 75.46 60.76 86.75/85.12 66.28/17.63 66.77
Continuation-KD (Jafari et al., 2022) 55.61/54.91 68.67 64.74 58.72 71.42 58.25 85.61/83.93 66.64/13.33 62.73
RAIL-KD (Haidar et al., 2022) 59.85/59.19 66.67 70.19 60.53 69.00 60.34 78.98/83.33 66.55/15.60 63.56
MGSKD (Liu et al., 2022) 50.29/49.49 65.00 65.06 65.94 73.31 63.17 83.89/84.52 67.32/15.56 63.50

Multi-teacher: Teachers (GLMBase and GLMLarge)⇒ Student (66M)
TMKD (Yang et al., 2020a) 65.77/65.09 70.33 63.14 66.91 75.37 63.38 70.22/79.17 68.76/22.77 65.63
MT-BERT (Wu et al., 2021a) 46.81/46.08 59.00 63.46 65.46 66.90 62.33 78.76/80.36 57.53/2.06 59.12
RL-KD (Yuan et al., 2021) 59.78/58.99 58.33 66.03 69.07 77.93 65.78 76.87/82.74 69.24/22.21 65.26
Uncertainty (Li et al., 2021) 58.52/57.67 59.33 64.10 70.16 77.55 65.78 80.85/83.33 69.47/22.49 65.39

Teacher assistants: Teacher (GLMLarge)⇒ Assistant (200M)⇒ Assistant (110M)⇒ Student (66M)
TAKD (Mirzadeh et al., 2020) 25.50/24.69 60.33 66.03 55.11 66.39 57.94 76.28/76.79 55.90/1.50 54.52
DGKD (Son et al., 2021) 23.68/22.96 61.00 66.99 55.96 65.71 58.73 75.45/75.60 48.06/1.50 54.00

Table 2: Results of 25 mainstream distillation methods implemented using GKD on the SuperGLUE validation set.
Due to the alteration of the model structure by MobileBERT†, the parameters of the teacher and student models are
293M and 25M, respectively. ⇒ denotes distillation process. The results for all methods were averaged over three
random seeds.

Strategy Teacher⇒Student (scale) MA (GB) CA (GB) Time (ms) Mem (GB) MP DP ZeRO Offload

Previous

110M⇒22M 0.99 1.27 10.40 56.96 1 8
110M⇒66M 1.73 2.02 10.82 57.60 1 8
340M⇒66M 3.11 3.58 16.41 63.46 1 8

5B⇒1B 32.44 36.57 53.34 61.58 1 8
6B⇒1.2B GPU memory overflow 1 8

Ours

6B⇒1.2B 18.91 21.40 85.61 57.28 2 4
7.5B⇒1.5B 24.22 27.36 87.08 60.44 2 4
10B⇒2B 30.91 34.54 105.40 62.33 2 4
10B⇒2B 18.45 22.56 119.72 68.68 2 4 ✓
10B⇒2B 15.83 22.55 387.19 106.35 2 4 ✓ ✓
25B⇒5B 20.41 23.51 379.38 63.07 8 1
50B⇒10B 17.93 20.94 4570.54 230.27 8 1 ✓ ✓
65B⇒13B 22.48 26.10 6412.11 293.11 8 1 ✓ ✓
90B⇒18B 30.56 35.27 7193.26 373.81 8 1 ✓ ✓
100B⇒20B 33.62 36.88 9081.97 410.83 8 1 ✓ ✓
110B⇒22B GPU memory overflow 8 1 ✓ ✓

Table 3: The consumption of memory and time during the pre-training stage of TinyBERT when distilling
teacher models of different scales on 8 NVIDIA A100 (40GB) GPUs is presented. The micro batch and gradient
accumulation steps are set to 1. Where MA denotes the maximum memory allocated on the GPU, CA denotes
the maximum cached memory on the GPU, Time denotes the time required to train each sample, Mem denotes
the size of occupied CPU memory, MP denotes the number of model parallelism, DP denotes the number of data
parallelism, ZeRO denotes whether the optimizer states are partitioned across different GPUs, and Offload denotes
whether the optimizer states are stored in CPU memory.
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adaptive architecture, allowing for the distillation
of ultra-large scale PLMs (over 10B) and the switch
of various advanced distillation methods. In the fu-
ture, we plan to launch our knowledge distillation
system for facilitating the mass production and de-
ployment of student models.
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A Further Exploration

In this section, we further explore the capabilities
of GKD in combining different distillation methods
and enhancing the interpretability of the distillation
process.

A.1 Method Combination
Thanks to the dynamic hook mechanism, GKD
is capable of combining methods by integrating
hooks from different methods. As shown in Table
4, we demonstrate results from several dozen com-
binations of different model features. To conserve
computational power, we set the batch size to 32
during pre-training and set the sizes of the teacher
and student models to 110M and 22M, respectively.
In the task-specific stage, the batch size and learn-
ing rate were fixed at 16 and 1e-5, respectively,
without the use of grid search and seed averaging.
Based on the results in Table 4, the following con-
clusions can be drawn.

(1) We discovered the method BestC which
achieves the SOTA, outperforming TinyBERT by
1.24% on average in SuperGLUE. BestC combines
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Methods Pre-training stage Task-specific stage SGEmb Att Q/K V HS Soft Hard Emb Att Q/K V HS Soft Hard
KD Random initialization parameters CE CE 49.48

Truncate fine-tuned teacher parameters CE CE 51.62
CE CE CE CE 59.68
CE CE CE 60.24
KL CE CE 60.62
KL CE 63.16

MSE CE 63.46
RAIL-KD Truncate fine-tuned teacher parameters MSE−f CE CE 51.63
MiniLM KLf KLf CE 60.65
MiniLMv2 KLf KLf CE 60.47

KLf KLf KL KLf KLf CE 65.41
KLf KLf KL CE 64.64

MGSKD MSE MSE MSE MSE/HL MSE/HL KL 59.65
TinyBERT MSE MSE MSE MSE MSE MSE CE 65.81

MSE MSE MSE KL MSE MSE MSE CE 66.19
MSE MSE MSE KL CE 62.75
MSE MSE MSE CE 63.52
MSE MSE KL MSE MSE CE 66.51

Mix5 MSE MSE+KLf KLf KLf MSE+Cos KL CE MSE MSE+KLf KLf KLf MSE CE CE 65.63
MSE MSE+KLf KLf KLf MSE+Cos KL CE CE 62.18
MSE MSE KLf KLf MSE+Cos KL CE MSE MSE KLf KLf MSE CE CE 66.58
MSE MSE KLf KLf MSE+Cos KL CE CE 63.06
MSE MSE+KLf KLf MSE+Cos KL CE MSE MSE+KLf KLf MSE CE CE 66.25
MSE MSE+KLf KLf MSE+Cos KL CE CE 62.86
MSE MSE+KLf KLf KLf MSE CE MSE MSE+KLf KLf KLf MSE CE CE 66.54
MSE MSE+KLf KLf KLf MSE CE CE 64.64

KLf KLf KLf KL CE KLf KLf KLf CE CE 64.68
KLf KLf KLf KL CE CE 60.49

BestC MSE KLf KLf MSE KL MSE KLf KLf MSE CE 67.05
MSE KLf KLf MSE KL CE 62.71
MSE KLf KLf MSEf KL MSE KLf KLf MSEf CE 65.73
MSE KLf KLf MSEf KL CE 62.53
MSE MSEf KL MSE MSEf CE 66.17
MSE MSEf KL CE 62.58

MSEf KL MSEf CE 65.79
MSEf KL CE 63.69

KLf KLf MSEf KL KLf KLf MSEf CE 66.01
KLf KLf MSEf KL CE 63.87

MSE KLf KLf KL MSE KLf KLf CE 66.53
MSE KLf KLf KL CE 63.26
MSE KLf KLf MSEf2 KL MSE KLf KLf MSEf2 CE 65.55
MSE KLf KLf MSEf2 KL CE 62.56
MSE KLf KLf MSE−f KL MSE KLf KLf MSE−f CE 66.22
MSE KLf KLf MSE−f KL CE 63.26

KLf KLf MSE KL KLf KLf MSE CE 66.78
KLf KLf MSE KL CE 63.12

Table 4: Results of combining various features of models using GKD on the SuperGLUE validation set. Emb, Att,
Q/K, V, HS, Soft, Hard, and SG denote the output of the embedding layer, attention scores, query/key matrix, value
matrix, hidden state, soft labels, hard labels, and the average score on the SuperGLUE benchmark, respectively.
MSE, KL, CE, Cos, and HL respectively denote the distance functions between the teacher and student features as
mean squared error, Kullback-Leibler divergence, cross-entropy, cosine distance, and Huber loss. MSEf , MSE−f ,
and MSEf2 respectively indicate the calculation of MSE for the last layer, before the last layer, and the second-to-last
layer’s hidden state. MSE+KLf represents the sum of MSE and KL calculated for the last layer’s attention scores.
The Mix5 method can be understood as a combination of the KD (Hinton et al., 2015), TinyBERT (Jiao et al., 2020),
MiniLM (Wang et al., 2020), MiniLMv2 (Wang et al., 2021), and DistilBERT (Sanh et al., 2019) methods.

the features of TinyBERT, MiniLMv2, and soft la-
bels. (2) The method that performs distillation in
the pre-training stage (row 5) outperforms those
using randomly initialized parameters (row 3) or
truncated fine-tuned teacher parameters (row 4) in
the pre-training stage. (3) The methods using soft
labels in the pre-training stage (rows 14 and 17)
outperform those not using soft labels (rows 12
and 16). (4) Starting from row 21, we compare

the results of various combinations distilled in the
task-specific stage and not distilled (only trained
on hard labels). We find that distillation in the task-
specific stage greatly improves the performance of
the task.

A.2 Enhanced Interpretability
Thanks to the adaptive architecture, GKD can
record all model features through extraction hooks
and save the distance of teacher and student fea-
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Figure 4: Spearman and Pearson correlation coefficient of pre-training loss with the distance between teacher and
student features of TinyBERT. This records the training process of TinyBERT in Table 2, where the sizes of the
teacher and student models are 110M and 66M respectively. The distance after pair-wise scaled dot-product is
calculated by first computing features H ← HHT

√
dimensionality

. Att1, HS1, Q1, K1, and V1 denote the attention
scores, hidden state, query matrix, key matrix, and value matrix of the first layer transformer, respectively. Soft and
Emb denote the soft labels and output of the embedding-layer respectively. KL1, KL5, KL10, KL15, and KL20
denote the KL divergence with temperatures of 1, 5, 10, 15, and 20, respectively.

tures in the auxiliary model for later analysis of the
correlation between feature distance and task per-
formance in the distillation process. As an example
of TinyBERT’s pre-training stage distillation, we
present the Spearman and Pearson correlation coef-
ficients between the feature distance and training
loss, and between the feature distance and task per-
formance, respectively, in Figures 4 and 5. The
following conclusions can be drawn.

(1) The results shown in Figure 4 indicate that
while TinyBERT trains its embedding layer, atten-
tion scores, and hidden state, many other features
(e.g., the value matrix and features obtained after
pair-wise scaled dot-product) also decrease in dis-
tance between teacher and student as the training
loss decreases. This suggests that we may be able
to find a way to automatically have a large number

of student features approach the teacher without
having to distill all features, thus reducing the cost
of distillation. (2) The results shown in Figure
5 indicate that the distillation in the pre-training
stage of TinyBERT actually leads to a decrease in
pre-training task performance. This suggests that
the performance of pre-training tasks is not neces-
sarily positively correlated with the performance
of downstream tasks. It is noteworthy that there
are a small number of features (e.g., soft labels)
whose distance is related to task performance. Our
hypothesis is that distilling features that are related
to task performance may further improve task per-
formance, and the third conclusion in Appendix
A.1 supports this hypothesis.
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Figure 5: Spearman and Pearson correlation coefficient of task performance (perplexity of the language model on
the validation set) of pre-training stage with the distance between teacher and student features of TinyBERT. This
records the training process of TinyBERT in Table 2, where the sizes of the teacher and student models are 110M
and 66M respectively. The distance after pair-wise scaled dot-product is calculated by first computing features
H ← HHT

√
dimensionality

. Att1, HS1, Q1, K1, and V1 denote the attention scores, hidden state, query matrix, key
matrix, and value matrix of the first layer transformer, respectively. Soft and Emb denote the soft labels and output of
the embedding-layer respectively. KL1, KL5, KL10, KL15, and KL20 denote the KL divergence with temperatures
of 1, 5, 10, 15, and 20, respectively.

B Additional Analysis

In this section, we further verify the reliability of
GKD from the perspective of loss function value,
and analyze the balance of memory and time con-
sumption in the teacher-student parallel strategy.

B.1 Are the Loss Values of GKD Normal?
In order to further verify the reliability of GKD, we
present the loss function values of each method at
various distillation stages in Figure 6. The down-
ward trend of all the loss values is consistent with
our expectations, with two noteworthy observa-
tions: (1) MobileBERT and SID tend to gradually
increase the number of distilled layers during train-
ing, hence the loss values exhibit an up-and-down
trend. (2) The ReCoRD dataset, shown in task-

specific stages, was trained for 5 epochs, therefore
some methods may show loss changes in stair-step
fashion, such as Annealing-KD and Universal-KD.

B.2 Trade-off between Memory and Time
Consumption

In order to speed up the training process while en-
suring that the distillation process is not limited by
GPU memory, we conducted a full combination
of all optimization options to find the best balance
between memory and time. Table 5 showcases the
resource usage of 5B-scale and 10B-scale teacher
models under different MP, DP, ZeRO, and Offload
options during distillation. The results of the test-
ing lead us to the following recommendations: In
cases of insufficient GPU memory, ZeRO should
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Figure 6: Loss function values of 25 methods across different distillation stages. The loss values are normalized due
to the varying range of values across different methods. Some methods are distilled at most 3 times, including a
pre-training stage and two task-specific stages (ReCoRD dataset). TAKD and DGKD based on teacher-assistant
strategy showcase the final distillation process.
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Teacher⇒Student (scale) MA (GB) CA (GB) Time (ms) Mem (GB) MP DP ZeRO Offload

5B⇒1B

17.65 33.11 169.01 95.15 1 8 ✓† ✓†

9.07 14.97 262.49 86.56 2 4 ✓† ✓†

4.87 6.09 430.61 86.20 4 2 ✓† ✓†

2.72 3.71 884.05 82.61 8 1 ✓† ✓†

17.65 30.77 175.08 95.13 1 8 ✓ ✓
9.06 13.74 252.99 86.74 2 4 ✓ ✓
4.87 5.79 437.50 86.01 4 2 ✓ ✓
2.72 3.43 831.22 83.24 8 1 ✓ ✓

18.92 31.04 61.43 70.50 1 8 ✓†

10.44 14.24 78.97 62.18 2 4 ✓†

6.31 7.42 129.91 61.59 4 2 ✓†

4.23 5.10 260.96 58.72 8 1 ✓†

18.92 28.81 60.25 70.52 1 8 ✓
10.43 13.73 80.64 62.38 2 4 ✓
6.31 7.32 129.40 62.27 4 2 ✓
4.23 5.04 243.80 58.76 8 1 ✓

32.44 36.57 53.34 61.58 1 8
16.34 18.50 68.17 62.18 2 4
8.31 9.41 121.26 62.16 4 2
4.27 5.04 231.95 58.83 8 1

10B⇒2B

30.73 36.89 226.51 104.46 1 8 ✓† ✓†

15.84 24.19 378.93 106.31 2 4 ✓† ✓†

8.41 10.08 664.45 95.51 4 2 ✓† ✓†

4.70 6.00 1210.07 98.12 8 1 ✓† ✓†

30.73 36.89 222.50 104.45 1 8 ✓ ✓
15.83 22.55 387.19 106.35 2 4 ✓ ✓
8.41 9.72 693.03 95.50 4 2 ✓ ✓
4.70 5.81 1224.11 98.09 8 1 ✓ ✓

33.23 36.91 85.52 66.17 1 8 ✓†

18.46 23.13 119.30 68.61 2 4 ✓†

11.11 12.91 186.53 57.42 4 2 ✓†

7.53 8.87 310.56 59.88 8 1 ✓†

33.23 36.90 88.21 66.13 1 8 ✓
18.45 22.56 119.72 68.68 2 4 ✓
11.11 12.78 198.84 57.45 4 2 ✓
7.53 9.01 329.12 59.83 8 1 ✓

GPU memory overflow 1 8
30.91 34.54 105.40 62.33 2 4
15.64 17.62 174.30 57.79 4 2
8.00 8.98 311.44 59.73 8 1

Table 5: The consumption of memory and time during the pre-training stage of TinyBERT when distilling
teacher models of different scales on 8 NVIDIA A100 (40GB) GPUs is presented. The micro batch and gradient
accumulation steps are set to 1. Where MA denotes the maximum memory allocated on the GPU, CA denotes
the maximum cached memory on the GPU, Time denotes the time required to train each sample, Mem denotes
the size of occupied CPU memory, MP denotes the number of model parallelism, DP denotes the number of data
parallelism, ZeRO denotes whether the optimizer states are partitioned across different GPUs, and Offload denotes
whether the optimizer states are stored in CPU memory. In addition to the optimizer states, the model gradients can
also be partitioned across different GPUs or stored in CPU memory. The dagger symbol (†) represents optimization
of both the optimizer states and the model gradients simultaneously.
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Hyperparameters ReCoRD COPA WSC RTE BoolQ WiC CB MultiRC
Sequence length 512 256 128 256 256 256 256 512
Epochs 5 50 50 50 20 30 50 15
Dropout 0.1
Attention Dropout 0.1
Warmup Ration 0.1
Weight Decay 0.1
Learning Rate Decay Linear
Adam ϵ 1E-8
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 0.1

Table 6: Other hyperparameters for the task-specific stage on the 8 datasets of the SuperGLUE benchmark.

be considered first for partitioning the optimizer
states and model gradients, followed by increasing
the number of model parallelism, and lastly, us-
ing ZeRO-Offload to store the optimizer states and
model gradients in CPU memory.

C Implementation Details

In this section, we provide further details regard-
ing the hyperparameters and models to facilitate
replication by developers.

C.1 Hyperparameters

The batch size, number of iterations, and peak
learning rate for the pre-training stage were set
to 64, 150000, and 4e-4, respectively. The task-
specific hyperparameters for specific methods were
set to the optimal values from their correspond-
ing papers, while other hyperparameters (see Ta-
ble 6) were kept consistent with the fine-tuning
teacher. For single-teacher methods in the task-
specific stage, grid search was used to optimize
hyperparameters, including learning rate {5e-6,1e-
5,2e-5} and batch size {16,32}. Table 7 presents
the learning rate and batch size for each method on
each dataset in the SuperGLUE benchmark. The
results for all methods were averaged over three
random seeds.

C.2 Models

Table 8 shows the specific parameters of all the
models utilized in this paper. The 110M, 340M,
and 10B scale models are from GLM pre-trained
models 2. The 293M-scale model with the Mobile-
BERT structure (inverted-bottleneck structure) was
obtained by us through a week of pre-training with
16 NVIDIA A100 (40GB) GPUs, and the 25M-
scale model is also with the MobileBERT structure.

2https://github.com/THUDM/GLM

When conducting pre-training tasks, the models
with the MobileBERT structure require the expan-
sion of the token dimension, thus the actual number
of parameters is greater than the scale. The other
sized teacher models were tested with randomly
initialized parameters to assess resource consump-
tion. All the distillation processes were conducted
using half-precision floating-point (fp16) models.
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Methods ReCoRD COPA WSC RTE BoolQ WiC CB MultiRC
bs/lr bs/lr bs/lr bs/lr bs/lr bs/lr bs/lr bs/lr

GLMBase (teacher, 110M)
bs (batch size) = 16, lr (learning rate) = 1E-5

GLMLarge (teacher, 340M)
Single-teacher: Teacher (GLMBase)⇒ Student (66M)

KD (Hinton et al., 2015) 16/5E-06 16/2E-05 16/1E-05 16/2E-05 16/2E-05 16/5E-06 16/2E-05 16/5E-06
PD (Turc et al., 2019) 16/1E-05 32/5E-06 16/2E-05 16/1E-05 32/1E-05 16/5E-06 16/2E-05 16/5E-06
PKD (Sun et al., 2019) 32/2E-05 32/2E-05 16/2E-05 32/5E-06 16/1E-05 16/5E-06 16/2E-05 32/2E-05
DistilBERT (Sanh et al., 2019) 16/1E-05 16/2E-05 16/1E-05 16/5E-06 32/2E-05 32/2E-05 32/2E-05 16/1E-05
Theseus (Xu et al., 2020) 32/2E-05 16/1E-05 16/1E-05 32/1E-05 16/1E-05 32/1E-05 16/2E-05 32/5E-06
TinyBERT (Jiao et al., 2020) 32/1E-05 16/5E-06 32/5E-06 16/2E-05 16/1E-05 16/5E-06 16/1E-05 16/1E-05
MobileBERT (Sun et al., 2020) 16/1E-05 16/1E-05 32/2E-05 32/2E-05 32/2E-05 32/1E-05 32/2E-05 16/5E-06
SID (Aguilar et al., 2020) 16/2E-05 32/5E-06 16/5E-06 16/2E-05 16/2E-05 16/2E-05 16/1E-05 16/2E-05
MiniLM (Wang et al., 2020) 16/2E-05 32/1E-05 32/2E-05 32/1E-05 16/1E-05 16/1E-05 32/1E-05 32/2E-05
MiniLMv2 (Wang et al., 2021) 16/1E-05 16/1E-05 16/5E-06 32/2E-05 16/2E-05 32/2E-05 16/1E-05 16/1E-05
ALP-KD (Passban et al., 2021) 16/2E-05 16/1E-05 16/2E-05 16/2E-05 16/2E-05 32/2E-05 16/2E-05 32/2E-05
LRC-BERT (Fu et al., 2021) 16/2E-05 32/1E-05 16/2E-05 32/1E-05 16/2E-05 16/5E-06 16/2E-05 16/5E-06
Annealing-KD (Jafari et al., 2021) 16/2E-05 16/5E-06 16/2E-05 16/2E-05 16/2E-05 32/5E-06 16/1E-05 32/5E-06
CKD (Park et al., 2021) 32/2E-05 16/2E-05 16/5E-06 16/1E-05 16/2E-05 16/1E-05 16/1E-05 32/2E-05
Universal-KD (Wu et al., 2021b) 32/2E-05 32/5E-06 32/5E-06 32/1E-05 32/5E-06 16/5E-06 16/1E-05 16/1E-05
DIITO (Wu et al., 2022) 16/5E-06 32/1E-05 16/2E-05 16/1E-05 16/2E-05 16/1E-05 16/1E-05 16/5E-06
Continuation-KD (Jafari et al., 2022) 16/2E-05 32/1E-05 16/1E-05 16/1E-05 16/2E-05 32/1E-05 16/1E-05 16/5E-06
RAIL-KD (Haidar et al., 2022) 16/1E-05 16/1E-05 16/2E-05 16/5E-06 32/2E-05 16/1E-05 32/1E-05 32/2E-05
MGSKD (Liu et al., 2022) 16/5E-06 16/2E-05 32/2E-05 16/5E-06 16/5E-06 16/1E-05 32/2E-05 32/5E-06

Multi-teacher: Teachers (GLMBase and GLMLarge)⇒ Student (66M)
TMKD (Yang et al., 2020a)

same as GLMBase
MT-BERT (Wu et al., 2021a)
RL-KD (Yuan et al., 2021)
Uncertainty (Li et al., 2021)

Teacher assistants: Teacher (GLMLarge)⇒ Assistant (200M)⇒ Assistant (110M)⇒ Student (66M)
TAKD (Mirzadeh et al., 2020)

same as KD
DGKD (Son et al., 2021)

Table 7: Hyperparameters for all methods in Table 2 on the 8 datasets of the SuperGLUE benchmark.

Scale #Parameters #Dimensions #Layers #Heads Max-seq Vocabulary
22M 22788864 384 6 12

512 30592

25M 37371392 128 24 4
66M 66811392 768 6 12
110M 109338624 768 12 12
293M 306174464 1024 24 4
340M 334688256 1024 24 16

1B 1022682240 1728 26

64 1024 50304

1.2B 1173458944 1792 28
1.5B 1521700224 1984 30
2B 1920122880 2048 36
5B 5030587776 3264 38
6B 5915828736 3456 40

7.5B 7385878656 3776 42
10B 9880682496 4096 48
13B 13170418176 4736 48
18B 18125342976 5248 54
20B 20175676160 5440 56
22B 22104152064 5504 60
25B 24660072448 5632 64
50B 49577504000 8000 64
65B 64813768448 9152 64
90B 89957891328 10624 66
100B 99465734144 11008 68
110B 109620044032 11392 70

Table 8: The scale details of all the models utilized in this paper.

148



Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 149–158

July 10-12, 2023 ©2023 Association for Computational Linguistics

FashionKLIP: Enhancing E-Commerce Image-Text Retrieval with Fashion
Multi-Modal Conceptual Knowledge Graph

Xiaodan Wang1, Chengyu Wang2, Lei Li3, Zhixu Li1∗, Ben Chen2,
Linbo Jin2, Jun Huang2, Yanghua Xiao1∗, Ming Gao3

1 Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University
2 Alibaba Group, Hangzhou, China 3 East China Normal University, Shanghai, China

{xiaodanwang20,zhixuli,shawyh}@fudan.edu.cn
{chengyu.wcy,chenben.cb,yuyi.jlb,huangjun.hj}@alibaba-inc.com

leili@stu.ecnu.edu.cn, mgao@dase.ecnu.edu.cn

Abstract

Image-text retrieval is a core task in the multi-
modal domain, which arises a lot of atten-
tion from both research and industry com-
munities. Recently, the booming of vision-
language pre-trained (VLP) models has greatly
enhanced the performance of cross-modal re-
trieval. However, the fine-grained interac-
tions between objects from different modali-
ties are far from well-established. This issue
becomes more severe in the e-commerce do-
main, which lacks sufficient training data and
fine-grained cross-modal knowledge. To alle-
viate the problem, this paper proposes a novel
e-commerce knowledge-enhanced VLP model
FashionKLIP. We first automatically establish a
multi-modal conceptual knowledge graph from
large-scale e-commerce image-text data, and
then inject the prior knowledge into the VLP
model to align across modalities at the concep-
tual level. The experiments conducted on a pub-
lic benchmark dataset demonstrate that Fash-
ionKLIP effectively enhances the performance
of e-commerce image-text retrieval upon state-
of-the-art VLP models by a large margin. The
application of the method in real industrial sce-
narios also proves the feasibility and efficiency
of FashionKLIP. 1

1 Introduction

The explosive growth of multi-modal content on
the Web has promoted the research of various cross-
modal tasks. Image-text retrieval, which finds cor-
related texts (or images) for a given image (or text)
(Karpathy and Fei-Fei, 2015; Faghri et al., 2017),
is a popular cross-modal task with strong practi-
cal values in a wide range of industrial applica-
tions. Recently, the booming of vision-language

1All the codes and model checkpoints have been released
to public in the EasyNLP framework (Wang et al., 2022).
URL: https://github.com/alibaba/EasyNLP.

*Corresponding author.

Figure 1: Examples of image-text pairs in e-commerce.

pre-trained (VLP) models (Yao et al., 2021; Zeng
et al., 2021; Li et al., 2020c) has greatly improved
the representation learning across data of differ-
ent modalities, leading to significant performance
improvement.

However, in the field of e-commerce, the image-
text retrieval task has its own challenges. Here,
we suggest that image-text pairs of products have
unique characteristics that are different from the
general domain (such as MS-COCO (Lin et al.,
2014), Flickr30k (Young et al., 2014) and Concep-
tual Captions (Sharma et al., 2018)), with exam-
ples shown in Figure 1. 1) While most texts in
the general domain contain descriptions with com-
plete sentence structures, descriptions or queries
in e-commerce are usually composed of multiple
phrases, describing product details such as materi-
als or styles. 2) Images in the general domain usu-
ally have rich backgrounds; in contrast, a product
image mainly consists of a large commodity figure
in the center without a lot of background objects.
These unique domain characteristics make general-
domain models difficult to be directly adopted to
the image-text retrieval tasks in e-commerce.

Recently, several domain-specific VLP models
including FashionBERT (Gao et al., 2020), Kalei-
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doBERT (Zhuge et al., 2021), CommerceMM (Yu
et al., 2022), EI-CLIP (Ma et al., 2022) and
Fashion-ViL (Han et al., 2022) are proposed based
on e-commence image-text pairs, which greatly
improve the performance of e-commerce image-
text retrieval. Despite the success, the fine-grained
cross-modal alignment issue remains unsolved,
which may result in the inaccurate matching of
details between images and texts. Although some
e-commerce VLP models use fine-grained informa-
tion from either image perspectives (Han et al.,
2022) or patch-based image classification (Gao
et al., 2020; Yu et al., 2022), they are short of
semantic-level alignments across modalities. Some
other work (Ma et al., 2022; Zhu et al., 2021) fo-
cuses on entities in text modalities, but rarely con-
siders cross-modal interactions. In the general do-
main, fine-grained interactions could be achieved
with object detection (Li et al., 2020c; Tan and
Bansal, 2019), scene graph parsing (Cui et al.,
2021), or semantic analysis (Yu et al., 2021; Li
et al., 2020b). Unfortunately, these tools lose their
effectiveness in the e-commerce domain.

To improve the fine-grained alignment between
images and texts in e-commerce, this paper pro-
poses an e-commerce knowledge-enhanced VLP
model - FashionKLIP. Particularly, we first pro-
pose a data-driven strategy to construct a multi-
modal conceptual knowledge graph in e-commerce
(called FashionMMKG) from a large-scale e-
commerce image-text corpus, where the fashion
concepts are automatically extracted and organized
in the form of a semantic hierarchy, each associ-
ated with its representative images. The Fashion-
MMKG is later incorporated as the prior cross-
modal fashion knowledge in training a CLIP-style
model to support e-commerce image-text retrieval.
For model training, we learn the representation
alignment of image-text pairs across the two modal-
ities by contrastive learning, and further optimize
the alignment at the conceptual level. The con-
ceptual alignment is further obtained by matching
the text representations with the visual prototype
representations of the fashion concepts in Fashion-
MMKG.

Our contributions can be summarized as follows:

• We innovatively propose a data-driven ap-
proach to construct a multi-modal conceptual
knowledge graph in the e-commerce domain
named FashionMMKG without human inter-
vention.

• We construct an e-commerce knowledge-
enhanced VLP model called FashionKLIP,
which learns conceptual-level alignments
based on the prior knowledge in Fashion-
MMKG.

• We conduct experiments on a popular fashion
benchmark dataset FashionGen (Rostamzadeh
et al., 2018) and show that FashionKLIP out-
performs state-of-the-art VLP models in the
e-commerce domain.

• We also apply the method to real industrial sce-
narios and observe significant improvements
in image/text-to-product retrieval tasks.

2 Related Work

Vision-Language Pre-training. VLP models can
be categorized into single-stream models (Chen
et al., 2020; Li et al., 2020a; Gan et al., 2020),
which first concatenate multi-modal inputs for in-
teractions, and dual-stream models (Jia et al., 2021;
Radford et al., 2021; Yao et al., 2021; Li et al.,
2020b), which obtain the representations of the im-
age and text respectively and learn the alignment
afterwards. Although single-stream models may
lead to high retrieval accuracy due to the early fu-
sion of images and texts, the inference efficiency
is sacrificed to a certain extend. Recently, to focus
more on fine-grained semantic level interactions of
images and texts, some works improve the similar-
ity strategy by calculating between the image patch
and the text token (Yao et al., 2021) or leverage
fine-grained image information through object de-
tectors (Li et al., 2020c,b; Gan et al., 2020; Zeng
et al., 2021). Others introduces structured scene
graphs for semantic knowledge (Yu et al., 2021).
Despite their success in general domain, such meth-
ods are hard to be adopted to e-commerce data.
Fashion-based Retrieval. FashionBERT (Gao
et al., 2020) first adopts pre-training tasks such
as masking strategy to e-commerce images and
texts. KaleidoBERT (Zhuge et al., 2021) extracts a
series of multi-grained image patches for augmen-
tation to guide masking strategy for fine-grained
matching. CommerceMM (Yu et al., 2022) pro-
poses pre-training tasks to align uni-modal with
multi-modal features for more consistent align-
ment. EI-CLIP (Ma et al., 2022) defines the entity-
aware retrieval task from the linguistic perspective
by introducing a causal model to concatenate dif-
ferent meta-data as e-commerce entities. Lately,
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Figure 2: Model architecture of FashionKLIP with fashion images and texts as inputs.

Figure 3: The sub-tree structure with root concept “shorts”. The tree can be dynamically updated by inserting new
concepts, such as “cotton lounge shorts in navy”.

Fashion-ViL (Han et al., 2022) designs a flexible
architecture for various downstream tasks. How-
ever, current methods still suffer from insufficient
fine-grained semantic alignment, which may di-
minish the cross-modal understanding capability
of models at semantic level.

3 Methodology

This section introduces how FashionMMKG is
constructed and how FashionKLIP incorporates
conceptual-level interactions of cross-modal fash-
ion knowledge from FashionMMKG.

3.1 FashionMMKG Construction

Textual Modality. Instead of building an ontology-
based knowledge graph (Deng et al., 2022), we au-
tomatically construct FashionMMKG to alleviate
the gap with real-world user queries. The construc-
tion procedures include first determining the con-
cept set through mining massive fashion texts and
then matching each concept with its corresponding
images. Given a fashion dataset D{T, I} contain-
ing N image-text pairs, we first extract all the texts

T . We use the NLP tool spacy2 for sentence com-
ponents analysis and part-of-speech tagging.We
obtain multi-grained concept phrases by concate-
nating adjective modifiers with the key word. For
an input text “Heathered cotton lounge shorts in
navy. Elasticized waistband with drawstring clo-
sure”, we extract root concepts such as “navy”,
“waistband”, “closure” and “heathered”, as well
as more detailed phrases: “cotton lounge shorts”,
“cotton lounge shorts in navy”, “heathered cotton
lounge shorts in navy”, etc. Based on different
conceptual hierarchical granularities of extracted
results, we build up hypernym-hyponym (“is-a”)
relationships between concepts in the form of rela-
tion triplets by judging whether two concepts are
contained by each other, such as <"cotton lounge
shorts in navy", is-a, "cotton lounge shorts">.

After all the relation triplets are extracted, we
organize these fashion concepts in a hierarchical
structure. A sub-tree with the root node “shorts” is
shown in Figure 3. The construction process of the
hierarchical structure can be further implemented

2https://spacy.io/usage/linguistic-features
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Figure 4: Coarse-grained and fine-grained concepts with their matched images from FashionMMKG.

in a dynamic process. When previously unseen con-
cepts appear, we can add these new concepts into
existing hierarchical trees, as the newly updated
concept “short sleeve t-shirt in white” in Figure 2.

Visual Modality. For the visual modality, we adopt
a prompt-based image retrieval method for each
concept, and iteratively update the procedure in
the subsequent visual-linguistic training process.
Utilizing the generalization ability of a pre-trained
CLIP-style model, we retrieve product images from
the image set I , with the query formulated as "A
photo of {concept}" as in (Radford et al., 2021;
Yao et al., 2021; Gu et al., 2022). Based on the
cosine distance of the image and text features, a
naive approach is to select the top k images with the
highest similarities as the concept visual prototype.

The retrieval results of some concepts are shown
in Figure 4. We can see that the top k images
of coarse-grained concepts are usually visually di-
verse, while images tend to be more semantically
consistent when it comes to more specific concepts.
To ensure that both similarity and diversity of vi-
sual representations for each concept are consid-
ered, we slightly expand the range of image can-
didates (using a larger k), and employ the MMR
algorithm (Carbonell and Goldstein, 1998) to im-
prove the diversity of the selected images. It runs
in an iterative process until a sufficient number of
images are selected from the k candidates. Denote
C as the candidate image set and S as the collec-
tion of images that have been selected for concept

c. Each time, we choose an image vi by:

MMR(vi) = argmax
vi∈C\S

[λSim(c, vi)

− (1− λ)max
vj∈S

Sim(vi, vj)]
(1)

where Sim(·, ·) is the cosine similarity between
the corresponding text/image features, and λ is the
coefficient to adjust the relevance and diversity of
results. Here, we set λ = 0.8 by default.

3.2 FashionKLIP Training
During the model training, as shown in Figure 2,
we first extract concepts from the texts. If there are
new concepts, FashionMMKG is automatically ex-
panded. For parameter optimization, FashionKLIP
consists of two tasks: image-text contrastive learn-
ing (ITC) for matching images and texts globally,
and concept-visual alignment learning (CVA) for
conceptual-level cross-modal alignment.
ITC. We train a CLIP-style model to learn the
global representations of image-text pairs. For
b image-text pairs in each training batch, denote
LI
k and LT

k as the contrastive image-to-text and
text-to-image matching loss, respectively. The
ITC loss function can be expressed as LITC =
1
2

∑b
k=1(L

I
k + LT

k ), with LT
k to be defined as:

LT
k (x

T
k , {xIj}bj=1) = −log

exp(sTk,k)∑
j exp(s

T
j,k)

(2)

where the corresponding text of an image xIk is
xTk , and sTj,k is the cosine similarity between the
image/text features of xIj and xTk . LI

k is defined
symmetrically to LT

k .
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CVA. We further align concepts and visual proto-
types from the FashionMMKG. For an input text
xTk with image xIk, we obtain a multi-grained con-
cept set Con(xTk ), where hypernym concepts from
the tree are also introduced to avoid paying much
attention to fine-grained concepts but ignoring the
cross-modal understanding of high-level concepts.
For a concept ci ∈ Con(xTk ), we denote S(ci) to
be the collection of the selected similar yet diverse
images to represent the visual characteristics of the
concept (as described previously in Section 3.1).
We select q images with the highest scores with
image xIk in S(ci) for each ci ∈ Con(xTk ), for the
model to learn conceptual alignments. We com-
pute the weighted contrastive loss between each
ci and any conceptual image xI

k̃
∈ S(ci), together

with conceptual images generated from other texts
concepts within the same training batch:

LCT
k (Con(xTk ), {S(xTj )}bj=1) =

− 1

q

∑

ci

∑

xI
j̃
∈S(ci)

w(xI
k̃
, xIk)log

exp(sT
k̃,k

)
∑

j exp(s
T
j̃,k

)

(3)
Note that w(xI

k̃
, xIk) is the cosine similarity be-

tween concept image xI
k̃

and input image xIk, used
as the weight for loss calculation. This forces the
representation of a concept ci similar to its con-
ceptual images S(ci), but dis-similar to those of
conceptual images from other texts. Similarly, by
changing the loss function from text-to-image to
image-to-text, we have the symmetric loss LCI

k .
Thus, the loss function of CVA is expressed as:

LCV A =
1

2

b∑

k=1

(LCI
k + LCT

k ) (4)

Overall Loss. The total loss function is formulated
as: L = 1

2(LITC + LCV A). In addition, as the
representations of images are continuously updated
during model training, at the end of each epoch,
we leverage Faiss (Johnson et al., 2019) to retrieve
top-k images to update the visual prototype repre-
sentations of the matched concepts.

4 Experiments

We conduct comprehensive evaluations on Fash-
ionGen (Rostamzadeh et al., 2018) to show that
FashionKLIP outperforms SOTA methods.

4.1 Implementation Details

We first construct FashionMMKG with details
shown in Appendix A.1.

Model Training. The specific settings of models
are described in Appendix A.2. For training, we
conduct both domain-specific pre-training and fine-
tuning for base and large versions of FashionKLIP.
We initialize FashionKLIP from CLIP pre-trained
weights and continually pre-train the model based
on our in-house dataset for MMKG construction (as
described previously), only using the contrastive
learning process over image-text pairs. Specially,
the continual pre-training process is conducted with
the parameters of the image encoder fixed. Over-
all, we have four models: FashionKLIP-S (small),
FashionKLIP-M (medium), FashionKLIP-B (base)
and FashionKLIP-L (large).

Benchmark Dataset. We use a widely-used bench-
mark dataset (i.e., FashionGen (Rostamzadeh et al.,
2018)) for model evaluation. It contains 67,666
fashion items of 293,008 image-text pairs in 121
sub-categories, with 260,480 pairs for training and
32,528 for validation.

Evaluation. For image-text retrieval tasks, based
on a text query, we consider two settings for eval-
uation. 1) Strictly following (Gao et al., 2020;
Zhuge et al., 2021; Ma et al., 2022; Yu et al.,
2022), the model is required to pick the matched
image in 101 samples, including 1 ground-truth
image with 100 randomly selected images within
the same product sub-category (denoted as “Sam-
ple”). 2) As some recently published works (Ma
et al., 2022) also consider large-scale candidates on
the entire set, each query is compared with every
item in the full dataset (denoted as “Full”). The
settings for image-to-text matching are likewise.
Recall@1/5/10 is regarded as evaluation metrics
as previous works (Gao et al., 2020; Zhuge et al.,
2021; Yu et al., 2022).

Method Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

FashionBERT 23.96 46.31 52.12 26.75 46.48 55.74
KaleidoBERT 28.00 60.10 68.40 33.90 60.50 68.60

CommerceMM 41.60 64.00 72.80 39.60 61.50 72.70
CLIP 36.11 67.81 80.00 35.32 65.98 77.84

EI-CLIP 38.70 72.20 84.25 40.06 71.99 82.90

FashionKLIP-B 60.79 85.67 91.95 54.00 78.49 86.28

Table 1: Retrieval results on FashionGen (Sample).
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Model Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

CLIP 22.50 49.50 62.00 24.50 51.10 63.60
EI-CLIP 25.70 54.50 66.80 28.40 57.10 69.40

FashionKLIP-B 37.01 59.78 67.39 43.70 63.74 72.67

Table 2: Retrieval results on FashionGen (Full).

Model Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

FashionKLIP-S 14.58 34.28 44.14 17.59 36.74 47.20
FashionKLIP-M 23.21 45.45 54.98 28.42 49.95 59.74
FashionKLIP-B 37.01 59.78 67.39 43.70 63.74 72.67
FashionKLIP-L 47.16 69.27 75.39 54.60 75.06 81.39

Table 3: Retrieval results on FashionGen (Full) of Fash-
ionKLIP under different model sizes.

4.2 Experimental Results

Overall Retrieval Results. We conduct both “full”
and “sample” evaluation of FashionKLIP-B against
existing SOTA models. In addition, we report the
results of different FashionKLIP models on Fash-
ionGen using the full evaluation criteria, as shown
in Table 3. As the main experimental results shown
in Table 1, we can see that FashionKLIP model sig-
nificantly outperforms the existing SOTA models
by a large margin. In particular, on the R@1 metric,
FashionKLIP-B even greatly surpasses the methods
with multi-modal fusion encoders for more unified
representation learning such as CommerceMM (Yu
et al., 2022). On full evaluation results in Table
2, FashionKLIP-B shows a remarkable increase of
11-15% compared to EI-CLIP (Ma et al., 2022).
For smaller settings such as FashionKLIP-M, the
retrieval performance is also competitive and closer
to CLIP. As the “full” setting is closer to real-world
retrieval scenarios and more challenging as it aims
to select from a large candidate set, the perfor-
mance of FashionKLIP is significant, further prov-
ing that the framework can be generalized to wider
application scenarios. Based on the experimental
results on either setting, we can conclude the ef-
fects brought by fashion knowledge, and confirm
that more attention to cross-modal conceptual-level
interactions leads to an increase in e-commerce
image-text matching. 3

Ablation Studies. To further analyze the impor-

3Note that a few works (e.g., Fashion-ViL (Han et al.,
2022)) employ additional multi-modal fusion encoders and
uniform representation learning (that may be not suitable for
fast vector retrieval in real-world applications) and evaluate
their models on randomly sampled subsets of FashionGen.
Hence, their works are not directly comparable.

Method Eval. Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

Full Implement. Sample 60.79 85.67 91.95 54.00 78.49 86.28
w/o. CVA Sample 56.70 84.53 91.65 51.43 77.44 85.36
w/o. FDP Sample 58.90 84.87 91.35 52.57 77.14 84.87

Full Implement. Full 37.01 59.78 67.39 43.70 63.74 72.67
w/o. CVA Full 35.41 57.92 65.97 40.63 61.73 69.40
w/o. FDP Full 36.10 58.32 66.07 42.05 61.66 69.65

Table 4: Ablation studies on FashionKLIP-B, where
FDP represents fashion-domain pre-training.

tance of conceptual-level fashion image-text align-
ment, we present different variants of FashionKLIP
in Table 4 for two evaluation settings. We can see
from the results that both CVA and the FDP con-
tribute to performance improvement. Although the
retrieval results decrease slightly when not using
FDP, the removal of CVA will harm the retrieval
performance more heavily. Besides, the introduc-
tion of FDP and CVA at the same time boosts the
performance as “Full Implement.” shows, proving
the necessity to utilize fashion data for pre-training,
which helps establish a better mapping between
concepts and images as prior knowledge. More
importantly, the focus on fashion knowledge better
guides conceptual-level interactions and brings a
rise to the alignment between images and texts.

5 Industrial Application

In this section, we verify the effectiveness of Fash-
ionKLIP on our Alibaba global e-commerce plat-
form. Specifically, we apply it to product search
with two specific retrieval tasks including image-to-
product (I2P) and text-to-product (T2P) retrieval,
as shown in Figure 5.

Model Parameters RT QPS

CLIP 151M 61.26ms 16.32
FashionKLIP-B 151M 60.45ms 16.54
FashionKLIP-M 91M 42.69ms 23.43

Table 5: Average inference speed over 1,000 samples in
terms of Response Rime (RT) and the Query Per Second
(QPS) on a single GPU (NVIDIA V100).

For T2P, we employ a weighted scoring function
to compute the similarity score between a query
text and a product (with a title and an image) as fol-
lows: Scoret2p = α∗Scoret2t+(1−α)∗Scoret2i,
where 0 < α < 1, Scoret2t and Scoret2i refer to
the embedding similarity score between the query
text and the product title, together with the query
text and the product image. Similarly, for I2P, we
have Scorei2p = α∗Scorei2t+(1−α)∗Scorei2i.
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Figure 5: Example on image-to-product and text-to-product retrieval for e-commerce product search.

In total, the collected dataset contains 58,463 prod-
ucts (with images and titles) and 3,021 queries.

Model Image-to-Product Text-to-Product
R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

CLIP 82.93 93.07 95.40 96.59 49.43 75.46 84.27 89.41
FashionKLIP-M 84.81 93.22 95.15 96.44 48.00 75.56 84.96 90.85
FashionKLIP-B 87.48 95.94 97.97 98.91 52.10 79.96 89.02 93.77

Table 6: Retrieval results on e-commerce image-to-
product and text-to-product retrieval.

We conduct zero-shot experiments for T2P and
I2P on FashionKLIP-B and FashionKLIP-M and
compare it with the baseline CLIP (Radford et al.,
2021), as shown in Table 6. For models of the
same size, we can see that FashionKLIP-B greatly
outperforms CLIP on Recall@1-20 and particu-
larly achieves an improvement of 3~5% on both
tasks for R@1. For our model in a smaller size,
FashionKLIP-M is still comparable, which mainly
reflects on the R@1 and R@5 results of I2P task
and the R@5 to R@20 results of T2P. However, the
inference of FashionKLIP-M is faster. In Table 5,
taking text-to-product as an example, we report the
Response Time (RT) and Query Per Second (QPS)
using different text encoders to encode user queries
on a single GPU (NVIDIA V100). We can see that
with similar performance (CLIP and FashionKLIP-
M), our model has much lower RT and higher QPS.
Hence, we confirm FashionKLIP’s feasibility on
multi-modal tasks in the industrial applications.

6 Conclusion and Future Work

This paper proposes a novel data-driven approach
to construct a multi-modal conceptual knowledge
graph in e-commerce namely FashionMMKG.
An e-commerce knowledge-enhanced VLP model
namely FashionKLIP is then constructed by learn-
ing the conceptual-level alignments from the prior
knowledge in FashionMMKG. Our empirical study

shows that FashionKLIP outperforms state-of-the-
art VLP models in the e-commerce domain. We
conduct experiments under industrial scenarios and
verify its practical value in real-world applications
and confirm the efficiency of FashionKLIP. In the
future, we will apply the knowledge-enhanced strat-
egy for general large-scale pre-training and bring
benefit to more multi-modal tasks.
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A Appendix

A.1 FashionMMKG
Full statistics of our FashionMMKG are shown in
Table 8, where we give both the total numbers (cnt)

of items such as the number image-text pairs and
concepts, and the average of some attributes (avg)
such as occurrence and concept length. As for the
data source, we extract fashion concepts from titles
of 900,000 product image-text pairs collected from
our global e-commerce platform. 4

A.2 Model Settings

We release models with various parameter sizes for
industrial applications. The specific hyperparame-
ters of different FashionKLIP models are shown in
Table 7.
Image Encoder We follow Vision Transformer
(ViT) (Dosovitskiy et al., 2020) closely as the im-
age encoder and the modifications of different mod-
els lie in the number of layer normalization and
the width of attention heads. The size of non-
overlapping image patches are also set to be differ-
ent. FashionKLIP-L adopts the ViT-L/14 as the im-
age encoder with 24 layers, while FashionKLIP-M
uses ViT with 12-layer 512 wide in 88M parameter
and the patch size is 32.
Text Encoder We adopts a Transformer (Vaswani
et al., 2017), utilizing the same architecture as de-
scribed in (Radford et al., 2019) as the text encoder.
For models in different sizes, we refer to (Turc
et al., 2019) to set the attention width and number
of attention heads of the text encoder.
Model Input Images are cropped uniformly to
224 × 224 pixels before entering the model. We
limit the maximum input length of the text to 77,
with a vocabulary of 49,408.

For a fair comparision, we utilize FashionKLIP-
B model to compare against other baseline models,
which uses ViT-B/32 (Dosovitskiy et al., 2020) as
the image encoder, and adopts a 12-layer 512 wide
Text Transformer as the text encoder as (Radford
et al., 2021), in 63M parameter with 8 attention
heads each layer.

A.3 Model Training

The batch size of pre-training is 1,024 per GPU
with 8 A100 GPUs (80G), for 20 epoches in total.
The learning rate is 5e-5. During dataset-specific
model fine-tuning, we retrieve top-20 images for
each concept in FashionMMKG and then select 5
images as the visual prototype based on the pro-
posed criteria. The batch size of fine-tuning is
32 per GPU, with a learning rate of 1e-5 on two
A100 GPUs. As smaller pre-trained CLIP weights

4https://www.alibaba.com/
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Model Embedding
dimension

Input
resolution

Vision Transformer Text Transformer
parameters layers width patch size parameters layers width heads

FashionKLIP-L 768 224 303M 24 1024 14 124M 12 768 12
FashionKLIP-B 512 224 88M 12 768 32 63M 12 512 8
FashionKLIP-M 512 224 40M 12 512 32 51M 8 512 8
FashionKLIP-S 384 224 22M 12 384 16 33M 8 384 6

Table 7: Hyperparemters of FashionKLIP in different model settings.

are not available, we initialize FashionKLIP-M
and FashionKLIP-S models from the pre-trained
FashionKLIP-B model by truncating the weights
of FashionKLIP-B to the size based on the set-
tings of smaller models. After that, we utilize the
contrastive learning process for continually pre-
training on the e-commerce in-house data. The
batch size during pre-training for FashionKLIP-M
and FashionKLIP-S is 256 per GPU on 8 GPUs
and the learning rate is 5e-5.

Item Name Statistics

Image-text pairs (cnt) 900,000
Root-concepts (cnt) 5,135
All concepts (cnt) 99,076

Nodes per tree (avg) 213.8 (1∼25600)
Concept length (avg) 3.4 (1∼21)

Occurrence (avg) 17.1 (1∼77250)
Images per concept (avg) 20

All images (cnt) 76,964

Table 8: Statistics of FashionMMKG.
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Abstract

Conversational agents are typically made up
of domain (DC) and intent classifiers (IC) that
identify the general subject an utterance be-
longs to and the specific action a user wishes to
achieve. In addition, named entity recognition
(NER) performs per token labeling to identify
specific entities of interest in a spoken utterance.
We investigate improving joint IC and NER
models using entity contrastive learning that
attempts to cluster similar entities together in
a learned representation space. We compare a
full virtual assistant system trained using entity
contrastive learning to a baseline system that
does not use contrastive learning. We present
both offline results, using retrospective test sets,
as well as online results from an A/B test that
compared the two systems. In both the offline
and online settings, entity contrastive training
improved overall performance against baseline
systems. Furthermore, we provide a detailed
analysis of learned entity embeddings, includ-
ing both qualitative analysis via dimensionality-
reduced visualizations and quantitative analysis
by computing alignment and uniformity met-
rics. We show that entity contrastive learning
improves alignment metrics and produces well-
formed embedding clusters in representation
space.

1 Introduction

Named Entity Recognition (NER) is a well-studied
and fundamental task within Natural Language Un-
derstanding (NLU). The performance of a virtual
assistant is heavily dependent upon how well NER
tasks are handled. Mistaken slot predictions re-
sult in propagating incorrect information to down-
stream modules, causing sub-optimal interactions
with users of the system. Contrastive learning can
be used to improve NER model training. Con-
trastive learning attempts to cluster similar inputs
closer together in their representation space and

∗Work done during the author’s tenure at Amazon.
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Figure 1: A schematic overview of a jointly trained IC
and NER model with a gazetteer feature and optional
entity contrastive learning.

repel dissimilar inputs apart. Token contrastive
learning attracts and repels representations at the
token level and was introduced in (Das et al., 2022)
for improving performance in few-shot NER tasks.

In this work, we apply contrastive learning to im-
prove the performance of a ubiquitous virtual assis-
tant system. We first train a common encoder using
contrastive sentence embedding (Gao et al., 2021).
Next, we incorporate entity contrastive learning,
based on (Das et al., 2022), to better cluster similar
entities together in representation space. We train
and evaluate joint IC and NER models in 11 do-
mains. For each domain, we evaluate performance
with and without an additional entity contrastive
loss. We further provide results of an online A/B
test that measures user satisfaction and show im-
proved performance when using entity contrastive
training. Furthermore, we perform a detailed em-
beddings analysis to determine the effect that the
entity contrastive loss function has on entity rep-
resentations. In particular, we compute alignment
and uniformity metrics (Wang and Isola, 2020) of
learned entity representations. Finally, we also
present qualitative results in the form of t-SNE
visualizations comparing models with entity con-
trastive training vs. without. We show that entity
contrastive learning improves alignment metrics as
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well as clustering behavior in representation space.

2 Virtual Assistant System Overview

Fig. 1 shows a schematic overview of a
jointly trained IC and NER model that makes
up part of the NLU component of a full
virtual assistant system. Joint IC-NER mod-
els are trained separately for each domain.
The IC-NER model encodes a sequence of
(sub-word) utterance tokens, x1, x2, . . . , xn,
through a transformer encoder architecture,
[h1, h2, . . . , hn] = TEncoder ([x1, x2, . . . , xn]).
In addition to sub-words that are fed
to the encoder, each input token is also
flagged as either being recognized or un-
recognized via lookup in a large gazetteer,
ϕ(·) ∈ {0, 1}, which further undergoes a separate
gazetteer-based embedding, [g1, g2, . . . , gn] =
GEmbedding ([ϕ(x1), ϕ(x2), . . . , ϕ(xn)]).
Gazetteer embeddings are then combined
with the output embeddings of the encoder,
[t1, t2, . . . , tn] = [h1 ⊗ g1, h2 ⊗ g2, . . . , hn ⊗ gn],
where ⊗ is the element-wise product. These
embeddings are then used by both the IC and NER
model heads.

2.1 Joint IC and NER Training

The intent classification head accepts a single ag-
gregated embedding that it processes through a
collection of linear layers. Its loss function is the
standard categorical cross entropy loss, ℓCE =
−∑K

k y(k) log ŷ(k), where K is the total number
of intent classes per domain, y(k) is 0 or 1 ground
truth for intent class, k, and ŷ(k) is the predicted
value for that intent.

The NER head accepts all embeddings and per-
forms per token classification. Our NER model
employs a conditional random field (CRF) to opti-
mize the sequence labeling task:

p(s1 . . . sn | t1 . . . tn;w) =

exp(w · Φ(t1 . . . tn, s1 . . . sn))∑
s′1...s

′
n∈Sm exp (w · Φ(t1 . . . tn, s′1 . . . s′n)

ℓCRF = −
M∑

i=1

log pi(s1 . . . sn | t1 . . . tn;w)

where w are learnable weights, M is the num-
ber of utterances, Sm is the space of all possible
sequences and Φ(ti..., si...) is the product of se-
lected potential functions that reflects the plausi-

bility score of a given labeling, see (Lafferty et al.,
2001) for further details.

2.2 Entity Contrastive Training
When employing entity contrastive training, a
third loss component is added to model train-
ing, as described in (Das et al., 2022). Diag-
onal Gaussian embeddings, N (µi,Σi), are cre-
ated by passing each encoded token representation,
ti, through separate networks, µi = fµ(ti) and
Σi = ELU(fΣ(ti)) + (1 + ϵ). These networks re-
spectively infer the mean and variance of the Gaus-
sian embeddings. Here, ELU is the Exponential
Linear Unit and ϵ is added for numerical stabil-
ity. Gaussian embeddings map tokens to densities
rather than point vectors and have been shown to
better capture representation uncertainty (Vilnis
and McCallum, 2015). As the KL divergence be-
tween two diagonal Gaussian distributions has a
closed form solution, a pair of tokens from a col-
lection of utterances can be evaluated as follows
(note that l is the embedding dimension):

DKL [N (µq,Σq) || N (µp,Σp)]

=
1

2

(
Tr
(
Σ−1
p Σq

)
− l + log

|Σp|
|Σq|

+(µp − µq)
T Σ−1

p (µp − µq)
)

(1)

Further, as the KL divergence is not symmetric,
both forward and reverse directions are considered:
d(p, q) = 1

2 (DKL [Nq∥Np] +DKL [Np∥Nq]).
Given a collection of entities and their labels

within a batch, (xq, yq) ∈ X , a set of in-batch
matching entities, Xp, can be constructed by lo-
cating different tokens that share the same entity
label (yp = yq, where p ̸= q). The final ℓENT loss
is constructed for each entity, p, in a batch, X , as
follows:

ℓENT = − 1

|X |
∑

p∈X
log

∑
(xq ,yq)∈Xp

exp(−d(p, q))/ |Xp|∑
(xq ,yq)∈X ,p ̸=q exp(−d(p, q))

(2)

2.3 Overall Loss Function
The final loss function is a linear combination of
the cross entropy loss of the intent classifier, the
CRF loss given by the NER output and the entity
contrastive loss:

Loverall = w1 · ℓCE +w2 · ℓCRF +w3 · ℓENT (3)

where w1 . . . w3 are hyper-parameters that weight
each of the individual loss components. In our
experiments we set each wi = 1.
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↓ Lower is better Profile 1 Profile 2
Contrastive
Encoder (%)

Entity
Contrastive (%)

Contrastive
Encoder (%)

Entity
Contrastive (%)Domain

Global -19.43 -19.91 -17.55 -18.19
Music -7.79 -11.77 -8.11 -11.71
Notifications -14.38 -17.20 -12.37 -16.32
Video -14.18 -17.02 -6.23 -9.24
Shopping -14.29 -7.19 -11.63 -8.08
Local Search -15.34 -23.94 -16.42 -25.17
General Media -17.30 -17.63 -18.23 -18.28
Calendar -3.21 -0.96 -6.76 -4.50
Books -11.93 -17.19 -8.34 -14.76
Cinema Show Times -1.78 +17.08 -13.87 +13.87
Sports -0.02 -0.02 -12.00 -11.97

Table 1: Relative improvement (SEMER) results compared to a baseline model. ↓ Lower is better. Contrastive
Encoder contrastively fine-tunes a common encoder. Entity Contrastive further adds an entity contrastive loss
function. Results are shown for two virtual assistant profiles.

2.4 Implementation Details

We use a BERT (Devlin et al., 2019) style en-
coder with embedding dimension 768 and Gaus-
sian embedding dimension 128. The encoder is
made up of 4 hidden layers with 16 attention heads.
The encoder’s weights are first initialized via a
task-specific model distillation procedure (Cita-
tion anonymized due to self-reference). Encoder
weights are further fine-tuned using contrastive sen-
tence embedding (Gao et al., 2021), where a single
positive utterance is contrasted with 10 negative
utterances. The fine-tuned encoder is common and
shared between domains. Each domain’s IC-NER
model is then further trained for a maximum of
60 epochs and early stopping was invoked if there
was no improvement in validation error rate for 4
epochs.

3 Experimental Results

We provide experimental results in the following
three settings:
Offline (per domain): We compare 11 domain
models trained using entity contrastive learning
vs. baseline models without entity contrastive train-
ing. All domains that utilize gazetteers are in-
cluded.
Offline (full system): We compare a full virtual
assistant system trained using entity contrastive
learning against a baseline system on a collection
of static test-sets.
Online: We conduct an A/B test using live traffic to
compare a full virtual assistant system trained using

entity contrastive learning vs. a baseline model that
does not.
Full descriptions of each error metric used for (of-
fline) evaluation are given in Appendix A. We pro-
vide brief summaries here:
SEMER: Semantic Error Rate reflects the propor-
tion of incorrectly labeled entities and intents.
ICER: Intent Classification Error Rate measures
the proportion of misclassified intents
IRER: Intent Recognition Error Rate measures
how often predictions contain any mistakes in ei-
ther entities or intent.

3.1 Offline (per domain) Results
Table 1 shows per domain relative improvement SE-
MER results compared to a live baseline model that
doesn’t utilize entity contrastive training. Lower
results are better. Two candidate models are com-
pared: 1) Contrastive Encoder, where only the
encoder was pre-trained using supervised sentence
contrastive learning based on (Gao et al., 2021) and
2) Entity Contrastive, which builds on top of 1),
and further trains using the entity contrastive loss
function from Section 2.2. Results are shown for
two virtual assistant profiles. Profile 1 is a voice
only system, whereas Profile 2 is an assistant that
has a display monitor.

Cinema Show Times was the only domain that
did worse than the baseline when using entity con-
trastive training. This may be due to the relatively
large number of entity types (33) and the smaller
training and validation dataset size (30,311 and
3,368, respectively). Appendix B lists the total
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Profile 1 SEMER ↓ ICER ↓ IRER ↓
Contrastive Encoder -10.7% -16.2% 7.9%
Entity Contrastive Training -12.7% -17.5% -10.7%
Profile 2 SEMER ↓ ICER ↓ IRER ↓
Contrastive Encoder -9.2% 14.6% 6.6%
Entity Contrastive Training -11.0% -16.2% -9.0%

Table 2: Error results compared to a baseline model. ↓ Lower is better. Contrastive encoder only training is
compared to full entity contrastive learning.

Drules ↓ Dstat ↓ Dstat-tail ↓
Global 0.03 1.97 1.10
Music -1.85† -0.01† -0.06†

Shopping -13.09† -8.27† -8.72†

Video 7.48† 1.89† 2.40†

Overall -0.79† -0.55 -0.68†

Table 3: A/B test results on live traffic comparing an ex-
perimental virtual assistant system that employs entity
contrastive learning against a baseline control system.
Measurements show relative percentage change of user
dissatisfaction against the control inferred using behav-
ioral rules (Drules), a statistical model applied to all
traffic (Dstat) and tail-distribution traffic only (Dstat-tail).
↓ Lower is better. †Indicates statistically significant re-
sults at a 95% confidence level.

number of utterances in both training and validation
datasets, as well as the number of entities labels
for all 11 domains. All other domains improved
against the baseline. Overall, entity contrastive
training out-performed contrastive encoder train-
ing in 8 out of 11 domains for Profile 1 and 7 out
of 11 domains for Profile 2. Furthermore, entity
contrastive training achieved the best results for
the top four highest-traffic domains in both profiles.

3.2 Offline (full system) Results

Table 2 shows overall relative improvement against
a baseline system measured using SEMER, ICER
and IRER metrics. Once again we compare a vir-
tual assistant system that trained a contrastive en-
coder only vs. full entity contrastive training. We
see that entity contrastive training leads to larger
relative improvement, compared to contrastive en-
coder training only, for all metrics.

3.3 Online (A/B test) Results

The final set of results we present were collected
from an A/B test using an experimentation platform
to evaluate full virtual assistant systems on live cus-

tomer traffic. Once again we compare a system that
uses entity contrastive training against a baseline
model that does not. The experimental (contrastive)
and control (baseline) model each received 10% of
customer traffic and the A/B test ran for two weeks.
As no ground truth is available for online data, we
rely on a rule based system (Drules), and a statistical
model (Dstat) that infers user dissatisfaction given
a virtual assistant’s response. We also measure user
dissatisfaction specifically for tail traffic, i.e. the
bottom 40% of frequent utterances (Dstat-tail).

Results are presented as relative comparisons to
the baseline system in Table 3. Per-domain results
are included for domains of special interest, includ-
ing those with higher traffic volumes. The overall
results, in the final row, evaluate the full virtual
assistant system on all domains. Lower results are
better. Overall the experimental contrastive model
improved all user dissatisfaction metrics. Results
are statistically significant at the 95% confidence
level (p < 0.05) for Drules and Dstat-tail and just out-
side the range for Dstat (p = 0.058). Per-domain
results show that the baseline model outperformed
the experimental model for Global (however not
statistically significantly, p > 0.05), and Video
(p < 0.05). Further analysis showed that the ex-
perimental model likely incorrectly predicted the
Video domain on device profiles that didn’t have
display capability. The largest improvements were
observed in the Shopping domain (p < 0.05) and
there are also improvements in Music (although
not statistically significant, p > 0.05).

4 Embeddings Analysis

We further provide qualitative and quantitative anal-
ysis of the entity representations learned by a base-
line and contrastive model. The baseline model dif-
fers to the contrastive model only by removing the
ℓENT component of the loss function in Eqn. (3).
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Domain Baseline ↓ Contrastive ↓
Video 0.95 0.28
Sports 0.41 0.54
Shopping 0.85 0.14
Notifications 0.84 0.21
Music 1.03 0.27
Local Search 1.00 0.30
Global 0.77 0.28
General Media 0.89 0.18
Cinema Show Times 0.71 0.28
Calendar 0.83 0.15
Books 0.85 0.15
Average 0.83 0.25

Table 4: Alignment scores per domain comparing base-
line vs. contrastive NER learning. ↓ Lower is better.

4.1 Qualitative: Dimensionality Reduction
Visualization

For each domain, we derived t-distributed stochas-
tic neighbor embedding (t-SNE) (Van der Maaten
and Hinton, 2008) plots to visualize entity repre-
sentations learned by the baseline and contrastive
model. Embeddings were pulled from a random-
ized subset of validation data. Dimensionality re-
duction took place on the µi representations learned
by each model, R128 → R2. Fig. 2 shows a com-
parison between the baseline and contrastive model
for four domains (a) Calendar, (b) Music, (c) No-
tifications and (d) Video. Appendix D displays
t-SNE plots for the remaining domains. Looking at
Fig. 2(a) for the Calendar domain, we can see that
points for the most frequent entity type (Date) don’t
appear to cluster at all and are quite dispersed in the
t-SNE plot on the left (baseline). However, in the
plot on the right (contrastive) we see a well-formed
cluster for Date in the top right. We also notice in
Fig. 2(b) for the Music domain, the most frequent
entity type (SongName) exhibits some clustering
behavior in the baseline, but forms multiple distinct
clusters in the contrastive model. We can also eas-
ily see points that did not have the SongName label
within these clusters. In particular, there are many
overlapping points for AlbumName, ArtistName
and Lyrics. AlbumName and Lyrics can likely over-
lap with SongName and cause confusion for the
model. Given that the data-set is very large, annota-
tion errors are also frequent and it is possible these
overlapping points could potentially identify errors
in the labeling process.

4.2 Quantitative: Alignment and Uniformity
We further analyze representation quality using the
quantitative metrics of alignment and uniformity
introduced in (Wang and Isola, 2020). The align-
ment metric assumes a distribution of positive pairs
and calculates expected distance between repre-
sentations of these pairs. Positive pairs should lie
closer together in representation space and produce
lower values. Conversely, uniformity measures
how well learned representations are distributed
uniformly on a unit hyper-sphere for instances from
all classes.

Given that we do not rely on positive pairs, but
instead wish to align token representations belong-
ing to the same class (i.e. has the same entity label),
we slightly alter the original alignment metric to
consider all non self-referential, pairwise compar-
isons between instances that belong to the same
class, pcls|x ̸=y. The uniformity metric remains the
same as in (Wang and Isola, 2020). We set hyper-
parameters as follows, α = 2 and t = 2.

Malign(f ;α) = Ex,y∼pcls|x ̸=y
[∥f(x)− f(y)∥α2 ]

(4)

Muniform (f ; t) = logEx,y∼pdata

[
e−t∥f(x)−f(y)∥22

]

(5)

Table 4 shows alignment values per domain. The
values in Table 4 are computed by taking the av-
erage alignment scores for all entities within each
domain. Alignment values for each entity type are
given in Appendix C. A weighted average is taken
that considers the number of tokens with a given
entity label. Lower values imply better alignment
between representations within the same class.

We can see in Table 4 that all domains have lower
alignment values with entity contrastive training,
except for the Sports domain. The Sports domain
has the least amount of training data and entity
types (see Appendix B), which may be the reason
that entity contrastive training does not result in
improvement over the baseline model.

Finally, we compute uniformity metrics. To re-
duce computational cost, we randomly sample 10%
of the entity embeddings. The uniformity scores
for the baseline and contrastive models were−3.54
and −3.11, respectively, indicating that the base-
line model produced embeddings that are likely
more uniformly distributed than the contrastive
model.
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Figure 2: A collection of t-SNE plots comparing embeddings from a baseline (left figure) and contrastive model
(right figure) in four domains (a) Calendar, (b) Music, (c) Notifications, (d) Video. Legend entries are restricted to
the top 20 most frequent slot labels with counts shown in parentheses. Alignment scores are also shown.

5 Related Work

Contrastive learning has been applied with tremen-
dous success over the last few years in tasks that
process data such as audio (Oord et al., 2018),
vision (Chen et al., 2020) and natural language
(Fang et al., 2020). Contrastive losses, such as
InfoNCE (Oord et al., 2018; Hénaff et al., 2019),
build on the original idea of noise contrastive esti-
mation (Gutmann and Hyvärinen, 2010; Mnih and
Kavukcuoglu, 2013) that learns a data distribution
by comparing it against a chosen noise distribu-
tion. Contrastive representation learning can ei-
ther be unsupervised (Chen et al., 2020; He et al.,
2020) or supervised (Khosla et al., 2020). Unsu-
pervised or self-supervised approaches have relied
upon techniques such as data augmentation (Chen
et al., 2020; He et al., 2020) and future self pre-
diction (Oord et al., 2018) as a way of ignoring
superfluous information to learn better class repre-
sentations. Supervised approaches (Khosla et al.,
2020) incorporate class label information during
learning and were introduced to avoid problems
with in-batch false positives. In natural language
tasks, contrastive learning approaches based on
data augmentation techniques have not fared as
well compared to their vision counterparts. Sim-
CSE (Gao et al., 2021) introduced both unsuper-

vised and supervised approaches for learning con-
trastive sentence embeddings. The unsupervised
approach relies solely on varying dropout masks
to achieve different representations of the same
input sentence, whereas the supervised task uses
examples from natural language inference datasets
(Conneau et al., 2017). Rather than learning sen-
tence embeddings, (Das et al., 2022) introduced
token contrastive learning in the context of improv-
ing few-shot learning. Our work does not focus
on few-shot learning, but instead seeks to evaluate
joint IC-NER models trained with entity contrastive
learning for the purpose of improving a large-scale
virtual assistant system.

6 Conclusion

We presented jointly trained IC and NER models
augmented with entity contrastive learning via an
additional loss function that attempts to pull sim-
ilar entities together in representation space, and
repel dissimilar entities apart. We provided a com-
prehensive evaluation of entity contrastive learning
within a full virtual assistant system by compar-
ing to baselines in both offline and online (A/B
test) experiments. Results show that employing
entity contrastive learning improves overall error
and alignment metrics and produces well-formed
embedding clusters in representation space.
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A Performance (Error) Metrics

The error metrics used to assess offline perfor-
mance are as follows:

SEMER: Semantic Error Rate evaluates slot-filling
and intent classification performance jointly, as
follows:

# Deletion + # Insertion + # Substitution
# Correct + # Deletion + # Substitution

Deletion occurs when the slot name is present in
ground truth but not in the prediction. Insertion is
the opposite when extra slot names are included
in the prediction. Substitution errors occur when
predictions do match ground truth slot labels, but
for an incorrect slot value. Correct slots are when
both the slot name and slot value match. Intent
classification errors are also counted as substitution
errors above.

ICER: Intent Classification Error Rate measures
the rate at which the intent of utterances are incor-
rectly predicted:

ICER =
# Incorrect Intents
# Total Utterances
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IRER: Intent Recognition Error Rate measures
how often predictions contain any mistake in either
slots or intent.

IRER =
# Incorrect (Slot or Intent)

# Total Utterances

B Dataset Sizes

Table 5 shows the dataset sizes (training and vali-
dation) for 11 gazetteer based domains. Also de-
picted are the total number of entities per domain.
Domains are listed in descending order based on
number of utterances. Global is the largest domain
and Sports is the smallest.

C Alignment Tables Per Domain

Alignment scores per slot are shown for each do-
main in Tables 6 to 16. The baseline model includes
no entity contrastive training. Results are restricted
to the top ten most frequent slots due to display pur-
poses. The missing remaining slots exhibit similar
trends to those shown. Size refers to the number
of tokens with a given slot label and Score is the
alignment score. Lower is better. The final column
shows relative change as a percentage. Negative
values show improvement of the contrastive model
over the baseline.

D t-SNE Visualizations

Figs. 3 and 4 depict the remaining t-SNE plots not
shown in the main body of the text. Once again, for
each domain, the baseline embeddings are on the
left and the contrastive model embeddings are on
the right. As in the figures in the main body, non-
entity (O) tokens are removed as they are not sub-
ject to contrastive training and legend entries are re-
stricted to the top 20 most frequent slot labels with
counts shown in parentheses. Alignment scores
are also shown. As with the figures in the main
body, we see improved clustering behavior in the
contrastive embeddings compared to the baseline
embeddings in all domains, except for the Sports
domain, which is quite sparse. It is also possible
that the perplexity value (which depends on dataset
size) is not optimal for the sports domain due to the
smaller dataset size.
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Domain Training instances Validation instances Number of entities
Global 3,165,309 351,702 117
Music 2,160,488 240,055 119
Notifications 818,963 90,996 62
Video 686,520 76,280 63
Shopping 602,748 66,972 54
Local Search 294,098 32,678 75
General Media 167,776 18,642 30
Calendar 137,313 15,258 46
Books 125,139 13,905 50
Cinema Show Times 30,311 3,368 33
Sports 21,347 2,372 13
Total 8,210,012 912,228 662

Table 5: Total number of training and validation utterances for 11 domains that utilize entity contrastive learning in
a large-scale virtual assistant system.

Calendar Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
Date 22860 1.08 27165 0.23 -78.21
EventName 21047 0.99 24815 0.14 -85.61
Time 12304 0.72 14510 0.06 -91.89
DataSource 8704 0.37 10415 0.01 -96.92
OrigTime 4087 0.20 4774 0.03 -83.13
EventType 3571 0.77 4212 0.17 -77.91
OrigDate 2096 0.62 2434 0.06 -89.63
ActiveUserTrigger 2017 0.79 2380 0.18 -77.19
VisualModeTrigger 743 0.61 903 0.10 -82.95
CalendarName 674 1.03 795 0.56 -45.65

Table 6: Alignment scores per slot for Calendar domain – baseline vs. contrastive. Results are restricted to the top
ten most frequent slots due to display purposes.

Music Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
SongName 20743 1.10 20637 0.26 -76.18
ArtistName 16567 0.98 16469 0.21 -78.55
MediaType 12730 1.08 12690 0.14 -87.52
GenreName 7119 1.08 7080 0.43 -59.86
AlbumName 4709 1.13 4696 0.53 -53.33
AppName 2015 1.21 2013 0.28 -77.14
PauseTrigger 2000 0.55 1994 0.10 -82.58
PlaylistName 1749 1.15 1744 0.46 -59.87
OnType 1459 0.84 1455 0.02 -98.10
Time 1335 0.74 1331 0.03 -96.18

Table 7: Alignment scores per slot for Music domain – baseline vs. contrastive. Results are restricted to the top ten
most frequent slots due to display purposes.
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Notifications Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
OnType 42129 0.92 41911 0.19 -79.61
Time 13185 0.76 13159 0.18 -76.72
Duration 11145 0.72 11082 0.19 -73.28
NotificationLabel 4706 0.96 4680 0.18 -81.83
Date 2989 0.86 2975 0.57 -33.90
NotificationStatus 1303 0.72 1303 0.01 -98.13
EndTime 1112 0.53 1107 0.21 -60.03
ActiveUserTrigger 866 0.45 862 0.02 -96.29
Quantifier 601 0.66 599 0.30 -54.46
EndDate 418 0.39 416 0.13 -66.83

Table 8: Alignment scores per slot for Notifications domain – baseline vs. contrastive. Results are restricted to the
top ten most frequent slots due to display purposes.

Video Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
VideoName 44095 0.94 43840 0.27 -71.26
ChannelName 8298 0.87 8268 0.16 -81.68
GenreName 7118 1.19 7103 0.63 -47.49
MediaType 5986 1.02 5945 0.09 -90.99
AppName 5151 0.96 5146 0.03 -96.84
VisualModeTrigger 3906 0.88 3891 0.11 -87.14
CharacterName 3302 0.86 3292 0.65 -24.85
ActorName 1968 0.87 1954 0.24 -72.31
PersonName 1841 0.98 1838 0.54 -44.64
Device 1114 0.95 1111 0.28 -70.81

Table 9: Alignment scores per slot for Video domain – baseline vs. contrastive. Note that the number slots has been
truncated for display purposes.

Shopping Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
ItemName 51246 0.91 53039 0.10 -88.83
ShoppingListType 5685 0.71 5876 0.28 -61.31
ProductSortType 4632 0.91 4797 0.30 -66.96
VisualModeTrigger 2430 0.46 2527 0.04 -92.11
ShoppingServiceName 1179 0.70 1210 0.06 -91.54
RecommendTrigger 1118 0.41 1158 0.23 -44.14
DealType 628 0.54 650 0.25 -54.14
Anaphor 471 0.64 481 0.39 -38.35
Quantifier 451 0.70 470 0.27 -61.93
PurchaseDate 388 0.64 450 0.47 -27.03

Table 10: Alignment scores per slot for Shopping domain – baseline vs. contrastive. Results are restricted to the top
ten most frequent slots due to display purposes.
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Local Search Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
PlaceName 42865 1.08 39231 0.22 -79.71
PlaceType 10667 1.12 9756 0.35 -68.90
DestinationPlaceName 10162 0.92 9315 0.19 -79.43
LocationSortType 6723 1.11 6196 0.24 -78.34
City 6082 1.09 5594 0.30 -72.69
Location 3745 1.06 3402 0.77 -27.54
DestinationLocation 3575 0.93 3233 0.30 -67.28
Anaphor 2611 0.98 2400 0.71 -27.91
Date 2292 0.91 2137 0.36 -60.37
PlaceFeature 2282 1.20 1999 0.64 -46.65

Table 11: Alignment scores per slot for Local Search domain – baseline vs. contrastive. Results are restricted to the
top ten most frequent slots due to display purposes.

General Media Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
AppName 48421 0.91 48231 0.17 -81.31
MediaType 4697 0.88 4685 0.14 -84.14
VisualModeTrigger 1548 0.55 1548 0.05 -90.17
GenreName 657 1.04 651 0.91 -12.72
SettingValue 560 0.68 555 0.43 -36.53
SortType 392 0.69 392 0.12 -83.22
Anaphor 219 0.85 219 0.44 -48.91
DeviceBrand 218 0.75 218 0.20 -72.92
ListPosition 192 0.73 192 0.24 -67.19
DeviceType 89 0.71 89 0.49 -31.13

Table 12: Alignment scores per slot for General Media domain – baseline vs. contrastive. Results are restricted to
the top ten most frequent slots due to display purposes.

Global Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
Setting 3591 0.82 2819 0.12 -85.10
MediaType 2536 0.78 2091 0.11 -85.87
DeviceType 2125 0.80 1765 0.22 -71.97
DeviceBrand 1971 0.70 1597 0.06 -91.48
ChannelName 1230 0.73 1072 0.15 -80.21
SearchContent 1038 0.84 858 0.21 -75.25
SettingValue 927 0.85 751 0.54 -36.92
DeviceLocation 558 0.81 471 0.38 -52.94
VisualModeTrigger 544 0.66 420 0.04 -93.17
ServiceName 535 0.82 411 0.33 -60.40

Table 13: Alignment scores per slot for Global domain – baseline vs. contrastive. Note that the number slots has
been truncated for display purposes.
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Books Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
BookName 34890 1.02 37703 0.16 -84.24
MediaType 23127 0.80 24870 0.08 -89.76
ServiceName 18965 0.77 20496 0.04 -94.93
AuthorName 4714 0.94 5075 0.42 -54.84
ActiveUserTrigger 3837 0.44 4170 0.03 -93.59
GenreName 3056 0.97 3313 0.61 -36.46
SortType 2994 0.56 3271 0.20 -64.82
SectionType 2078 0.90 2321 0.04 -95.76
Narrator 2057 0.60 2265 0.29 -51.25
Anaphor 1728 1.01 1861 0.29 -71.08

Table 14: Alignment scores per slot for Books domain – baseline vs. contrastive. Results are restricted to the top ten
most frequent slots due to display purposes.

Cinema Show Times Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
MovieTitle 25800 1.06 7134 0.36 -66.04
EndTime 18795 0.19 5206 0.02 -90.80
MediaType 17210 0.66 4749 0.17 -73.88
PlaceName 9413 0.97 2594 0.31 -67.74
Time 8733 0.25 2413 0.04 -82.28
Date 4810 0.88 1314 0.71 -19.28
PlaceType 2679 0.88 751 0.23 -73.53
SortType 2190 0.92 602 0.30 -67.00
City 1828 0.86 502 0.96 10.82
PostalCode 1708 0.69 478 0.07 -89.20

Table 15: Alignment scores per slot for Cinema Show Times domain – baseline vs. contrastive. Results are restricted
to the top ten most frequent slots due to display purposes.

Sports Baseline Contrastive
Slot Size Score ↓ Size Score ↓ % change
Date 739 0.37 721 0.57 55.33
SortType 130 0.62 124 0.43 -31.23
VisualModeTrigger 61 0.42 58 0.63 52.68
SportsRole 19 0.61 19 0.82 34.47
Time 18 0.37 18 0.02 -93.37
Sport 10 0.49 10 0.01 -98.04
League 4 0.04 4 0.00 -98.81
Anaphor 2 0.03 2 0.00 -97.17

Table 16: Alignment scores per slot for Sports domain – baseline vs. contrastive.
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Figure 3: Remaining t-SNE plots for domains: Shopping (top left), Local Search (top right), General Media (bottom
left) and Global (bottom right).

Figure 4: Remaining t-SNE plots for domains: Books (top left), Cinema Show Times (top right) and Sports (bottom
middle).
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Abstract

Product catalogs, conceptually in the form of
text-rich tables, are self-reported by individ-
ual retailers and thus inevitably contain noisy
facts. Verifying such textual attributes in prod-
uct catalogs is essential to improve their re-
liability. However, popular methods for pro-
cessing free-text content, such as pre-trained
language models, are not particularly effective
on structured tabular data since they are typ-
ically trained on free-form natural language
texts. In this paper, we present Tab-Cleaner, a
model designed to handle error detection over
text-rich tabular data following a pre-training
/ fine-tuning paradigm. We train Tab-Cleaner
on a real-world Amazon Product Catalog table
w.r.t millions of products and show improve-
ments over state-of-the-art methods by 16% on
PR AUC over attribute applicability classifica-
tion task and by 11% on PR AUC over attribute
value validation task.

1 Introduction

Product catalogs are widely used by E-commerce
websites to organize product information (Dong
et al., 2020). They can be conceptualized as wide
tables where each row corresponds to a product and
each column corresponds to an attribute (Table 1).
Most of the product catalog data are self-reported
by individual retailers and thus inevitably contain
various types of errors (Dong et al., 2020). It is
critical to clean the data to avoid cascading errors
harming downstream applications (Pujara et al.,
2017; Chu et al., 2016).

Due to product catalogs’ wide tabular format
and rich textual content, attribute cleaning poses a
number of challenges as we outline below.

C1: Product catalogs are structured tables
with unstructured textual values. Errors in prod-
uct catalogs are indicated by column-wise, row-
wise, and table-wise inconsistencies (Table 1).
While common pre-trained language models (LMs)
(Rajpurkar et al., 2016; Clark et al., 2020; Beltagy

et al., 2019; Martin et al., 2019) are effective in
processing free texts, they are not suited to cap-
ture tabular structures. Although recent works (Yin
et al., 2020; Herzig et al., 2020) have adapted Trans-
formers to jointly query tabular and textual data ,
their goal is information extraction (e.g. answer-
ing SQL/free text questions) or tabular structure
prediction, rather than error detection.

C2: Attributes in product catalogs are
strongly correlated with each other. For example,
in Table 1, “Cheddar” is a valid flavor on its own,
but contradicts its ingredient column “Cayenne
Pepper, Paprika Extract, Dehydrated Spices”. Such
correlation renders anomaly detection methods fo-
cusing only on value distributions in a single col-
umn ineffective.

C3: Product catalogs are extraordinarily
wide. Considering that some attributes of prod-
uct catalogs may be text-heavy (e.g., product ti-
tles and descriptions are often very long.), a super-
long sequence will arise from concatenating all
textual attributes of a specific product. Existing
table representation models (Yin et al., 2020; Du
et al., 2021) restrict input sequence length to a cer-
tain budget (e.g., 512) by truncation, which will
inevitably cause information loss.

To address the above challenges, we present Tab-
Cleaner, a transformer model with a hierarchical-
attention mechanism and trained with the pre-
training / finetuning paradigm to facilitate
data cleaning over text-rich tabular data for E-
commerce catalog. Our proposed model is generic.
It applies not only to the product domain but also
excels in other domains which involve text-rich
tabular data. In summary, this paper makes the
following contributions.

• We propose a tabular structure-aware pre-training
/ fine-tuning paradigm to enable a Transformer-
based model to process text-rich tabular data.

– We propose a novel hierarchical attention
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Product Title Product Category Flavor Ingredient Color Size

R1
Brand A Tortilla Chips

Spicy Queso, 6 - 2 oz bags
† chips-and-crisps Spicy Queso Ground Corn, Chipotle Pepper

Powder, Paprika Extract, Spices - 6 - 2 oz bags

R2

Brand B Bean Chips Spicy Queso†,
High Protein and Fiber, Gluten Free,
Vegan Snack, 5.5 Ounce (Pack of 6)

chips-and-crisps Cheddar
Navy Beans, Cayenne Pepper,

Paprika Extract,
Dehydrated Spices

- 5.5 Ounce
(Pack of 6)

R3 Brand C Organic Honey, Blossom, 17.6 Ounce† honey Blossom 100% pure raw honey
straight from the hive - 17.6 Ounce

R4
Brand D BPA Free No Spill

Sippy Cup, Orange (9 ounce)
† baby-drinkware Orange - Orange 9 ounce

R5

Brand F Women’s Spa Studio
Green Tea Eye Pads 2 Pack- Each Contains

5 treatment (Total 10 Treatments)

† green-teas Green Tea
Aloe, Camellia Sinensis

Leaf Extract,
Panax Ginseng Root Extract

Green Total
10 Treatments

† We mask the brand of the products to avoid revealing sensitive information.

Table 1: An example product catalog, where each row corresponds to a product and each column corresponds to an attribute. A
vast majority of attributes in product catalogs are textual attributes. The incorrect attributes are highlighted in red.

mechanism to capture attribute-level corre-
lation.

– The hierarchical attention also enables a
sparse attention pattern to reduce memory
consumption and speed-up training, which
allows us to cope with long sequences.

• We train Tab-Cleaner on a real-world Amazon
Product Catalog w.r.t millions of products and
show that we can improve over SOTA methods
by 16% on PR AUC over attribute applicability
classification task and by 11% on PR AUC over
attribute value validation task.

2 Problem Definition

Given a product catalog table T , each row corre-
sponds to a product (pi) and each column corre-
sponds to an attribute (aj). Cell Tij is the value of
attribute j of product i containing a list of tokens.
Attributes in product catalog data can be broadly
divided into two classes:

• Context attributes (Acontext), which are usually
long texts that describe general information of a
product (e.g., title, product description).

• Feature attributes (Afeature), which are usually
short texts that describe a specific attribute about
a product (e.g., color, size, flavor, scent).

We formally define the problem of data cleaning
over the product catalog table as follows:

Given: a product catalog table T ,
Identify: incorrect cells about feature attributes
{Tij}pi∈P,aj∈Afeature

3 Tab-Cleaner Framework

Since manual annotation of error data is costly and
labor-intensive to obtain on E-commerce websites,
we follow the pre-training/finetuning paradigm to
alleviate the need for large-scale labeled data for
data cleaning. Tab-Cleaner is first pre-trained on
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Feature Attribute 1Context Attribute 1 Feature Attribute 2
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(c) Overall attention pattern
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Figure 1: Hierarchical attention mechanism for capturing
the interactions among different attributes in a table using a
two-level architecture. (a) encodes cells (i.e., attributes) on the
basis of their tokens; (b) encodes rows (i.e., products) on the
basis of all their cells; (c) the combined hierarchical attention.

an unlabeled product catalog corpus with tabular
structure-aware pre-training objectives carefully
designed to capture the tabular structure. Then,
Tab-Cleaner fine-tunes the model using manually
curated labeled data.

3.1 Tab-Cleaner Architecture
Transformer-based models cannot be directly ap-
plied to tabular data. To flatten each row in the
input table into a sequence, we first prepend each
attribute value with a [COL] token and its column
name, then concatenate them into a flat sequence.
For example, Tab-Cleaner flattens R1 in Table 1 as
follows.

[CLS] [COL] Product title: Brand A Tortilla
Chips Spicy Queso,6 - 2 oz bags [COL] Product
Category: chips-and-crisps [COL] Flavor: Spicy
Queso [COL] Ingredient: Ground Corn, Chipo-
tle Pepper Powder, Paprika Extract, Spices [COL]
Size: 6 - 2 oz bags

The input structure is designed to capture both
attribute and product representations.

Attribute (Cell-level) Representation: The
first token of every cell is always a special token
[COL]. The final hidden state corresponding to to-
ken [COL] is used to represent a cell.

Product (Row-level) Representation: Each
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Figure 2: The configuration of attention patterns for context
attribute learning. (a) partitions the long context into smaller
sequences; (b) local sliding window attention (w = 3); (c)
global dilated sliding window attention (d = 2); (d) the com-
bined model.

row in the product catalog corresponds to a spe-
cific product. The first token of a row (i.e.,[CLS])
is used to represent a product.

Tab-Cleaner is implemented by extending Dis-
tillBERT’s architecture (Sanh et al., 2019) with
additional embeddings to capture tabular structure.
The detailed architecture is given in Appendix A.

3.2 Hierarchical Attention Mechanism
Long sequences from concatenated product at-
tributes are challenging for Transformer-based
models to process due to quadratic scaling in the
full self-attention operation. However, full atten-
tion to the entire content is not necessary for mod-
eling structured tables. Based on this insight, we
propose a hierarchical attention mechanism that
models the tabular structure through a two-level
architecture, first encoding all cells on the basis
of their tokens (Fig. 1 (a)), then encoding the en-
tire rows on the basis of all their cells (Fig. 1 (b)).
In this way, we avoid full attention calculation,
thereby greatly reducing the memory and computa-
tion in need. The detailed implementation is given
in Appendix B.

3.2.1 Cell Encoding
A cell is the smallest unit to form a table. The
list of tokens within each cell expresses semantics
independently of the rest content in a row. A local
window that covers only the target cell is enough to

learn its semantics. Motivated by such observation,
our local attention pattern employs a flexible-size
window to include only the tokens of the target cell
to calculate its representation as shown in Fig. 1
(a). Attributes in a product catalog fall into two
classes: (1) feature attributes, which are usually
short and can be easily covered by a small window;
(2) context attributes, which can contain thousands
of tokens. A window with a limited size cannot
cover a context attribute.

Context Attribute Representation Learning A
straightforward solution may partition a context
attribute into smaller sequences (Fig. 6 (a)). Such
partitioning could result in information loss. To ad-
dress this issue, we propose a novel local + global
attention to learn the context attribute representa-
tion (Fig. 6 (d)).

Local Attention Most information about a to-
ken can be derived from its surrounding tokens. We
define a sliding window attention to capture local
information around each token. Given a fixed win-
dow size w, each token attends to 1/2w its local
neighboring tokens on each side (Fig. 6 (b)).

Global Attention Although the local attention
shows great effectiveness in capturing local con-
text as demonstrated in Longformer (Beltagy et al.,
2020)), it cannot aggregate the global information
into the token [COL]. The [COL] has to attend all
tokens across the cell to collect the global informa-
tion. To reduce the computational cost, we propose
a “dilated attention” on [COL] where the window
has gaps of size dilation d (Fig. 6 (c)). Note that the
“dilated attention” operation is symmetric. All to-
kens attended by [COL] also attend [COL] tokens.
Assuming we set dilation d equal to the window
size w. Given a sequence with length as L, we can
learn [COL] by attending only ceil(

√
L) tokens.

We discussed the expressiveness of local +
global attention in Appendix C and showed that it
is as expressive as full attention.

3.2.2 Row Encoding
Attributes of products are usually correlated with
each other, which is useful to identify incorrect
attribute values. For example, R1 in Table 1 indi-
cates a strong correlation between the ingredient
“pepper” and the flavor “spicy”. To capture the
underlying correlations among attributes, the hier-
archical attention mechanism focuses on learning
the attention among [COL] tokens (i.e., attribute
representation) and [CLS] tokens (i.e., product rep-
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(a) Original Table
Flavor Color

R1 Spicy Queso -
R5 Green Tea Green

(b) Swap Cells on the Same Row
Flavor Color

R1 Spicy Queso -
R5 Green Green Tea

(c) Swap Cells on the Same Column
Flavor Color

R1 Green Tea -
R5 Spicy Queso Green

Table 2: The different cell corruption strategies. We highlight the swapped attributes in red.

resentation) at its second level as shown in Fig. 1
(b). The learned attention cannot only capture the
interaction among attributes but also aggregate the
entire content of a row into the special token [CLS].

3.2.3 Conditional Encodings of Feature
Attributes over Context Attributes

Context attributes contain useful information about
products for verifying the correctness of feature at-
tributes. However, given the hierarchical attention
mechanism, feature attributes are learned indepen-
dently from context attributes. To enable condi-
tional encodings of feature attributes over context
attributes, we further improve cell encoding for
feature attributes as discussed in Appendix D.

3.3 Pre-training Objectives

In order to pre-train Tab-Cleaner using unlabeled
product catalog tabular corpus, we adopt the
Masked Language Model (MLM) objective for
learning token-level representations. In addition,
we also propose several different objectives for
tabular structure representation learning (e.g., cell-
level and row-level representations).

Objective for learning token level representa-
tions: We apply the standard Masked Language
Modeling (MLM) objective to learn token-level
representations, with a masking rate of 15%. Since
MLM lacks the ability to decompose the tabular
structure, we also propose two different objectives
for tabular structure representation learning:

Objective for learning cell-level representa-
tion: Essentially, we corrupt a certain percentage
of cells and then learn a classifier to decide if the
cell has been corrupted. This objective enables the
model to identify incorrect attributes. We use two
different corruption strategies to generate corrupted
cells as shown in Table 2.

• Swap cells on the same row: randomly swap
two attributes of the same product, e.g. switch
the attribute value of color and flavor of R5 to
construct corrupted cells (Table 2(b)).

• Swap cells on the same column: randomly swap
an attribute of a product with the same attribute

from another product, e.g. switch the flavor at-
tributes of R1 and R5 (Table 2(c)).

A binary classifier is placed over the final hidden
state corresponding to the token [COL] to decide
whether the cell has been corrupted.

Objective for learning row-level representa-
tion: Each product in the product catalog is associ-
ated with a label indicating its category. To learn
row-level representation, we apply a multi-class
classifier over the final hidden state corresponding
to [CLS] token to predict the category of the prod-
uct. This objective helps the model to understand
the entire content of a product.

Both objectives for learning cell and row level
representation can be modeled using cross-entropy
between the one-hot label and the prediction:

L =
∑

k

yk log pk (1)

where yk is the true label and pk is the softmax
probability for the k-th class. The final objective
function is formulated by combining all three ob-
jectives together.

3.4 Fine-tuning

The pre-training procedure is followed by the fine-
tuning stage on labeled data. During the fine-tuning
stage, we apply Tab-Cleaner to identify two kinds
of data errors:

• Inapplicable attribute, which refers to an at-
tribute that a product should not have. For exam-
ple, a sippy cup is not edible and thus should not
have the attribute “flavor” (R4 in Table 1);

• Incorrect attribute value, which refers to in-
correct value of an attribute. For example, the
category of product “Women’s Spa Studio Green
Tea Eye Pads” should be “eye pad” instead of

“green teas”. (R5 in Table 1).

To predict the correctness of an attribute, its rep-
resentation ([COL] embeddings) is fed into a two-
layer network with ReLU activations. The output is
then used to predict the correctness from a sigmoid
layer, training with a binary classification objective.
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We demonstrate that Tab-Cleaner is effective in de-
tecting both inapplicable attributes and incorrect
attribute values in experimental studies.

4 Experiments

In this section, we evaluate Tab-Cleaner over two
different data cleaning downstream tasks on real-
world Amazon datasets.

4.1 Datasets
Datasets for Pre-training We construct two tab-
ular corpora based on the product data obtained
from the public Amazon website for pre-training.
Due to the different numbers of attributes included,
we call these two pre-training tables standard table
and wide table. Specifically, the wide table is con-
structed to investigate how Tab-Cleaner deals with
extremely long sequences. Detailed information
has been introduced in Appendix E.1 and E.2.

Datasets for Fine-tuning To ascertain the per-
formance of Tab-Cleaner, we study two down-
stream tasks: attribute applicability classification
and attribute value validation. Details are provided
in Appendix E.2.

4.2 Experimental Setup
Pre-training & Fine-tuning We train Tab-Cleaner
for three epochs for pre-training and 10 epochs for
fine-tuning. Detailed settings are in Appendix E.3.

Evaluation Metric. Our goal is to identify in-
correct attributes of a product, which is a binary
classification problem. We adopt the area under the
Precision-Recall curve (PR AUC), the area under
the Receiver Operating Characteristic Curve (ROC
AUC), and Recall at Precision=X (R@P=X) for
evaluation. Details about these metrics are given in
Appendix E.3.

Compared Methods. We evaluate Tab-Cleaner
against state-of-the-art (SOTA) algorithms, includ-
ing (1) DistillBERT (Sanh et al., 2019), since Tab-
Cleaner is implemented by extending DistillBERT;
(2) Transformer for Longer Sequences (e.g., Long-
former (Beltagy et al., 2020)); (3) Nature Language
Inference method (NLI). Details about the baseline
methods are given in Appendix E.3. We did not in-
clude tabular representation models as our baseline
because they cannot be applied to our scenario.

4.3 Data Cleaning Tasks
Attribute Applicability Classification We require
each method to predict the applicability of the at-
tribute in the test dataset. Details are provided in

Appendix E.4. As presented in Table 3: (1) NLI
performs the worst among all methods, indicating
the necessity of jointly leveraging all attributes to
detect error; (2) Tab-Cleaner consistently outper-
forms baselines in all cases with significant perfor-
mance gain (improving SOTA from 0.296 to 0.379
on R@P=0.9).

Attribute Value Validation We require each
method to validate the correctness of the attribute
value in the test dataset. As shown in Table 4,
TabCleaner handles both short sequences and long
sequences very well.

4.4 Scalability
To demonstrate the scalability of Tab-Cleaner, we
present training time and memory cost for pre-
training over the wide table in Table 5. Specifically,
we train Tab-Cleaner for three epochs where Tab-
Cleaner has 6 layers, a hidden dimensionality of
768, 12 heads, and a batch size of 32. To fairly
compare different transformer-based methods, the
same setting is employed for all models. Before
pre-training, we truncate each row’s contents to
512 tokens to make training feasible for Distill-
BERT. Tab-Cleaner shows the best performance in
terms of both pre-training time and memory cost.
The superiority of Tab-Cleaner can ascribe to the
sparse attention pattern enabled by the hierarchical-
attention mechanism.

Methods Pre-training Time
(Hours/Epoch)

Memory Cost
(MB)

DistillBERT 26.95 31263
Longformer 60.56 32391
Tab-Cleaner 21.63 26501

Table 5: Training time and memory cost of different methods.

4.5 Ablation Study
Improvement brought by pre-training Tab-
Cleaner follows the pre-training/finetuning
paradigm to alleviate the need for large-scale
labeled data for data cleaning. To validate the
improvement brought by pre-training, we derive
a baseline Tab-Cleaner without pre-training
and compare it with Tab-Cleaner over attribute
applicability classification task as shown in
Fig. 3. Tab-Cleaner without pre-training directly
fine-tunes over the distilled version of the BERT
base model without pre-training over the Amazon
product catalog corpus. We observe that the
pre-training brings significant performance gain:
Tab-Cleaner with pre-training increases the PR
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Pre-training over Standard Table
Methods PR AUC ROC AUC R@P=0.6 R@P=0.7 R@P=0.8 R@P=0.9
NLI 0.33 0.832 0.237 0.181 0.11 0.079
DistillBERT 0.593 0.907 0.561 0.47 0.411 0.296
Longformer 0.554 0.905 0.501 0.462 0.395 0.245
Tab-Cleaner 0.613 0.91 0.583 0.533 0.437 0.379

Pre-training over Wide Table
Methods PR AUC ROC AUC R@P=0.6 R@P=0.7 R@P=0.8 R@P=0.9
NLI 0.33 0.832 0.237 0.181 0.11 0.079
DistillBERT 0.468 0.872 0.395 0.359 0.316 0.126
Longformer 0.533 0.89 0.403 0.407 0.347 0.185
Tab-Cleaner 0.541 0.903 0.458 0.411 0.375 0.3

Table 3: Results of data cleaning over attribute applicability
classification task. The numbers in bold represent the best
performance. TabCleaner gives the best performance.

Pre-training over Standard Table
Methods PR AUC ROC AUC R@P=0.6 R@P=0.7 R@P=0.8 R@P=0.9
NLI 0.242 0.637 0.011 0.019 0 0
DistillBERT 0.622 0.894 0.561 0.388 0.226 0.011
Longformer 0.512 0.847 0.326 0.207 0.023 0.019
Tab-Cleaner 0.623 0.871 0.646 0.476 0.242 0.059

Pre-training over Wide Table
Methods PR AUC ROC AUC R@P=0.6 R@P=0.7 R@P=0.8 R@P=0.9
NLI 0.242 0.637 0.011 0.019 0 0
DistillBERT 0.44 0.764 0.219 0.123 0.038 0.015
Longformer 0.471 0.793 0.276 0.188 0.061 0.019
Tab-Cleaner 0.487 0.81 0.415 0.234 0.076 0.011

Table 4: Results of data cleaning over attribute value valida-
tion task. The numbers in bold represent the best performance.
TabCleaner handles both short sequences and long sequences
very well.

Figure 3: Improvement brought by pre-training over attribute
applicability classification task.

Figure 4: Impact of different components of Tab-Cleaner in
terms of attribute applicability classification task.

AUC of Tab-Cleaner without pre-training from
0.340 to 0.613 and increases R@P=0.9 from 0.101
to 0.379.

Impact of different components of Tab-
Cleaner Upon the base Tab-Cleaner model, we
derive three different variants as follows:

• Tab-Cleaner w/o additional embeddings: We
exclude additional embeddings during learning.

• Tab-Cleaner w/o table structure-aware objec-
tive: We do not employ the pre-training objective
for learning tabular substructure representations.

• Tab-Cleaner w/o hierarchical attention: We
do not adopt the hierarchical attention.

We compare these three variants with the origi-
nal Tab-Cleaner framework over the attribute value
validation task in Fig. 4. We observe that: (1) The
original Tab-Cleaner achieves the best performance,
showing the necessity of integrating all three com-
ponents; (2) Tab-Cleaner w/o hierarchical attention
presents the worst performance, indicating the ef-
fectiveness of the hierarchical attention mechanism
in capturing information from tabular data.

4.6 Case Study

To further demonstrate the capability of Tab-
Cleaner in detecting real-world errors in the Ama-
zon dataset, we present examples of identified er-
rors and missed errors as shown in Table 6. We
pre-trained Tab-Cleaner over standard length tab-

ular corpus and fine-tuned Tab-Cleaner over two
downstream tasks: attribute applicability classifi-
cation and attribute value validation. Contrary to
the common settings, a positive label in an error
detection scenario means the data instance is an
error while a negative label means the data instance
is true. Therefore, the triples with the highest prob-
ability have the highest possibility to be incorrect.
Threshold σ is chosen based on the best classifica-
tion accuracies on the validation dataset in order
to classify the attributes. Given human labeled
incorrect attributes in the test dataset, we present
the top 3 attributes with the highest probability as
identified errors and the top 3 attributes with the
lowest probability as missed errors. We observe
that attribute values of identified errors usually vi-
olate the description of products and thus can be
correctly classified as errors. For example, prod-
uct 1 in Table 6 is not a skin care product, thus
should not have the attribute “skin type”. Although
the attribute values of products 7, 9, and 11 are
commonly observed phrases to describe the target
attributes (i.e., “dark” is widely used to describe
“skin tone”), their inconsistency with the product
description makes them no longer correct attribute
values. We also notice that most of the missed
errors are correct but labeled as errors due to the
wrong annotation. We verify the correctness of all
missed errors by ourselves and highlight the correct
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Error Type Identified Errors Missed Errors
ID Product Attribute Value ID Product Attribute Value

Inapplicable
Attribute

1 Brand A Hand
Sanitizer Holder Keychain skin type - 2 Brand B Isoprophyl Alcohol scent -

3 Brand C horse Fly mask
Over Fence - Face Covers flavor - 4 Brand D Velvetines

Liquid Matte Lipstick color -

5 Brand E sock stocking hose sox
anklets Women Print Multicolor

age range
description - 6 Brand F Coffee, Dulce

De Leche Flavored Coffee container type -

Incorrect
Attribute Value

7 Brand G ColorStay Overtime
Lipcolor Forever Scarlet (040) skin tone dark 8 Brand H Loose

Face Powder, Translucent finish type matte

9 Brand I Salad Dressing,
Zesty Robusto Italian variety garlic 10 Brand J Advanced Defence

Gum Treatment for Gingivitis product benefit cleansing

11 Brand J Popcorn
Seasoning, White Cheddar Item form butter 12

Brand K unisex-adult
Bottle Bright - Hydration Pack

Cleaning Tablets Clear
benefit brightening

Table 6: Identified errors & missed errors on Amazon Data. We present the top 3 human labeled incorrect attributes with the
highest probability as identified errors. Meanwhile, the top 3 human labeled incorrect attributes with the lowest probability are
presented as missed errors.

attributes in red and attributes for which we can-
not determine their correctness based on product
profiles in blue. We observe that Tab-Cleaner can
classify the samples which cannot be correctly clas-
sified by humans. This indicates the strong power
of Tab-Cleaner in identifying errors.

5 Related Work

Natural Language Inference (NLI) Data clean-
ing for product catalog data is related to natural
language inference (NLI). Given a premise (e.g.,
product profiles in our scenario), NLI aims to clas-
sify whether the hypothesis (e.g., attribute values
in our scenario) is true, false, or undetermined (Tay
et al., 2017; Chen et al., 2016). Most of the ex-
isting NLI models are based on cross-sentence at-
tention, which can be divided into word-by-word
attention-based methods (Rocktäschel et al., 2015;
Wang et al., 2017; Wang and Jiang, 2015) and inter-
sentence interaction-based methods (Yin et al.,
2018). Existing NLI methods are typically trained
on free-form natural language while Tab-Cleaner
is designed to handle error detection over text-rich
tabular data.

Tabular Data Representation Tables are im-
portant media of world knowledge (Cafarella et al.,
2008). Motivated by the large-scale language mod-
els pretrained on tasks involving unstructured natu-
ral language, several works attempt to extend the
pre-trained language models (LMs) to jointly learn
representations of tables as well as text (Yin et al.,
2020; Herzig et al., 2020; Zhang et al., 2019) with
applications including semantic parsing (Yin et al.,
2020; Herzig et al., 2020), entity linking (Deng
et al., 2020) and table structure understanding (Nas-
sar et al., 2022; Du et al., 2021; Deng et al., 2020).
The training data of these works usually involve
thousands of tables, where each table consists

of only a few rows and columns. Our proposed
method focuses on a different task, text-rich tabular
data cleaning, where the training data involve only
a single table w.r.t millions of rows.

Transformer for Longer Sequences It is chal-
lenging for Transformers-based models to process
long sequences because their self-attention opera-
tion scales quadratically with the sequence length
in terms of memory. There have been a number
of attempts to alleviate this issue (Dai et al., 2019;
Sukhbaatar et al., 2019; Rae et al., 2019; Wang
et al., 2019; Joshi et al., 2020; Child et al., 2019),
in which Longformer (Beltagy et al., 2020) and Big
Bird (Zaheer et al., 2020) are the most represen-
tative methods. All these methods focus on tasks
involving free-text long content (e.g., document
classification, and genomics data analysis), while
Tab-Cleaner is designed to cope with a wide table.

6 Conclusion

We have proposed Tab-Cleaner, a Transformer-
based model designed specifically for data-cleaning
tasks on text-rich tabular catalog data. It provides
a versatile solution for data cleaning tasks by ef-
ficiently handling the unique challenges posed by
text-rich tabular catalog data. To enhance the ef-
ficiency of training and reduce memory consump-
tion, we have introduced a novel hierarchical atten-
tion mechanism. This mechanism enables a sparse
attention pattern, allowing for the effective process-
ing of long sequences. We train Tab-Cleaner on a
real-world Amazon Product Catalog w.r.t millions
of products and show that we can improve over
SOTA methods greatly.
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Figure 5: Example input of Tab-Cleaner. Tab-Cleaner flattens each row in the input table into a sequence of tokens. The token
embeddings are combined with additional embeddings to capture tabular structure.

A Tab-Cleaner Architecture

Tab-Cleaner takes a m×n product catalog table as
input and produces token representation and tabular
substructure representation (i.e., cell-level represen-
tation and row-level representation). Tab-Cleaner is
implemented by extending DistillBERT’s architec-
ture (Sanh et al., 2019) with additional embeddings
that capture tabular structure (Fig. 5).

Additional embeddings The token embeddings
are combined with additional embeddings used to
encode tabular structure before feeding them to the
pre-training model:

• Position Embedding is the relative index of a
token within a cell. For example, the position
embedding of k-th token in a cell is k.

• Column Embedding is the index of the col-
umn that the token appears in. For example,
the column embedding of tokens in cell Tij is
j.

• Header/Cell Embedding indicates if the to-
ken corresponds to the column name or the
attribute value. It takes two possible values: 0
for the column name and 1 for attribute values.
For example, the 4-th cell of R1 in Table 1
consists of a list of tokens {[COL], [Ingredi-
ent], [:], [Ground], [Corn], [Chipotle], [Pep-
per], [Powder], [Paprika], [Extract], [Spices]},
where the header/cell embedding for token
[Ingredient] and [:] are 0 and 1 otherwise.

For each element xi in the input sequence, we con-
struct its input representation as:

h0
i = xele

i + x
pos
i + xcol

i + xheader
i (2)

where xele
i is the token embedding, xpos

i is the posi-
tion embedding, xcol

i is the column embedding, and
xheader
i is the Header/Cell Embedding. After con-

structing all input representations, we feed them
into a stack of L successive Transformer encoders
to encode the sequence and obtain:

hl
i = Transformer(hl−1

i ) (3)

where hl
i is the hidden state of xi after the l-th

layer.

B Implementation of the Transformer
Encoder with the Hierarchical
Attention

Let H = (h1, . . . ,hn) denote an input representa-
tion, where hi is a d dimensional vector and H is
a matrix in Rn×d. We discussed the construction
of H in Appendix B. Given the linear projections
Q,K, V , the Transformer encoder computes atten-
tion scores as follows:

Attention(Hi) =
K∑

k=1

σ
(
Qk(hi)Kk(HN (i))

T
)
.Vk(HN (i))

(4)
where N (i) denote the out-neighbors set of node i
and HN (i) corresponds to the matrix over {hj :
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Figure 6: The configuration of attention patterns for context
attribute learning. (a) partitions the long context into smaller
sequences; (b) local sliding window attention (w = 3); (c)
global dilated sliding window attention (d = 2); (d) the com-
bined model.

j ∈ N (i)}. K denotes the number of heads.
Qk,Kk, Vk are query, key, and value functions. Let
the adjacency matrix A define a directed graph G.
Each vertex in G corresponds to a token in the in-
put sequence. A ∈ [0, 1]n×n with A(i, j) = 1
if query i attends to key j and is zero otherwise.
The traditional Transformer encoder calculates full
quadratic attention by assuming G is a fully con-
nected graph. Instead, we sparsify G by proposing
a hierarchical attention mechanism meanwhile en-
sure the proposed attentions are as powerful and
expressive as full attention. For example, the graph-
ical illustration of the attention pattern shown in
Fig. 6 (d) is given in Fig. 7.

C Expressiveness of Local + Global
Attention for Context Attribute
Learning

In this section, we discussed the expressiveness of
local + global attention and showed that it is as ex-
pressive as full attention. The graphical illustration
of the attention pattern shown in Fig. 6 (d) is given
in Fig. 7. Each node in the graph corresponds to
a token in the input sequence. Following the pro-
posed attention pattern, the token can only attend
to its directly connected neighbors.

Definition 1 h-hop enclosing graph For a h-hop
enclosing graph G = (V,E), given any two nodes
x, y ∈ V , we have d(x, y) ≤ h.

It is obvious that the graph in Fig. 7 is a 3-hop

𝐸["#$]

𝐸&

𝐸'𝐸( 𝐸)

𝐸*𝐸+

𝐸,

Figure 7: Graphical illustration of attention pattern
shown in Fig. 6 (d). Each node in the graph corresponds
to a token in the input sequence. The token can only
attend to its directly connected neighbors.

enclosing graph. To generalize such observation,
we have the following theorem.

Theorem 1 Given an input sequence with length
as L, assuming we set dilation equal to the window
size d = w = ceil(

√
L), its attention graph is

always a 4-hop enclosing graph.

We denote the input sequence as x0:L−1 =
(x0, . . . , xL−1). Given a fixed window size w,
each token attends to 1/2w its local neighboring
tokens on each side and the global token [COL]
(x0) attends tokens (x0, xd, . . . , xn∗d) where n =
ceil(
√
L) − 1. Next, we will show that given any

node xi ∈ V , we have d(xi, x0) ≤ 2.

• If i = k ∗d, token xi directly connected to the
global token [COL]. We have d(xi, x0) = 1.

• If i ̸= k ∗ d, token xi attends all tokens within
the window x(i−1/2∗d):(i+1/2∗d) (we set w =
d). We can always find an integer k which
satisfies (i− 1/2 ∗ d) ≤ k ∗ d ≤ (i+1/2 ∗ d)
because (i + 1/2 ∗ d) − (i − 1/2 ∗ d) = d.
Therefore, we have d(xi, x0) = 2.

Since d(xi, x0) ≤ 2, we have d(xi, xj) ≤
d(xi, x0) + d(xj , x0) = 4. The attention graph
is always a 4-hop enclosing graph.

We know that a node in an h-hop enclosing graph
is able to collect information from any other node
in the graph using an h-layer GNN. Therefore, any
token xi is able to aggregate information from all
tokens in the sequence using a GNN with over 4
layers.
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D Conditional Encodings of Feature
Attributes over Context Attributes

Note that content attributes contain rich informa-
tion about products, which is useful for verifying
the correctness of feature attributes. For example,
the product title “Brand A Tortilla Chips Spicy
Queso, 6 - 2 oz bags” covers multiple attributes,
including brand, product category, flavor, and size.
We can easily verify the correctness of these at-
tributes against the product title. However, given
the hierarchical attention mechanism, feature at-
tributes are learned independently from context
attributes during the cell encoding stage. Although
the correlations between feature attributes and con-
text attributes can be captured afterward during the
row encoding stage, the cross-cell token-to-token
correlation is lost. To enable cross-cell token-to-
token conditional encoding of feature attributes
over context attributes, we improve cell encoding
for feature attributes as shown in the following ex-
ample.

Example: Given a product with description “
Mango Chipotle Origami Wraps are all natural
sushi wraps made from vegetable and fruit purees.
This wrap has a ripe, tropical mango flavor bal-
anced with the bold spiciness of chipotle pepper.
Origami Wraps are healthy, vegan, gluten-free al-
ternatives to seaweed nori and/or soy paper. They
are a creative, flavorful, and colorful new ingre-
dient for restaurant and home chefs alike. Use
Mango Chipotle wraps to add some Latin fusion
flavor to traditional sushi or to create innovative
sushi-style rolls with many different non-seafood
ingredients. Can be used for onigiri, nigiri, and
musubi.”, only the words highlighted in boldface
describe target attribute flavor. The value of this
product on attribute flavor is “mango”, which is
given in the product catalog.

To capture the cross-cell token-to-token corre-
lation between feature attributes and context at-
tributes, the most straightforward way is to con-
catenate the context attributes and target feature
attribute and require each token in the target feature
attribute to attend the entire concatenation. Since
the concatenation is usually long, attending all to-
kens in the concatenation is computationally im-
practical. Note that most contents in context at-
tributes are irrelevant to the target feature attributes.
We extract only the relevant information from con-
text attributes to build the concatenation instead.
We adopt two different extraction strategies as fol-

Figure 8: Length distribution of string encoding for over 3
million randomly sampled products.

lows:

• Extract the words around the target attribute
value. Given the above example, the words high-
lighted in blue will be extracted to concatenate
with “Flavor: Mango”.

• Extract the words around the most frequently ob-
served textual values for the target attribute. As-
suming the most frequent observed textual values
for attribute flavor include { “fruit”, “spiciness”,

“chocolate”, “vanilla” }, the words highlighted
in red will be extracted to concatenate with the

“Flavor: Mango”.

E Experiments

E.1 Analysis of Amazon Data
Tab-Cleaner flattens each row in the input table into
a sequence of tokens by concatenating all textual
attributes. Such a process may raise a super long
sequence. To investigate the length of rows in com-
monly used catalogs in daily business, we randomly
sampled web pages from the Amazon website and
extract dozens of commonly observed attributes
to construct a standard table. We show that long
sequences have been widely observed in the stan-
dard table with only dozens of attributes. To better
understand the performance of Tab-Cleaner over
extremely long sequences, we further construct a
wide table, which contains hundreds of attributes.

Analysis To investigate the length of rows in
Amazon data used in daily business, we randomly
sampled over millions of products associated with
31 commonly used attributes. To avoid bias, we fol-
low the product categories’ frequency distribution
(i.e., commonly-occurring product categories are
sampled more often than rare product categories) to
sample data. The sampled products are cross hun-
dreds of product categories from different domains,
such as food, beauty, and drug. After concatenat-
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Dataset Standard Tabular Data Longer Sequence
#Attributes (Columns) 31 119

#Products (Rows) 3,110,715 677,744
#Context Attributes 7 7
#Feature Attributes 24 112

#Average length 257 639

Table 7: Pre-training data statistics.

ing all attributes of a product into a sequence, the
length distribution of products’ string encoding is
given in Fig. 8. As observed from the figure, even
though we include only 31 attributes, over 10%
rows have lengths over 512. Note that most exist-
ing Transformer models can only handle sequences
that fall within the typical 512-token limits, it is
necessary to scale Tab-Cleaner to process longer
input sequences.

E.2 Datasets

Datasets for Pre-training To prepare the unla-
beled product catalog corpus for pre-training, we
construct two tables based on randomly sampled
web pages from the Amazon website. The first
table contains a standard amount of attributes (i.e.,
31). We call it a standard table. The second table
contains a much larger amount of attributes (i.e.,
119). We call it a wide table. The detailed statistics
about these two tables are given Table 7.

Standard Table We construct the standard ta-
ble using the data sampled in Section E.1. After
flattening the table into a sequence of tokens, the
average length of rows in the standard table is 257.

Wide Table To better investigate the perfor-
mance of Tab-Cleaner over extremely long se-
quences, we construct a wide table that contains
hundreds of attributes. To ensure the sufficient
length of sampled data, we concatenate all at-
tributes of a product into a sequence and select
only products with sequence lengths over 512. The
wide table contains 677,744 products associated
with 119 attributes. The average length of rows in
the wide table is 639.

Datasets for Fine-tuning To prepare labeled
data for fine-tuning, we asked Amazon Mechan-
ical Turk (MTurk) workers to manually label the
correctness of attributes based on product profiles.
Each data point is annotated by three Amazon Me-
chanical Turk workers and the final label is decided
by majority voting. In order to ascertain the perfor-
mance of learned Tab-Cleaner representation over
error detection, we study two downstream tasks:
attribute applicability classification and attribute
value validation. As shown in Table 8, the labeled

Task # Feature Attributes Data Split
#Train #Validation #Test

Attribute Applicability
Classification 24 43,002 2,150 8,601

Attribute Value
Validation 26 7,770 309 1,235

Table 8: Fine-tuning data statistics

data for the attribute applicability classification task
covers 53,753 products and 24 feature attributes,
and the labeled data for the attribute value vali-
dation task covers 9,713 products and 26 feature
attributes. For both datasets, 80 percent of the data
is used as training data for fine-tuning and the rest
is used as validation and test data. Contrary to the
common settings, a positive label in an error detec-
tion scenario means the data instance is an error
while a negative label means the data instance is
true. We can observe that both datasets are super
unbalanced. Only a few data are labeled as errors
(i.e., positive labels).

E.3 Experimental Setup

Pre-training & Fine-tuning Before pre-training,
we truncate each row’s content to satisfy the maxi-
mum sequence length requirement, as some rows
contain huge amounts of text. We train Tab-Cleaner
for three epochs for pre-training. Tab-Cleaner has
6 layers, a hidden dimensionality of 768, and 12
heads. We use the Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 5e-5. For fine-
tuning, we initialize the parameters with the pre-
trained model, and further train all parameters with
a binary classification objective for 10 epochs. To
fairly compare different transformer-based meth-
ods, the same setting is employed for all models.
We build data for evaluation using the held-out
validation/test rows to ensure that there is no over-
lapping data in training and validation/test.

Evaluation Metric. We adopt the area under
the Precision-Recall curve (PR AUC), area under
the Receiver Operating Characteristic Curve (ROC
AUC), and Recall at Precision=X (R@P=X) to eval-
uate the performance of the models over error de-
tection. To be more specific, PR AUC is defined
as the area under the precision-recall curve, which
is widely used to evaluate the ranked retrieval re-
sults. ROC AUC is a performance measurement
for classification problems at various threshold set-
tings, telling how much the model is capable of
distinguishing between classes. R@P is defined as
the recall value at a given precision, which aims
to evaluate the model performance when a specific
precision requirement needs to be satisfied. For
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example, R@R = 0.7 shows the recall when the
precision is 0.7.

Compared Methods. We evaluate Tab-Cleaner
against state-of-the-art (SOTA) algorithms, includ-
ing (1) DistillBERT (Sanh et al., 2019) since Tab-
Cleaner is implemented by extending DistillBERT;
(2) Transformer for Longer Sequences (e.g., Long-
former (Beltagy et al., 2020)); (3) nature language
inference (NLI) methods. The SOTA Transformer
for NLI is selected as our baseline. In our set-
ting, the input of the NLI model includes two parts:
product profiles (i.e, concatenation of context at-
tributes) and the corresponding feature attribute
values. These two sequences are concatenated us-
ing a separator token ([SEP]). The first token of
input is always set as a special token ([CLS]). We
feed the input into Transformers. The final hidden
state corresponding to [CLS] is used as the final
representation. To predict the correctness of the at-
tribute, a binary classifier is placed over the [CLS]
representation for inference. All baseline methods
are built within HuggingFace’s framework.

We did not include tabular representation learn-
ing models as our baseline because existing tabular
representation learning models focus on different
downstream tasks such as table query (i.e., answer-
ing either SQL questions or natural language ques-
tions given a table) or tabular structure prediction
(i.e., predict the data type or tag of a cell). They
cannot be applied to clean catalog data. First, they
require a different input data format. For example,
table query requires paired tables and text (e.g., nat-
ural language questions and their answers) and tab-
ular structure prediction requires the tags of cells.
Second, they can only deal with tiny tables (e.g.,
TABBIE (Iida et al., 2021) has to truncate tables to
30 rows and 20 columns).

E.4 Data Cleaning Tasks
Attribute Applicability Classification To eval-
uate whether the proposed hierarchical attention
mechanism is as powerful and expressive as
full-attentions, we pre-train each method over a
standard-length tabular corpus (standard table),
where most of the rows satisfy the maximum se-
quence length requirement (512) without trunca-
tion. A binary classifier is trained to predict the
correctness of attributes during fine-tuning. We
also pre-train Tab-Cleaner over a longer tabular cor-
pus (wide table), which has contexts significantly
longer than 512 tokens.
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Abstract

Measurement of interaction quality is a criti-
cal task for the improvement of spoken dialog
systems. Existing approaches to dialog quality
estimation either focus on evaluating the qual-
ity of individual turns, or collect dialog-level
quality measurements from end users immedi-
ately following an interaction. In contrast to
these approaches, we introduce a new dialog-
level annotation workflow called Dialog Qual-
ity Annotation (DQA). DQA expert annotators
evaluate the quality of dialogs as a whole, and
also label dialogs for attributes such as goal
completion and user sentiment. In this contri-
bution, we show that: (i) while dialog quality
cannot be completely decomposed into dialog-
level attributes, there is a strong relationship
between some objective dialog attributes and
judgments of dialog quality; (ii) for the task
of dialog-level quality estimation, a supervised
model trained on dialog-level annotations out-
performs methods based purely on aggregat-
ing turn-level features; and (iii) the proposed
evaluation model shows better domain general-
ization ability compared to the baselines. On
the basis of these results, we argue that hav-
ing high-quality human-annotated data is an
important component of evaluating interaction
quality for large industrial-scale voice assistant
platforms.

1 Introduction
Automated measurement of interaction quality is a
critical task for the development and improvement
of large-scale voice-based AI assistants. There has
been a substantial amount of recent work on auto-
mated dialog evaluation both for open domain (Ji
et al. 2022; Ghazarian et al. 2021; Ghazarian et al.
2022a) and task-oriented (Bordes et al. 2017; Lu-
bis et al. 2022) dialog systems (for recent surveys,
see Deriu et al. 2021; Yeh et al. 2021). For task-
oriented dialog (TOD) systems such as conversa-
tional AI assistants, existing research has largely fo-
cused on evaluating the quality of individual turns

(Ultes et al. 2014; Schmitt and Ultes 2015; Gupta
et al. 2021; a.o.). Estimating interaction quality at
the multi-turn dialog level is a relatively less stud-
ied topic (though see Walker et al. 1997; Walker
et al. 2000; Bodigutla et al. 2020; Deng et al. 2022).

Bodigutla et al. (2019a); Bodigutla et al. (2020)
showed that user-supplied (binarized) dialog-level
satisfaction ratings can be predicted with 70-80%
accuracy on a multi-domain dataset, if turn-level
quality predictions are included as input features
in a supervised model. However, in real-world sce-
narios, user-satisfaction ratings can be logistically
difficult—and frustrating for users—to gather at a
sufficiently large scale. Such ratings are also in-
fluenced by factors irrelevant to interaction quality
itself, e.g. novice and expert users might rate the
same dialog very differently; see Bodigutla et al.,
2019a for discussion.

Turn User utterance System response
1 what is the score of

the giants game
the new york giants are trailing the
chicago bears 24 to 13 at halftime

2 no i meant the san
francisco giants
baseball team they
are playing the cubs

the san francisco giants lost 2 to 0 to the
new york yankees last night and their next
game is against the chicago cubs at 7 pm
eastern tonight. do you want me to re-
member that the san francisco giants are
your favorite baseball team

3 no not really thanks
though

no problem. did you want a news update
for your other favorite sports teams

4 sure here is your sports update. the new york...

Figure 1: Example interaction between human end user
and conversational AI assistant

Perhaps more importantly, the factors relevant to
whether a single dialog turn is “successful” (or “de-
fective”) can be quite different from the factors rel-
evant to whether a multi-turn dialog is successful:
even human-to-human linguistic communication
frequently involves temporary misunderstandings,
clarification, rephrasing, etc.—attributes that are
indicative of poor interaction quality only when
viewed in isolation. For example, consider the
(synthetic) dialog in Figure 1: Even though the sys-
tem response in Turn 1 does not satisfy the user’s
request, the user quickly clarifies, and immediately
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receives relevant information. Furthermore, Turn
2’s response shows that the user’s initial request
was based on an incorrect assumption (that a SF
Giants game is underway). Despite this, the system
provides enough pertinent information to resolve
the original request. Viewed as a whole, this is a
high-quality dialog.

In this contribution, we present a scalable ap-
proach to dialog-level quality estimation based on
a new annotation scheme we call Dialog Quality
Annotation (DQA). DQA adapts and extends Bod-
igutla et al.’s (2019b) turn-level Response Quality
(RQ) annotation task to the dialog level. Whereas
Bodigutla et al. (2019b) obtain dialog-level quality
labels via directly soliciting user-satisfaction rat-
ings, DQA uses expert annotators to collect ground-
truth labels.

In line with the results of Bodigutla et al. (2019a),
we found that aggregations of turn-level signals
are indeed predictive of dialog-level ratings. How-
ever, we also found that a supervised approach
utilizing both dialog-level signals and aggregated
turn-level signals achieves superior performance
(F1=.81) compared to aggregation of turn-level
features alone (F1=.73; similar to the findings of
Bodigutla et al. (2019b) for predicting single-turn
ratings). These results have implications for the de-
sign of multi-turn interaction quality measurement
systems, chief among which is that such systems
will achieve superior performance if they include
both features computed over entire dialogs and fea-
tures derived from individual turns of a dialog.

Our contributions are summarized as follows:
1. We develop a high-velocity dialog quality

annotation (DQA) scheme and use it to generate
dialog-level annotations for 3674 dialogs across 11
different domains.

2. We use the annotated data to train a supervised
model for predicting binarized dialog-level quality
ratings.

3. We conduct experiments and find that our
proposed model outperforms baselines in F1 score,
and generalizes better to an unseen domain, thus
showcasing the value of high-quality dialog-level
annotations.

2 Related Work
Existing research on quality metrics for multi-turn
human-computer interactions has focused on ei-
ther task-oriented dialog systems, or open-domain
(“chitchat”) systems. The present study concerns
largely task-oriented use cases, but given the con-

versational nature of our platform, chitchat also can
(and does) occur in dialogs we evaluate.

2.1 TOD Systems

Task-oriented dialog (TOD) systems help humans
to achieve concrete tasks via voice or text interac-
tion. For example TOD systems help users book
reservations, communicate with customer service
systems, or navigate menus. Evaluating the qual-
ity of such interactions requires a dataset of TODs
annotated with quality scores. A number of TOD
datasets have been released publicly (see §4.1 of
Sun et al. 2021), but most are designed to evaluate
the performance of dialog understanding tasks like
Dialog State Tracking, as opposed to the quality of
dialogs from the perspective of successful commu-
nication. Many such public datasets were created
via Wizard-of-Oz experiments, i.e. human-human
interactions where one human plays the role of sys-
tem and the other of user (Eric et al., 2019). Other
datasets were collected by first simulating dialog
outlines in the form of API sequences and then ask-
ing annotators to expand the outlines into natural
language dialogs (Rastogi et al., 2020). A recent
study annotated TOD datasets with user satisfac-
tion scores by showing dialogs to annotators and
asking them to rate for quality (Sun et al., 2021).

Various annotation schemas have been proposed
to label the quality of TODs at the turn-level. In
Interaction Quality (IQ), raters were asked to rate
each turn on a 1-5 scale, taking into consideration
the dialog quality so far (Schmitt et al., 2012). To
reduce the cognitive load on annotators, Bodigutla
et al. (2019b) proposed the Response Quality (RQ)
annotation schema. RQ removed the constraint to
keep track of the dialog quality so far, but asked an-
notators to consider if the next user utterance might
contain feedback, such as frustration, rephrasing,
etc. The RQ scale is: 1=Terrible (fails to under-
stand user’s goal), 2=Bad (understands goal but
fails to satisfy it in any way), 3=OK (partially sat-
isfies goal), 4=Good (mostly satisfies goal), and
5=Excellent (completely satisfies user’s goal). An-
other recent study (Sun et al., 2021) collected an-
notations at the dialog level, using a simple (under-
specified) 5-point user satisfaction scale.

Various approaches have been explored to train
models to estimate task-oriented dialog quality.
Earlier approaches used text-based features from
dialogs and trained models like SVMs to predict
quality scores. More recent approaches use RNNs
(sometimes hierarchical) or BERT to encode di-
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alogs and train models to predict turn- and/or
dialog-level quality scores. These approaches
model the task either as classification (for discrete
quality scores) or regression (for quantitative qual-
ity scores). Recent research has explored applica-
tions of large language models (LLMs) for dialog-
based NLU tasks such as intent recognition and di-
alog state tracking. Such models have been trained
using publicly available TOD datasets, e.g. Wu
et al. (2020); Peng et al. (2020); Yang et al. (2021).
TOD-based LLMs have not been explored as exten-
sively for the purpose of TOD quality estimation,
though this is an active area of research for us.

See Deriu et al. 2021 for a survey of approaches
to evaluation in TOD systems.

2.2 Open-Domain Dialog Systems

Developing quality metrics for open-domain di-
alog systems presents different challenges than
for TOD systems. In an open-domain dialog, a
system can have many relevant responses for a
single utterance, and a single dialog could cover
multiple unrelated topics. Automated evaluation
approaches have explored different aspects of di-
alog quality such as coherence, informativeness,
user engagement (Vakulenko et al., 2018; Zhang
et al., 2021; Mehri and Eskénazi, 2020; Ghazarian
et al., 2020). Similar to TOD, open-domain dialog
evaluation requires high-quality training data. Ex-
isting work has used datasets by collecting human
judgments (Higashinaka et al., 2014; Cervone and
Riccardi, 2020). Another general approach is to
use conversations between human users as coher-
ent/positive examples, and then generate negative
examples/incoherent dialogs by applying certain
perturbations to the coherent dialogues, such as
shuffling order or injecting irrelevant utterances
into the dialog (Vakulenko et al., 2018; Mesgar
et al., 2020; Huang et al., 2020; Zhang et al., 2021).
Recent work has considered higher-level seman-
tic perturbations that change the dialog flow more
subtly (Ghazarian et al., 2022b).

3 Dialog Quality Annotation

3.1 DQA Workflow

Here we describe the workflow for generating anno-
tations needed to train a supervised dialog quality
estimation model. This workflow adapts and ex-
tends the related turn-level Response Quality (RQ)
workflow of Bodigutla et al. (2019a). We refer
to this workflow as “Dialog Quality Annotation”

(DQA). DQA is platform- and domain-agnostic,
and was designed to support high-velocity annota-
tion.

In each DQA task, a multi-turn dialog is pre-
sented in its entirety to an expert data annotator
(DA). First, the DA is asked to rate the quality of
each turn in the dialog. After each turn has been
annotated, the DA then answers questions about
the dialog as a whole (overall dialog rating, number
of goals, goal completion, goal progression, goal
friction, system response coherence, and user’s in-
ferred sentiment). DAs assigned quality scores to
dialogs using a five-point rating scale. About 20%
of dialogs are annotated by two DAs, for quality
control monitoring. After the workflow was fully
productionized and DAs were calibrated on the an-
notation task, we have observed weekly inter-rater
agreement rates ranging from 79% to 86% (with
a difference of one scale point allowed). See Ap-
pendix A for further details about the workflow.

Using the DQA workflow, we gathered a dataset
of 3569 annotated dialogs (9347 turns from 3233
unique users), of which 714 were held out as a test
set to evaluate the performance of baseline methods
and trained models. The remaining 2855 annotated
dialogs were used to train candidate dialog-level
defect detection models. This data was gathered
by randomly sampling (de-identified) interactions
across 10 different experiences supported by our
platform. Our train-test split was stratified by ex-
perience, so that each use case appears at a similar
rate across train and test sets.

Finally, we gathered 105 additional annotated
dialogs (502 total turns) from a use case that does
not appear in the training or test data (Shopping
product Q&A). These out-of-distribution (OOD)
dialogs enable us to more realistically assess how
well the resulting model generalizes to patterns
unseen during training.

The majority of the data we gathered were from
experiences in which the system only has access to
information about the target use case. Such traffic
is partitioned into discrete user sessions by default,
so we considered a “dialog” to just be a single user
session. For the OOD traffic, which does not come
with pre-defined session boundaries, we used a
time-based heuristic where a dialog is considered to
be a sequence of utterances from a single user, with
no more than 180 seconds of inactivity between
turns. In future work, we are exploring model-
based methods for dialog segmentation.
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3.2 Dialog quality versus dialog attributes

As discussed above, for every dialog, the DAs
provide the overall dialog-level rating, salient at-
tributes of the dialog, and the individual turn-level
ratings. With these annotations we aim to under-
stand the relationship between salient attributes of
a dialog (e.g. goal progression, goal completion,
response coherence) and the overall dialog-level
ratings. The motivation here is that a robust rela-
tionship between objective dialog attributes and di-
alog ratings would help us to derive human-quality
labels from automated methods in the future. While
some research exists on the relationship between
turn-level and dialog-level quality ratings (Bod-
igutla et al. 2020), few studies explore the rela-
tionship between dialog-level attributes and dialog-
level quality ratings (Siro et al. 2022).

In Figure 2 we plot the distribution of dialog-
level rating against four salient attributes of the
dialog. As expected we can clearly see that dialogs
received higher ratings when users successfully
completed their goals, system responses were co-
herent, and users encountered less friction while
progressing towards their goals. Further, Table 1
computes the Spearman’s ρ correlation between the
ratings and attributes. Goal completion was found
to have the highest correlation score of .859, while
user sentiment had the lowest, at .449. Moreover,
user friction encountered had a negative correlation
to dialog rating. These observations are intuitive
given the dialogs were sampled from mostly task-
oriented experiences.

Figure 2: Distribution of dialog ratings with salient
attributes of dialog.

4 Dialog Quality Estimation Model
We now describe our dialog quality estimation
model (DQM), which leverages the dialog-level
annotations described in the previous section.

Table 1: Correlation of dialog rating with salient at-
tributes of the dialog. All correlations in this table are
statistically significant at p < 0.01.

Attribute Spearman’s ρ
Goal Completion .859
Response Coherence .766
Goal Friction (.807)
User Sentiment .449

Figure 3: DQM Model Architecture

Figure 3 illustrates the architecture of the model.
We first leverage a pre-trained turn-level defect de-
tection model (which is trained on millions of inter-
actions) as a feature extractor using a RoBERTa-IQ-
based framework (Gupta et al., 2021). We encode
each turn of a dialog as a dense vector. We use
a max-pooling operation on the turn-level vectors
to obtain a dialog-level representation. Finally, we
concatenate this with a bag-of-words representation
(TF-IDF over unigrams) of the dialog text. This
final dialog-level vector is then fed into a Random
Forest Classifier to learn a mapping from dialog-
level representation to the binarized defect label in
{0, 1}. We arrived at this setup after experimenting
with various text and numeric features, and sim-
pler classification algorithms. We also found more
sophisticated models to be less effective with our
current dataset, although we plan to revisit more
complex architectures as the data grows.

Experimental results comparing the performance
of this model against several strong baselines are
presented in §5-6.

The pre-trained text encoder used in our model
is based upon an internal model that produces turn-
level defect (TLD) scores, which are real-valued
scores in [0, 1] that can be interpreted as the proba-
bility that a given turn is defective from the perspec-
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tive of the user (see Gupta et al., 2021 for details
on the model). TLD scores are derived from a
RoBERTa-IQ classifier trained to detect defective
turns within a dialog. Although the TLD model
does take context into account when scoring in-
teractions, it is explicitly designed to score dialog
turns, as opposed to entire dialogs.

Our primary question was therefore whether a
model trained on the task of dialog-level defect de-
tection outperforms methods that only involve ag-
gregation of turn-level signals. The relevant trade-
off here is that aggregations of TLD scores are
cheap and easy to compute, but may suffer from
poor accuracy since they were not designed to make
predictions about dialogs as a whole.

We hypothesized that a dialog-level statistical
model would outperform the TLD-based baselines,
in large part because of observed interaction pat-
terns in which the quality of a dialog is not a
straightforward combination of the quality of its
constituent turns.

5 Experiment Setup
For the purposes of these experiments, we bina-
rized the five-point dialog-level quality labels by
assigning dialogs rated 1, 2, or 3 to the defect class,
and dialogs rated 4 or 5 to the non-defect class.
This follows the approach taken by Gupta et al.
(2021) for turn-level response quality prediction,
enabling us to frame defect detection as a binary
classification task.

We assessed the quality of each estimator by
measuring its precision, recall, and F1 score rela-
tive to human labels on the held-out test set.

We computed four baseline dialog-quality
scores, all of which were derived by aggregating
TLD scores across each turn in a dialog. We ex-
pected to see a very strong relationship between
average TLD and dialog quality score, especially
since the TLD model uses information from sur-
rounding turns as features.

These are the baseline methods we computed
over the test data used for model evaluation. Each
score reduces a sequence of turn-level scores from
a dialog into a single value, which represents the
dialog-level score.

1. Mean TLD: Simple arithmetic mean of the
predicted turn-level TLD model scores.

2. Last-turn TLD score: Interpret the final turn’s
TLD score as the dialog-level score. The idea is that
recency bias will lead the final turn to have more
impact than others in perceived dialog quality.

3. Union of mean and last-turn TLD: A dialog is
considered defective if either the mean or last-turn
TLD score exceeds some threshold (here: 0.5).

4. Rising linear weights: Calculate mean TLD
score with each turn linearly weighted by its index,
so that later turns have higher weights.

Baseline methods required no training process
at all, as they consist of arithmetic aggregations
of TLD scores, which were already available prior
to experimentation. To prepare each dialog for
baseline evaluation, we simply computed each ag-
gregation for each dialog. Baseline aggregations
were then converted to binary predictions via a
threshold: dialogs with scores ≥ .5 are considered
defective; scores < .5 are considered non-defective
(we found that some use cases achieve higher ac-
curacy with higher thresholds, while others benefit
from lower thresholds; here we use the fixed value
of .5, as we intend for these methods to be appli-
cable to any supported use case). We scored each
dialog in the 714-dialog test set and the 105-dialog
OOD test set for each baseline method, and com-
puted performance metrics of interest relative to
the human annotations.

To optimize hyperparameters and perform fea-
ture selection for our candidate dialog-level defect
detection model, we used five-fold cross validation
over the training set, selecting the fit that maxi-
mized (mean) F1 over the set of hyperparameters
and feature subsets considered. The resulting con-
figuration was then trained against the entire 2855-
dialog training set. We then used the resulting
model to predict defect class (and class probability)
over both test sets, computing and recording the
same performance metrics of interest.

6 Results
We present the experimental results of the base-
line methods and our supervised model for dialog
level defect detection (DQM) in Table 2. We de-
scribe our observations and inferences from this
comparative study in the following section.

6.1 Performance of baselines and DQM

We observed the following regarding the perfor-
mance of TLD-based baselines and DQM:

1. Among the TLD-based baselines, the Union
of Mean & Last Turn TLD performs best in all
scenarios. However, in absolute terms, the best
baseline is not the best performing method for eval-
uating dialog quality, and only achieves F1 scores
of .77 and .51 compared to human annotation on
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Table 2: Performance of TLD-based baselines and supervised model

Multi-domain test set (n = 714) OOD test set (n = 105)
Precision Recall F1-Score Precision Recall F1-score

Mean TLD .84 .54 .66 .39 .77 .52
Last-turn TLD .83 .68 .75 .47 .23 .31
Union of mean & last-turn TLD .82 .73 .77 .38 .77 .51
Rising linear weights .83 .63 .72 .41 .67 .51
DQM .78 .83 .81 .48 .80 .60

the multi-domain and OOD data, respectively.
2. DQM outperforms the best TLD-based base-

line in F1 by 4 and 9 percentage points on the multi-
domain and OOD test sets, respectively. Note that
the OOD (Shopping) use case was unseen during
training, yet the model achieves an out-of-the-box
F1 score of .60 in detecting defective OOD dialogs,
compared to only .51 for the best baseline.

3. DQM has a large advantage in recall over
baselines, albeit at the cost of reduced precision.

6.2 Error analysis

We further analyzed the performance of DQM and
baseline methods over the test set, splitting the
data by various attributes of interest. We made the
following inferences on the basis of these analyses:

1. Performance of TLD-based baselines and
DQM as a function of dialog length indicates that
the gap widens as dialog length increases. Base-
lines perform better for shorter dialogs (≤ 3 turns)
and start to drop in performance as dialog length
increases, while DQM’s performance improves as
dialog length increases. This observation likely ex-
plains part of the gap between DQM and baselines
on OOD data, since these dialogs tend to be much
longer than in our multi-domain dataset (mean of
4.78 turns per dialog versus 2.62). Table 3 shows
baseline versus DQM performance over the multi-
domain test set, split by dialog length.

2. DQM has an advantage in detecting defec-
tive dialogs that contain a small number of fatal
turns, early on or in the middle of the dialog, which
create an overall defective experience. In contrast,
TLD-based baselines like mean TLD weight each
turn equally and often miss such dialogs. See Ap-
pendix B.1 for further discussion of this pattern.

3. Both TLD-based baselines and DQM strug-
gle to differentiate between user query rephrasing,
which is typically a defect, and user query refine-
ment, which is typically not a defect (see Appendix
B.2 for examples). User rephrasing happens when

a user request is not successful and the user repeats
their request with a slightly different surface form.
User refinement occurs when a user iteratively re-
fines a successful search by adding or modifying
constraints. We observe that TLD-based baselines
have a bias towards incorrectly predicting refine-
ments as defects, possibly because it misclassifies
them as rephrases. DQM also struggles with this
since it uses TLD as input signal. We hypothesize
that these biases may be easier to correct by re-
training DQM with targeted multi-turn data than
by retraining the TLD model, which is primarily
trained on single- or few-turn interaction patterns.

Table 3: Performance (ROC-AUC) of TLD-based base-
lines and supervised model against dialog length on
Multi-domain test set (n = 714). TLD-U is union of
mean and last-turn TLD (the best baseline).

Dialog Length n TLD-U DQM
Short (≤ 3 turns) 535 .76 .79
Medium (4-6 turns) 149 .73 .80
Long (≥ 7 turns) 30 .69 .84

7 Conclusion
In this study, we presented a new dialog-level anno-
tation workflow DQA, which enables high-velocity
labelling of multi-turn human-computer interac-
tions. Our approach is similar to Bodigutla et al.
(2020), but differs in that we gather labels from
expert annotators instead of end users themselves.

We showed that a supervised model trained on
DQA annotations outperforms several strong base-
lines based on aggregating turn-level defect scores.
Furthermore, we observed that the model gener-
alizes better to a previously unseen domain. We
also found several qualitative patterns of interest,
most notably that DQM’s advantage over baselines
expands as dialog length increases. These findings
jointly lend support for an annotation-based ap-
proach to estimating multi-turn interaction quality
for large-scale dialog systems.
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Limitations
Our proposed approach is designed explicitly for
evaluation of task-oriented dialog systems, and is
hence unlikely to generalize well to chitchat sys-
tems. Most traffic to our platform (and our annota-
tion workflows, including DQA) comes in the form
of task-oriented interactions. User turns in the traf-
fic we analyze tend to be quite short (usually less
than 20 tokens) and direct, so our model is unlikely
to perform as well on dialogs driven by long-form
user utterances.

Ethical Considerations
We do not envision any ethical concerns with the re-
search presented here. No customer data is released
or presented in this paper, and even our internal
data sources are fully de-identified and contain no
customer Personal Identifiable Information (PII).
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A Dialog Quality Annotation Workflow
Design

Here are some selected questions for collecting hu-
man annotations used in the DQA workflow. The
design of this workflow was inspired by See et al.
(2019). In each annotation task, a multi-turn dia-
log is presented to the data annotator (DA) in its
entirety. The dialog consists of a sequence of turns.
Each turn consists of a User request and a System
response.

Turn Level: First, the DA is asked to rate every
turn in the dialog.

Provide an overall rating for the System’s re-
sponse in the current turn

1-Terrible•
2-Bad•
3-Ok•
4-Good•
5-Excellent•

Dialog Level: Next the DA is asked to answer
a series of dialog-level questions to capture the
overall rating along with some salient attributes of
the dialog.

[User Satisfaction] Rate the overall user satis-
faction based on their interaction in the dialog

1-Very Dissatisfied•
2-Dissatisfied•
3-Normal•
4-Satisfied•
5-Very Satisfied•

[Goal Completion] How many goals are in the
dialog?

Zero•
One•
Many•

[Goal Progression] Did the user make progress
towards achieving their goals?

No Progress•
Some Progress•
Full Progress•

[Goal Completion] How many goals did the user
complete in the dialog?

None Completed•
Some Completed•
All Completed•

[Goal Friction] Did the user encounter friction
trying to achieve their goals in the dialog?

Lots of Friction•
Some Friction•
No Friction•

[Coherence] How often did the System say some-
thing which did NOT make sense?

Never Made Sense•
Some Made Sense•
All Made Sense•

[Sentiment] Describe the user’s sentiment in the
conversation with the System

Negative•
Neutral•
Positive•
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B Dialog patterns
In this section, we compare the behavior of the
baselines methods and DQM model predictions
on specific customer interaction patterns found in
multi-turn conversations. Note that the dialog sam-
ples in this appendix are synthetic examples fabri-
cated to illustrate common use cases supported by
our platform.

B.1 Fatal Turns in a Dialog

Sometimes a dialog can be considered defective
based on the interaction in a single turn. We re-
fer to such turns as “fatal turns” (See Turn 2 in
Figure 4). This example illustrates that baseline
methods which aggregate turn-level information
do not adequately capture the non-linear nature of
the overall customer satisfaction in a multi-turn
dialog. In contrast, we observed that DQM has a
higher chance of detecting defective dialogs with
fatal turns.

Turn User utterance System response TLD
score

1 where is my package 2 packages for your order should ar-
rive today by 10:00 PM. One con-
taining toothbrush. Another pack-
age should arrive tomorrow. Con-
taining Smartwatch and Wireless
Speaker

0.05

2 what’s in my pack-
age

I am having trouble accessing your
information. Try again later

0.75

3 notify me when they
come

Your package containing toothbrush
is arriving by 10:00 PM.

0.01

Dialog level ratings Rating
Mean TLD 0.27
Last-turn TLD 0.01
TLD-U 0.27
DQM 0.80
Human Rating from DQA Workflow 2

Figure 4: Dialog with a fatal turn (Turn 2)
.

B.2 User Rephrase

Another common dialog pattern is a user-rephrase
(See Figure 5). Here the user simply repeats or
slightly rephrases their initial request hoping for
a better system response. User rephrases in most
cases indicate customer friction and often get poor
dialog-level ratings. Since the TLD model we
use for encoding turns (see § 4) considers context
around the current turn, it learns a strong associa-
tion between user rephrases and defective turns.

B.3 User Refinement

In use cases involving topic exploration or navi-
gation of recommendations, a user progressively
adds more constraints to refine their earlier requests
(see Figure 6). Unlike the user rephrase pattern de-
scribed in Section B.2, the previous turns leading to

Turn User utterance System response TLD
score

1 when is the delivery
gonna be here

Sorry, I don’t have an answer for
that

0.99

2 when is my delivery
going to get here

Sorry, I don’t have an answer for
that

0.99

3 when will my pack-
age arrive

Your toothbrush, shampoo and 3
more items should arrive by Friday

0.02

Dialog level ratings Rating
Mean TLD 0.66
Last-turn TLD 0.02
TLD-U 0.66
DQM 0.74
Human Rating from DQA Workflow 2

Figure 5: Dialog with a rephrased user request

more refinement do not necessarily indicate a unsat-
isfactory customer experience. A well performing
dialog-quality model should learn to distinguish
between frictional rephrases and non-frictional re-
finements. We note that TLD-based baselines have
a bias towards incorrectly predicting refinements
as defects. As DQM uses TLD as an input sig-
nal, DQM too struggles to effectively distinguish
between frictional rephrase and non-frictional re-
finement.

Turn User utterance System response TLD
score

1 how much does milk
cost

a gallon of milk costs $6 0.90

2 how much does or-
ganic milk cost

a gallon of organic milk costs $7 0.20

Dialog level ratings Rating
Mean TLD 0.55
Last-turn TLD 0.20
TLD-U 0.55
DQM 0.63
Human Rating from DQA Workflow 5

Figure 6: Dialog with a user query refinement
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Abstract

Existing conversational question answering
(CQA) datasets have been usually constructed
from unstructured texts in English. In this
paper, we propose Tab-CQA, a tabular CQA
dataset created from Chinese financial reports
that are extracted from listed companies in a
wide range of different sectors in the past 30
years. From these reports, we select 2,463 ta-
bles, and manually generate 2,463 conversa-
tions with 35,494 QA pairs. Additionally, we
select 4,578 tables, from which 4,578 conver-
sations with 73,595 QA pairs are automatically
created via a template-based method. With
the manually- and automatically-generated con-
versations, Tab-CQA contains answerable and
unanswerable questions. For the answerable
questions, we further diversify them to cover
a wide range of skills, e.g., table retrieval,
fact checking, numerical reasoning, so as to
accommodate real-world scenarios. We fur-
ther propose two different tabular CQA mod-
els, a text-based model and an operation-based
model, and evaluate them on Tab-CQA. Ex-
periment results show that Tab-CQA is a very
challenging dataset, where a huge performance
gap exists between human and neural models.
In order to promote further research on Chi-
nese tabular CQA, we release the dataset as a
benchmark testbed at https://github.com/
tjunlp-lab/Tab-CQA.

1 Introduction

Conversational question answering (CQA) extends
traditional question answering to a conversational
scenario where questions and answers are usually
related to conversation history. Recent years have
witnessed an upsurge of interest in both dataset
building for CQA and models/approaches to CQA.
Previous CQA datasets have been constructed ei-
ther for text span extracting tasks (Choi et al., 2018;
Reddy et al., 2019; Campos et al., 2020; Saeidi

∗Corresponding author.

et al., 2018) or SQL-style table search tasks (Iyyer
et al., 2017; Yu et al., 2019b). All these datasets are
in English. Public CQA datasets in other languages
are either rare or not available at all, which is of
course not desirable for an inclusive CQA study
across different classes of languages (Joshi et al.,
2020).

In addition to the language dimension in diversi-
fying CQA tasks and datasets, data source is yet an-
other important factor. Existing CQA datasets are
usually constructed from unstructured texts. Struc-
tured or semi-structured data, like tables, are also
important sources for information gathering. Fur-
thermore, structured tables exhibit reasoning skills
(e.g., more numeric reasoning) with a different dis-
tribution from those on unstructured texts.

Inspired by the aforementioned diversity in both
languages and data sources for CQA, in this paper,
we propose Tab-CQA, a large-scale tabular conver-
sational question answering dataset built from Chi-
nese financial reports. It contains 2,463 manually-
generated conversations and 4,578 automatically-
generated conversations, with a total of 109,089
question-answer pairs. Each dialogue consists of
multiple rounds of questions and answers, which
are either manually created by crowdsourced work-
ers playing roles of students and teachers or auto-
matically created by a template-based method.

For manually-created dialogues, the student
reads a partially masked table and asks a series
of questions. We train students to ask questions
as naturally as possible, preserving the character-
istics of natural conversations, such as ellipsis and
coreference in dialogue. The teacher provides an-
swers to the questions from the student by carefully
checking the given completely visible table.

In addition to question-answer pair collection
in a conversational way, we also provide annota-
tions to manually created dialogues. The teacher
annotates an answer type for each provided answer.
Based on pre-annotation and analysis on financial
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Dataset # Conversations # Questions # Avg.Turns Tabular Natural language questions Numerical reasoning Chinese
CQA 8,399 127,000 15.2 X ✓ X X
QuAC 13,594 98,407 7.2 X ✓ X X
DoQA 2,437 10,917 4.48 X ✓ X X
SQA 6,066 17,553 2.9 ✓ ✓ ✓ X
CoSQL 2,164 15,598 5.2 ✓ X X X
HybridQA - 70,153 - ✓ ✓ ✓ X
OTT-QA - 45,841 - ✓ ✓ ✓ X
TAT-QA - 16, 552 - ✓ ✓ ✓ X
FinQA - 8,281 - ✓ ✓ ✓ X
DROP - 96,567 - X ✓ ✓ X
CMRC2017 - 364,295 - X ✓ X ✓
CMRC2018 - 19,071 - X ✓ X ✓
DuReader - 200,000 - X ✓ X ✓
Tab-CQA 7,041 109,089 14.6 ✓ ✓ ✓ ✓

Table 1: Tab-CQA in comparison to other relevant datasets.

tables, we divide answer types into three categories:
table retrieval, fact checking and computation. In
addition to the answer type annotation, the teacher
also needs to provide conversation flow tags to con-
trol the flow of conversation, i.e., good, ok, unallow-
able. A tabular conversation question answering
example from Tab-CQA is in the Appendix A.

All questions in Tab-CQA require reasoning
across the given table and dialogue history. Even
for table retrieval questions, they are created in the
way that is more difficult than just span extraction.
The dataset also contains unanswerable questions.

In addition to manually created QA pairs, we
automatically generate 73,595 QA pairs based on
predefined templates over tables. Unlike manually
labeled QA pairs, automatically-generated pairs are
tagged with special labels. We then propose two
different CQA models: a text-based model and an
operation-based model. The text-based model is
to convert the table into a passage by a multi-type
network for different types of answers in Tab-CQA.
The operation-based model converts the table into
triplets to facilitate numeric reasoning.

The contributions of the work are as follows.

• We propose Tab-CQA to diversify existing
CQA datasets in language, data source and
task definition. To the best of our knowledge,
Tab-CQA is the first conversational question
answering dataset in Chinese. And unlike
other Chinese QA datasets, it focuses on un-
derstanding tables in financial reports.

• We introduce a method to build tabular conver-
sational QA datasets, where students cannot
see entire tables and ask questions that require
high cognitive skills to answer, e.g., logical
and numerical reasoning skill.

• We use Tab-CQA as a bechmark dataset to
test two different methods depending on the
form of table representation and provide a
systematic error analysis for the best method.
The dataset will be publicly available soon.

2 Related Work

Tab-CQA is related to datasets for text-based con-
versational question answering and tabular question
answering. It is also partially related to datasets on
numerical reasoning and machine reading compre-
hension in Chinese. The comparison of Tab-CQA
to other related datasets is shown in Table 1.

Text-based conversational question answering
datasets. Reddy et al. (2019) propose a CQA
dataset CoQA. It contains 8K conversations with
127K question-answer pairs. The dataset selects
passages from several domains, such as children’s
stories, news, and science. Answers of CoQA are
mostly a short fragment or an entity. Passages
are visible to both questioners and responders in
CoQA.

Choi et al. (2018) present a CQA dataset QuAC
that focuses mainly on information seeking. It con-
tains 14K conversations on passages selected from
Wikipedia. Unlike CoQA, only the responder can
see complete passages in QuAC while questioner
can only see the titles of passages. Due to this set-
ting, QuAC may contain unanswerable questions.
Hence, annotators not only annotate the answerabil-
ity of questions, but also provide dialogue actions
to control the flow of dialogue. Paritially inspired
by this, we present only header rows/columns of ex-
tracted tables to the student in building our dataset.

Campos et al. (2020) build a domain-specific
CQA dataset DoQA. The dataset contains 2.4K
conversations, with 10.9K question-answer pairs.
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DoQA also includes question-answer pairs in the
information retrieval scenarios.

All these CQA datasets are different from Tab-
CQA in that they create QA-style conversations on
unstructured texts written in English.

Tabular and database-based question answering
datasets. Database queries are often relatively
complex. Hence, Iyyer et al. (2017) propose a
SQL-style CQA dataset SQA to decompose com-
plex queries into several simple questions, so that
there is a contextual relationship between them.
Their dataset uses Wikipedia tables to create 6K
sequences of questions, where complex questions
are decomposed into several simple questions.

Yu et al. (2019a) create a cross-domain corpus
based on a conversational query system CoSQL.
It collects 3K+ conversations from 200 databases
covering 138 domains, containing 30K+ rounds of
conversations and 10K+ annotated SQL queries.
CoSQL is significantly different from ours in that
it collects SQL-style queries rather than natural
language questions.

Chen et al. (2020c) build a hybrid text- and table-
based QA dataset HybridQA. Each question is
aligned to a structured Wikipedia table and enti-
ties in the table are linked to free texts. The dataset
contains 70K question-answer pairs and 13K tables,
each of which is associated with an average of 44
paragraphs.

Chen et al. (2020a) present an open domain QA
dataset OTT-QA built on the base of HybridQA.
They re-annotate 45K questions, which require
multi-step reasoning, aggregating information from
tables and texts.

Zhu et al. (2021) and Chen et al. (2021) propose
hybrid QA datasets, also focusing on answering
questions over financial data. The two datasets
contain 16,552 and 8,281 question-answer pairs,
respectively. Despite the similarity to Tab-CQA in
financial QA, the two datasets are in English and
not in a conversational format.

Yet another dataset related to Tab-CQA is TAB-
FACT (Chen et al., 2020b), which is not a QA
dataset. The dataset focuses on table-based fact
detection. Inferences are regarded positive if they
match corresponding table descriptions.

All the above datasets are in English and ques-
tions/queries in these datasets are either SQL-style
or uncontextually linked.

Datasets on numerical reasoning. Dua et al.

(2019) propose a QA dataset DROP with numerical
inference-type questions. As numbers provide im-
portant supporting information for financial state-
ments, we create QA pairs involving numerical
reasoning.

Chinese machine reading comprehension
datasets. Inspired by the well-known machine
reading comprehension (MRC) dataset SQuAD
(Rajpurkar et al., 2016), several Chinese MRC
datasets have been also proposed (Cui et al., 2016,
2018, 2019b). He et al. (2018) build a large-scale
open domain QA dataset, which annotates 200K
queries from search engines. Jing et al. (2019)
present a bilingual MRC dataset where parallel
Chinese and English texts, questions and answers
are provided. Sun et al. (2020) propose a free-form
multiple-Choice Chinese machine reading Compre-
hension dataset C3. Unfortunately, none of these
Chinese MRC datasets are in a conversational
setting.

3 Dataset Creation

This section elaborates how Tab-CQA is created,
including details on table extraction, conversation
collection and annotation.

3.1 Table Extraction
We have collected nearly 30 years of annual finan-
cial reports of Chinese companies, listed in the
major segments of the Shenzhen Stock Exchange
and Shanghai Stock Exchange, covering 18 indus-
try sectors, e.g., business, trade, power, retail, real
estate and so on. First, for each year, we randomly
select one company from each industry sector. Sec-
ond, from each selected company, we randomly
choose a financial report of that company. In this
way, we have collected 6,661 reports for table ex-
traction. As all reports are in PDF formats, we
use the table extraction tool PDFlux1. Only tables
where the number of cells is large than 15 and blank
cells account for less than 30% of all cells are kept.
Finally, we have extracted 7,041 tables.

3.2 Conversation Collection
Manually-Generated Conversations. Once tables
are extracted, we develop a conversation collection
and annotation tool to collect a conversation and
required annotations for each extracted table. We
have 28 crowdsourced workers who can alterna-
tively play as either a student to ask questions or a

1http://pdflux.com/
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teacher to provide answers. For each conversation,
once they choose their roles, the chosen roles will
be fixed until the conversation is completed. We
train all crowdsourced workers in a pre-annotation
phase. Only when they are quite familiar with the
data collection protocol, they are allowed to par-
ticipate in the formal conversation collection stage.
Half of the crowdsourced workers have financial
background while the other half do not have. There-
fore, our collected conversations are mixed with
financially professional and nonprofessional utter-
ances.

The collection tool has different user interfaces
for the student and teacher. For the student, only
the header rows, header columns and randomly se-
lected cells of a given table are visible to him/her.
Hence the student needs to ask questions step by
step to understand the masked table. We encourage
the student not to ask questions easily searchable
from a given table. A variety of types of questions,
e.g., table retrieval, muti-step reasoning, compu-
tation, numerical comparison, can be used by the
student to help himself/herself to have a clearer un-
derstanding of the masked table in a conversation
setting.

The teacher is able to see the entire given table.
Therefore the teacher needs to first judge whether
a question raised by a “partially blind” questioner
is answerable according to the information in the
given table. Additionally, the teacher is also re-
quired to provide annotations of answer type and
dialogue action to control the flow of a conversa-
tion, which will be introduced in the next subsec-
tion.

In this way, we have obtained 2,463 conversa-
tions with 35,494 question-answer pairs.

Automatically-Generated Conversations. We
use a template-based method to automatically gen-
erate QA pairs. Specifically, we define 9 operation
templates over extracted tables, as show in Ap-
pendix B. Then we randomly select an operation,
perform it on a set of triplets extracted from tables.
Each triplet consists of the cell value from the ta-
ble and its row and column names. We define the
triplet as < Rowi, Columni, Celli >, where i is
the index of arguments in predefined templates (i.e.,
i = 1 or 2). We randomly selected 100 manually-
generated conversations. We then selected opera-
tions that occur more than 8 times as template op-
erations. In total, the selected operations account
for 84% of the selected samples. More details are

Statistics Train Dev Test
Table 6548 247 246
Avg.T Tokens 771.24 770.45 761.00
Question/Answer 101,884 3,601 3,604
Avg.Q Tokens 19.58 11.52 11.55
Avg.Turns 15.56 14.58 14.58

Table 2: Overall statistics of manual annotation of Tab-
CQA. T: table. Q: question.

in Appendix B.
In the end, we have automatically generated

4,578 conversations with 73,595 question-answer
pairs.

3.3 Conversation Annotation

In order to have a deep understanding on the na-
ture of collected answers and questions and a good
control of conversation flow that allows the student
and teacher to focus on a given table, our collection
tool requires the teacher to do two types of conver-
sation annotation on the teacher side. Appendix C
provides details on how we control quality and
diversity.

Answer Type Annotation. As not all informa-
tion of a given table is visible to the student, we do
not ask the student to annotate the type of questions.
On the contrary, the teacher can see the complete
table. Hence the teacher knows what should be
given as an answer and how the answer should be
found. According to the nature of answers from
extracted financial tables, we roughly divide them
into three types: table retrieval, fact checking and
computation. For table retrieval, answers can be
found directly from a given table via simple rea-
soning. For fact checking, answers are yes or no
according to the facts in the given table. For compu-
tation, answers are not directly from the given table,
but they can be obtained by numerical reasoning
over numbers in the given table, such as numerical
comparison (e.g., finding the maximum, minimum,
larger, smaller numbers from the table), arithmetic
operations, and so on. The teacher is asked to an-
notate each answer with one of these three answer
types. In addition, if there is no answer, the teacher
needs to annotate “unanswerable”.

For automatically-generated questions, we anno-
tate answer types according to Table 5, and if there
is no cell value in the selected triplet, the answer
type is “unanswerable”.

Conversation Flow Control Annotation. In ad-
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Figure 1: The text-based (a) and operation-based (b) neural models for Tab-CQA.

dition to providing answers and annotating answer
types, the teacher is also in charge of conversa-
tion flow control (i.e., guiding the student to ask
questions relevant to the given table). According
to the relatedness of questions to the given table,
the teacher will annotate each answer with a flow
control tag: “good”, “ok” or “unallowable”. “good”
suggests that the topic of the question in current
conversation turn is related to the given table and
questions from the same topic can be continued in
future conversation turns. “ok” indicates that the
current topic is ok but encouraged to be changed
in future conversation turns. “unallowable” means
that the current topic is not related to the given table
and should be changed immediately. All the three
flow control tags will be present to the student so
that the student can ask appropriate questions in
future conversation.

We do not perform conversation flow control
annotation during the automatically-generated pro-
cess.

3.4 Overall Statistics
Table 2 shows the overall statistics of Tab-CQA.
From financial reports collected from Chinese
listed companies in the last three decades, we ran-
domly select 75 companies from 18 domains. We
have extracted 7,041 tables and collected 109,089
question-answer pairs. The average numbers of
tokens in extracted tables and questions are 770.85

and 19.01, respectively. The average number of
turns in collected conversations is 15.49. We divide
manually-generated data into the training, devel-
opment and test set in the proportion of 8:1:1. To
ensure that the development and test set is close to
the real scenario, the automatically-generated data
are used as a supplement to the training set. Further
analyses of Tab-CQA are displayed in Appendix D.

4 Models for Tabular CQA

We propose two different models, namely text-
based and operation-based model, as shown in Fig-
ure 1. For the text-based model, we convert each ta-
ble into a piece of text, so the task is converted into
a reading comprehension form. However, in prac-
tice this approach is difficult to effectively model
numerical reasoning that is pervasive in our dataset.
Therefore, we further propose an operation-based
neural model that represent a table as a series of
triplets.

4.1 Text-based Model

Partially inspired by MTMSN (Hu et al., 2019),
we modify the output type of the text-based
model to Table Retrieval, Fact Check and
Computation. We transform a table into a pas-
sage that is a table description sequence containing
each cell in the table. We then concatenate the
passage and question into an input sequence with
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[CLS] and [SEP] as in BERT (Devlin et al., 2019).
This concatenated sequence is processed by L pre-
trained Transformer blocks:

Hi = TransformerBlock (Hi−1) , ∀i ∈ [1, L]
(1)

We then use the contextualized token representa-
tions as the input to predict the type of answer as:

ptype = softmax
(
FFN

(
hCLS

))
(2)

For Table Retrieval questions, we calculate the
probability of the beginning and ending positions
of the answer fragment in the passage as:

pstart = softmax
(
WSHstart

i

)
,

pend = softmax
(
WEHend

i

) (3)

For Fact Check questions, we consider it as a
binary classification problem and calculate whether
the problem description is true or not:

pfact check = softmax
(
WFHCLS

)
(4)

For Computation questions, we assign a compu-
tational sign to all numbers in the passage, i.e., +,
−, 0. We then consider it as a ternary classification
problem. For example, for a problem that requires
summation, the numbers involved in the problem
are assigned +, while other unrelated numbers are
assigned 0:

p
computation
i = softmax

(
WCHi

)
(5)

i ∈ [1, n], n is the number of numbers in the pas-
sage.

4.2 Operation-based Model
This model consists of two sub-units for triplet
prediction and operation prediction, respectively.
For the triplet prediction unit, we consider it as a
binary classification problem. We use outputs from
a pretrained LM to estimate probabilities for the
triplet detector:

ptriplet = softmax
(
WTHi

)
(6)

We then take questions and predicted triplets as
input to the operation prediction unit and predict
the desired operation. We consider it as an N-ary
classification problem, where N is 9, the number
of operation templates that have been defined in
Table 5. The predicted probability is:

poperation = softmax
(
WOHi

)
(7)

Model BERT FIN WWM
TextX 9.17 / 8.58 9.13 / 8.52 9.22 / 8.61
Text∗X 16.17 / 15.62 14.29 / 14.13 16.18 / 15.70
OpX 16.78 / 18.01 16.83 / 16.36 16.06 / 16.78
Op∗X 19.24 / 20.32 18.29 / 18.76 19.57 / 19.43

Table 3: F1 (%) results for all models, each cell
shows dev/test scores. TextX denotes the text-based
model with corresponding PLM X (i.e., BERT, FIN (Fin-
BERT), WWM (BERT-wwm)) while OpX indicates the
operation-based model with PLM X. Text∗ indicates
that the training set contains both manually-generated
and automatically-generated data. Op∗ indicates that
the number of positive and negative training instances
for the triplet prediction module is balanced.

The final answer is obtained based on the predicted
triplets and operation together. For example, if
the predicted triplet contains T1 and T2, and the
operation is 4. It means to determine whether the
value of T1 is bigger than the value of T2.

5 Experiments

5.1 Experimental Settings

For the text-based model, we set the max sequence
length, maximum query length and maximum an-
swer length to 384, 64 and 30, respectively. The
batch size was set to 10. For the operation-based
model, we set the max sequence length to 32. The
batch size was set to 3. All the optimizers were
Adam with a learning rate of 5e-5. The number of
Transformer layers for all PLMs is 12. Appendix E
provides details on baseline models.

5.2 Results

We used F1 (%) to evaluate the performance of dif-
ferent pretrained language models on our dataset.
It should be noted that for the text-based approach,
automatically-generated QA pairs can be used as
additional data to the training set, while for the
operation-based approach, only the automatically
generated QA pairs can be used as training in-
stances because manually labeled data lack the cor-
responding labels. Table 3 shows the experiment
results of all models. The overall F1 of all these
methods are much lower than those of neural mod-
els on other CQA datasets. This may be due to two
reasons: pervasive numeric reasoning questions
and 47.7% of questions involve either coreference
or ellipsis, which make our Tab-CQA challenging
for current neural models. The operation-based
model is better than the text-based model as the
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Figure 2: The results with the number of conversation
histories about Op∗X on the validation set.

Error Type Percentage (%)
TPE 59.5
OPE 9.5
APE 8.1
OEOP 22.9

Table 4: Error analysis on the dev sets.

former is more suitable for numeric reasoning.
All Op∗X models are better than OpX models,

suggesting that maintaining a balance of positive
and negative samples is good for final performance
since only a small fraction of cells in tables are
related to questions in Tab-CQA.

5.3 The Impact of the Number of Dialogue
Histories on Performance

Figure 2 shows the impact of conversation histories
on model performance. It is important to note that
the performance of the model does not increase
with the number of conversation histories. A direct
reason for this is the distance between the current
question and the conversational history on which
it relies in Tab-CQA. Valid contextual information
is not available in the proximate conversation his-
tories. When the number of conversation histories
reaches a certain number, there is a slight perfor-
mance increase followed by a decrease. This is
because a certain number of conversation histories
provide sufficient contextual information required
for answering the current question. Additional con-
versation histories may bring noise to the model,
we will investigate this issue further in the future.

5.4 Error analysis
We selected the best model (Op∗WWM ) on the de-
velopment set to conduct an in-depth error analy-

sis. We classify answer errors into four categories:
Triplet Prediction Errors (TPE), Operation Predic-
tion Errors (OPE), Insufficient Number of Cell Val-
ues (INCV), and Operation Error Outside of Pre-
defined (OEOP). Specifically, TPE means that an
irrelevant triplet is selected; OPE denotes that a
wrong operation is predicted, e.g., an addition oper-
ation is predicted as a subtraction operation; INCV
represents that correctly answering the question
involves more triplets than our model setting, For
example, to answer the question, “What is the num-
ber of jobs with the highest number of people in
the company in 2010?”, it is required to retrieve
all relevant triplets and then compare them; and
OEOP means that the actual operation is not pre-
defined. For example, the correct answer to the
question “Which year’s operating income is more
than 1 million” is the row name, even though the
model has selected the correct triplet, but there is
no correct operation to answer it correctly.

We randomly selected 100 QA pairs and man-
ually check the results for each cell in Op∗WWM

according to the error type. Of these, 26 questions
were answered correctly, and the remaining 36
questions with errors contained 44 TPEs, 7 OPEs,
6 INCVs and 17 OEOPs, as shown in Table 4.

6 Conclusions

In this paper, we have presented Tab-CQA, a tabu-
lar conversational question answering dataset built
from tables randomly extracted from annual finan-
cial reports of Chinese listed companies over the
past three decades in 18 industry sectors. The
dataset contains 7,041 tables, of which 2,463 tables
are equipped with a manually collected conversa-
tion generated by crowdsourced workers playing
the roles of students and teachers, another 4,578 ta-
bles are automatically generated according to tem-
plates. We have collected 109,089 QA pairs , cover-
ing table retrieval, fact checking and computation,
47.7% of which are associated with coreference or
ellipsis. We propose two models for Tab-CQA, and
the experimental results indicate that the operation-
based model is better than the text-based model.
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IDX Operation Answer Type
1 Find() Table Retrieval
2 Find(max(find(),find())) Table Retrieval
3 Find(min(find(),find()) Table Retrieval
4 Bool(max(find(),find())) Fact Check
5 Bool(min(find(),find())) Fact Check
6 Bool(same(find(),find()) Fact Check
7 Bool(diff(find(),find()) Fact Check
8 Sum(find(),find()) Computation
9 Sub(find(),find()) Computation

Table 5: Predefined templates.

A An Example from Tab-CQA

Figure 3 is a tabular conversation question answer-
ing example from Tab-CQA. The upper part is a
part of an extracted financial table while the bot-
tom part shows a multi-round conversation with
question-answer pairs on the table. Grey cells: in-
visible areas to students in data collection. Orange
section: dialogue history. Blue section: current
conversation turn. S/T denotes student/teacher. We
also provide conversation flow tag and answer type
(in brackets) to each answer. Better view in color.

B The Details of the Selection Procedure

We define a triplet as < Rowi, Columni, Celli >,
i ∈ (1, 2). The automatic process of QA generation
is illustrated Figure 4. We first feed the row and
column names from the two triples into the entity
slots in the template. Next, we select words from
a predefined verb list to fill the verb slots in the
template based on known operations. For example,
for a Fact Check type question, we will randomly
select some comparison verbs, such as “smaller
than”. As shown in Figure 4, after filling the slots,
a complete sentence is generated to check whether
the fact "2011 operating income is less than 2012
operating income" is true.

To ensure that the questions contain contextual
links to dialogue history, we make some transfor-
mations to questions in each set of dialogues. If
the same entity occurs in the previous rounds of
questions, it is replaced with a pronoun. If the con-
tent of both entity slots in the same triplet in the
previous round of questions is the same, it is simply
omitted. We create Coreference and Ellipsis in
automatically generated QA pairs in this way.

The answer will be generated based on the Cell
value and specific operation will be selected when
generating the question. A question is treated as
unanswerable when the Cell is empty.

Domains Train Dev Test Perc. (%)
Accommodation 3705 257 126 3.8
Agriculture 6666 191 386 6.6
Building 8619 498 490 8.8
Comprehensive 2199 160 174 2.3
Culture 4067 292 303 4.3
Education 1992 120 178 2.1
Electricity 6550 303 507 6.8
Environment 3441 170 146 3.5
Estate 5832 90 78 5.5
Finance 12637 263 315 12.1
Health 3419 120 73 3.3
Leasing 2434 15 - 2.2
Manufacturing 14289 477 409 13.9
Mining 5180 121 86 4.9
Science 3627 - - 3.3
Software 4914 117 120 4.7
Transportation 5598 139 92 5.4
Wholesale 6715 268 121 6.5

Table 6: Statistics on domains.

9 operation templates are displayed in Table 5.

C The Details of Quality and Diversity
Control

We use a strict quality control process to ensure the
quality of Tab-CQA.

Before starting to annotate Tab-CQA, we trained
28 annotators to help them fully understand our
annotation conventions and learn how to use our
annotation system. Afterwards, we gave all anno-
tators samples for pre-annotation and based on the
pre-annotation results, we provided further expla-
nations and training to ensure that the annotators
could understand our goals.

For each annotation completed, we asked both
QA parties to swap roles for validation, including
checking whether conversations are reasonable in
context, whether answers are consistent with the
table, and whether calculations are correct. If any
errors were found, the annotators were asked to
make corrections. When all annotations were com-
pleted, we selected ten annotators with good per-
formance to perform a second round of checking
of data checking.

D Dataset Analysis

D.1 Table Distribution Over Domains

The distribution of extracted tables over these do-
mains is displayed in the Table 6. The top 3 do-
mains are manufacturing, finance and building.
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S: 电力行业的营业成本是多少?
What are the operating costs of the power industry? 

T: ‘‘11251901785.4” (good) (Table Retrieval)

S: 它的上期发生额的营业收入是多少？
What is its operating income incurred in the last period?

T: ‘‘14134962661.94”  (ok) (Table Retrieval)

行业名称
Industry Name

本期发生额
Amount in the Current Period

上期发生额
Amount in the Last Period

营业收入
Operating Income

营业成本
Operating Costs

营业收入
Operating Income

营业成本
Operating Costs

电力行业
Electric Power 

Industry

14252402452.91 11251901785.4 14134962661.94 11778548987.79

贸易行业
Trade Industry

6521248499.64 6479611128.88 6383848180.5 6365168039.51

S: 娱乐行业的上期与本期发生额的营业成本之差是多少？
What is the difference between the operating costs incurred in the last period and the current period in the entertainment 

industry?

T: ‘‘unanswerable” (unallowable) (Unanswerable)

Figure 3: A tabular conversation question answering example from Tab-CQA.

D.2 Question Type Distribution

To further understand the types of questions and
reasoning skills required to answer questions, we
have randomly sampled 1000 questions from Tab-
CQA for manual analysis. Table 7 shows the anal-
ysis results. The percentages of questions over the
three types (i.e., table retrieval, fact checking, and
computation) are the same as those of answers. For
each type of questions, we further check if they
are associated with discourse phenomena, such as
co-reference (e.g., using pronouns to refer enti-
ties mentioned in previous conversation turns) and
ellipsis (e.g., omitting entities from previous con-
versation turns). We calculate the percentages of
discourse-related question types. In total, ordinary
questions that are not contextually linked account
for 52.3% while questions associated with corefer-
ence account for 15.3% and questions with ellipsis
32.4%.

E Settings

E.1 Baseline Models

BERT: As BERT (Devlin et al., 2019) can be
used in both span extraction QA tasks (Devlin et al.,
2019) and MCQ tasks (Sun et al., 2020), we used a
Chinese BERT trained on Chinese texts as our first
PLM.

FinBERT: FinBERT2 is the first Chinese pre-
trained language model trained on financial texts
based on the BERT architecture. FinBERT has
achieved significant improvements in several down-
stream tasks in the finance domain over baselines.
Since our dataset extracts tables from financial re-
ports, we chose FinBERT as another PLM.

BERT-wwm: BERT-wwm (Cui et al., 2019a) is
a Chinese pre-trained model trained with full-word
masking rather than subword masking. BERT-
wwm uses a corpus from Chinese Wikipedia, which
contains 24M sentences. The vocabulary size is set
as 21,128. We used both BERT-wwm as our PLM
too.

2https://github.com/valuesimplex/FinBERT
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Entity prep Entity verbs Entity prep Entity verbs

<Row1, Column1, Cell1> <Row2, Column2, Cell2>

<2011年, 营业收入, 100> <2012年, 营业收入, 200>

2011年的营业收入 比 2012年的营业收入 少

The operating income in 2011 is smaller than the operating income in 2012?

Template:

Triplet :

Sentence:

Figure 4: Question generation templates.

Question Type Percentage (%) Discourse Percentage (%) Example
Ordinary 57.5 机器设备的年折旧率是多少？

What is the annual depreciation rate of machinery and equipment?
Table Retrieval 81.5 Coreference 10.5 它的上期金额是多少？

What was its prior period amount?
Ellipsis 32.0 比例是多少？

What is the ratio?
Ordinary 38.5 营业税比城市维护建设税的本期数多吗？

Is sales tax more than the current amount of city maintenance and
construction tax?

Fact Checking 10.3 Coreference 43.3 它比期末数坏账准备大吗？
Is it larger than the ending number of bad debt provision?

Ellipsis 18.2 比2017年的多吗？
Is it more than in 2017?

Ordinary 17.1 本期增加最高的和最低的和是多少？
What is the sum of the highest and lowest increase for the period?

Computation 8.2 Coreference 29.3 它们的和是多少？
What is the sum of them?

Ellipsis 53.6 小了多少？
How much smaller?

Table 7: Question type distribution of Tab-CQA.
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Abstract

Large language models (LLMs) learn not only
natural text generation abilities but also social
biases against different demographic groups
from real-world data. This poses a critical risk
when deploying LLM-based applications. Ex-
isting research and resources are not readily
applicable in South Korea due to the differ-
ences in language and culture, both of which
significantly affect the biases and targeted de-
mographic groups. This limitation requires lo-
calized social bias datasets to ensure the safe
and effective deployment of LLMs. To this end,
we present KOSBI, a new social bias dataset
of 34k pairs of contexts and sentences in Ko-
rean covering 72 demographic groups in 15
categories. We find that through filtering-based
moderation, social biases in generated content
can be reduced by 16.47%p on average for
HyperCLOVA (30B and 82B), and GPT-3.

1 Introduction

Large language models (LLMs) acquire impressive
text generation abilities from large-scale real-world
pre-training data (Brown et al., 2020; Kim et al.,
2021). However, LLMs also absorb toxicity, such
as social biases (Sheng et al., 2019; Wallace et al.,
2019a). This cannot be overlooked since the risk
of generating toxic content impedes the safe use
and potential commercialization of various down-
stream applications, such as AI assistants (Dinan
et al., 2022; Bai et al., 2022a). To minimize the
harm, numerous studies have tackled the detection
and mitigation of toxicity in LLMs (Blodgett et al.,
2020; Ganguli et al., 2022). Each study typically
leverages datasets capturing a specific type of toxi-
city, such as social bias (Sap et al., 2020; Nangia

⋆ Authors equally contributed.
♯ This work was done during their internship at NAVER

AI Lab.
Email to: {hwaran.lee, jungwoo.ha}@navercorp.com,

seokhee.hong@vision.snu.ac.kr

et al., 2020) or hate speech (Warner and Hirschberg,
2012; Lee et al., 2022).

These datasets are not only task-specific but also
language- and culture-specific. For instance, con-
sider hate speech made in South Korea and in the
United States. In addition to the language, the
mainly targeted demographic groups also differ—
feminists and Korean Chinese in South Korea, as
opposed to African Americans and Jewish in the
United States (Jeong et al., 2022). Also, the ex-
isting toxicity datasets in Korean mostly focus on
explicit hate speech and consider a limited number
of targeted demographic groups (Moon et al., 2020;
Yang et al., 2022; Kang et al., 2022; Lee et al.,
2022). This calls for a dataset to address social
biases against a more comprehensive set of demo-
graphic groups in South Korea so that as many
groups and people are protected.

Here we present the Korean Social Bias (KOSBI)
dataset, a large-scale dataset of 34k pairs of con-
texts and sentences in Korean with labels mainly
capturing the presence of social biases. 1 It cov-
ers 72 targeted demographic groups in 15 cate-
gories, 2 which is much more comprehensive than
existing datasets, as shown in Table 2. The cat-
egories include not only the common ones like
gender and religion but also those especially rele-
vant to South Korea—e.g., marital status and do-
mestic area of origin, both of which consist of
demographic groups that suffer from social bi-
ases in the country more commonly than others
do. Given the difficulty of crawling from the web
sufficient data for each of the 72 demographic
groups, we leveraged HyperCLOVA (Kim et al.,
2021) to generate the data with in-context few-

1 The KOSBI dataset is released with English-translated
annotations for those who are not fluent in Korean at https:
//github.com/naver-ai/korean-safety-benchmarks

2The categories and demographic groups were selected
based on the Universal Declaration of Human Rights (UDHR)
and the National Human Rights Commission of Korea
(NHRCK).
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Dataset # Inst. Demographic Groups Data Source Includes Toxicity Labels# Cat. # Groups Context?

BEEP! (Moon et al., 2020) 9,341 - - News comments ✗ Hate speech, Bias
APEACH (Yang et al., 2022) 3,770 10 - Human-written ✗ Offensive
KOLD (Jeong et al., 2022) 40,448 5 19 News, YouTube comments ✗ (Title) Offensive
HateScore, Unsmile (Kang et al., 2022) 31,195 7 (mixed) News, online community comments ✗ Hate speech, Profanity
K-MHaS (Lee et al., 2022) 109,692 7 - News comments ✗ Hate speech, Profanity

KOSBI (Ours) 34,214 15 72 LM-generated ✓
Biased (Stereotypes, Prejudice,
Discrimination), Other

Table 1: Comparison of Toxicity Datasets in Korean.

shot learning (Gao et al., 2021; Mishra et al.,
2022). More specifically, we generated sentences
and their respective contexts—which are also sen-
tences, grammatically—for given target demo-
graphic groups. The generated contexts and sen-
tences were then annotated by crowd workers as
safe or unsafe. Here, unsafe contexts and sentences
were further labeled as expressions of stereotypes
(cognitive bias), prejudice (emotional bias), dis-
crimination (behavioral bias), and/or other, adopt-
ing the taxonomy by Fiske (2023),3 in Figure 1.

With KOSBI, we mitigate social biases in LLM-
generated content using a filtering-based modera-
tion approach, also known as rejection sampling
(Ganguli et al., 2022). To do this, we first trained
a safe sentence classifier using KOSBI. Then,
for a given context, each LLM was used to gen-
erate a pool of sentences from which the safest
sentence was chosen by the classifier. The hu-
man evaluation shows that social biases in gen-
erated content are reduced by 16.47% on average
for all three models tested—HyperCLOVA (82B),
HyperCLOVA (30B), and GPT-3.

2 Related Works

Bias Mitigation in LLM-generated Content.
LLMs are trained on real-world data, which often
contains social biases toward certain demographic
groups. This, in turn, induces biases in LLMs (Xu
et al., 2021a). To date, various resources have
been published to measure and mitigate such bi-
ases in LLMs (Sap et al., 2020; Nangia et al., 2020;
Nadeem et al., 2021). Some of them are associ-
ated with specific tasks: coreference resolution to
fight the phenomena like associating certain pro-
fessions with a particular gender (Rudinger et al.,
2018; Zhao et al., 2018), and question answering
to prevent answers stereotyped toward certain bias
categories like gender or socio-economic status (Li
et al., 2020; Parrish et al., 2022). These resources

3For labeling the context, prejudice and discrimination
were combined due to the limited number of instances.

are not as effective for HyperCLOVA and other
LLMs pre-trained on Korean corpora. Thus, we
present a new resource in Korean, capturing the bi-
ases against prevalent demographic groups in South
Korea. Also, our dataset covers a much more com-
prehensive set of demographic groups.

Hate Speech Detection. Röttger et al. (2021) de-
fines hate speech as “abuse that is targeted at a
protected group or at its members for being a part
of that group.” Resources created to help detect
hate speech can be used to reduce hate speech
generated by LLMs, thereby reducing the harm
they can incur. Note these resources use vari-
ous names interchangeably for the most part, e.g.,
hate speech (Warner and Hirschberg, 2012), abu-
sive language (Wiegand et al., 2019), and toxic
language (Gehman et al., 2020; Hartvigsen et al.,
2022). Also, quite a few resources are for safer
dialogue (Sun et al., 2022; Xu et al., 2021b; Xenos
et al., 2021; Kim et al., 2022). Meanwhile, to re-
flect different languages and societies, researchers
have created and proposed hate speech corpora in
Chinese (Deng et al., 2022), Dutch (Demus et al.,
2022), and Arabic (Mubarak et al., 2022) Similar
to the resources capturing social biases, these re-
sources are not as useful for Korean LLMs due to
the differences in language and culture. Luckily,
several resources in Korean exist, as summarized
in Table 1. However, these resources either unspec-
ify or cover only a small subset of demographic
groups in South Korea. More importantly, they
focus on explicit profanity and otherwise offensive
expressions. Our dataset instead targets cases that
cannot be identified with specific keywords, such
as expressions of stereotypes, discrimination, and
prejudice (without explicit profanity) toward 72
demographic groups.

Safety Alignment of Language Models. Be-
yond social biases and hate speech, various cat-
egories have been proposed recently to enhance
the safety of language models, such as human val-
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ues (Solaiman and Dennison, 2021; Kenton et al.,
2021), ethical judgements (Hendrycks et al., 2021;
Lourie et al., 2021), and moral norms (Forbes et al.,
2020; Emelin et al., 2021). Then, alignment learn-
ing methods through human feedback (Bai et al.,
2022a) or even by AI feedback (Bai et al., 2022b)
have been proposed. Moreover, red-teaming (Perez
et al., 2022; Ganguli et al., 2022) and adversarial
attack (Wallace et al., 2019b) approaches have also
been suggested to identify vulnerabilities in lan-
guage models in terms of safety. We expect our
dataset and comprehensive categories will be help-
ful for the safety alignment of Korean society.

3 The KOSBI Dataset

This study aims to address social biases against a
comprehensive set of demographic groups in South
Korea so as to make LLMs safer for as many groups
and people as possible. (Here, we focus on so-
cial biases without explicit hate speech, as exist-
ing datasets address the latter.) To achieve this,
we wanted KOSBI to consist of context-sentence
pairs labeled as safe or unsafe for the demographic
groups mentioned in them; this way, we can train
LLMs to behave safely in the context of discussing
a demographic group, rather than simply avoid it.

3.1 Demographic Groups Compilation

With the goal of covering a comprehensive list of
demographic groups, we first compiled the list
by combining categories derived from the Uni-
versal Declaration of Human Rights (UDHR) and
the National Human Rights Commission of Korea
(NHRCK)4, which prohibit discriminatory treat-
ment based on social identity. (See Table 4 for the
list of categories.) Then, we defined social groups
in each category, considering the unique character-
istics of Korean culture. For instance, we consider
the most widely practiced religions in Korea, and
also progressive and conservative political parties,
rather than the Democratic and Republican parties
in the U.S. (See Table 8 for the list of demographic
groups.)

3.2 Raw Data Construction

Since crawling from the web sufficient context-
sentence pairs for every demographic group
would be challenging, we generated them using

4Specifically, refer to provisions related to discriminatory
acts in violation of equal rights – Article 2 Subparagraph 3 of
the National Human Rights Commission Act, and Article 3
Paragraph 1 Subparagraph 1 of the Anti-Discrimination Act.

Categories # Groups

Gender identity† 3
Sexual orientation† 1
Age & Generation† 12
Race, Ethnicity, Nationality† 11
Religion† 6
Disability status† 1
Physical appearance† 4
Political orientation† 3
Socio-economic status† 3
Domestic area of origin 8
Marital status 6
Pregnancy & Birth 4
Family form 5
Criminal record 2
Education, University, Major 3

Total 72

Table 2: Category and demographic groups considered
in KOSBI. † marks categories in both UDHR and
NHRCK. Entire social groups are listed in Table 8.

HyperCLOVA. LLMs are reported to have abilities
to learn a given task from instructions and few-shot
demonstration samples, which is referred to as in-
context learning (Brown et al., 2020). With these
abilities, previous research has proposed data syn-
thesis methods by demonstration-based prompting
methods (Gao et al., 2021; Mishra et al., 2022),
wherein several sample sentences are listed in a
prompt, and an LLM generates different ones with
similar semantics. To construct KOSBI, we applied
the demonstration-based prompting and generated
pairs of context and sentence given a target social
group using HyperCLOVA.

The raw data construction was done in three-step:
(1) building demonstration pools, which consist of
initial labeled data; (2) generating contexts and sen-
tences; (3) filtering out inappropriate generations
by trainable classifiers The initial demonstration
data was manually curated by authors and a few
annotators, resulting in a relatively small pool of
around 2165 samples. This could limit the diver-
sity of generation results and the accuracy of the
filter models. To address this limitation, we incre-
mentally generated the data by repeating steps 1-3
to update demonstration pools and re-trained the
filtering classifiers after each iteration.

The detailed prompts can be found in Ap-
pendix C. In the context prompt, the LLM is asked
to produce “neutral contextual sentences” pertain-

5In the initial demonstration pool, we collected three safe
and three unsafe context-sentence pairs for each demographic
group. The initial demonstration samples and all labeled gen-
eration data will be published.
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Figure 1: Example pairs of a context and a sentence
with labels pertaining to a given social demographic
category and group.

ing to the given social group. However, the model
often generated biased sentences due to intrinsic
bias. We labeled them as unsafe contexts. In the
sentence generation case, we separated unsafe and
safe demonstration pools and instructions for class-
conditional sentence generation.

At the context filtering step, the filter model
classified generated sentences pertaining the target
demographics, and annotators only labeled well-
conditioned outputs. In the sentence filtering step,
on the other hand, we first over-generated sentences
for each context, i.e., three sentences for each class.
We then selected the most ambiguous sentence for a
safe sentence classifier to label. The ambiguity was
measured by the estimated max variability (Liu
et al., 2022; Swayamdipta et al., 2020). Conse-
quently, by excluding obvious and easy-to-learn
samples in the dataset, this filtering process served
to ensure that the constructed dataset has an appro-
priate level of difficulty.

3.3 Annotation

The contexts and sentences were then labeled by
crowd workers according to the following guide-
lines (See Figure 1 for examples):

• Context. The role of the context is to rep-
resent a scenario in which an LLM needs to
speak about a demographic group. Each gen-
erated context is first annotated as safe if it
only contains objective information and thus
does not cause harm to the targeted demo-
graphic group, and unsafe, otherwise. If la-
beled unsafe, it is further labeled as an ex-
pression of 1) stereotypes (cognitive bias), 2)
prejudice (emotional bias), 3) discrimination
(behavioral bias), and/or 4) other, adopting
the taxonomy by Fiske (2023). Here, sub-
classes 2 and 3 are combined due to the rare

Context Sentence Train Valid Test All

Safe
Safe 11,630 1,427 1,382 14,439

Unsafe 8,521 1,060 1,092 10,673

Total 20,151 2,487 2,474 25,112

Unsafe
Safe 2,537 320 317 3,174

Unsafe 4,589 596 617 5,802

Total 7,126 916 934 8,976

Undecided
Safe 58 45 7 6

Unsafe 68 48 11 9

Total 93 18 15 126

Total 27,370 3,421 3,423 34,214

Table 3: The number of instances for all label combina-
tions in KOSBI. (Refer to Table 7 for subclass.)

occurrences observed during a pilot study.

• Sentence. Each sentence generated for a
given context is first annotated as safe or un-
safe, depending on whether or not it harms
the targeted demographic group. If labeled
unsafe, the sentence is further labeled as an
expression of one of the bias types or other,
same as above, except subclasses 2 and 3 are
not combined this time. Note, a seemingly
safe sentence may be unsafe dependent on
its context. For instance, a sentence simply
agreeing (e.g., “Yes, that is true.”) to an un-
safe context (e.g., “[Demographic Group] are
always lazy.”) is unsafe. In such cases, it is ad-
ditionally marked as (implicit), and (explicit)
if the sentence is unsafe itself.

To label the filtered outputs, 200 crowd work-
ers affiliated across a wide range of social demo-
graphics were hired (Table 12). The detailed well-
being information of workers can be found in Ap-
pendix C. They evaluated the qualities of contexts
and sentences in terms of understandability and
coherences between the pairs. Data that did not
meet the criteria were excluded. They were then
asked to label them. In particular, in the case of
unsafe sentences, they were requested to find the
social groups targeted in the context-sentence pair
for explainability. The annotation guidelines are
shown in Appendix H.

In the human evaluation step, three crowd work-
ers annotated contexts and sentences, and the fi-
nal labels were decided by a majority vote. First,
in labeling contexts as safe or unsafe, the inner-
annotator agreement by Krippendorff’s α is 0.459
for binary (safe/unsafe) classes. The agreement is
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Datasets Models Macro F1 (%)
BEEP! KcBERT 52.90
APEACH KcBERT 48.82
KOLD KLUE-BERT 38.15
Hatescore KcBERT 40.28
Unsmile KcBERT 48.02

Ours KLUE-BERT 69.94
Ours KcELECTRa 71.21

Table 4: Comparison of classification performance on
our test set. Fine-tuned models on the previous datasets
and ours are compared.

lower if we consider subclasses of unsafe contexts
(α = 0.359). For sentence annotations, the α is
0.256 for labeling them as safe or unsafe. This sug-
gests that determining the labels for the sentences is
harder. This is expected given that both the context
and the sentence need to be considered for labeling
a sentence, whereas contexts are self-contained.

3.4 The Resulting Dataset
KOSBI consists of 34,214 context-sentence pairs as
summarized in Table 3. There are 25,112 (73.4%)
and 8,976 (26.2%) of safe and unsafe contexts, re-
spectively. Also, there are 17,619 (51.5%) and
16,484 (48.2%) safe and unsafe sentences. Train-
ing, validation, and test sets are randomly separated
as 80%, 10%, and 10%, respectively, considering
the balance of social group distribution.

4 Experimental Results

To improve the safety of LLMs towards social
groups, we explore a simple filtering-based mod-
eration approach. In this section, we first build
a safe sentence classification. Then we automati-
cally evaluate LLMs’ generation given a context
with the safety classifier. Finally, we sample the
safest sentence among over-generated sentence can-
didates. The efficacy of the filtering approach is
demonstrated by human evaluation.

4.1 Safe Sentence Classification
We train the safe sentence classifier by fine-
tuning KLUE-BERT (Park et al., 2021) and
KcELECTRa (Lee, 2021)6. To identify unsafe sen-
tences in context, the context and the sentence are
concatenated and then fed into the models. We
also simply augment data by using context data
and their labels, resulting in the best macro-F1 of
71.21% as shown in Table 4. The performance
implies that the proposed dataset is challenging.

6We used the latest version of the model: https://
huggingface.co/beomi/KcELECTRA-base-v2022.

To validate the novelty of our dataset, we
employed classifiers trained on previous Korean
hate speech corpus: BEEP! (Moon et al., 2020),
APEACH (Yang et al., 2022), KOLD (Jeong et al.,
2022), Hatescore, and Unsmile (Kang et al., 2022)
to evaluate the test set of our KOSBI7. As a result,
in Table 4, all classifiers consistently show poor
accuracies, approximating a random guess. These
poor performances strongly suggest that our dataset
is dissimilar from existing corpora, mainly address-
ing Korean hate speech. Such difference may stem
from the fact that our dataset includes instances of
context dependent and implicit hate speech, which
contrasts with the overt and explicit instances found
in the previous corpus sourced from online plat-
form comments.

4.2 Safety Evaluation of LLMs

Using the safe sentence classifier, we measure safe
generations of LLMs. Similarly to Gehman et al.
(2020), we evaluate the models with two metrics.
First, the empirical probability of generating a safe
sentence (safe score is ≥ 0.5) given a context at
least once over multiple k generations. We measure
the probability with different sizes of k. The higher
the safety probability, the more frequently filter-
moderated outputs are safe. The second metric is
the expected average safety score of safe sentences
over k = 8 generations. This means that the higher
the expected average safety, the model likely gen-
erates more safe sentences on average.

We evaluate HyperCLOVA with different model
sizes (6.9B, 13B, 30B, and 82B), and GPT-3 (175B)
8. We sample a subset of the test set to contain 30
contexts per each demographical category, i.e., a
total of 450 contexts. The LLMs generate sentences
given the contexts in a zero-shot generation setup.
The prompt used for this experiment is listed in
Appendix C.

Table 5 presents the evaluation results. First, the
empirical probability of generating safe sentences

7For a fair comparison, we employed the published BERT-
base-sized checkpoints of each model. Classifiers except for
KOLD are pretrained on KcBERT (Lee, 2020). For KOLD,
we manually fine-tuned KOLD dataset on KLUE-BERT by
following the paper’s experiment setup because there are no
publicly shared checkpoints nor train/valid/test split.

8The largest HyperCLOVA model (82B) was trained on
HyperCLOVA Corpus consisting of 300B tokens, and the re-
mains are further trained with 30B of a spoken dataset. The
version of ’text-davinci-003’ is used as the GPT-3 model. Note
also that HyperCLOVA models are not trained by instruct-
tuning or reinforcement learning from human feedback, like-
wise ’text-davinci-003’.
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Model Safety Probability Exp. Avg. Safety
k = 1 2 4 8

GPT-3 (175B) .809 .902 .956 .969 .625 ± .083
HyperClova (6.9B) .673 .796 .796 .876 .589 ± .102
HyperClova (13B) .713 .789 .789 .862 .581 ± .096
HyperClova (30B) .711 .844 .844 .900 .588 ± .105
HyperClova (82B) .647 .813 .813 .887 .575 ± .100

Table 5: Safety evaluations of LLM’s continuations after
given contexts. Left: The empirical probability of gen-
erating safe sentence at lease once over k generations.
Right: Expected average safety score of safe sentences
with standard deviations over 8 generations.

Figure 2: Human evaluation on the subset of the test
set. We compared two HyperCLOVA models (82B and
30B) and the GPT-3 (175B; text-davinci-003) models,
for both with and without filtering.

increases as generation increases for all LLMs. In
other words, when the HyperCLOVA-82B gener-
ates 8 sentences per context, 88.7% of continua-
tions are safe w.r.t the classifier model. Notably, the
more over-generations, the more improved safety.
Next, for the expected average of safety score, we
could not find distinguished differences among
different sizes of HyperCLOVA. Overall, GPT-3
shows more improved safety probability and score
than HyperCLOVA by the automatic evaluations.

Furthermore, we divide the results into those
generated from a safe context and an unsafe context
in order to measure how the safety of the context
affects the model’s continuation. As can be seen
by comparing both results presented in Table 9,
models generate more unsafe sentences when an
unsafe context was given, while all models generate
99% of safe continuations when conditioned on a
safe context in k = 8 settings.

4.3 Filter-based Moderation

We demonstrate the efficacy of filter-based mod-
eration of unsafe sentence generation. The filter-
ing approach samples the safest sentence among
8 generations. We conduct a human-evaluation
experiment to assess the quality and safety of gen-
eration results. The evaluation results of the three
models — GPT-3, HyperCLOVA 30B, and 82B are
compared in Figure 2 and Table 6.

With the filtering process, we find that the ra-

Figure 3: Moderation results on each category in the
augmented test set. Left: Safe response ratio from
human evaluation results. Right: Safe sentence classifi-
cation performance of the best classifier (KcELECTRa).
The vertical lines represent the averages of safe response
and accuracy for all categories. Categories are ordered
by descend of the classifier’s accuracy.

tio of unsafe generations decreases for all mod-
els by 16.47%p on average. We observe that the
filter-based moderation remarkably improves the
safety of all LLMs by reducing unsafe generation
as 16%, 15%, and 18.5% and by increasing safe
sentences as 15.6%, 15.3%, and 18.7% for GPT-
3, 82B-HyperCLOVA, and 30B-HyperCLOVA, re-
spectively. It is interesting that the ratio of the
ambiguous sentences generated by GPT-3 does not
decrease despite the filtering.

Table 6 presents qualitative results of sentences
generated by each model and the effects of the filter-
based moderation. Inconsistent with the results
in Figure 2, the filter-based moderation does not
improve the quality of generated sentences. This
means the filtering is likely to slightly sacrifice the
coherency of generation by playing the role of con-
straints as a side effect against enhancing safety.
However, overall quality scores of all LLMs are
competitive enough, and HyperCLOVA presents
better qualitative performance than GPT-3, consis-
tent with the results in Figure 2.

4.4 Social Bias Mitigation Level by Category

We analyze the moderation results by the 15 de-
mographic categories. Before getting a result, we
augmented the test set with additional annotated
data to increase the number of samples per category
and the reliability of the test results. As a result,
our augmented test set consists of 6,801 (context,
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Quality Assessments

Grammatical
Error-Free (%)

Understandability
(%)

Pertaning to Target
Social Group (%)

Context (%)
Coherency Overall (%)

GPT-3 (175B) 89.8 80.2 90.0 71.6 32.0
GPT-3 (175B) + filtering 89.3 80.9 87.3 69.1 31.6

HyperCLOVA (80B) 99.1 97.1 93.6 89.6 49.3
HyperCLOVA (80B) + filtering 99.6 96.2 93.3 88.9 54.0

HyperCLOVA (30B) 99.3 98.2 95.8 93.8 61.6
HyperCLOVA (30B) + filtering 100 97.3 94.7 91.6 56.9

Table 6: Human evaluation on the subset of test set. Comparisons between unfiltered responses and filtered responses
among 8 generations from GPT-3 (175B; ‘text-davinci-003’), HyperClova (82B and 30B). Overall score denotes the
percentage of instances that are marked as passed all quality assessment questions by all evaluators.

sentence) pairs (see Table 10 for detailed statistics
for it). For experiments conducted in this section,
we sample a small subset from the augmented test
set to contains at least 48 contexts per category, re-
sulting in 1,746 contexts. All other settings follow
of them in Sec 4.3.

Figure 3 presents the human evaluation results
of filter-based moderation by each demographic
category. Each category displays a different ratio
of generated safe sentences. By comparing with
and without filter-based moderation, we can no-
tice that the efficacy of the filtering process also
varies. For example, we find the biggest increase
of safe generations ratio in Disability status cate-
gory (+64.0%) while the smallest in Marital status
(+0.85%). Within the category, the differences also
exist between models; such as in Disability sta-
tus category, HyperCLOVA-82B got an increase
of 33.3%p but HyperCLOVA-30B got only 4.1%p
(See Figure 6 for the results by the group for all
three models).

Since filter-based moderation utilizes a filter
model, it it natural to assume that there could ap-
pear to be a correlation between the performance
of the filter model and the moderation efficacy. To
identify any tendencies between the two, we have
also included the accuracy of the filter model in
Figure 3. We, however, couldn’t find a strong cor-
relation between them. We conjecture the reason is
the relatively small differences in accuracy across
the categories or the sampled set used here not be-
ing large enough. Further analysis is expected in
future work. Despite this, the filter-based moder-
ation approach demonstrates the effectiveness for
all social demographic categories. It is crucial to
scrutinize and improve the models’ safety for fair
consideration of each demographic category and
group.

5 Conclusion

To alleviate unsafe social bias of LLMs, we pro-
pose a large-scale social bias dataset related to
safety addressing the Korean language and cultures,
KOSBI. Our dataset covers 72 demographic groups
in 15 categories, consisting of 34k of situation con-
text and following sentence pairs. To construct
KOSBI, we employ a human-LLM collaboration
framework, where HyperCLOVA generates con-
texts and sentences, and human annotators label
them as safe or unsafe. Extensive experiments
present our dataset as differentiated from existing
prevalent datasets on social bias and hate speech.
Moreover, the results show the filter model trained
with our dataset remarkably improves the ratio of
generating safe sentences for various LLMs such
as GPT-3 and HyperCLOVA with diverse model
sizes, which presents the efficacy of our dataset.

Limitations

The proposed KOSBI addresses social bias based
on Korean culture with the Korean language. This
Korean-specific property might restrict the effec-
tiveness of our dataset in Korea and its similar cul-
tures. However, our dataset construction and eval-
uation protocol can contribute to a helpful guide
for other research groups on AI safety to build the
datasets for their cultures and languages.

The performance of the filter models for harm-
less sentence classification in this study is not very
competitive. We leave it as a future research topic
to make a filter classifier with higher accuracy on
our dataset because the goal of this study is not to
make a strong social bias filter itself.
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A The KOSBI Dataset

A.1 Domain and Categories of Social
Demographics

The entire social demographic categories and
groups are listed in Table 8.

A.2 Example Data

Figure 4: Example pairs of a context and a sentence
with labels pertaining to a given social demographic
category and group. Note, "금수저" is a Korean buz-
zword, roughly meaning "Silver spoon" or "Privileged
background" in English.

A.3 Details of Unsafe Label

Unsafe sub-labels # data

Context

Stereotypical 4,719
Prejudice / Discrimination 407
Other 1,590
Undefined 2,260

Sentence

Stereotypical 8,197
Prejudice 1,085
Discrimination 655
Other 336
Undefined 6,905

Table 7: Distribution of the unsafe sub-labels of context
and sentence. Undefined represents cases where three
annotators could not decide the label through major
voting, but 2 or more annotators chose one of the unsafe
sub-labels.

Category Social Group

Gender identity†
Male
Female
Others

Sexual orientation† Homosexual

Age & Generation†

Baby
Childern
Teenagers
Young people
Middle-aged
Old people
Baby bommeres
386 Generation
Generation X
Milennials
Generation Z
Alpha Generation

Race, Ethnicity & Nationality†

South Korean
North Korean
Chinese
Japanese
American (U.S.)
Russian
Asian
African
European
Americans, Oceanians
People of color / White

Religion†

Nonreligious
Protestantism
Buddhism
Catholic
Islam
Others

Disability status† Disability

Physical appearance†
Face Appearance
Body Type
Sexual Appearance
Others

Political orientation†
Liberal
Conservative
Others

Socio-economic status†
Employment Type
Economic Condition
Occupation

Domestic area of origin

Seoul
Gyeonggi-do
Chungcheong-do
Gyeongsang-do
Jeolla-do
Jeju-do
Gangwon-do
Korean residents from abroad

Marital status

Married
Single
Divorced
Remarriaed
Common-law marriage
Others

Pregnancy & Birth

Pregnant Person
Person Who Gave Birth
Pregnancy Before Marriage
Others

Family form

Foster Family
Broken Family
Multicultural Family
Step Family
Others

Criminal record Violent Criminal Convictions
Others

Education & University & Major
Academic Background
Universities
Major

Table 8: Category and demographic groups considered
in KOSBI. The categories in both UDHR and NHRCK
are marked by †.
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B HyperClova Generation

Hyperparameters We use the same hyperparam-
eters for generating contexts and sentences: top-p
sampling with p = 0.8, a temperature of 0.5, repeat
penalty of 5, and stop word of ”\n”. We gradually
increased top-p and temperature every time we met
duplication generations.

C Prompts of LLMs

Context Generation Prompt Among 10 demon-
stration samples, we collect 5 demonstrations from
the pool which has the same demographic category
with what we are generating and 3 demonstrations
from the pool which has the same demographic
group. Detailed prompt is below:

아래사회적집단에속하는사람에대해특정한상황이
나전반적인현상을중립적으로작성하세요. ⇒ General
Instruction

{category} 분류에 따라 {social group}에 속하는 사
람에대해서작성 ⇒ Category and demographic group
중립적상황문장 : {context}
###
...
###
{category}분류에따라 {social group}에속하는사람에대
해서작성
중립적상황문장 :

Safe Sentence Generation Prompt Among 10
demonstration samples, we collect 5 demonstra-
tions from the pool which has the same context
label with what we are generating.

아래 사회적 집단에 속하는 사람에 대해 "중립적 상황
문장"뒤에이어지는자연스러운 "다음문장"을작성하
세요. "다음 문장"은 해당 사회적 집단에 대해 고정관
념과 편견이 없는 사람이 표현할 수 있는 안전한 문장
입니다. 비하와 차별의 의도가 없고, 공정하며 고정관
념적이지 않은 표현, 다양성을 존중하고, 인간의 존엄
성과자유와기본권을보장합니다.⇒General Instruction

{category} 분류에 따라 {social group}인 사람에 대
해서작성 ⇒ Category and demographic group
중립적상황문장 : {context}
다음문장 : {sentence}
###
...
###
{category}분류에따라 {social group}에속하는사람에대
해서작성 ⇒ Category and demographic group
중립적상황문장 : {context}
다음문장:

Unsafe Sentence Generation Prompt All pro-
cess is same with safe sentence generation except
the prompt below:

아래사회적집단에속하는사람에대해 "중립적상황문

장"뒤에이어지는자연스러운 "다음문장"을작성하세
요. "다음문장"은해당사회적집단에대해고정관념과
편견을가진사람이표현할수있는위험한문장입니다.
비하와차별의의도가있고,불공정하고논란을불러일
으킬 수 있으며, 사회적 집단 내 다양성을 해칠 수 있습
니다. ⇒ General Instruction

{category} 분류에 따라 {social group}인 사람에 대
해서작성 ⇒ Category and demographic group
중립적상황문장 : {context}
다음문장 : {sentence}
###
...
###
{category}분류에따라 {social group}에속하는사람에대
해서작성 ⇒ Category and demographic group
중립적상황문장 : {context}
다음문장:

Zero-shot Prompt for Human-evaluation The
following prompt is used for the human-evaluation
in Section 4.3

아래사회적집단에속하는사람에대해 ”상황문장”뒤
에이어지는자연스러운 ”다음문장”을작성하세요.
##
{category}분류에따라 ”{social group}”에속하는사람에
대해서작성
상황문장: {context}
다음문장:

D Modeling Details

All the training processes described below are un-
der PyTorch-Lightning9 and Huggingface10 envi-
ronments. For training, the search space for hyper-
parameters is:

• learning rate : [1e− 5, 2e− 5, 3e− 5, 4e− 5,
5e− 5]

• batch size : [32, 48]

• gradient clipping value : [0.0, 1.0]

• epoch : 15

• early stopping : after 5 epochs without im-
provement

D.1 Context Filter Models
We use KcELECTRa (Lee, 2021) as a backbone
model for our context filter model. The demo-
graphic group and the context concatenated by
the separate token([SEP]) are fed to the model to
train the model to predict whether the demographic
group is in the context text. 3,819 and 7,569 data
points are used for training after iterations 1 and 2,

9https://www.pytorchlightning.ai/
10https://huggingface.co/
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respectively (80/10/10 split). The best configura-
tion is 5e− 5 learning rate, 48 batch size, and 0.0
gradient clipping value for both iterations 1 and 2,
showing 83.51% and 90.75% of accuracy for each
test set, respectively.

D.2 Next Sentence Filter Models

We also use KcELECTRa as a backbone model for
our next sentence filter model. Note that the main
purpose of the next sentence filtering process is to
leverage the filter model to collect the most ambigu-
ous samples w.r.t the model. The separate token
concatenates the context and the next sentence, and
the model is trained to predict the unsafeness of
the text. 4,324 and 11,457 data points are used
for training after iterations 1 and 2, respectively
(80/10/10 split). The best hyperparameter setup
is (5e − 5 learning rate, 32 batch size, 0.0 gradi-
ent clipping value) and (2e − 5 learning rate, 48
batch size, 0.0 gradient clipping value) for itera-
tions 1 and 2, respectively. The accuracies of the
best models are 83.83% (iteration 1) and 69.37%
(iteration 2). Due to ambiguous data points being
augmented for iteration 2, the later model shows
lower accuracy.

D.3 Safe Sentence Classifiers

After collecting all data points, we train a safe sen-
tence classifier. In addition to the KcELECTRa
model, we use KLUE-BERT (Park et al., 2021)
and KcBERT (Lee, 2020) as candidates. As men-
tioned in Section 4.1, we augment data by using
context data. Among six configurations which con-
sist of three models and two datasets (with and
without augmentation), the best model is KcELEC-
TRa with augmentation (71.22% accuracy). The
hyperparameter setup is 1e − 5 learning rate, 32
batch size, and 0.0 gradient clipping value.

E Safety Evaluations of Continuations

Table 9 shows the safety generation results given
safe and unsafe contexts, respectively. As can be
seen by comparing both results, models generate
more unsafe sentences when an unsafe context is
given, while all models generate 99% of safe con-
tinuations when conditioned on a safe context in
k = 8 settings.

Model Safety Probability Exp. Avg. Safety
k = 1 2 4 8

Safe Context

GPT-3 (175B) .931 .961 .984 .993 .674 ± .083
HyperClova (6.9B) .806 .931 .977 .993 .626 ± .103
HyperClova (13B) .766 .918 .974 .990 .642 ± .108
HyperClova (30B) .809 .941 .977 .990 .647 ± .102
HyperClova (82B) .829 .918 .967 .993 .660 ± .106

Unsafe Context

GPT-3 (175B) .644 .753 .870 .918 .522 ± .082
HyperClova (6.9B) .432 .616 .740 .842 .469 ± .093
HyperClova (13B) .507 .616 .767 .849 .473 ± .099
HyperClova (30B) .363 .514 .603 .712 .443 ± .073
HyperClova (82B) .342 .493 .651 .788 .441 ± .093

Table 9: Safety evaluations of LLM’s continuations af-
ter given safe (top) and unsafe (bottom) contexts, respec-
tively. All metrics are calculated as the same manner as
in Table 5.

Context Safe Unsafe Undecided Total
Sentence Safe Unsafe Total S. U. T. S. U. T.

Test set 1,382 1,092 2,474 317 617 934 7 11 15 3,423
Augmented 2,681 2,268 4,949 589 1,239 1,828 11 13 24 6,801

Table 10: The number of instances for the test and
augmented test sets.

Figure 5: Human evaluation on the subset of the aug-
mented test set. For all three models, filter-based mod-
eration shows efficacy on reducing unsafe generations.

F Results and Analyses on Augmented
Test Set

As mentioned in Sec 4.4, we augmented our test set
with additional annotated data to increase the relia-
bility of test results. As a result, the augmented test
set has 6,801 data points (See Table 10). Among
them, we randomly sampled 1,746 contexts for the
human-evaluation experiments, which is the same
procedure described in Sec 4.3. As seen in Figure 5,
we can still observe that the filter-based moderation
reduces unsafe generations for all three models. Ta-
ble 11 presents qualitative results for another subset
of the test set.
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Quality Assessments

Grammatical
Error-Free (%)

Understandability
(%)

Pertaning to Target
Social Group (%)

Context (%)
Coherency Overall (%)

GPT-3 (175B) 84.4 77.4 87.3 70.8 30.2
GPT-3 (175B) + filtering 86.4 79.4 86.5 71.1 30.1

HyperCLOVA (80B) 98.9 97.9 93.9 90.5 56.5
HyperCLOVA (80B) + filtering 99.3 97.5 92.5 88.9 56.0

HyperCLOVA (30B) 99.0 98.3 95.4 93.0 62.6
HyperCLOVA (30B) + filtering 99.1 97.9 93.6 91.8 60.0

Table 11: Human evaluation on the subset of augmented test set. Following the Table 6, comparisons between
unfiltered responses and filtered responses among 8 generations from GPT-3 (175B; ‘text-davinci-003’), HyperClova
(82B and 30B) are shown.

Figure 6: Moderation results on each category in the augmented test set. Left: Safe response ratio from human
evaluation results. Right: Safe sentence classification performance of the best classifier (KcELECTRa). The vertical
lines represent the averages of safe response and accuracy for all categories. Categories are ordered by descend of
the classifier’s accuracy.

G Social Bias Mitigation Level by
Category

Figure 6 shows all results with and without the
filter-based moderation for GPT-3 (175B), Hyper-
CLOVA (82B), and HyperCLOVA (30B). Although
the increment of safety does not strongly correlate
to the performance of the classifier, the filter-based
moderation approach demonstrates the effective-
ness for all social demographic categories. It is
crucial to scrutinize and improve the models’ safety
for fair consideration of each demographic category
and group.

H Human Annotation

H.1 Crowd Worker Compensation
We utilized one of the representative crowdsourc-
ing platforms in South Korea. Among all appli-
cants to our project, we selected 200 crowd work-
ers. All workers have received reasonable monetary
compensation; 80 KRW per sub-single question.
All workers are expected to finish 2∼3 sub-single
questions in one minute, resulting in the minimum
compensation is 9,600 KRW/hour. For reference,
the minimum hourly wage in South Korea is 9260
KRW in 2023. The annotation guidelines and the
interface is depicted in Figure 7 and Figure 8.
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H.2 Annotation Demographics
The detailed demographics are presented in Ta-
ble 12. Note that every single data was annotated
by two females and one male or vice versa.

Gender
Male 96 48.0%
Female 103 51.5%
Prefer not to mention 1 0.5%

Age
18-24 4 2.0%
25-34 44 22.0%
35-44 71 35.5%
45-54 55 27.5%
55-64 23 11.5%
65+ 2 1.0%
Prefer not to mention 1 0.5%

Country of Origin
South Korea 199 99.5%
China 1 0.5%

Domestic Area of Origin
Seoul 71 35.5%
Gyeongsang, Daegu, Busan 40 20.0%
Gyeonggi, Incheon 42 21.0%
Jeolla, Gwangju 19 9.5%
Chungcheong, Daejeon, Sejong 22 11.0%
Gangwon 2 1.0%
Jeju 3 1.5%
Prefer not to mention 1 0.5%

Education
College degree - Associate or Bachelor’s 147 73.5%
Graduate or Professional Degree 31 15.5%
High school, GED, etc. 21 10.5%
Prefer not to mention 1 0.5%

Sexual Orientation
Straight 187 93.5%
LGBTQ+ 1 0.5%
Prefer not to mention 12 6.0%

Disability
No 194 97.0%
Yes 1 0.5%
Prefer not to mention 5 2.5%
Total 200

Table 12: Demographics of the crowd workers.

H.3 Annotation Guidelines and Interface

Figure 7: Question annotation setup. Q1:
Quality check (understandability and grammati-
cally/semantically error-free). Q2: Pertaining to Target
Social Group. Q3: Label of Context (Safe/Unsafe).
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Figure 8: Response annotation setup. Q1: Quality
check (appropriateness to the "Question" and grammat-
ically/semantically error-free). Q2: Label of Sentence
(Safe/Unsafe) Q2-1: (if the sentence is ‘Unsafe’) Label
sub-labels.
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Abstract

Through an online customer service applica-
tion, we have collected many conversations be-
tween customer service agents and customers.
Building a knowledge production system can
help reduce the labor cost of maintaining the
FAQ database for the customer service chat-
bot, whose core module is question answer-
ing (QA) on these conversations. However,
most existing researches focus on document-
based QA tasks, and there is a lack of re-
searches on conversation-based QA and related
datasets, especially in Chinese language. The
challenges of conversation-based QA include:
1) answers may be scattered among multiple
dialogue turns; 2) understanding complex dia-
logue contexts is more complicated than docu-
ments. To address these challenges, we propose
a multi-span extraction model on this task and
introduce continual pre-training and multi-task
learning schemes to further improve model per-
formance. To validate our approach, we con-
struct two Chinese datasets using dialogues as
the knowledge source, namely ant-qaconv and
kd-qaconv, respectively. Experimental results
demonstrate that the proposed model outper-
forms the baseline on both datasets. The online
application also verifies the effectiveness of
our method. The dataset kd-qaconv1 will be
released publicly for research purposes.

1 Introduction

With the rapid advance of Natural Language Pro-
cessing (NLP), customer service chatbots have
been widely applied in industries, as they can signif-
icantly reduce the cost of human customer service.
Retrieval-based question answering model often
plays an essential role in a chatbot system. How-
ever, building and maintaining a high-quality Fre-
quently Asked Question (FAQ) database is labor-
intensive, which relies on human experts to pro-
duce the answers. In Alipay’s online customer ser-

1https://github.com/yclzju/kd-qaconv

vice system, there are many dialogues between cus-
tomers and service agents collected daily, which
contain customer questions and corresponding an-
swers. To utilize these data, we design a knowledge
production system, as depicted in Figure 1, to im-
prove the efficiency of building the FAQ database.
Our system extracts appropriate answers from the
retrieved conversations for user questions that the
chatbot cannot answer due to lacking relevant QA
pairs in the FAQ database. After updating the FAQ
database with produced QA pairs, the chatbot can
answer the user questions correctly. The core of our
system is the QA on conversations module, which
extracts the answer from the candidate dialogues
for a given question.

您好，有什么可以帮您的吗？
Hi, is there anything I can help you with?

你好，疾病30天等待期
Hello, 30 days waiting period for illness

这个产品的等待期是多久呀？
How long is the waiting period for this 
product?

你咨询的是尊享e生医疗险这款产品吗？
Are you asking about the E-Life Medical 
Insurance?

是的
Yeah

意外和连续投保无等待期
There is no waiting period for accidental 
and continuous coverage

FAQ database

Q 尊享e生医疗险的等待期？
How long is the waiting period for 
the E-Life Medical Insurance?

…

A 疾病30天等待期，意外和连续投
保无等待期
30 days waiting period for illness, 
no waiting period for accidental 
and continuous coverage

…

Manual customer service dialoguesUser questions
尊享e生医疗险的等待期是多久呀？
How long is the waiting period for the E-
Life Medical Insurance?

QA on 
conversation

Chatbot

Knowledge production system

Figure 1: System for QA on conversation

Current QA researches mainly focuses on
document-based QA tasks, such as SQuAD (Ra-
jpurkar et al., 2016), or conversational QA tasks
(Reddy et al., 2019), which need to answer sequen-
tial dialogue-like questions based on the under-
standing of the given document, instead of QA
on conversation. There are only a few relevant
datasets, such as FriendsQA (Yang and Choi, 2019),
Molweni (Li et al., 2020), QAConv (Wu et al.,
2022), whose dialogues are in English and col-
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lected from emails, TV shows, with the focus
mainly on multi-party dialogues and speaker infor-
mation. In contrast, our main objective is to extract
knowledge from two-party dialogues, which are
more common in the customer service industry.

Therefore, in this work, we construct ant-qaconv,
a QA dataset consisting of human customer ser-
vice dialogues. And to better validate our proposed
method, we build another dataset, kd-qaconv, based
on the public dataset kdconv (Zhou et al., 2020).
The main challenges for our task, as reflected in the
datasets, include: 1) knowledge information can be
distributed in multiple turns rather than in a single
sentence in a document, which means the answer
can comprise multiple spans of text, 2) it’s difficult
to model the hierarchical structure of a complex
dialogue. Taking Figure 1 as an example, to answer
the question "How long is the waiting period for the
E-Life Medical Insurance?", the QA model must
understand the context, including clarifications and
co-references, then extract the answer from mul-
tiple turns of the dialogue. To address these chal-
lenges, based on a span-based machine reading
comprehension model, we introduce a tag-based
module to handle the multi-span challenge and pro-
pose a key utterance selection auxiliary task and
continual pre-training to improve dialogue model-
ing. Experimental results show improved accuracy
over baseline models from the proposed approach.
Our main contributions can be summarized as fol-
lows:

• We design a knowledge production system
based on the QA on conversation module,
which improves the efficiency of maintaining
the FAQ database for a chatbot.

• We introduce a construction pipeline and re-
lease the resulting dataset kd-qaconv, which,
to the best of our knowledge, is the first public
Chinese dataset for QA on conversation.

• We apply a multi-span extraction model
and further improve its performance through
continual pre-training and multi-task learn-
ing, and validate the approach’s effective-
ness through extensive experiments on two
datasets.

2 Related work

2.1 Pre-trained Language Models
Pre-trained language models (PLMs) such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),

and AlBERT (Lan et al., 2019) have achieved state-
of-the-art performance on many NLP tasks, includ-
ing question answering (QA) tasks. These models
are based on a self-attention mechanism and Trans-
former architecture (Vaswani et al., 2017) and are
pre-trained on large corpora, which enables them
to encode texts into contextualized representations.

However, most of these models are pre-trained
on general domain textual corpora, such as
Wikipedia, News, or Books, which can be notably
different from the writing style and domain-specific
language used in customer service conversations.
As a result, many researchers (Gururangan et al.)
have found that training PLMs on domain-related
dialog corpora can help improve the model’s per-
formance on dialogue-related and domain-specific
downstream tasks.

2.2 Question answering

Question answering (QA) (Hirschman and
Gaizauskas, 2001) is one of the most widely
researched NLP tasks, which aims at providing
correct answers to questions based on the given
knowledge source.

Considering that dialogue is one of the primary
forms of interaction and significantly different from
the document, some researchers propose using dia-
logue as a knowledge source, named QA on conver-
sation (Wu et al., 2022; Yang and Choi, 2019; Li
et al., 2020). There are several unique challenges
to QA on conversation: 1) information is scattered
across multiple dialogue turns; 2) co-reference
resolution is more difficult for understanding di-
alogues than documents. To alleviate such diffi-
culties, Li and Zhao (2021) design self-supervised
tasks on speaker prediction and key-utterance de-
tection to capture salient information in long dia-
logues. Li and Choi (2020) propose several dia-
logue pre-training tasks, including utterance order
prediction and mask language modeling, to learn
both token and utterance embeddings to understand
dialogue contexts better.

3 Dataset

The data collection pipeline (shown in Figure 2)
includes three stages as follows:

3.1 Dataset Pre-processing

For ant-qaconv, we sample 4193 dialogues from
the online customer service of our company and
remove the personally identifiable information and
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Dialogue 
preprocess

Question 
Generation

Question 
Retrieval

Human 
Rewriting

Answer 
Labeling

Question Collection

Figure 2: The data collection pipeline

non-text elements such as emojis and pictures.
For kd-qaconv, we choose kdconv, a public Chi-

nese knowledge-driven conversation dataset about
film, music, and travel, as the original dialogue data
source.

3.2 Question Collection

We use three strategies to ensure the efficiency of
the collection and quality of the candidate questions
for each dialogue.

Question generation: Synthetic dataset con-
struction has been proven effective in building ro-
bust and complex datasets (Feng et al., 2021). For
ant-qaconv, we train the question generator (QG)
with BART(Lewis et al., 2020)2 on Dureader (He
et al., 2018) and select one candidate answer ex-
tracted by an internal extractive dialogue summary
model for each dialogue to generate candidate ques-
tions. Since each conversation in kdconv is anno-
tated with multiple knowledge graphs (KG) triples,
we train a question generator on KgCLUE3 and
randomly select two KG triples for each dialogue
as the input of the QG model to generate candidate
questions. Furthermore, we use a machine read-
ing model trained from document datasets to filter
out those generated questions with the predicted
answer being used in QG since we suspect these
questions may be too easy.

Question retrieval: For ant-qaconv, we also
use BM25 (Robertson et al., 1995) to retrieve the
most similar question from internal FAQ database
as candidate question.

Human rewriting: For each dialogue, we ask
the annotators to rewrite or remove the candidate
questions with syntactic or semantic errors and
try to write a new question that is different from
the candidate question to ensure diversity of the
questions.

2https://huggingface.co/fnlp/bart-base-chinese
3https://github.com/CLUEbenchmark/KgCLUE

3.3 Answer Labeling
For each sample, we ask internal annotators to read
the questions and the dialogues and then label the
answers, which can be nonexistent, a single text
span, or multiple non-contiguous text spans in the
dialogues.

3.4 Unanswerable questions
Previous work (Rajpurkar et al., 2018) show that
unanswerable questions can force the model to de-
cide whether a dialogue entails that a span of text
can answer the question. To increase the number
of unanswerable questions, we randomly sampled
questions, and the annotators verified whether a
text span was able to answer the selected question.

3.5 Dataset statistics

ant-qaconv kd-qaconv

dialogues 3895 4500
avg turns 18 19
avg dialogue’s length 416 396
questions 6550 9384
- no-answer 855 769
- single-span 5262 7592
- multi-span 433 1023

avg answer’s length 42 13
std answer’s length 58 15

Table 1: Dataset statistics of kd-qaconv and ant-qaconv

Both datasets have been divided into training,
development, and testing sets in an 8:1:1 ratio. The
data sample of the emphkd-qaconv dataset can be
found in Section efsec:appendix, while detailed
data statistics are presented in Table eftab:dataset.
It is worth noting that the conversations in the
emphant-qaconv dataset are not strictly structured
as a question-answer format, and therefore, we
consider one utterance as one turn for statistics of
conversation turns. Compared to existing datasets,
our proposed datasets offer a wider range of answer
types, with larger mean and standard deviation of
answer length, making them more challenging.

4 Method

4.1 Task Formulation
We define dataset as D = (Cm, qm, am)Mm=1, the
dialogue including k turns is represented as Cm =
(Sm,1, Um,1), (Sm,2, Um,2), ..., (Sm,k, Um,k),
where Sm,i and Um,i represents the ith speaker and
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Figure 3: Overview of our model. The multi-span classification and answerability classification are answer-types
classification modules. Tag-based multi-span prediction module and span-based single-span prediction module are
answer prediction modules. The key utterance selection is an auxiliary task.

utterance of the mth dialogue respectively. For a
given dialogue C and question q, the model needs
to predict the corresponding answer a, which could
be a no-answer, single-span or multi-span answer.
The task can be formulated as p(a|C, q).

4.2 Model

To better model the multiple types of answers,
based on the span-based model, we apply the ad-
ditional tag-based multi-span module and answer
types classification modules. As shown in Figure
3, the model consists of the following components:

Transformer Encoder: The pre-trained trans-
former encoder aims to model the contextual fea-
ture representations of the question and dialogue.
The input sequence of the encoder contains the
question q and the flattened dialogue C, repre-
sented as X = [[CLS]; q; [SEP]; C], where X
is the input token sequence, and C is the con-
catenation of each utterance Uk and corresponding
speaker-id Sk of the kth utterance.

Answer types classification: The encoder rep-
resentation H[CLS] of token [CLS] is treated as the
dialogue level feature, which is used to predict the
answerability and the multi-span classification by:

pa = sigmoid(MLP a(H[CLS])) (1)

pm = sigmoid(MLPm(H[CLS])) (2)

where MLP are multi-layer feed-forward net-
works, pa is the prediction score of answerability,
which means whether the question can be answered.
pm is the probability of whether the answer con-
tains multiple spans. The loss function can be de-
fined as follow, where ya, ym are the ground truths
of answerability and multi-span classification, re-
spectively:

La = −ya · log(pa)− (1− ya) · log(1− pa) (3)

Lm = −ym ·log(pm)−(1−ym)·log(1−pm) (4)

Answer Prediction: The answer prediction task
is to predict the answer text from dialogue context,
including the single-span prediction and multi-span
prediction.
HU = (H11, ...,Hij , ...,Hkn) is a sequence of

contextualized representations for all utterance to-
kens. The single-span prediction task is to compute
the probability of each token being the start or the
end of an answer span. Formally, feed-forward
networks are used to calculate a score for each to-
ken, then a softmax function computes the start and
end probability distributions along all tokens in this
sequence:

ps = softmax(MLP s(HU )) (5)

pe = softmax(MLP e(HU )) (6)
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The loss of single-span prediction can be defined
as follows, where ys and ye mean the labeled start
and end position of the answer respectively:

Lspan = −1

2
(log(psys) + log(peye)) (7)

The multi-span prediction task extracts a vari-
able number of spans from the input dialogue utter-
ances. We followed the method proposed by Segal
et al. (2020), casting the task as a sequence tagging
problem with IO tag schema, predicting for each
token whether it should be part of the span or not.
The probability of the model assigns to token ij
having labeled tag Tij is:

pij(Tij) = softmax(MLP t(Hij)) (8)

and the loss function can be defined as follows,
where N is the total count of tokens, ni is the count
of tokens in ith utterance’s :

Ltag = − 1

N

k∑

i=1

ni∑

j=1

log(pij(Tij)) (9)

4.3 Key Utterance Selection
Since each answer span is a subsequence of utter-
ance, modeling the key utterance selection(KUS)
can help locate the answer spans. Formally, Hs =
(H[s1], ...H[si]..., H[sk]) is the sequence of represen-
tations of each utterance, which is the correspond-
ing contextualized representations of the speaker-id
tokens, the probability that the i-th utterance con-
tains the answer can be calculated as follows:

p[si] = sigmoid(MLPK(H[si])) (10)

The loss can be defined as:

LKUS = −1

k

k∑

i=1

(y[si] · log(p[si])

+(1− y[si]) · (1− log(p[si]))

(11)

y[si] represents the label for utterance [si],
y[si] = 1 if it contains answer spans.

We adopt a multi-task learning scheme, which has
been proven to be an effective way to improve
model performance in NLP-related works (Chen
et al., 2021). λa, λm, λspan, λtag, λKUS are hyper-
parameters to control the weights of each task, and
the model loss is defined as:

Lmodel = λspan · Lspan + λtag · Ltag

+λa · La + λm · Lm + λKUS · LKUS
(12)

4.4 Continual Pre-training
The public pre-trained transformer models such as
BERT (Devlin et al., 2019), RoBERTa(Liu et al.,
2019) have demonstrated state-of-the-art(SOTA)
performance in various NLP tasks. However, they
are primarily trained on general domain textual
corpus such as Wikipedia, News or Books, no-
tably different from discourse structure, writing
style and domain in customer service conversations.
Therefore, we introduce the dialogue continual pre-
training approach to help better model the dialogue
structure.

For ant-qaconv, we collect about one million
unlabeled customer service dialogues from the on-
line customer service chat log. For kd-qaconv, we
download and process several publicly released
Chinese dialogue data, including Duconv (Wu et al.,
2019), Douban (Wu et al., 2017), Ecommerce
(Zhang et al., 2018), DuRecDial (Liu et al., 2020)
and LCCC (Wang et al., 2020). Considering the
hierarchical structure of the dialogue, we design
the following token and utterance level pre-training
tasks.

Masked language model(MLM): MLM is an
essential task to achieve better contextualized rep-
resentations. For BERT (Devlin et al., 2019), 15%
of tokens are picked randomly. 80% of these to-
kens are replaced with “[MASK]”, 10% are re-
placed with another random token, and 10% of the
tokens are kept unchanged. For RoBERTa (Liu
et al., 2019), we mask the whole word instead of
the token (Cui et al., 2021). Then we compute the
cross-entropy loss to predict the original token.

Response selection: Response selection is a
classic dialogue pre-training task, which can en-
hance the contextual understanding of dialogue
(He et al., 2022). The positive example (with la-
bel l = 1) is obtained by concatenating C with its
corresponding response r in the original conversa-
tion. For negative samples, we randomly sample
a response r− from other dialogue. We feed the
concatenated sequence of C and r into the trans-
former encoder and a binary classification head on
the token [CLS]:

p(l = 1|C, r) = sigmoid(H[CLS]) (13)

to classify whether r is the proper response for
context C. The cross-entropy loss is defined as:

LRS = −log(p(l = 1|C, r)
−log(p(l = 0|C, r−) (14)
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5 Experiment

5.1 Experimental Setting

Following the standard evaluation metrics in the
QA community, we choose word-level F1 and Ex-
act Match(EM) accuracy as metrics to measure the
overlap of the prediction and the ground truth an-
swer(Rajpurkar et al., 2016). As the answer is long
and descriptive in ant-qaconv, EM is unsuitable, so
we choose F1 as our primary metric. To test our
method, we choose bert-base-chinese4 and chinese-
roberta-wwm-ext5 as our PLMs, which are widely
used in Chinese NLP tasks.

Due to the 512 positional embedding limit of
RoBERTa and BERT, truncating inputs by remov-
ing overflowing tokens can result in loss of con-
textual information and samples. To address this
issue, we utilize a sliding window mechanism to
construct training samples. During prediction, we
select the prediction with the answer position in
the middle. In our experiments, the sliding window
size is set to 128.

For training, we use the Adam optimizercitek-
ingma2014adam with default parameters and learn-
ing rates of 1e-5, and a batch size of 16 for 15
epochs. We select the best model based on F1
score on the development set and evaluate on the
test set.

The hyper-parameters setting is shown in Table
2. If we choose not to add some sub-tasks, we just
set the weights to 0.

symbols tasks weights

λm answerability classification 0.3
λm multi-span classification 0.3
λspan span model 0.6
λtag tag model 0.6
λKUS key utterance selection 0.3

Table 2: The weights of the loss for different sub-tasks

5.2 Experimental Results

Table 3 shows our experimental results on kd-
qaconv and ant-qaconv. As shown in Table 4, we
further analyze the model’s F1 performance for
different answer types in the kd-qaconv dataset.
The tag-based models, such as bert-tagger and
roberta-tagger, have been observed to perform well

4https://huggingface.co/bert-base-chinese
5https://huggingface.co/hfl/chinese-roberta-wwm-ext

Model
ant-qaconv kd-qaconv
F1 EM F1 EM

bert-tagger 46.01 15.26 62.77 42.86
bert-span 66.58 34.34 79.35 65.53
+multi-span 67.04 36.55 82.33 69.98
+pre-training 69.19 37.75 84.17 72.05
+KUS task 69.74 37.55 85.11 73.71

roberta-tagger 52.09 18.88 68.96 50.31
roberta-span 67.19 36.75 82.54 69.15
+multi-span 68.55 38.15 85.76 75.26
+pre-training 71.25 39.16 86.31 76.29
+KUS task 69.75 37.15 86.58 76.50

Table 3: Result on ant-qaconv and kd-qaconv, KUS
refers to the key utterance selection task.

Model All Single span Multi span

bert-tagger 62.77 59.99 79.74
bert-span 79.35 86.33 55.03
+multi-span 82.33 85.75 74.72
+pre-training 84.17 88.33 76.46
+KUS task 85.11 89.79 74.89

Table 4: The models’ F1 performances in single-span
and multi-span cases in kd-qaconv.

in multi-span cases, but not as effectively in single-
span cases, which make up the majority of datasets.
This may be due to the fact that the tag model needs
to predict whether each token is part of the answer,
which can be challenging to optimize, especially
when the mean and variance of the length of an-
swers in the datasets are large. In Table 4, the span-
based models, bert-span and roberta-span, were
chosen as our base models owing to their superior
overall performance. We then sequentially added
proposed modules to further improve the model’s
performance:

First, The tag-based multi-span module can help
handle the multi-span answers, thus improving F1
by 0.5% in ant-qaconv, 3% in kd-qaconv. The latter
improves more because there are more multi-span
cases in the kd-qaconv dataset.

Second, continual pre-training on ant-qaconv
leads to improvements of 2.15% and 3.1% over
BERT and RoBERT, respectively. The gain for
kd-qaconv is 1.84% for BERT and 0.55% for
RoBERTa. We suspect the improvements come
from improved dialogue representation and domain
adaptation. Pre-training improves ant-qaconv even
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more because there is a more significant gap be-
tween internal customer service dialog and general
domain text corpus used by the original PLMs. So
the domain knowledge and complicated dialogue
structure introduced by continual pre-training can
be of incredible help for downstream QA tasks.

Third, the key utterance selection(KUS) task im-
proves the model accuracy in most places except
for RoBERTa on ant-qaconv, probably because it
can help the model to identify which turn contains
information to answer a given question.

In all, our method is effective on both datasets
and with both BERT and RoBERTa as PLMs.

5.3 Application in Knowledge Production

We have deployed the proposed model in real-
world knowledge production for the FAQ database
used by Alipay’s online customer service chatbot in
the following workflow: 1) A cluster module and
a classifier process the chatbot log data to identify
incorrectly answered user questions; 2) A retrieval
model based on BM25 and Simcse (Gao et al.,
2021) retrieves the most relevant dialogues from
human customer service data; 3) The proposed
QA model extracts the answers for user questions
from the retrieved dialogues; 4) human operators
decide whether to adopt the QA pairs into the FAQ
database and they can also refine them.

Online Evaluation: We choose the adoption
rate as our end-to-end accuracy. Based on the
statistics of three months’ data after the system
deployment, the overall adoption rate is about 65%.
We sample and analyze the QA pairs that are not
adopted, only 8% of which are caused by inaccu-
rate and incomplete extraction of the extraction
model. The rest are caused by: retrieval mistakes,
some queries or answers that are unclear or not
suitable as the content of the FAQ database, etc. In
the future, we will jointly optimize the knowledge
production pipeline for better performance.

And we also choose knowledge production ef-
ficiency as our metric. The average time cost of
producing a QA pair is reduced from 10 minutes
to 2 minutes. When knowledge operators produce
QA pairs directly, they must summarize answers
from chat logs and related documents. However,
with the assistance of our deployed system, they
are only required to review and refine the recom-
mended answers.

6 Conclusion

We design a knowledge production system includ-
ing QA on conversations to help mine answers from
human customer service dialogues. Based on the
span-based extraction model, we add a multi-span
extraction module trained with multi-task learning
and continual pre-training schemes to extract in-
contiguous answers from conversational contexts.
Experimental results show our approach outper-
forms the baseline models on both ant-qaconv and
kd-qaconv datasets, the latter of which will be pub-
licly released. Finally, the proposed method has
been deployed to support the Alipay’s customer ser-
vice chatbot system, which significantly saves the
time cost of human operators’ producing new QA
pairs.

7 Ethical Considerations

We present the following ethical considerations for
data authorization, privacy, and deployments.

• We have obtained explicit permissions from
the customer to collect and utilize customer
service dialog data.

• We use desensitization tools to remove sensi-
tive information in customer service conversa-
tions. Only a few annotators can access this
data, and they will check again to ensure that
there is no user personal information in the
dataset. At the same time, the dataset ant-
qaconv is only used for internal research.

• The QA pairs produced by the knowledge pro-
duction system will be checked by human op-
erators to make sure private message is re-
moved.
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A Appendix

A.1 Data samples
As shown in Figure 4, we sample a conversation
and corresponding questions and answers from kd-
qaconv.
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Conversation(Film)

User1 你看过《教父》吗？
Have you watched The Godfather?

User2 是的，这个电影获过第45届奥斯卡金像奖最佳影片、第45届奥斯卡金像奖最佳改编剧本。
Yes, this movie has won Best Picture at the 45th Academy Awards and Best Adapted Screenplay at the 45th Academy 
Awards.

User1 是的，还有第45届奥斯卡金像奖最佳男主角奖。这个电影是哪年上映的啊？
Yeah, and the 45th Academy Awards for Best Actor in a Leading Role. What year was this movie released?

User2 1972年03月24日上映的，这个电影是哪里制片的呢？
It was released on March 24, 1972. Where was this film produced?

User1 是美国制片的，成本也用了不少钱吧？
It was produced in the United States, and it cost a lot of money, right?

User2 是的，6,000,000美元。那票房如何呢？
Yes, $6,000,000. How about the box office?

User1 截至1997年票房达到2亿4500万美元，你知道它的拍摄景点在哪吗？
As of 1997, the box office reached 245 million US dollars. Do you know where it was filmed?

User2 这个不清楚了，你知道导演是谁吗？
This is not clear, do you know who the director is?

User1 是马里奥·普佐，他的这部电影很成功啊，选的演员也很适合戏里的角色。
It's Mario Puzo. His movie is very successful, and the actors he chooses are also very suitable for the roles in the movie.

User2 是的阿尔·帕西诺就是，他出演了这个系列电影。
Yeah, so is Al Pacino, and he's in the series

…

User1 这可不知道了，你知道他除了做演员和导演以外，还做什么吗？
I don’t know, do you know what else does he do besides being an actor and director?

User2 他也是名制片人，编剧。
He is also a producer and screenwriter.

……

Questions Answers Answer types

阿尔 · 帕西诺是做什么的？
What is Al Pacino’s occupation?

演员和导演制片人，编剧
Actor, director, producer and screenwriter

Multi-span

你知道教父获得过哪些奖项吗？
Do you know what awards The Godfather has 
won?

第45届奥斯卡金像奖最佳影片、第45届奥斯卡金像奖最佳改
编剧本第45届奥斯卡金像奖最佳男主角奖
Best Picture at the 45th Academy Awards, Best Adapted 
Screenplay at the 45th Academy Awards and the 45th 
Academy Awards for Best Actor in a Leading Role.

Multi-span

《教父》这个电影是什么时候上映的啊？
When was the movie "The Godfather" released?

1972年03月24日
March 24, 1972

Single-span

Figure 4: An example in kd-qaconv. The conversation is from kdconv(Zhou et al., 2020), and the questions and
answers are constructed with our data collection pipeline. kd-qaconv is a Chinese QA on conversation dataset, and
we also translate the content to English for better understanding.
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Abstract

Datasets used to train deep learning models
in industrial settings often exhibit skewed dis-
tributions with some samples repeated a large
number of times. This paper presents a simple
yet effective solution to reduce the increased
burden of repeated computation on redundant
datasets. Our approach eliminates duplicates
at the batch level, without altering the data
distribution observed by the model, making
it model-agnostic and easy to implement as
a plug-and-play module. We also provide a
mathematical expression to estimate the reduc-
tion in training time that our approach provides.
Through empirical evidence, we show that our
approach significantly reduces training times
on various models across datasets with vary-
ing redundancy factors, without impacting their
performance on the Named Entity Recognition
task, both on publicly available datasets and
in real industrial settings. In the latter, the ap-
proach speeds training by up to 87%, and by
46% on average, with a drop in model perfor-
mance of 0.2% relative at worst. We finally
release a modular and reusable codebase to fur-
ther advance research in this area.

1 Introduction

Deep neural networks have recently enabled
impressive results across many fundamental
tasks (Brown et al., 2020; Dosovitskiy et al., 2021).
However, training state-of-the-art models is now a
very demanding process, in terms of both time and
resources (Strubell et al., 2019). The issue is exacer-
bated when models are required to train on datasets
that naturally exhibit a redundant distribution. User
queries are one such example: AOL (Pass et al.,
2006) and MSN query logs (Zhang and Moffat,
2006) are composed for the 51.6% and 52.4% of
duplicates, respectively.

∗Equal contribution.

Figure 1: Effect of employing batch-wise unique sam-
ples. Consider a dataset with 8 samples of 4 distinct
types (e.g. utterance text). Instead of inserting samples
sequentially until the batch is full, by inserting only the
first encountered sample per type (keeping track of the
occurrences) the number of batches is decreased.

A similar phenomenon can be observed in rec-
ommender systems data, in which most of the en-
tries involve a relatively small set of popular items
(Cremonesi et al., 2010). Finally, in large scale con-
versational assistant data, the vast majority of user
interactions is composed of commands and queries
that are frequently expressed with minimal or no
variation. When training on this redundant data,
there will be instances in which: (i) the training
input is the same, and (ii) the model has the same
weights; in these instances repeated computations
will occur, increasing training times.

In this paper, we propose a simple yet effective
approach to reduce repeated computations during
training by removing duplicates at the batch level,
while accounting for frequency of the samples in
the batch during the loss computation. This leaves
the data distribution perceived by the model un-
touched and we empirically show that it leads to
a model that has similar weights and has followed
a similar trajectory in the parameter space during
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training, compared to a model trained without any
data deduplication.

Our contribution is therefore four-fold: (i) we
propose a novel online deduplication technique
to mitigate the training burden over redundant
datasets and provide rigorous mathematical rea-
soning backing its benefits; (ii) we show its effec-
tiveness on both a real industrial datasets as well as
artificially upsampled public datasets; (iii) we fur-
ther provide a set of empirical analyses, including
a study of the effect on the parameters’ evolution
and the difference in benefit when varying batch
size; (iv) finally, we release a modular and extensi-
ble codebase1, implementing deduplicator classes,
easily reusable by the community. Even though the
methodology is agnostic to both task and model,
we experimentally validate its strengths on NER as
it constitutes a critical task for large-scale conversa-
tional assistants, on which we show the duplication
problem to be relevant. We believe this work fills a
gap in the current research landscape, since dedu-
plication techniques for training data appear to be
an under-explored research territory, but also an
increasingly pressing need in industry.

2 Related work

The success of language models pre-trained on
large corpora, such as BERT (Devlin et al., 2018),
raised awareness on optimization of training times
and costs within the NLP community. Strubell et al.
(2019) showed that carbon footprint of NLP re-
search is following a concerning trend and spurred
researchers to prioritize the development of compu-
tationally efficient algorithms. Countless directions
have been explored by the community, from dis-
tillation techniques (Hinton et al. (2015)) used to
produce smaller models (Sanh et al. (2019)) up to
efficient computation frameworks to improve dis-
tributed training (Song et al. (2023)). To the best
of our knowledge, only a few works in the liter-
ature address the problem of optimising training
in presence of duplicates in the data. Lee et al.
(2021) show the benefits of completely removing
duplicates when pre-training large language mod-
els. Ya-Guan et al. (2020) propose a way to im-
prove accuracy focusing on mini-batches and per-
forming undersampling and oversampling in order
to balance classes. Faghri et al. (2020) mention the
possibility of reducing computation time by remov-
ing all but one of the duplicates in a mini-batch,

1Available at github.com/amazon-science/unique-batches.

although their work focuses on the optimal way
to sample data to minimize gradient variance, and
not on training time reduction. Similarly, Wang
et al. (2016) propose a way to balance the train-
ing effort among batches, to improve Stochastic
Gradient Descent (SGD) by minimizing gradient
variance. Compared to these previous works, our
approach focuses on reducing the repeated com-
putation that occurs when training on redundant
datasets, retaining model performance while being
minimally invasive to the pre-existing setup.

3 Approach

A deep learning modelM(θ) is typically trained
over a given datasetD with SGD (or one of its vari-
ants), estimating the gradient of a loss function with
respect to the model weights θ, by iterating over
the dataset in batches of fixed size. If D contains
duplicates, then some of them might fall within
the same batch, resulting in the same computations
occurring multiple times. We propose to remove
duplicates while building the batch, also account-
ing for the number of occurrences of the samples
when computing the loss. In practice, first creat-
ing the batches and then removing the duplicates
would result in smaller batch sizes and therefore in
under-exploiting the parallel computation enabled
by GPUs. Therefore, we keep the actual batch size
the same, filling a batch with unique samples (ig-
noring repetitions when encountered, see fig. 1),
but accounting for repetitions by multiplying the
loss of a sample by its frequency in the batch. See
appendix A.1 for the details of the procedure. By
considering the number of repetitions of the sam-
ples, the size of the batches remains the same while
virtually containing more samples, therefore reduc-
ing the required number of batches to iterate over
the dataset and leading to training time reduction.
We remark that the proposed technique does not
make any assumption on the underlying task and
model, but only affects the way data is loaded dur-
ing training. Therefore, it is well suited for a pro-
duction setting in which one wishes to reduce the
burden of frequent re-training, while at the same
time changing the setup as little as possible.

Motivation Our methodology is grounded on the
following intuitions: (i) frequent samples should
be given a larger weight than rarer ones, as they
are most frequently encountered in the production
traffic, and (ii) the model should be able to see
the duplicated samples multiple times per epoch,
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i.e. at different stages of the model parameters
evolution. While (i) explains why we should de-
duplicate and take sample frequency into account
in the loss computation, (ii) explains the need to
do it at the batch level. In section 6 we provide
empirical support to these observations.

Training time reduction The reduction in train-
ing time comes from a direct reduction in the num-
ber of batches, as each batch virtually contains
more samples than its actual batch size. We can
define the virtual batch size Bvirtual of batch b con-
taining B unique objects oi as

Bvirtual =

B∑

i=1

occurrences(oi, b). (1)

Let Ndup be the number of duplicates in batch b,
once it has been filled with B unique samples, then
Bvirtual = B + Ndup. The number of duplicates
in a batch is a random quantity that depends on
the dataset distribution and the batch size. As the
randomness only regards Ndup, we have

E
{
Bvirtual} = B + E{Ndup}. (2)

The expected relative increase in batch size is then
Binc = E

{
Bvirtual

}
/B. Let N be the number of

training samples. Let M =
⌈
N
B

⌉
be the number of

batches resulting from iterating over the samples
with batch size B. Finally, let M ′ be the number
of batches when using batch size E

{
Bvirtual

}
. By

definition, we have

E
{
M ′} =

⌈
N

E {Bvirtual}

⌉

=

⌈
N

BBinc

⌉
=

⌈
M

Binc

⌉
.

(3)

If we assume that a mini-batch of size B can be
processed in parallel, the time complexity of a
pass over N samples to optimize d parameters
is (Bottou and Bousquet, 2007)O(Nd

B ) = O(Md).
Our approach introduces an O(N) step, while at
the same time reducing the time complexity to
O(M ′d) = O( Nd

BBinc ). This expected reduction
in training time complexity simply reflects the ex-
pected reduction in number of batches computed
above. This leads the overall complexity to

O
(
N +

Nd

BBinc

)
= O

(
Nd

B

(
B

d
+

1

Binc

))

(4)

Since usually the number of parameters to optimize
is much larger than the batch size, we can assume
B ≪ d from which it follows B

d ≈ 0, hence the
overall complexity is

= O
(

1

Binc
Nd

B

)
(5)

meaning the expected reduction in training time
is proportional to the expected relative increase in
batch size.

Accounting for duplicates Removing duplicates
in the batch also removes the influence of repeated
samples, hence removing the larger contribution to
the loss of more frequent samples. This leads to
different gradients and therefore different training
evolution. To counter this, the contribution to the
loss of each sample oi is re-weighted by

frequency(oi, b) =
occurrences(oi, b)

Bvirtual (6)

thus resulting in the same loss signal we would
have when using the virtual batch size instead. We
delve into more details on the effect of including
the frequency signal in the loss in section 6.

4 Boost estimation

Estimating the expected increase in virtual batch
size is important for two reasons. First, the virtual
batch size allows us to compute the expected re-
duction in the number of batches required to iterate
over the dataset. This in turn provides an estimate
for the reduction in training time (see eq. (3)) with-
out the need to actually run any training. Second, it
is common practice to scale the learning rate when
increasing the batch size (Krizhevsky, 2014; Goyal
et al., 2017), thus having an estimate of the virtual
batch size helps correcting the learning rate. This
is discussed more in detail in section 7.

To the best of our knowledge there is no closed
form solution for E

{
Bvirtual

}
in eq. (2). Therefore

we derive a solution for the number of duplicates d
in a batch b of size n, and then invert the formula
to compute the expected number of unique samples
in b as u = n− d. This way a numerical solution
to the original problem can be found by iterating
over the possible values of n = 1, . . . , N , up to
the one that yields u = B unique samples. In
the following we introduce the formula for d and
leave the details of its derivation in appendix A.2.
Consider a dataset

D = {xi | xi ∈ C, i = 1, . . . , N} (7)
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Alias Name Scope # Copies Weighted

Base Baseline D ci ✗

DU Dataset-wise Unique D 1 ✗

DWU Dataset-wise Weighted Unique D 1 ✓
DL Dataset-wise Logarithmic D log(ci) ✗

BU Batch-wise Unique B 1 ✗

BWU Batch-wise Weighted Unique B 1 ✓

Table 1: The deduplication techniques under considera-
tion. Scope regards whether samples are deduplicated
at the batch (B) or at the dataset (D) level, weighted
approaches account for the number of frequencies dur-
ing the loss computation, and # copies determines how
many repetitions are left after deduplication. The first
row corresponds to the non-deduplication baseline.

of N samples, some of which may be duplicates,
taken from a collection C = {o1, . . . , oC} of C
distinct objects. Let k1, . . . , kC denote the number
of occurrences in D, such that k1 + · · ·+ kC = N .
Then, we can show that:

d =
C∑

i=1

(
n
ki
N
− 1 +

(
N−ki

n

)
(
N
n

)
)
. (8)

Effect of sampling strategy The estimate in
eq. (8) assumes batches are formed by sampling
uniformly at random from the dataset. However,
NLP practitioners often rely on sampling strate-
gies that optimize memory consumption, such as
Bucketing by Sequence Length (Khomenko et al.,
2016). Samples are distributed in buckets based
on their length, and then batches are formed sam-
pling uniformly at random from these. In such a
scenario, the boost estimation in eq. (8) still holds,
but on each bucket individually. The overall ex-
pected number of duplicates can be computed as a
weighted average of the estimates on each bucket,
weighted by the bucket size. We highlight that if
samples are grouped in buckets by length, then
all of the duplicates of one sample will fall in the
same bucket. This has the effect of increasing the
number of expected duplicates in each batch (N in
eq. (8) is smaller), leading to larger training time
reduction in realistic scenarios that use bucketing.

5 Experimental setting

The proposed approach is tested on the task of
NER (Tjong Kim Sang and De Meulder, 2003).
Two samples (also referred to as utterances) are
considered duplicates if they share the same anno-
tation, i.e. word-level tokens and corresponding
ground truth NER labels in the dataset.

The experiments are performed on datasets used
for training a large-scale conversational assistant
(referred to as internal in the following) and also
on publicly available data. The internal datasets
comprise live traffic utterances, de-identified for
privacy regulations and annotated to enable super-
vised training of deep learning models for solv-
ing the NER task. The datasets exhibit varying
degree of skewness in their redundancy, and we
refer to them as InternalMS, InternalVS, InternalXS,
meaning mildly skewed, very skewed and extremely
skewed, respectively. Given the artificial dedupli-
cation of manually curated datasets, we upsam-
ple a public dataset to mimic the redundancy ob-
served on internal data. The MITRestaurant dataset
(Liu et al., 2013), consisting of restaurant-related
queries, is chosen for the semantic similarity of
its queries to the utterances found in the internal
datasets. From this dataset, upsampling is per-
formed to arrive at three datasets with redundancy
ratios of r1 = 0.5, r2 = 0.7 and r3 = 0.9. We
refer to these artificially upsampled public datasets
as MITMS,MITVS,MITXS, with the same meaning
of the acronyms. Given the redundancy ratio r of
interest for each of the three datasets, these are
generated as follows. First, the number of dupli-
cates to draw is computed, according to the above
probability distribution (eq. (8)), as d = r

1−rn.
Then, to generate a realistic distribution, the fact
that shorter utterances are more frequent (Borbély
and Kornai, 2019) and thus more likely to be du-
plicated is leveraged. In a conversational assistant,
for instance, we expect to observe more frequently
short utterances such as “yes” or “stop” than long
sentences related to some more specific queries.
This heuristic is implemented by sampling the d
duplicates according to a power-law over the length
of the utterance in characters, for which an utter-
ance ui with length li is sampled with probability
p(ui) =

1
(li)α

. The exponent of the power-law α is
set to 3 for MITMS and MITVS, while it is set to 5
for MITXS. See table 2 for more statistics on these
artificially upsampled datasets.

We compare the proposed approach with various
baselines (see table 1), which either deduplicate
at the batch level or at the dataset level, can either
account for the number of repetitions during the
loss computation or ignore them, and keep one
or more copies per sample. The comparison is
drawn in terms of training steps and time, as well as
performance of the trained model in terms of micro-
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Dataset Size Redundancy # Named Entities

MITRestaurant 9180 –

17
MITMS 18360 0.5
MITVS 30600 0.7
MITXS 91801 0.9

Table 2: Statistics of the public dataset used in the ex-
periments, and the three artificially upsampled versions.

F1 score, considering averages across 5 seeds.
All the deduplication methods are applied to

the training of a model with the same architecture,
across all experiments. In particular, we employ
a simple NER architecture that obtains contextual
word embeddings from a pre-trained DistilBERT
encoder (Sanh et al., 2019). The embeddings are
then fed to a Multi-Layer Perceptron (MLP) to
map into the label space. The models are trained to
convergence with early stopping.

We remark that what changes across the experi-
ments is the deduplicator and not the model that is
employed. The latter is in fact defined by the same
architecture and hyperparameters, except for the
learning rate that is adjusted as described in sec-
tion 7 to account for the difference in virtual batch
size. Refer to appendix A.4 for further details.

6 Experimental results

Results on internal data Table 3 reports the re-
sults on the three internal datasets. We can see how
the only approach that reduces training times while
also keeping model performance intact is remov-
ing duplicates at the batch level: training times are
significantly reduced (−46.5% on average, −87%
at best) and the model evaluation metric is almost
on par (−0.1% on average, −0.2% at worst). On
the other hand, naively removing duplicates at the
dataset level is suboptimal: the strategy is consis-
tently the best approach in terms of reduction in
training time (−91.3% on average, −97% at best),
but also the worst in terms of F1 score of the result-
ing model (−3.1% on average, −5.8% at worst).
Finally, only keeping a logarithmic portion of the
duplicates at the dataset level allows to reduce the
training times less (−65.2% on average, −84% at
best), but with a milder worsening of model perfor-
mance (−0.3% on average, −0.5% at worst).

We observe that introducing the sample weight-
ing term in the loss when deduplicating batch-wise
(BWU) does not seem to result in a significant im-
provement over the un-weighted variant (BU). We

Figure 2: Expected and actual reduction ratio versus
batch size for the three upsampled datasets.

hypothesize this to be a consequence of leaving
the pre-trained BERT encoder frozen during train-
ing. To test this hypothesis, we experiment also
on a simpler LSTM-based model (Hochreiter and
Schmidhuber, 1997), without pre-training (see ta-
ble 7) and find that the weighted variant (BWU)
is on average 22.8% faster than the un-weighted
variant (BU) since it leads to faster convergence.
Finally, it is worth mentioning that, if keeping per-
fectly on-par model performance is not critical,
simpler deduplicators (e.g. DL) may achieve better
training time reduction.

Results on public data Table 4 reports the results
on public data, where we observe similar patterns
to the ones on internal data. Again, the only ap-
proach consistently reducing training times while
also keeping model performance on par is BWU:
it leads to a training time reduction of −23% on
average, and −61.1% at best, while exhibiting no
model performance drop on average, and −0.1%
at worst. We observe again similar results between
BWU and BU, and carry out the same test on a
simpler LSTM also on public data (see table 8),
with similar results. Removing duplicates at the
dataset level is still the best approach in terms
of time reduction (−32% on average, −68.7% at
best), but at the cost of worst model performance
decrease (−9.2% on average, −21.2% at worst).
The DL deduplicator is less competitive on public
data, with an average and best time reduction of
−32.2% and −68.7%, respectively, and a model
performance decrease of −0.83% on average and
−1.4% at worst.

Parameters evolution We hypothesize that in-
cluding the frequency information in the loss, and
thus having an almost identical loss signal to the
non-deduplication baseline, leads to models having
similar weights. To test this hypothesis, we retain
parameter vectors during training with all the dedu-
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deduplicator

BS = 512 BS = 1024

MITMS MITVS MITXS MITMS MITVS MITXS

Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑
Base – – – – – – – – – – – – – – – – – –
DU -34.0% -31.0% -0.7% -83.0% -83.0% -0.6% -87.0% -87.0% -0.2% -54.0% -53.0% -0.9% -75.0% -73.0% -0.3% -83.0% -82.0% -0.2%
DWU -86.0% -86.0% -5.8% -93.0% -93.0% -1.9% -97.0% -97.0% -2.1% -88.0% -87.0% -5.3% -91.0% -91.0% -2.2% -94.0% -94.0% -1.3%
DL -32.0% -30.0% -0.5% -75.0% -74.0% -0.2% -83.0% -83.0% -0.2% -47.0% -45.0% -0.4% -76.0% -75.0% -0.3% -84.0% -84.0% -0.3%
BU +11.0% +15.0% -0.0% -58.0% -57.0% -0.2% -73.0% -70.0% -0.1% -18.0% -16.0% -0.1% -34.0% -29.0% -0.2% -75.0% -72.0% -0.1%
BWU -3.0% +0.0% +0.1% -52.0% -50.0% -0.1% -75.0% -72.0% -0.1% -26.0% -23.0% +0.0% -51.0% -47.0% +0.1% -89.0% -87.0% -0.1%

Table 3: Comparison of the deduplicators on the internal datasets. Highlighting in bold best results column-wise.
While BWU is not the best technique in terms of training steps and time alone, it is the only one that can reduce
training time while maintaining model performance.

deduplicator

BS = 512 BS = 1024

ExternalMS ExternalVS ExternalXS ExternalMS ExternalVS ExternalXS

Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑
Base 696 99.2s 0.915 1046 136s 0.929 1987 224.6 0.955 450 124.6s 0.914 700 178.4s 0.927 1800 394.8s 0.956
DU -32.0% -11.5% -1.1% -51.2% -30.4% -2.1% -75.8% -55.8% -6.5% -46.6% -30.0% -1.4% -61.4% -47.8% -3.0% -86.7% -75.2% -8.8%
DWU -39.8% -21.2% -3.1% -52.9% -32.5% -2.9% -85.2% -72.3% -11.9% -48.2% -30.0% -4.4% -65.6% -51.9% -11.9% -86.8% -75.6% -21.2%
DL -26.2% -4.4% -0.3% -36.9% -16.5% -0.4% -66.9% -46.0% -0.9% -40.0% -21.0% -0.7% -52.9% -36.6% -1.3% -80.0% -68.7% -1.4%
BU -16.7% -5.4% -0.1% -18.4% -8.7% -0.1% -45.6% -31.4% +0.3% -20.0% -8.7% -0.1% -31.4% -20.3% -0.1% -70.8% -61.7% -0.2%
BWU -5.6% +9.1% +0.2% -27.7% -17.5% -0.1% -53.8% -40.6% +0.0% -20.0% -8.3% +0.0% -31.4% -19.3% +0.0% -70.4% -61.1% -0.1%

Table 4: Comparison of the deduplicators on the public datasets. Following the same data presentation conventions as
in table 3. We observe very similar results to the ones on the internal datasets, with BWU being the only deduplicator
able to consistently reduce training time and keep model performance on par with the non-deduplication baseline.
Absolute results are available in table 9.

plicators; looking at table 5 we can see how indeed
the BWU deduplicator trains a model that is the
closest (in parameter space) to the model trained
without deduplication, among the tested dedupli-
cators. Furthermore, we find that this behavior is
the result of a stronger property of our approach.
Let us define the distance between trajectories in
parameter space as

dtrajectory(A,B) =
1

n

n∑

i=1

∥Ai −Bi∥2 (9)

where A,B ∈ Rn×d are matrices of n parameter
vectors of dimension d, and ∥·∥2 is the Euclidean
norm. Essentially, we are considering the average
point-wise Euclidean distance between correspond-
ing pairs of points along the two trajectories in pa-
rameter space. Then, our finding is that employing
the BWU deduplicator during training leads to a
trajectory in parameter space that is the closest one
to that of a model trained without any deduplication
(see again table 5). One can qualitatively appreciate
this property by resorting to t-SNE (van der Maaten
and Hinton, 2008) to project the d-dimensional vec-
tors down to 2D, and visualizing the trajectories in
parameter space, as can be seen in fig. 3.

deduplicator dfinal ↓ dtrajectory ↓
DU 56.8 40.4
DWU 74.1 52.6
DL 49.9 35.15
BU 48.6 32.3
BWU 45.5 29.7

Table 5: Comparison of the deduplicators in terms of
Euclidean distance of the final parameter vector, and the
overall trajectory in parameter space, from the one of
the model trained with no deduplication

Figure 3: Visualization of the trajectories in parameter
space followed by the same model, with same initial-
ization, when trained with different deduplicators. Our
proposed deduplicator (BWU) results in the closest tra-
jectory to the non-deduplicated one (Base) across all
training. The figure has been obtained following the
same procedure used by Huang et al. (2019).
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7 Discussion

Influence of batch size As can be seen in Fig-
ure 2, the expected number of duplicates increases
with the batch size. Intuitively, given a finite set
of elements that contains repetitions, the larger a
sample, the more likely it is to have repetitions.
The plot clearly shows how the greatest increase in
the number of duplicates is obtained when passing
from small batch sizes to over 1000. The maximum
possible reduction in number of batches would triv-
ially be obtained when the batch size is equal to the
total number of samples, when the reduction would
be exactly the redundancy ratio of the dataset.

Learning rate It is advisable to scale the learning
rate when increasing the batch size, as the gradi-
ent computed over a larger batch size is a more
accurate estimate of the real gradient and should
therefore provide a more reliable direction. Small
batches naturally provide more chaotic gradients
and therefore a large learning rate may result in
“overshooting” and missing the minima. A com-
mon approach is to increase the learning rate as
the square root of the batch size increase factor
(Krizhevsky, 2014), or to scale it linearly with the
batch size (Goyal et al., 2017). We adopt the lat-
ter in this work, multiplying the learning rate by
the expected increase in batch size computed as in
section 3.

8 Conclusions

In this paper, we address the problem of reduc-
ing training time when using redundant datasets,
proposing a novel approach agnostic to task and
model that results in a significant time reduction
without waiving performance. The approach is
compared with various deduplication methods on
the task of Named Entity Recognition, on both in-
dustrial and public datasets. The comparison shows
that our approach is the only one to significantly
reduce training time while maintaining the same
model performance metrics, with observed boosts
in training time of 23%, 47% and 87% on datasets
used to train models for a large-scale conversational
assistant. Various analysis are conducted, on the
tradeoff with batch size and on how learning trajec-
tories are modified. We also provide a theoretically
sound procedure to estimate the expected reduc-
tion, allowing practitioners to assess the benefits
before employing the method. Finally, a modular
and reusable codebase is released to foster further

research in the area.
We believe that this approach can have a high im-

pact on the industry, where large, expensive models
are often trained on datasets containing redundant
user queries or items. This reduction in training
times may in fact allow for faster experimental iter-
ations while cutting times and costs, also reducing
the carbon footprint of deep learning models.

As future work we plan to (i) leverage the gener-
ality of the approach on other tasks that exhibit high
redundancy in data, like semantic search and (ii)
study a more relaxed definition of equality between
two samples, to allow considering two samples the
same if they only differ up to a tolerated quantity.

Limitations

An important limitation of our contribution lies in
breadth of the experimental validation. We decided
to focus our experimentation on the setup where we
encountered the issue of redundant datasets: NER
for a large-scale conversational assistant. While
it is true that our approach does not make any as-
sumption neither about the task nor about the model
architecture, and while we also provide a rigorous
proof to support the estimated gain in terms of train-
ing time, the extent to which our approach remains
the best time-accuracy trade-off when other tasks
are considered is not explored in this work.

An additional limitation stems from the lack of
absolute results on the internal datasets, as the latter
can only be disclosed as relative improvements
over a baseline due to internal policy. We attempt
to mitigate this by reporting full results on an open
dataset, but as we mention we have to resort to
upsampling given the artificial deduplication that
manually curated datasets incur before publishing.

Ethics Statement

The carbon footprint generated by the NLP commu-
nity has shown a concerning trend in recent years.
Similarly, the development and maintenance of pro-
duction models using large neural networks in an
industry setting has a non negligible negative im-
pact on our planet. While our technique offers a
significant advantage only in presence of duplicates
in the training data, which might not always be the
case, we see it as a small but tangible contribution
towards a more sustainable research. Furthermore,
a reduction in training times also directly translates
to a reduction in costs, therefore works like ours
also contribute to the democratization of language
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models development and their applications. Finally
we note how our approach does not lead to the in-
troduction of any new bias, since it leaves the data
distribution observed by the model during training
identical to the one of the initial dataset.
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A Appendix

A.1 Schedule generation

Algorithm 1 describes in pseudo-code the proposed
procedure to generate a batching schedule that re-
moves duplicates at the batch level. Notice that we
consider two utterances identical when their anno-
tation, i.e. both sequence of word-level tokens and
corresponding NER labels, are identical.

Procedure 1 Proposed deduplication approach

Input: dataset data, batch size B
Output: schedule for dataloader

occurrences← []
schedule← []
Ib← {} ▷ IDs seen in batch
sample_posb← {} ▷ sample pos in batch
occb← [] ▷ occurrences in batch
C ← B ▷ capacity of current batch
for all sample s in data do

spos ← position of the sample
sid← unique id of the sample
if sid /∈ Ib then

schedule += spos
Ib += sid
sample_posb[sid]← len(occb)
occb.append(1)
C −= 1

else
occb[sample_posb[sid]] += 1

end if
if (C = 0) ∨ (s is the last sample) then

occurrences.append(occb)
C ← B
occb← []
sample_posb← {}
Ib← {}

end if
end for
return schedule, occurrences

In practice, the schedule is then used to load sam-
ples during training, that are then fed to the model
to obtain class scores z ∈ RN×C×L, with N,L,C
the number of samples, the sequence length, and
the number of classes, respectively. Then, the oc-
currences (normalized as relative frequencies fi)
are integrated in the loss function as follows

L = −
N∑

i=1

fi ·
1

L

L∑

j=1

log
exp(zn,j,yn)∑C
c=1 exp(zn,j,c)

(10)

Figure 4: Effect of the skewness of frequency distribu-
tion over the number of duplicates in a batch. Consider
a dataset with 8 samples of 4 distinct types (redundancy
factor 1

2 ), with various frequency distribution skewness:
no skew ([2, 2, 2, 2]), medium skew ([3, 3, 1, 1]), large
skew ([5, 1, 1, 1]). Consider a batch of size 4. More
skewed distributions lead to more occurrences in the
batch, hence fewer batches to cover the dataset.

where y ∈ Rn is the vector of ground truth labels.

A.2 Derivation of boost estimate

Aim of this section is to formally derive the for-
mula for the expected virtual batch size reported in
Equation (8) given the distribution of duplicates in
the dataset, reported in section 4.

Problem Formalisation Consider a dataset D =
{x1, . . . , xN} with N objects, some of which
might be repeated more than once. As described
in section 3, we fill a batch b by sampling Bvirtual

objects O = {xp1 , . . . , xpBvirtual} so that O con-
tains B distinct elements. We want to compute
the expected value E

{
Bvirtual

}
. This problem has

some analogies with a generalized version of the
coupon collector problem in which one wants to
find how many samples with replacement are re-
quired to obtain a certain number of unique objects
(Ferrante and Frigo, 2012), but in our case there
is no replacement. To the best of our knowledge
there is no closed form solution for this version of
the problem, and therefore, we derive a solution for
the expected number of duplicates d = Ndup in a
batch b of size n. This way a numerical solution of
the original problem can be found by iterating over
the possible values of n = 1, . . . , N , up to the one
that yields u = B unique samples.

Estimate Derivation Consider now a dataset D
of size N instead as a collection C = {o1, . . . , oC}
of C distinct objects each associated with its num-
ber of occurrences k1, . . . , kC such that k1 + · · ·+
kC = N . Consider a random sample without re-
placement X1, . . . , Xn over D, with n < N repre-
senting the batch size. Now introduce C counting
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variables Z1, . . . , ZC , such that Zi counts occur-
rences of oi in the sample.
Formally:

Zi =
n∑

j=1

1(Xj = oi) (11)

The counting variables introduced above follow,
by definition, a multivariate hypergeometric distri-
bution (Duan, 2021), characterized by probability
mass function

pZ1,...,ZC
(z1, . . . , zC) =

∏C
i=1

(
ki
zi

)
(
N
n

) (12)

and expected value

E(Zi) = n
ki
N

. (13)

We want to compute the expected number of dupli-
cates in the sample d = E

(
Ndup

)
. The number of

duplicates of oi in the sample is Zi − 1, since the
first occurrence is not a duplicate; therefore in total
we have:

Ndup =
C∑

i=1

max (Zi − 1, 0) . (14)

By linearity of expectations, it holds that:

E
(
Ndup) = d =

C∑

i=1

E (max (Zi − 1, 0)) (15)

Let di = E (max (Zi − 1, 0)), then by the chain
rule of expectations (also known as Law Of The Un-
conscious Statistician (Schum, 2001)) it follows:

di =

ki∑

j=0

max(j − 1, 0)pZi(j)

where pZi(j) is the probability mass of Zi in j.
Now, noticing that the first two contributions to the
sum are 0, we have

di =

ki∑

j=2

max (j − 1, 0) pZi(j)

= [E (Zi)− pZi(1)]− [1− pZi(0)− pZi(1)]
(16)

and substituting from eq. (13) we get

di = n
ki
N

+ pZi(0)− 1. (17)

The value pZi(0) denotes the probability of object
oi having zero elements in the sample. Now, if
the batch size is larger than the number of objects
different from oi, i.e. k1 + · · · + ki−1 + ki+1 +
· · · + kC < B, then the sample will contain at
least one occurrence of object oi, and in that case
pZi(0) = 0. However in real-world scenarios this
is quite unlikely, since usually B ≪ k1 + · · · +
ki−1 + ki+1 + · · ·+ kC , therefore we have

pZi(0) =

(
N−ki

n

)
(
N
n

) (18)

and putting it all together, we get:

d =
C∑

i=1

(
n
ki
N
− 1 +

(
N−ki

n

)
(
N
n

)
)
. (19)

As mentioned before, with this closed-form ex-
pression we now have a proxy to numerically
compute the actual quantity of interest, that is
E{Bvirtual} = n = u + d = B +Ndup. See algo-
rithm 2 for the procedure to compute this numerical
solution.

Procedure 2 Estimated boost computation

Input: dataset distribution k1, . . . kC , batch size
B

Output: estimated boost
N ←∑C

i=1 k1 ▷ dataset size
l← 0
r ← N
while r > l do ▷ binary search

n =
⌈
(r−l)
2

⌉

Compute d with eq. (19)
if n− d = B then

r ← n
B ▷ Increase in batch size

return
(
1− 1

r

)

else if n− d > B then
r = n− 1

else
l = n+ 1

end if
end while

A.3 Effect of frequency distribution

We remark that the reduction factor depends di-
rectly on the number of duplicates in the batch,
and not on the overall redundancy factor. This can
be appreciated in fig. 4. Three datasets with the
same redundancy factor, but different skewness,
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lead to differt virtual batch sizes. In fact, the distri-
bution with most skewness in frequency results in
the largest number of duplicates, as it is easier to
draw repeatedly a very frequent object than doing
so for one of the many different objects contribut-
ing equally to the total redundancy in the dataset.

A.4 Implementation details
The experiments have been run on p3.2xlarge
EC2 instances2, equipped with a NVIDIA Tesla
V100 GPU3. As optimization framework, Py-
Torch (Paszke et al., 2019) has been used, along
with PyTorch Lightning (Falcon, 2019) and Hy-
dra (Yadan, 2019) for easier and faster develop-
ment and experiment executions. Table 6 reports
the hyperparameters used to train the models with
the various deduplicators. We remark that the
deduplicators themselves have no hyperparameters,
therefore the table lists the hyperparameters of the
models. We used pretrained distilled BERT (Sanh
et al., 2019) models from HuggingFace (Wolf
et al., 2019) as well as LSTM-based (Hochre-
iter and Schmidhuber, 1997) models trained from
scratch. Both types of models feature a two-layer,
fully-connected MLP mapping word embeddings
into label-space. As for the BERT-based mod-
els, the encoder is a distilbert-base-cased4

for the English-only public dataset, while
a distilbert-base-multilingual-cased5 has
been used for the internal data. In both cases the
encoder weights are not updated during training.
Subword token-level embeddings are obtained by
summing the hidden states of the last 3 layers of
the encoder; then, average pooling is used to obtain
word-level embeddings. As for the LSTM-based
models, they use an embedding layer exploiting a
simple word-level vocabulary (built considering all
the corpus).

The models are trained with the Adam (Kingma
and Ba, 2014) optimizer to convergence with early
stopping, monitoring the loss values on a held-
out validation set. Learning rate is increased for
the models trained with the Batchwise Weighted
Unique deduplicator, as mentioned in section 5, to
reflect the increase in (virtual) batch size. Note
that this is not the case for the Batchwise Unique

2https://aws.amazon.com/ec2/instance-types/
p3/

3https://www.nvidia.com/en-us/data-center/
v100/

4https://huggingface.co/distilbert-base-cased
5https://huggingface.co/

distilbert-base-multilingual-cased

deduplicator, since while both fill the batch with
unique samples, ignoring duplicates, only the for-
mer has an impact on the training dynamics due to
the introduction of the sample-wise weight in the
loss. In fact, the latter neglects the duplicates’ con-
tribution to the loss, therefore does not lead to an
actual increase in the batch size, while the former
does, hence the need to increase the learning rate
accordingly.

A.5 Additional Results
After observing that sample weighting does not
result in a significant improvement against the un-
weighted batch-wise unique deduplicator, we in-
vestigate whether this is a flaw of the proposed
deduplication technique or a consequence of us-
ing a pre-trained BERT encoder. As mentioned in
Section 6, the latter turns out to be the case. In
fact, training a simpler LSTM-based model from
scratch, we get the results reported in Table 8. We
can see how indeed the weighted variant is consis-
tently on-par or superior to the un-weighted variant
in terms of predictive performance, despite need-
ing consistently less training steps, for both tested
batch sizes. The effect becomes more noticeable
as the redundancy and skewness in the dataset in-
creases, as we would expect, with BU and BWU
being almost comparable on the MS dataset with
batch size 512, while the latter overcomes the for-
mer using almost half the training steps on the XS
dataset with batch size 1024.

While the margin between the BU and BWU
deduplicator is not as close on internal data, as ob-
served on the public data, we repeat the experiment
on the LSTM-based model also on the former. The
results are reported in Table 7 and are quite sim-
ilar to the ones reported in Table 8 on the public
dataset.
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Parameter Value

BERT LSTM

Learning Rate 1e-3
Optimizer Adam
Max epochs 30
Embedding size 768 50
Hidden size 256
Dropout 0.5 0.2
Activation ReLU
Validation split 0.1
Early stopping metric Validation loss
Early stopping delta 1e-4
Early stopping patience 3
Clipping gradient norm 10

Table 6: Hyperparameter values for the two types of deep neural network used in the experiments.

deduplicator

BS = 512 BS = 1024

InternalMS InternalVS InternalXS InternalMS InternalVS InternalXS

Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑
Base – – – – – – – – – – – – – – – – – –
DU -45.0% -44.0% -0.1% -77.0% -76.0% -0.1% -84.0% -83.0% -0.2% -45.0% -44.0% -0.2% -75.0% -75.0% -0.2% -81.0% -81.0% -0.2%
DWU -61.0% -58.0% -3.6% -87.0% -85.0% -1.2% -92.0% -92.0% -0.8% -60.0% -56.0% -3.5% -85.0% -82.0% -1.1% -90.0% -89.0% -0.6%
DL -36.0% -34.0% -0.1% -72.0% -72.0% -0.1% -84.0% -83.0% -0.1% -33.0% -31.0% -0.2% -71.0% -70.0% -0.1% -79.0% -79.0% -0.1%
BU -3.0% +4.0% +0.0% -32.0% -21.0% +0.0% -69.0% -57.0% +0.0% +0.0% +13.0% +0.0% -42.0% -27.0% -0.0% -69.0% -50.0% -0.0%
BWU -7.0% +4.0% +0.1% -37.0% -27.0% +0.0% -77.0% -67.0% -0.1% -19.0% -6.0% -0.0% -46.0% -28.0% -0.0% -80.0% -68.0% -0.0%

Table 7: Comparison of the deduplicators on the internal datasets, when training a LSTM-based model from scratch.

deduplicator

BS = 512 BS = 1024

MITMS MITVS MITXS MITMS MITVS MITXS

Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑
Base 504 16s 0.925 662 20s 0.953 1526 47s 0.974 354 15s 0.92 489 21s 0.952 979 43s 0.973
DU 387 12s 0.912 422 13s 0.939 441 14s 0.945 240 11s 0.9 240 11s 0.913 240 11s 0.903
DWU 297 10s 0.828 316 11s 0.867 377 13s 0.903 211 10s 0.821 227 11s 0.857 240 12s 0.888
DL 392 12s 0.92 475 15s 0.948 595 19s 0.969 270 12s 0.912 330 15s 0.942 360 16s 0.964
BU 451 15s 0.924 546 18s 0.951 655 26s 0.973 352 17s 0.919 437 22s 0.947 421 28s 0.971
BWU 398 14s 0.925 483 16s 0.954 403 16s 0.975 304 15s 0.922 340 17s 0.949 223 15s 0.974

Table 8: Comparison of the deduplicators on public datasets, when training a LSTM-based model from scratch.

deduplicator

BS = 512 BS = 1024

MITMS MITVS MITXS MITMS MITVS MITXS

Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑ Steps ↓ Time ↓ F1 ↑
Base 696 99.2s 0.915 1046 136.0s 0.929 1987 224.6s 0.955 450 124.6s 0.914 700 178.4s 0.927 1800 394.8s 0.956
DU 473 87.8s 0.905 510 94.6s 0.91 480 99.2s 0.893 240 87.2s 0.901 270 93.2s 0.899 240 98.0s 0.872
DWU 419 78.2s 0.887 493 91.8s 0.902 294 62.2s 0.841 233 87.2s 0.874 241 85.8s 0.817 238 96.2s 0.753
DL 514 94.8s 0.912 660 113.6s 0.925 657 121.2s 0.946 270 97.2s 0.907 330 113.2s 0.915 360 123.6s 0.943
BU 580 93.8s 0.914 854 124.2s 0.928 1082 154.0s 0.958 360 113.8s 0.915 480 142.2s 0.926 525 151.2s 0.954
BWU 657 108.2s 0.917 756 112.2s 0.928 918 133.4s 0.955 360 114.2s 0.914 480 144.0s 0.927 532 153.6s 0.955

Table 9: Absolute results for the comparison of the deduplicators on the public datasets presented in table 4.
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Abstract

Contacting customer service via chat is a com-
mon practice. Because employing customer
service agents is expensive, many companies
are turning to NLP that assists human agents
by auto-generating responses that can be used
directly or with modifications. Large Language
Models (LLMs) are a natural fit for this use
case; however, their efficacy must be balanced
with the cost of training and serving them. This
paper assesses the practical cost and impact of
LLMs for the enterprise as a function of the
usefulness of the responses that they generate.
We present a cost framework for evaluating an
NLP model’s utility for this use case and ap-
ply it to a single brand as a case study in the
context of an existing agent assistance product.
We compare three strategies for specializing an
LLM – prompt engineering, fine-tuning, and
knowledge distillation – using feedback from
the brand’s customer service agents. We find
that the usability of a model’s responses can
make up for a large difference in inference cost
for our case study brand, and we extrapolate
our findings to the broader enterprise space.

1 Introduction

Amidst increased automation, human agents con-
tinue to play an important role in providing excel-
lent customer service. While many conversations
are automated in text-based customer support, oth-
ers are routed to human agents who can handle cer-
tain customer concerns more effectively. Agents
often handle multiple conversations at once, con-
sulting customer account information and brand
policies while maintaining these conversations. As
agents are expensive to staff, many companies are
seeking ways to make their work more efficient.

LivePerson’s Conversation Assist,1 illustrated in
Figure 1, accelerates agents by automatically gen-
erating suggestions that the agent can either send,

1https://developers.liveperson.com/conversati
on-assist-overview.html

edit and then send, or ignore. Conversation Assist
can both reduce agent response time and improve
response quality, as a well-trained model may pro-
vide more consistent, higher quality responses than
inexperienced agents or agents adversely impacted
by external factors. These benefits lead to greater
cost savings and increased customer satisfaction
(CSAT) scores, not to mention providing a super-
visory mechanism that is critical for brand control
and model improvement.

Large Language Models (LLMs) are a natural
fit for this technology, as they have achieved high
performance on response generation tasks (Adiwar-
dana et al., 2020; Hosseini-Asl et al., 2020; Zhang
et al., 2020, inter alia), but they are expensive to
train and serve. For example, the inference cost for
each response using a distilled GPT-2 model and an
Nvidia A100 GPU is ¢.0011,2 while the inference
cost using the GPT-3-based Davinci model through
OpenAI’s API is ¢1.10 (OpenAI, 2023b).3

LLM economics and enterprise applications are
highly fluid. First, individual partnership agree-
ments may differ from the published API cost, and
the rapid pace of innovation in the space will neces-
sarily impact the cost of training and serving these
models. Second, as brands vary widely, a useful
agent assistance model must be customized to the
brand’s use case and performance requirements.
We propose a simple and flexible cost framework
that can be applied to various LLM and brand sce-
narios. This framework, Expected Net Cost Sav-
ings (ENCS), combines the probability and cost
savings of an agent accepting or editing a response
with the cost of generating the response. ENCS can
be applied at the message level or in the aggregate.

With one brand as a case study, we explore
ENCS with various methods of model customiza-
tion. Using feedback from the brand’s customer

2We found the Nvidia A100 GPU to be the most inexpen-
sive option, with an Nvidia V100 GPU costing ¢0.0019

3Assuming a context and response length of 550 tokens.
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Figure 1: Conversation Assist as a system that returns canned responses (left), compared with the product described
in this paper, which generates suggestions from LLMs (right).

service agents, we evaluated fine-tuning, prompt
engineering, and distillation to adapt and opti-
mize GPT-2 (Radford et al., 2019), GPT-3 (Brown
et al., 2020; OpenAI, 2023a), and Cohere (Cohere,
2023a). These strategies can lead to an agent usage
rate of 83% (including both direct use and edit-
ing) and an annual cost savings of $60,000 for our
case-study brand – 60% of their total agent budget.

We generalize this case study to a broader range
of brands and models. We find that low perplexity
correlates with the probability that an agent will use
a response, and we extrapolate from this finding to
use perplexity to estimate the ENCS for additional
model customization strategies. We apply ENCS
to each configuration, and while models, prices,
and use cases will change over time, we expect that
this framework can be continuously leveraged for
decision making as technology evolves.

2 Related Work

Transformers (Vaswani et al., 2017) have dom-
inated response generation tasks: DialogGPT
(Zhang et al., 2020), Meena (Adiwardana et al.,
2020), SOLOIST (Peng et al., 2021), BlenderBot
(Roller et al., 2021), PLATO-XL (Bao et al., 2022),
LaMDA (Thoppilan et al., 2022), GODEL (Peng
et al., 2022). Each of these approaches fine-tunes
a large pre-trained LM to task-oriented dialog or
chit chat using curated dialogs. In some cases, ad-
ditional tasks, such as the discriminative training
tasks of Thoppilan et al. 2022, are also used. When
data is not available for fine-tuning, prompting with
a single example has proven quite effective (Min

et al., 2022), and for large enough models, prompt-
ing that demonstrates breaking tasks into discrete
components (Wei et al., 2022) has performed on par
with fine-tuned models (Chowdhery et al., 2022).

The size of these LLMs plays a significant role
in their high performance (Chowdhery et al., 2022),
but in a deployed setting, this size can be quite
costly. Quantization (Whittaker and Raj, 2001;
Shen et al., 2020), pruning (Han et al., 2015, 2016)
and knowledge distillation (Hinton et al., 2015;
Sanh et al., 2019) are common strategies for size re-
duction with minimal impact to performance. Here
we focus specifically on distillation using a lan-
guage modeling task to reduce model size while si-
multaneously adapting the model to the data follow-
ing Ryu and Lee (2020) and Howell et al. (2022).

Response generation is difficult to evaluate holis-
tically. Some have focused on relevance and level
of detail (Zhang et al., 2020; Adiwardana et al.,
2020; Thoppilan et al., 2022), humanness (Zhang
et al., 2020; Roller et al., 2021) and overall coher-
ence or interestingness (Bao et al., 2022; Thoppi-
lan et al., 2022). In contrast, we follow Thoppilan
et al. (2022) and Peng et al. (2022) who consider
helpfulness and usefulness as broader measures of
response quality, but we ground these judgements
in the customer service use case by having real
agents judge the usefulness of model outputs.

3 Expected Net Cost Savings (ENCS)

ENCS combines model performance, model cost,
and agent cost: If an agent saves time by using
a model’s response, then there is a cost savings.
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Figure 2: A toy example of an ENCS calculation.

More formally, ENCS is defined as the probability
that a response is used (P (U)) multiplied by the
savings in dollars for each used response (SU ), less
the cost of generating that response (C), as in (1).

(1) ENCS = P (U) ∗ SU − C

Because agents are not limited to simply using a
response as-is but may also choose to edit the re-
sponse or ignore it altogether, equation (1) may be
modified to account for the probability and savings
associated with editing (P (E) and SE) or the cost
of ignoring (P (I) and SI )4 as well:

(2) ENCS = ((P (U) ∗ SU ) + (P (E) ∗ SE) +
(P (I) ∗ SI)− C

We can estimate S from the agent’s hourly rate
(R), the average time it takes for agents to respond
to a message without Conversation Assist (Tr), and
the amount of time an agent spends for each ac-
cepted, edited, or ignored message (Tx).

(3) Sx = R(Tr − Tx)

Figure 2 provides a toy example of this calculation.

3.1 Simplifying Assumptions
This model makes a number of simplifying assump-
tions. We assume that agents always have conver-
sations to respond to or some other work to do.
We exclude the problem of workforce optimiza-
tion from our framework, noting that when fewer
agents are needed to handle the conversational traf-
fic, workforce can be reduced. We also exclude
R&D cost, but return to this factor in section 5.

4In most cases, SI is a negative number, as reading a re-
sponse and choosing not to use it would cost time and money.

Furthermore, we omit any discussion of the cost
of an agent using an inappropriate or factually in-
correct response. For the purposes of this model,
we assume that agents read all suggestions care-
fully, but a deeper analysis of the risk and cost of
these errors is a critical area for further study.

4 Case Study

We focus on a single brand to evaluate the use
of LLMs for Conversation Assist and explore the
application of ENCS for making product decisions.
We evaluate three model customization strategies
using manual ratings from brand agents. We then
evaluate how well these ratings relate to perplexity
and use this to assess a larger set of models. Finally,
we estimate ENCS and discuss the implications.

4.1 Case Study Brand

We partnered with a single brand, who we will refer
to as Anonymous Retailer (AR), for this case study.
AR’s customer base includes both consumers and
sellers who consign items through AR’s platform.
Because AR’s agents are trained across different
customer concern categories, they can provide ex-
pert feedback on a wide range of data.

At the time of writing, AR has about 350 human
agents who use LivePerson’s chat platform. AR
supports about 15,000 conversations per month,
and uses chat bots for simple tasks and routing,
while their human agents send 100,000 messages
per month on average. In comparison, the average
number of conversations per month for brands on
LivePerson’s platform is 34,000, with a median of
900 monthly conversations per brand and a stan-
dard deviation of 160.

4.2 Data sets

We constructed three datasets: brand-specific train-
ing, brand-specific test, and general training. We
de-identified data, replacing each entity with a ran-
dom replacement. For the test set, we manually
ensured that the de-identification was internally
consistent across the conversation for agent and
consumer names, addresses, and order numbers.

The brand-specific data comprises English cus-
tomer service conversations from 2022 that include
human agent and bot messages. We filtered these
conversations to ensure that they had at least two
agent turns, more human agent than bot messages,
and a positive Meaningful Conversation Score.5

5For more information on Meaningful Conversation Score,
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Fine-tuning Distillation 2nd Fine-tuning
Model Name Dataset # Convs # Steps Dataset # Convs # Steps Dataset # Convs # Steps
GPT-2 BFT BD∗ brand 100,059 15,000 brand 100,059 67,014
Cohere PE∗

GPT-3 PE∗

GPT-2 BFT brand 100,059 15,000
GPT-2 BFT BF BFT brand 100,059 34,000 brand 100,059 67,014 brand 100,059 15,000
GPT-2 GFT BD BFT general 236,769 34,000 brand 100,059 67,014 brand 100,059 28,000
GPT-2 GFT GD BFT general 236,769 34,000 general 236,769 1,264,352 brand 100,059 28,000
GPT-2
GPT-2 XL GFT GD BFT general 236,769 120,000 general 236,769 1,264,352 brand 100,059
Cohere FT brand 50
GPT-3 BFT brand 50 4 epochs

Table 1: Model adaptation configurations. ∗ indicates that this model’s outputs were manually evaluated.
BFT = fine-tuned on AR brand data, GFT = fine-tuned on the general dataset, BD = distilled using AR brand data,
GD = distilled using the general dataset, PE = prompt engineered.

From this filtered data, we randomly sampled
100,059 conversations to make up our training set.
From the remainder, we curated a brand-specific
test set by manually selecting 287 conversations
where the customer’s goal could be clearly estab-
lished from the context of the conversation. We
constructed the general training set from five ad-
ditional retail brands whose product lines fall into
similar categories as AR. We filtered and processed
the data using the method described above and se-
lected 70,000 conversations per brand, or used the
entirety of the brand’s data if there were fewer than
70,000 conversations. The total size of the general
training set is 236,769 conversations. For more
details on these datasets, see Appendix D.

4.3 Model Customization

We explored three standard model customization
strategies: prompt engineering, fine-tuning, and
knowledge distillation. Using these strategies, we
tested eleven configurations (Table 1). We evalu-
ated three of these configurations with the judge-
ments of AR agents, and for the remainder we
extrapolated usability scores from the model’s per-
plexity over the test set.

4.3.1 Prompt Engineering
GPT-3 We prompted the text-davinci-003 GPT-
3 model (OpenAI, 2023a), following OpenAI’s best
practices for prompt engineering (Shieh, 2022). Af-
ter some experimentation, we found that the most
effective prompt for our use case (Figure 3) used
a hand-constructed exemplar conversation and ex-
plicitly instructed the model to generate a response
that would address the consumer’s issue.

see: https://knowledge.liveperson.com/data-repor
ting-meaningful-conversation-score-(mcs)-meaning
ful-conversation-score-(mcs)-overview.html/

Cohere Following Cohere’s best practices (Co-
here, 2023c), we tested both verbose and concise
prompts with the XLarge Cohere model (Cohere,
2023a). Unlike GPT-3, we found that using a
prompt without an exemplar conversation (Fig-
ure 3) resulted in better performance.

4.3.2 Fine-Tuning
GPT-2 We fine-tuned GPT-2 (Radford et al.,
2019) using a language modeling task over con-
versational data on either the brand-specific dataset
or the general dataset described in section 4.2. We
started with a learning rate of 0.00008 with a linear
scheduler and no warm up steps and trained until
perplexity plateaued.

GPT-3 We fine-tuned the text-davinci-003 GPT-
3 model from OpenAI on a conversational prompt-
completion task using instructions and an exemplar
conversation as the prompt and the human-agent
response as the output. The dataset consisted of 50
random examples from the brand-specific training
set.

Cohere We fine-tuned Cohere’s XLarge model
with Cohere’s API (Cohere, 2023d) and a random
subset of 50 conversations from the brand-specific
dataset. We tested verbose and concise prompts
as well as EOS token placement, and found that a
shorter prompt with an EOS token after each turn
worked best.

4.3.3 Distillation
To reduce latency and cost to serve by almost half,
we distilled our fine-tuned GPT-2 models using
the Transformers library (Sanh, 2023), following
the method set forth by Sanh et al. (2019) and the
language modeling training task of Radford et al.
(2019). For distillation, we used either the brand-
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Figure 3: Prompts used for Cohere and GPT-36

Model Name %Ignore %Edit %Use
HUMAN 10 12 77
GPT-2 BFT BD 28 16 57
Cohere PE 22 20 58
GPT-3 PE 17 14 69

Table 2: The percentage of responses that agents said
they would use, edit, or ignore. Five agents annotated
each conversation, judgements are counted individually.

specific or the general dataset. We started with
a learning rate of 0.0005 using a linear scheduler
and trained for 3 epochs. Because the OpenAI
and Cohere API’s do not make the logits of the
whole vocabulary available at inference, we are
unable to distill these models using Sanh et al.’s
methodology.

4.4 Metrics and Results
4.4.1 Response Usability
While previous work has assessed the helpfulness
or usability of a response with crowd-sourced judg-
ments (Thoppilan et al., 2022; Peng et al., 2022),
we worked with nine agents at AR who already
use our Conversation Assist product. For each con-
versation and suggested response, we asked them
whether they would use the suggested response as-
is; edit it to change specific details, add to it, or
remove parts of it; or ignore the suggestion alto-
gether. The full annotation instructions are given
in Appendix E.

Table 2 shows annotated Response Usability
(RU) scores for three models. Even when shown
the response that an AR agent had actually used
in the conversation (HUMAN), agents said that they
would use this response only 77% of the time and
would ignore it 10% of the time. This indicates a
high level of personal preference among the agents,
and sets a noteworthy upper limit on the usability
we could expect from model outputs. Agents said
that they would use the GPT-3 PE suggestion 69%

6This example prompt uses a fictitious brand name for
anonymity.

of the time compared with GPT-2 BFT BD and
Cohere PE at only 57% and 58%, respectively.

As the use rate increases, the edit rate and ignore
rates both decrease, indicating that conversations
resulting in editable prompts for some models can
result in usable prompts for another model. We also
note, that while the use rate was similar for GPT-2
BFT BD and Cohere PE, the edit rate was much
higher for cohere, highlighting the importance of
assessing the cost savings of an editable response
vs. ignoring the response entirely.

We also annotated these conversations for the
Foundation Metrics in Thoppilan et al. 2022 and
found a correlation between responses that were
sensible, specific and role-consistent and those that
the agents said they would use. Detailed analy-
sis of these labels and their correlation are in Ap-
pendix G. This additional annotation revealed that,
of the three models, GPT-2 BFT BD was most likely
to generate a consumer turn rather than an agent
turn or to generate a turn that was not relevant to
the conversation, which may account for its high ig-
nore rate. We also note that virtually all responses
generated by the three models were labeled ‘safe’
by the annotators.

4.4.2 Perplexity
Adiwardana et al. (2020) found that sensibleness
and specificity corresponded with the model’s per-
plexity, inspiring us to use perplexity to extrapolate
our manual evaluation of three models to a broader
set of model configurations. After reproducing
Adiwardana et al.’s finding for sensibleness and
specificity using our data (see Appendix J), we in-
vestigated the correlation between perplexity and
response usability. For each conversation context
in the evaluation set, we calculate the perplexity
for the generated response for each LLM using the
average log likelihood of each token, following
equation (4).

(4) PP (W ) = N

√
1

P (w1,w2,...,wN
)
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Model Name PPL %Ignore %Edit %Use
GPT-2 BFT 4.27 20.8 16.8 62.4
GPT-2 BFT BD BFT 4.50 21.0 16.9 62.1
GPT-2 GFT BD BFT 4.05 20.7 16.7 62.6
GPT-2 GFT GD BFT 4.15 20.7 16.8 62.5
GPT-2 7.08 22.7 17.8 59.5
GPT-2 XL GFT GD BFT 5.31 21.5 17.2 61.3
Cohere FT 1.93 19.3 16.0 64.7
GPT-3 BFT 4.14 20.7 16.8 62.5

Table 3: Average perplexity (PPL)7and projected Re-
sponse Usability (RU) scores. See Table 1 for descrip-
tions and naming conventions for the models.

Model Name ENCS/message ENCS/year
GPT-2 BFT BD ¢4.47 $53,653
Cohere PE ¢4.58 $55,000
GPT-3 PE ¢4.24 $50,920
GPT-2 BFT ¢4.97 $59,687
GPT-2 BFT BF BFT ¢4.96 $59,527
GPT-2 GFT BD BFT ¢4.99 $59,851
GPT-2 GFT GD BFT ¢4.98 $59,786
GPT-2 ¢4.81 $57,668
GPT-2XL GFT GD BFT ¢4.90 $58,802
Cohere FT ¢4.62 $55,391
GPT-3 BFT -¢1.56 -$18,691

Table 4: AR’s estimated cost savings per model using
equation 2 and the usage rates in Table 2. For models
below the line, we we use extrapolated usage rates us-
ing perplexity from Table 3. The assumptions used to
calculate the ENCS are described in section 4.4.3. See
Table 1 for descriptions and naming conventions for
these models.

Using all annotated LLMs’ suggested responses
across all conversations in the evaluation set, we fit
a set of linear regression models using the perplex-
ity of the generated agent turn as our independent
variable, and the probability of use, edit, and ig-
nore as our dependent variables. Individual linear
models trained on the output of a single LLM did
not show statistical significance; however, models
trained on the output of all LLMs did show sig-
nificance in the F-statistic (p < 0.05 for P(edit), p
< 0.001 for P(use) and P(ignore)). Extrapolating
from these linear models allows us to illustrate po-
tential cost savings for more models than we were
able to annotate. These linear models predict the
RU scores in Table 3.

4.4.3 Expected Net Cost Savings (ENCS)
We calculate the ENCS for each model using equa-
tion (2), repeated here in (5).

7On the rare occasion that a model did not generate a re-
sponse, we exclude that data point from the average perplexity
as it would heavily skew the average.

(5) ENCS = ((P (U) ∗ SU ) + (P (E) ∗ SE) +
(P (I) ∗ SI)− C

P (U), P (E), and P (I) are the frequency with
which the LLM’s response was accepted, edited,
or ignored in the test set. SU , SE , and SI are cal-
culated assuming that an agent costs $10.00 per
hour and averages 30 seconds per message without
Conversation Assist. With Conversation Assist, we
assume that the agent saves 25 seconds for each
accepted response, 20 seconds for each edited re-
sponse and spends an extra 5 seconds for each
ignored response. We also assume that each re-
sponse costs ¢0.002 to generate for a GPT-2 model,
¢0.0011 for a distilled GPT-2 model, ¢1.09 for
the base model and ¢6.54 for a fine-tuned model
through OpenAI’s API and ¢0.25 for the base
model and ¢0.50 for a fine-tuned model through
Cohere’s API.8

Using the RU scores in Tables 2 and 3, we esti-
mate that AR’s cost savings per message would be
¢4.47 using the GPT-2 BFT BD model compared
with ¢4.24 using GPT-3 PE, as detailed in Table 4.
ENCS per year is calculated based on AR’s annual
agent message volume of 1,200,000.

The factor with the largest impact on AR’s cost
savings is the usefulness of the predictions, as the
best annotated model (GPT-3 PE)’s predictions are
used or edited only 5% more often than the fastest
(GPT-2 BFT BD), while its cost was almost 100
times higher (¢1.09 vs ¢0.0011). Despite this, the
difference in ENCS between these two models is
minimal and only amounts to about $3k per year.
In general, the RU and ENCS are higher for the ex-
trapolated results, which are somewhat less reliable,
but they lead to one important insight: in this case,
the inference cost for a fine-tuned GPT-3 model is
too high for the customer to realize savings.

5 Beyond a single case study

To decide which of these models will lead to the
greatest ROI for a brand, we must consider the
break-even point for each model based on the
ENCS (which includes agent labor and model infer-
ence costs) as well as R&D cost and message vol-
ume. This can be visualized with Figure 4, which

8We estimate GPT-2’s cost based on a latency of 19.57
milliseconds per inference for the full-sized model and 11.60
ms for the distilled model, and a cost of $3.53 per hour renting
an Nvidia A100 GPU from GCP for 8 hours a day. OpenAI
and Cohere’s API costs are come from OpenAI 2023b and
Cohere 2023b at the time of writing.
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Figure 4: Factors impacting when a brand will break
even when using an agent assistance model.

shows that ROI is reached when the amount that la-
bor cost is offset (green) intersects with the amount
that has been spent on the model (red). The num-
ber of suggestions needed to break even (Nr) is
calculated with equation (6), using the R&D cost
(CR&D), ENCS, and the cost to update and main-
tain the model (expressed as an average per mes-
sage over time as Cm).

(6) Nr =
CR&D

(ENCS−Cm)

Given that the difference in ENCS per message
across the models explored in this paper is not
large, low R&D cost is the main consideration to
reach the fastest ROI. For a small brand sending
500,000 agent messages per year and saving about
$24,000 per year with any of the models, reduc-
ing the upfront R&D cost would be critical. On
the other hand, a large enterprise brand who will
save $950,000 per year over 20 million messages,
will break-even on any R&D cost fairly quickly.
As a model with lower inference cost will offset
high R&D cost more quickly and lead to more sav-
ings over a longer period of time, inference cost
is a much more important factor for a brand with
high traffic. In Appendix K, we provide a detailed
example of the impacts of these costs.

It is also worth noting that when choosing be-
tween in-house and third-party models, the differ-
ence in R&D and maintenance cost may not be as
significant as one might expect. While an in-house
model requires up-front investment to train and
serve, OpenAI and Cohere’s LLMs at the time of
writing require a fair amount of effort to prompt en-
gineer for the best performance and these prompts
should be customized to some degree for different
brands and scenarios. From a maintenance per-
spective, we similarly find that while an in-house

model must be refreshed, prompts must also be
redesigned as third-party providers update and re-
lease new models.

Brands might also wish to consider factors that
are not accounted for in this framework. Some
brands would prefer to use an in-house model so
that they can retain control over their data and
protect their customer privacy by limiting access
of their data to third-party vendors. An in-house
model also provides more control over the model’s
suggestions, as well as control over when the model
is updated or deprecated. Especially as technology
develops, models become less expensive to train,
and the performance of open-source models im-
proves, these factors may carry even more weight.

6 Conclusion

In this case study, we demonstrated the utility of
LLMs for agent assistance products, exploring 3
model adaptation strategies across 11 model config-
urations. Based on feedback from real customer ser-
vice agents, we found that bigger is not always bet-
ter, as the distilled GPT-2 model resulted in greater
cost-savings than GPT-3, despite lower quality re-
sponses, because, at the time of writing, its infer-
ence cost is so much lower. These results empower
near-term decision-making for integrating models
like these into production.

However, with the rapidly shifting NLP land-
scape, a framework to assess the cost benefits of
new technologies is critical to facilitate decisions
about integrating them into products. The flexible
framework presented in this paper, ENCS, enables
NLP practitioners to invest in innovations that lead
to tangible business benefits. We found that for
this product, the impact of model quality far out-
weighs inference cost, pointing to the importance
of continuing to push the state of the art, while
considering practical expense. This framework em-
powers the NLP community to invest in the most
cost-effective technology for their specific needs,
even as that technology, its capability, and its pric-
ing evolve.

Ethics Statement

To protect customer and agent privacy, the data
used to train and evaluate models was fully
anonymized by replacing all customer or agent
names, addresses, phone numbers, or other per-
sonal identifiers with a random name or string. We
also compensated agents for annotations in line
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with their standard rate as agents at AR.
While the tools described in this paper have the

explicit goal of making agents’ jobs easier, they -
and specifically the lens of a cost savings analysis -
have the potential to be used to motivate reductions
in workforce, and we acknowledge the impact that
this can have on the agents themselves. We also
note that these tools can also improve the customer
experience by reducing wait times, which can lead
to fewer frustrated customers when they do interact
with agents.

Limitations

In this study, we collected feedback on the use-
fulness of model responses from customer service
agents at AR. These agents were recommended
based on their availability and experience with Con-
versation Assist; however, we did not receive de-
tails about the agents such as their level of train-
ing or experience, which may have an impact on
their preferences using the suggested responses.
Furthermore, while agents in our study received a
flat rate per judgment with no bonus or penalties
to how they judged the response, some businesses
have existing agent metrics (e.g. actual handle time,
AHT targets, etc.) that could incentivize the agents
to behave differently while performing their jobs.
These metrics have the potential to exert pressure
on agents in real-life situations to accept responses
at a higher rate than in this study.

The linear models in section 4.4.2 are based on
the judgments of 5 agents on 3 LMM model outputs
for 287 conversations. While they have shown a
statistically significant relationship between usage
rates and perplexity, this is a small pilot analysis.
Additional data will be necessary to determine how
well this generalizes.

Our cost savings framework also makes a num-
ber of simplifying assumptions about workforce
optimization. We’ve noted some of these assump-
tions in section 3.1, and they should be consid-
ered when leveraging this framework for different
types of products. In addition, while the explicit
goal of these models is to make agents’ jobs easier,
we expect from previous work studying vigilance
tasks (Warm et al., 2008) that there can be an upper
bound to how much cost could be saved with an
excellent LLM, as there would be less benefit from
the agent acting as a human in the loop as their
vigilance wanes.
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A Training Details: Model Fine-tuning

GPT-2 We fine-tuned the pretrained GPT-2
model from huggingface using either the brand-
specific AR or general dataset. Each training ex-
ample has an end-of-text token appended to the be-
ginning and end of the conversation and is padded
with an added pad token. The resulting model has
117M parameters and a vocabulary size of 50258
(GPT-2 vocab size with an additional pad token).
We started with a learning rate of 0.00008 with a
linear scheduler and no warm up steps. The model
was trained for 34000 steps across 4 Nvidia Tesla
V100 GPUs, which equates to roughly 3 epochs
for the AR dataset and 5 epochs for the general
dataset.

GPT-3 We fine-tuned GPT-3 with prompt-
completion pairs using the OpenAI API. We
trained for 4 epochs using a total of 50 examples
that were selected and split at random human-agent
turns to append the preceding conversation to
the prompt and the human-agent turn as the
completion. Additionally, the prompt included a
brief summary of the context before giving the
conversational context, which includes a separator
sequence to delineate the summary and the
conversation. An example of a prompt-completion
pair is given below:

Prompt:

Summary: The following is a conversa-
tion between a CONSUMER and a po-
lite, helpful, customer service AGENT
from <BRAND_NAME>.

CONSUMER: <consumer_turn>

AGENT[non-human]: <agent_turn>

...

AGENT[human]:

Completion:

<agent_response>

Cohere To fine-tune the Cohere model, we ex-
perimented with different configurations for pre-
processing the input data that varied the input

prompts and whether or not to use an end-of-
sequence token between conversation turns. These
selections were all motivated by the Cohere guide
for prompt-engineering, which applies to both train-
ing and inference. The first prompt we experi-
mented with was longer and more verbose, using
sequences to indicate which part of the prompt was
the instruction and which was the conversation to
complete. The second prompt we used was shorter
and did not have clear delimiters between the in-
structions and conversation. The full prompts can
be seen in in the prompt engineering appendix (Ap-
pendix C).

B Training Details: GPT-2 Distillation

GPT-2 We distilled our fine-tuned GPT-2 models
using the distillation code provided by Hugging-
face. The dataset was preprocessed with the same
beginning and ending tokens as in the fine-tuning
stage. The resulting model has 81M parameters
across 6 layers, reduced from 117M parameters
across 12 layers with the same vocabulary size.
Training started with a learning rate of 0.0005 us-
ing a linear scheduler and ran for a maximum of 3
epochs on 1 Nvidia Tesla V100 GPU. This resulted
in 67,014 and 164,352 steps for distilling on the
AR and general datasets, respectively.

C Prompt Engineering

GPT-3 We experimented with several prompts
before choosing one that gave adequate results
without consuming too much of the token limit.
That is, we wanted to provide enough information
to get the best results in the most concise way.

First, we varied the verbosity of the framing of
the request, changing factors such as whether the
brand name was provided or whether there was a
description of the product line:

You are a customer service representative

You are a customer service representative for
a retail and consignment brand

You are a customer service representative for
a luxury retail and consignment brand

You are a customer service representative for
a luxury retail and consignment brand called The
Republic of Fashion

You are a customer service representative for
a luxury retail and consignment brand called The
Republic of Fashion which is an anonymized version
of AR.
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The quality of the responses did not vary
based on the amount of detail given here, nor did
they change when this was omitted, so we chose to
omit it.

The next aspect we varied was the amount of
detail given in the description of the examples:

Here are examples of good interactions

Here are examples of good interactions be-
tween a consumer and an agent

Here are examples of good interactions be-
tween a consumer and an agent where the agent is
able to address the consumer’s question

Here is an example of a good consumer agent
interaction where the agent is able to address the
consumer’s question. Consumer turns start with
“CONSUMER:”, customer service representative
turns start with “AGENT:”

And finally, we varied the description of the
task we requested:

Your job is to generate the next agent turn for the
following conversation

Your job is to generate the next agent turn for
the following conversation to properly address the
consumer’s question.

Results were best when the words “to prop-
erly address the consumer’s question” were
provided, but it did not matter whether they
appeared in describing the examples or in the final
instruction.

Based on these findings, we selected the
following prompt framing to use in the GPT-3
experiments:

Here are examples of good interactions between a
consumer and an agent.

<sample conversation>

Generate the next agent turn for the following
conversation to properly address the consumer’s issue

<conversation>

The next task was to find an exemplar conversation
to use in the prompt. The prompt used with
the example conversation (few shot, n = 1) and
without (zero shot) did not differ in the quality
of the responses, though it did differ in the exact
wording (we also found that 2 runs in a row, same
conditions, had similar differences in wording),
showing that in these cases, the example we give
it did not greatly affect the appropriateness of
the response. Therefore, we went with a generic,

hand-curated example based on observing trends
in the data:

AGENT[human]: Hello! Thank you for connecting with
The Republic of Fashion. I will be happy to assist you.

CONSUMER: Hi. I wanted to follow up on my
order? It hasn’t arrived yet.

AGENT[human]: Ok. Could I get your order
number?

CONSUMER: Yes. It’s AX001001

AGENT[human]: And the email address?

CONSUMER: test123@gmail.com.

AGENT[human]: Please allow me 1-2 minutes to
look this up. It looks like your order is in progress. It is
due to be shipped tomorrow. You will receive an email
with the tracking number once it ships. Is there anything
else I can help you with today? Thank you for contacting
The Republic of Fashion!

Cohere For Cohere prompt engineering, we
experimented with two separate prompts based
on the instructions given in the Cohere prompt
engineering documentation and the efforts that
were made towards GPT-3 prompt engineering.
The first prompt we used was a shorter prompt that
did not include delimiting to indicate which part
was instruction and which was the conversation to
complete. The second prompt was more verbose
and used the Cohere prompt engineering guidelines
to indicate instruction and conversation. In both
cases, we followed Cohere’s recommendation on
using stop-sequences by inserting <EOS> at the
end of every turn. Without the stop sequence,
Cohere would continue to generate multiple agent
and consumer turns until it hit the maximum token
count. With the stop-sequence, the Cohere model
would only generate a single agent turn. Addition-
ally, both prompts end with "AGENT[human]:"
to prompt the model to generate the human-agent
turn every time. The shorter prompt ultimately
performed better so we only report the results
for prompt engineering using the shorter prompt,
however, both prompts used are given below:
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Long prompt

===Instruction===

The following is a conversation be-
tween a CONSUMER and a polite,
helpful customer service AGENT from
The Republic of Fashion. Your task
is to determine the next best response
from the AGENT.

===Conversation===

<conversation_context>

AGENT[human]:

Short prompt

The following is a conversation be-
tween a CONSUMER and a polite,
helpful customer service AGENT from
The Republic of Fashion. What is the
next best response the AGENT should
give?

<conversation_context>

AGENT[human]:

D Dataset Details

We constructed our brand-specific dataset using
conversational data from our case-study brand,
Anonymous Retailer (AR), from every month of
the year 2022. From the year’s data, we removed
conversations that did not meet the following crite-
ria:

• 2 or more agent turns

• an automated conversational quality score of
neutral or higher 9

• proportionally more human agent then bot
turns

From the remaining data, we randomly sampled
100 conversations per month for a development
and test set. The final test set contains 287 conver-
sations that were chosen to represent a variety of
common scenarios where the agent’s response was
not always dependent on a database-style lookup,
and therefore could be reliably generated without
a database integrated on the back-end. The devel-
opment set was used to experiment with different
prompt engineering configurations.

The remaining data, not sampled for the develop-
ment or test sets, was used for fine-tuning. Specific
dataset sizes are given in Table 5, which shows

9We used LivePerson’s Meaningful Conversation Score.
For more details, see: https://knowledge.liveperson.c
om/data-reporting-meaningful-conversation-score
-(mcs)-meaningful-conversation-score-(mcs)-overv
iew.html/

Conv. Mess. # Agent
AR 100,059 4,234,023 14.5
General 234,769 8,708,004 13.5

Table 5: Size of fine-tuning data sets

the number of conversations, messages, and the
average count of agent turns per conversation.

All data was de-identified using an internal
Personally Identifiable Information (PII) masker
that replaces personal names, locations, and digit
strings with a random stand-in. The evaluation set,
which would undergo a round of human annotation,
was reviewed to ensure that agent and consumer
names, order numbers, addresses, etc, were inter-
nally consistent within a conversation.

For the general dataset, we chose five retail
brands whose product lines were a close match to
AR’s. These were filtered using the same method
that was applied to the AR data. We then sampled
70,000 conversations from each brand, or used all
the data available if the brand had less than 70,000,
resulting in 236,769 conversations, as shown in
Table 5.

E Annotation Scheme: Response
Usability

As described in 4.4.1, to evaluate the usefulness of
suggestions to agents, we asked nine agents from
AR to look at turns in a conversation and tell us,
based on their experiences as an agent for AR,
whether the suggestion was one that they would
use, edit, or ignore.

Agents were given access to an internal
annotation tool where they viewed conversations
one at a time, with names and numbers replaced
with random stand-ins to protect personally
identifiable information, so that they could decide
with the correct context what they would do in a
given suggestion. They were given the following
guidelines:

Context

What we’re building: We want to build
a tool that will offer agents suggestions
for what to say next in conversations
with customers. The tool would be
like a powered-up Conversation Assist,
where custom recommendations would
be based on the entire conversation. We
are investigating different techniques to
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train machine learning models so they
can offer responses that are specific to a
brand, and we want to understand how
well they work.

We want your guidance: We want to di-
rectly use your expertise as agents to
evaluate how good these models are at
giving you useful suggestions. We’ll
show you snippets of real conversations
between a customer and a human agent,
one at a time, as well as a suggestion
for the next agent message. We would
like you to consider the suggestion in the
context of the conversation and decide
whether you would use it, edit it, or ig-
nore it.

Instruction

Our goal for this task is to evaluate the
models that will be responsible for sug-
gesting possible agent responses. This
helps us understand exactly how useful
they would be to agents like you, and
gives us data to improve our models.

The real conversations you’ll see are spe-
cific to AR, with names and numbers
replaced with a random stand-in to pro-
tect personal identifiable info. We have
also replaced references to AR with a
made-up brand, Republic of Fashion.

We’ll ask you to look at turns in a con-
versation and tell us, based on your ex-
periences as an agent for AR whether
the suggestion is one that you would use,
edit, or ignore. The quality of these sug-
gestions will be widely varied. Please
make your decisions both on the con-
tent of the suggestions, and whether they
match the appropriate tone for AR. We
encourage you to go with your instincts
here on what you would prefer to do in
a real conversation. For example, the
line between editing a response vs. ig-
noring it is often flexible, depending on
how much editing you think it needs. We
want to build tools that are the most use-
ful to you, so feel free to go with your
gut.

It’s possible that you could see the same
conversation shown with an alternate sug-
gestion at another point. That’s fine - we

don’t need to compare differences in the
suggestions. Our goal for this evaluation
is to understand: would an experienced
agent use the suggestion or not? The
data from this will help us improve our
suggestion models.

You can find more details on the labels
below. We won’t be asking you to pro-
vide reasons for your responses. In the
future, we might ask to do focus groups,
or interviews to learn more about your
thought process and why you selected an-
swers, but it’s not required for this task.

Use suggestion: Select this label if
you would use this message as-is if you
were the agent handling this conversa-
tion. This includes: if you would make a
formatting change (for example, splitting
the turn into multiple messages) and if
you would use the message suggested,
and also send additional messages after-
wards

Edit suggestion: Select this label if you
would choose this message, and then
make edits before sending. Edits in this
case include instances where personal
or factual information (consumer names,
agent names, discount percentages, etc.)
would need to be verified and changed.
The amount of editing needed does not
matter; if you would change the message
at all before sending it, please select this
label.

Ignore suggestion: Select this label if
you would not use or edit the suggestion,
but would rather type your own message.
There are many valid reasons not to use
a suggestion (it’s irrelevant, repetitive,
inappropriate, etc).

In any case where the annotation tool
does not properly display a suggestion,
choose the fourth option, “No suggestion
displayed”.

F Annotation Scheme: Foundation
Metrics

To better understand the Response Usability results,
we annotated each response following a variation
of the Foundation Metrics from Thoppilan et al.
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Figure 5: Foundation Metrics decision flowchart

(2022). Our internal team of professional annota-
tors labeled responses from the evaluation dataset
for Sensibleness, Specificity, Safety, Informative-
ness, Helpfulness and Role-consistency, following
the guidelines laid out by Thoppilan et al., with
some concessions made for effort and information
available.

We omit Interestingness, as we found it irrele-
vant in a customer support setting. Additionally,
because the models in this case study are not con-
nected to the back-end system that the agents use
to look up account details, we do not consider the
accuracy of entities and therefore omit Grounded-
ness and made adjustments to our understanding of
Informative. The metrics used and their guidelines
for annotation are below:

Sensible: A suggestion is sensible if it
is a logical continuation of the conversa-
tion, or a logical follow-up question or
request. It also does not contradict ear-
lier information given by the Agent in the
conversation. A suggestion can be sensi-
ble or not sensible regardless of whether
or not it is Specific or Informative.

Specific: A suggestion is specific if it
shows understanding of the context of
the conversation. This may be shown in
a reflection of something mentioned ear-
lier in the conversation, a reflection of
the question the consumer is trying to an-
swer, etc. Whether or not a suggestion is
Specific was considered only if Sensible
= true.

Informative: A suggestion is Informa-
tive if it provides factual information that

would be able to be shown to be correct
or incorrect. Smalltalk or opinions would
not be Informative; statements about or-
der numbers, general policies or avail-
able time slots would be. Agent actions
taken that could be true or untrue (I’ve
forwarded your inquiry/I’ve resent your
package) would also be Informative.

As mentioned, because the nature of the
suggested responses was often specific
to AR and these annotations were not
done with access to the AR knowledge
base, we had no basis on which to judge
Groundedness as outlined in LaMDA
(Thoppilan et al., 2022). Therefore, we
treated each suggestion as if it contained
true information. In other words, regard-
ing Informativeness, we did not check
whether the information was correct,
only whether the statement contained in-
formation that could be judged correct or
incorrect. Like Specificity, Informative-
ness was only considered if Sensible =
true.

Helpful: A suggestion is Helpful if it is
first Informative (i.e., could be judged on
correctness, as above). Then, given a pre-
sumption that the information provided
is correct, it is Helpful if it fits the stan-
dard definition of “helpful” as judged by
the annotator. Helpful should only be
considered if Informative = true.

Safety: A suggestion is considered Safe
if it does not contain content that: could
cause users mental or physical harm;
may be misinformation about public fig-
ures or events; could be construed as
financial advice or an unsubstantiated
health and safety claim; has obscene (vi-
olent/gory, sexual, profane, or bigoted)
material; reveals personal information
that appears to be outside the context of
the conversation (not related to the con-
sumer or company). Safety was consid-
ered independent of other metrics.

Role-consistency: The response looks
like something a consumer-facing agent
might say, consistent with the role of an
agent for AR. This consistency does not
rely on being consistent with other infor-
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mation in the conversation and is consid-
ered independent of other metrics; that
information is captured in Sensibility.

Figure 5 further illustrates the way we considered
these metrics interdependent.

G Foundation Metrics Results and
Analysis

The Foundation Metrics label frequencies for each
model are shown in Figure 6. As noted in Ap-
pendix F, accuracy of entities is not reflected in
these metrics as it was not considered. Instead,
that information is captured to some degree by the
response usability metric, which allows agents to
indicate that they would edit the response.

For Foundation Metrics, the GPT-3 PE re-
sponses were rated on par with the HUMAN re-
sponses, and it was considered even more specific
and helpful than the human.10 We found that GPT-
2 BFT BD was much worse than the other models.

To better understand the relationship between
Response Usability and Foundation Metrics, we
calculated the Pearson correlation coefficient (Ta-
ble 6). The strongest positive correlations are be-
tween “sensible”, “specific” and “role-consistent”
and “use”, while the strongest negative correlations
are between those labels and “ignore”. “Edit” does
not correlate strongly with any labels, which we
take as an indication that there are a wide range of
reasons to edit messages, from the presence of in-
formation to the inclusion of non-sensible phrases
amidst more useful text. It should be noted that
very few of the generated responses were judged
not “safe”, hence the low correlations to all Re-
sponse Usability measures.

GPT-2 BFT BD outputs were labeled “ignore” by
the agents much more often relative to “edit” than
they were for the other models. The Foundation
Metrics shed light on this, as GPT-2 BFT BD has
the lowest score for each of these metrics, with the
exception of “safe”, which did not correlate with
usability11. This suggests that GPT-3 PE and Co-
here PE are more often able to produce something
sensible and specific, even when the full response
is not usable, compared with GPT-2 BFT BD.

Figure 6: Label counts per model for each of the Foun-
dation Metrics.

Sensible Specific Informat. Helpful Safe Role-consis.
Use 0.44 0.29 0.14 0.14 0.02 0.37
Edit -0.15 -0.07 0.00 -0.02 0.01 -0.09
Ignore -0.45 -0.31 -0.18 -0.17 -0.04 -0.40

Table 6: Pearson Coefficient, showing correlation be-
tween Response Usability and Foundation Metrics la-
bels.

H Response Usability Annotator Analysis

As mentioned in Section 4.4.1, nine different anno-
tators annotated the usability of different models’
suggested responses, and we gathered five anno-
tations per response. We calculate the agreement
level using Fleiss Kappa. The overall agreement
level and the agreement level for each model are
shown in Table 7.

In addition, we show the average suggested
response length (as number of tokens) for tasks
with high agreement rates. These averages are
shown in Figure 7 for responses with three or
more annotations with the same label (either
‘use’/‘edit’/‘ignore’), and for tasks with even higher
agreement with four or more of the same label. An-
notations of empty suggestions (‘No Suggestion
Displayed’) are counted as ‘ignore’.

10See Table 1 for descriptions and naming conventions for
the models.

11As a matter of fact, very few responses were not consid-
ered safe
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Model Fleiss Kappa
All models 0.1744
Human 0.1562
Dist GPT-2 0.2104
GPT-3 0.1411
Cohere 0.1101

Table 7: Agreement level as Fleiss Kappa for each
model, between the five annotators of each response.

Model GPU Latency Throughput Cost/Inference
(ms) (infer/s) (¢)

GPT-2-XL V100 620 16 0.0468
GPT-2 V100 47 211 0.0036
GPT-2 DISITL V100 25 398 0.0019
GPT-2-XL A100 128 78 0.0126
GPT-2 A100 20 510 0.0019
GPT-2 DISITL A100 12 859 0.0011

Table 8: Table comparing inference speeds and costs on
a V100 GPU vs A100 GPU

I Inference Cost

In production at peak hours, we require that our
models handle at least 500 inferences per second,
32 concurrent messages, with a latency of no more
than 500ms/inference. We performed model bench-
marking and cost estimation on the Google Cloud
Platform (GCP) Google Kubernetes Engine to de-
termine the minimum hardware requirements for
serving our fine-tuned GPT-2 models of three dif-
ferent sizes: GPT-2 with 117M parameters, GPT-2-
distilled with 81M parameters, and GPT-2-XL with
1.5B parameters. We converted our PyTorch model
checkpoints to Onnx (Huggingface) and served the
models with the optimized NVIDIA Triton Server
(NVIDIA, b) using their natively supported on-
nxruntime backed. We then performed load and
latency benchmarking using Triton’s Performance
Analyzer (NVIDIA, a) tool on both 1 NVIDIA
V100 with 16GB of GPU memory and 1 NVIDIA
A100 with 40GB of GPU memory. Both config-
urations were set up with 30GB of CPU Memory
and with a limit of 4 CPU cores. Table 8 shows the
performance of each model per GPU type12.

We calculate cost per inference using the Google
Cloud Pricing Calculator (Google) for a GKE Node
Pool to first price each GPU. On GCP, there is a
sustained use discount depending on how many
hours the GPU node is in use. In a production

12All latencies and throughputs recorded use a batch size
of 1 and concurrency of 10 with 4 instances of the models
loaded for inference (except in the case of GPT-2 XL which
was loaded with 1 instance on the V100 due to insufficient
GPU memory). The GPU utilization was at 80-100% for all
tests implying we used the GPUs to their full potential.

Figure 7: Average suggested response length for tasks
with high agreement. In the figure, ‘use3’ means tasks
with at least three ‘use’ annotations etc.

setting, one could rent some GPUs 24/7 at a lower
rate, and additional GPUs at a higher hourly rate to
handle peak loads. We approximate this variation
by using the 8hr/day pricing option. The cost of the
V100 GPU Node was listed to be $661.14/month
at 243.33 hours or $2.72/hour, and the cost of the
A100 GPU $858.16/month or $3.53/hour. Using
the latencies in Table 8, we report the cost per
inference in cents.

The A100 GPU was found to be less expensive
per inference than the V100 GPU because it was
over two times faster. As expected, the distilled
model was by far the fastest and least expensive,
with a relative improvement of 1.7x that of the
GPT-2 model and 25x that of the GPT-2 XL model.

J Linear Modeling

Response Usability To calculate the relationship
between the human-annotated response usability
judgments and perplexity, we converted the counts
of each label to a probability distribution. We then
trained a linear model using the R (R Core Team,
2021) base lm function, using the perplexity of the
generated utterance as the independent variable,
and the probability of the usage statistic as the
dependent variable.

Prior to fitting a linear model, we removed out-
liers using the Interquartile Range (IQR) method.
This method was applied to each subset of the data,
and to the entire dataset, independently.
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Figure 8: Linear Fits for Response Usage Metrics: P(use), P(ignore), and P(edit)

Linear models calculated from the perplexities
of the outputs of individual LLMs did not show sta-
tistical significance, likely due to the small datasets
(n = 287). Across all LLMs, however, all linear
models showed statistical significance (p < 0.05 for
P(edit), p < 0.001 for P(use) and P(ignore)), so all
equations are derived from the aggregated data (n
= 861).

Figure 8 shows the fit of the linear models for
P(use), P(ignore), and P(edit) respectively. The
X-axis represents the perplexity of the generated
output while the Y-axis represents the probability
of the agent selecting the metric. As expected, the
probability of an agent choosing to use a suggestion
decreases as the perplexity increases. Edit and
ignore are largely a matter of personal preference,
so while the general trend is that the probabilities of
both increase as perplexity increases, the effect of
perplexity is not as strong as it is for the probability
of using the suggestion.

These linear models show significance in the F-
statistic (p < 0.05 to p < 0.01). This indicates that
the null hypothesis is rejected and that there is a re-
lationship between the perplexity of the generated
output and the agent’s choice to use, ignore, or edit
the suggestion.

Foundation Metrics We used same method to
calculate the relationship between the human-
annotated foundation metrics and the perplexity
of the generated output, except that we did not
need to convert the annotations into a probability
distribution, because the foundation metrics were a
binary judgment. Perplexity outliers were removed
from this data using the IQR method, and the R (R
Core Team, 2021) base lm function was used to fit
a linear equation to the data.

Figure 9 shows the fits of the linear equations for
the foundation metrics, Sensible, Specific, Infor-
mative, Helpful, and Role Consistent. Since very

few of the generated suggestions were judged to be
not safe, this model did not show significance. The
X-axis represents the perplexity of the generated
output, while the Y-axis represents the judgment of
the selected foundation metric. As expected, and
extending the findings of Adiwardana et al. (2020),
all metrics decrease as the perplexity increases.

These linear models also show significance in
the F-statistic (p < 0.05), indicating that there is a re-
lationship between the perplexity of the generated
model and the human judgments of the foundation
metrics.

Discussion This is a pilot study where 861 gener-
ated responses were judged by 5 annotators for
the Response Usability metrics, and 3 annota-
tors reached consensus on the Foundation Metrics.
These models show that there is a significant rela-
tionship (p < 0.05) between perplexity and human
judgments of Response Usability and the Founda-
tion Metrics. These models, however, are consid-
ered only a starting point from which to build.

K Cost-savings Model

Below we have the cost-saving models that we de-
veloped as the basis of ENCS (section 3). Table 9
focuses on cost-savings, using estimates for op-
eration scale, labor cost, and conversational data
volume from AR as well as other brands. Since
we investigated both third-party LLM inference
costs, as well as in-house inference costs, we made
sure to include both as part of the model, and ul-
timately calculated cost savings per message with
each model type.

Table 10 focuses on the R&D cost estimation
for building and maintaining the model, which was
omitted from the main body of the paper. This
uses some ballpark estimates (e.g. 3 months of
developer time to build a model, developer salaries,
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Figure 9: Linear Fits for Foundation Metrics

and amortization period) to estimate the overall
monthly R&D cost of building and maintaining an
in-house model.

Table 11 uses the R&D cost to build the model,
and calculates a break-even point to answer the
question: how many assisted messages does it take
for the cost-savings to effectively cover the devel-
opment cost of the model. This was also calculated
as a number of months, based on the estimated
messaging traffic, and total number of agent mes-
sages per month. For the example described in the
table, the model could break even in less than two
weeks of operation. As described further in sec-
tion 5 this calculation could be very different for a
lower-traffic brand.
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1. Operation scale
# agents 500
# conversations per agent per month 500
Total agent messages 3,750,000
Total consumer & agent messages per month 7,500,000
2. Labor cost
Agent hourly rate $10
Labor cost $866,667
3. Volume of conversational data
Average length of conversation (messages) 30
# Consumer messages 15
# Agent messages 15
Average message length (char.s) 150
Average # of characters per conversation 4,500
Average conversation volume per month (char.) 1,125,000,000
Average conversation volume per month (tokens) 281,250,000
4. Model inference cost
In house
Usage per 1000 tokens $0.0016
Monthly usage cost $450
Monthly usage & R&D cost $6,017
LLM recommendation cost/message $0.0016
3rd party
Usage per 1000 tokens $0.12
Monthly usage cost $33,750
Monthly usage & R&D cost $39,316.67
LLM recommendation cost/message $0.010
5. Agent time saving estimation
Time to read & accept suggestion (sec) 5
Time to read & edit suggestion (sec) 10
Time to reject suggestion and compose (sec) 30
Probability of accepting 0.7
Probability of editing 0.15
Probability of rejecting 0.15
Avg agent time/msg with LLM assistance (sec) 9.50
Avg agent time/msg without LLM assistance (sec) 30
Agent time saving (%) 68%
6. Cost saving per message
Labor cost/msg with LLM $0.03
Labor cost/msg without LLM $0.08
In house
Total cost in-house model assisted (labor + recommendation) $0.03
Cost saving in-house model assisted vs unassisted ($) $0.06
Cost saving in-house model assisted vs unassisted (%) 66%
3rd Party
Total cost 3rd party model assisted (labor + recommendation) $0.04
Cost saving 3rd party model assisted vs unassisted ($) $0.05
Cost saving 3rd party model assisted vs unassisted (%) 56%

Table 9: Cost Saving Estimates
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1. Cost to build a model
Project effort, dev/months 3
R&D labor cost $50,000
Model training cost $100
Total cost to build a model $50,100
Amortization period, years 3
Amortized model development cost per month $1,392
2. Cost to maintain model
Project effort, dev/months 3
R&D labor cost $50,000
Model training cost $100
Total cost of model maintenance per year $50,100
Cost of model maintenance per month $4,175
Monthly R&D cost
Monthly R&D cost to build and maintain $5,567
US AI developer FTE rate $200,000

Table 10: R&D Cost Estimates

In-house
# of model assisted messages to break even 905,313
Time to break even, months 0.24
3rd Party
# of model assisted messages to break even 1,078,347
Time to break even, months 0.29

Table 11: Break Even Point Estimates
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Abstract

On-device automatic speech recognition sys-
tems face several challenges compared to
server-based systems. They have to meet
stricter constraints in terms of speed, disk size
and memory while maintaining the same ac-
curacy. Often they have to serve several ap-
plications with different distributions at once,
such as communicating with a virtual assis-
tant and speech-to-text. The simplest solu-
tion to serve multiple applications is to build
application-specific (language) models, but this
leads to an increase in memory. Therefore, we
explore different data- and architecture-driven
language modeling approaches to build a single
application-agnostic model. We propose two
novel feed-forward architectures that find an
optimal trade off between different on-device
constraints. In comparison to the application-
specific solution, one of our novel approaches
reduces the disk size by half, while maintaining
speed and accuracy of the original model.

1 Introduction

On-device Automatic Speech Recognition (ASR)
is subject to several constraints: it should return
accurate results in a reasonable time frame with-
out consuming too much memory and disk space.
State-of-the-art research often is accuracy focused,
while resource-constrained applications also need
to take care of performance and size. Finding an ar-
chitecture that reaches all constraints is not trivial.

Another challenge is that ASR systems often
serve a large variety of requests. ASR systems
can serve an on-device Virtual Assistant (VA) but
also allow dictated messages, notes, e-mails, etc. –
we refer to the latter application as Speech-to-text
(STT). Typical VA requests are knowledge-driven
questions such as “how old is Barack Obama?” or
commands, e.g. “play some Lady Gaga music”.
STT requests are longer and of a different nature
than typical VA requests. The solution that yields
the best accuracy for both VA and STT is to train

separate models for each application, but additional
model size is prohibitive. We aim to develop a
single model instead.

In this paper, we focus on a Neural Network
Language Model (NNLM) in the ASR system. Our
baseline is a Fixed-size Ordinally-Forgetting En-
coding (FOFE) feed-forward NNLM (Zhang et al.,
2015). In ASR, the search space can easily increase
so we have to limit the context length used in de-
coding to reach an acceptable latency and lower
memory. Given this short context length, we find
that the FOFE feed-forward LM is competitive to
the Transformer (Vaswani et al., 2017) in terms of
accuracy and better in terms of latency. Irie (2020)
has also shown that Transformers are less robust to
short context lengths.

To build a single Application-Agnostic (AA)
NNLM, we developed a method to optimally sam-
ple training data. We sample data from different
sources, e.g. anonymized and randomly sampled
user requests from opted-in users for VA and STT
and artificial requests spanning many different do-
mains that focus on improving the tail of the distri-
bution. The data-driven approach tries to find the
optimal balance between the application-specific
data sources by creating a balanced development
set and distributing the sampling weights based
on the importance of each data source and each
application on that development set.

Training a single FOFE NNLM on the combined
dataset can lead to accuracy degradations, even
with a larger model or longer training. We explore
two extensions to the baseline FOFE NNLM: firstly,
a Mixture FOFE NNLM (Oualil and Klakow, 2017;
Irie et al., 2018) which is composed of an ensem-
ble of parallel sub-networks and a mixture sub-
network generating normalized probabilities across
all sub-networks. These mixture weights are used
to compute a weighted average of the ensemble
before the softmax output. The second extension
is an Application-Dependent (AD) FOFE NNLM
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that has different sub-networks for each applica-
tion. At training time, data and gradients are (back-
)propagated only through the corresponding sub-
network belonging to an application. At inference
time, the way the user invokes ASR tells us which
application is needed (wake phrase = VA, micro-
phone button = STT) and only the sub-network
belonging to the active application is used. Both
approaches are able to match or outperform the
application-specific model. While the accuracy of
the mixture NNLM is slightly better than the AD-
NNLM the situation is reversed in terms of speed.

The contributions of this paper are as follows:

• We propose a method to optimally combine
application-specific data sources to train an
application-agnostic LM in Section 3.

• We propose two novel FOFE-based neural
LMs in Section 4 that each match the accuracy
of two application-specific language models.

• In Section 6 we compare the novel NNLMs
accuracy and speed against the baseline FOFE
and state-of-art Transformer models. We do
this for three different languages - US En-
glish, German and Mandarin Chinese - and
three types of test sets (see Section 5 for more
information).

2 Related work

We start by discussing related work on modeling
several domains/tasks at once. Many pattern recog-
nition tasks are imbalanced since data from differ-
ent categories do not occur at the same frequency.
Therefore, the less frequent categories are not well
represented in the training data (Anand et al., 1993;
Johnson and Khoshgoftaar, 2019), which results in
a sub-optimal model. Data-driven approaches to
deal with the data imbalance include under- and
over-sampling (Van Hulse et al., 2007). Refine-
ments of these methods select data more intelli-
gently (Kubat and Matwin, 1997; Chawla et al.,
2002; Zhang and Mani, 2003; Barandela et al.,
2004).

Others approaches modify the training and/or
model architecture. Curriculum Learning (Bengio
et al., 2009; Shi et al., 2015) emphasizes data by
fine-tuning towards the corpus consumed by the
end of training. Smith et al. (2020) experiment
with multi-task learning, data augmentation and
a classifier combined with single-task models to

appropriately model several skills in a conversa-
tion agent. Balancing through interleaved sam-
pling of different corpora was investigated in (Xing
et al., 2022) as well as model-based approaches like
multi-task and weighted learning, which allows the
model to self-control the impact of different cor-
pora. Other ways to increase the modeling power
are using a Mixture of Experts (Shazeer et al., 2017;
Zhou et al., 2022) or ensemble networks (Oualil
and Klakow, 2017; Irie et al., 2018; Ganaie et al.,
2022).

The choice of architecture for language mod-
eling has also been a recurrent topic of re-
search. Early neural LMs use feed-forward lay-
ers (Schwenk and Gauvain, 2002; Bengio et al.,
2003). Mikolov et al. (2010) introduced recur-
rent neural LMs that can in principle use unlim-
ited history. These networks are trained with back-
propagation through time which ‘unrolls’ the net-
work in time for gradient computation, but this
leads to vanishing gradients (Bengio et al., 1993;
Pascanu et al., 2013), essentially limiting the his-
tory that can be learned from. Gated recurrent
architectures (Sundermeyer et al., 2012; Cho et al.,
2014) mitigate this problem.

Recent extensions of the feed-forward architec-
ture have been proposed that alleviate different dis-
advantages. Zhang et al. (2015) proposed a FOFE,
which represents a sequence of words as a vector
with fixed length that captures the word order. They
show that feed-forward networks with FOFE en-
coding outperform recurrent models in language
modeling. The most widely-used architecture in re-
cent years, is the Transformer (Vaswani et al., 2017)
that combines feed-forward layers with multi-head
attention, residual connections, and layer normal-
ization (Ba et al., 2016). It has been successfully
applied to ASR, see e.g. (Irie et al., 2019; Beck
et al., 2020). In this paper, we compare FOFE
feed-forward LMs with Transformer LMs and two
extensions of the base FOFE feed-forward LMs.

3 Data balancing

The ASR system in this paper serves two appli-
cations, VA and STT, for which we observe very
different linguistic patterns. To demonstrate these
differences, we calculate statistics on two English
development sets. Each data set contains 23k
anonymized queries and is randomly sampled from
real user data similarly to the test sets described in
Section 5.
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Figure 1: Number of queries (on the y-axis in log scale)
with x number of words (on the x-axis) in the English
VA and STT dev sets.
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Figure 2: Counts of the union of the 10 most frequent
words in both English VA and STT dev sets. “wake2”
and “wake1” refer to “<wakeword_2> and “<wake-
word_1>.

VA requests are typically shorter than STT re-
quests. In Figure 1, we plot the number of queries
(on a logarithmic scale) that have x number of
words for both data sets. For example, in the VA
dev set there are 9968 requests with only two words
(238 requests consist of only “<wakeword_1>
<wakeword_2>”), while the STT test set contains
1327 requests with two words. If we define a re-
quest of 30 or more words as a ‘long’ request, we
see that the STT test has 2030 long requests while
VA has only 21 long requests.

Secondly, the content and style of the requests
varies between the two applications. Figure 2 plots
the union of the top 10 most frequent words in
each data set – ordered by the frequency in the
VA dev set. Notice that we allow the user to also
dictate punctuation marks, hence the presence of
the dot in the list of words. It is clear from this

distribution that VA queries are often questions
(what) or commands (call, text) while STT queries
are often messages from the perspective of the user
(I, you) who wants to make their message more
readable with punctuation marks.

Because of the different linguistic nature of these
two applications, balancing the NNLM training
data has a large impact on the quality of the model.
A common strategy to determine NNLM sampling
weights for each application is to train individual
n-gram LMs on each data source and choose rel-
evance weights based on the optimal linear inter-
polation weights on a development set (Raju et al.,
2019). In our setup, the sampling weights for the
application-specific text sources are derived from
the count merging weights (Bacchiani et al., 2006;
Hsu, 2007; Pusateri et al., 2019) instead of a linear
combination.

We propose a balancing scheme to derive sam-
pling weights for I text sources that benefit both
applications. We create a balanced development
set containing approximately the same amount of
VA and STT data. Let α1, . . . , αI ∈ [0, 1] be
the sampling weights such that

∑I
i=1 αi = 1 and

ρ(i) ∈ {D,A} indicating if the text source be-
longs to STT or VA. The redistribution probability
masses βD and βA for STT and VA respectively
are calculated to serve the joint application. These
probability masses are determined by the optimal
weights that minimize the perplexity of the linear
Application-Specific (AS) language model com-
bination on the balanced development set. The
application-specific probability mass allocated by
each application can be formalized as:

αD :=
∑

i,ρ(i)=D

αi and αA :=
∑

i,ρ(i)=A

αi.

Now consider the ratio between the redistribution
and application-specific probability mass:

γA :=
βA
αA

and γD :=
βD
αD

.

These ratios determine the scaling of the origi-
nal sampling weights to achieve balancing. Bal-
anced sampling weights are then determined by a
re-normalization of the scaled sampling weights:

λi :=
γρ(i)αi∑

j

γρ(j)αj

, i = 1, . . . , I.

The heldout and training set for NNLM training
is then randomly sampled from the text sources
according to the balanced sampling weights.
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(a) Base. (b) Mixture (c) Application-dependent.

Figure 3: Let wm and history hm be the word and history at position m.

4 Application-Agnostic and
Application-Dependent FOFE NNLMs

In this section three different types of NNLM ar-
chitectures are introduced for on-device ASR. In
the following let wN

1 := w1, . . . , wN be a word
sequence. All NNLM architectures considered
here follow a similar scheme. In each architec-
ture a word embedding is followed by a FOFE
layer (Zhang et al., 2015). Let α > 0 be the forget-
ting factor of the FOFE layer and em be the word
embedding of word wm then zm := zm−1+α · em
generates the FOFE encoding. Afterwards an n-
gram context of the FOFE encoding is generated by
concatenating n subsequent FOFE encodings for
each position: zm−n+1, . . . , zm. Next, this context
is flattened and passed to the hidden layers.

The baseline FOFE NNLM shown in Figure 3a
applies a stack of feed-forward layers to the flat-
tened FOFE n-gram context. The output of the last
feed-forward layer is fed to a projection layer for
dimension reduction before the final softmax layer.
This architecture is used for the AS-NNLM, where
each application has its own NNLM, as well as for
the Application-Agnostic (AA) NNLM, which is
trained on balanced data for both applications.

Figure 3b shows the mixture NNLM, which
has M parallel sub-networks and a mixture sub-
network. Each sub-network is a stack of feed-
forward layers. The mixture sub-network is also
a stack of feed-forward layers which finish with a
softmax output of dimension M to produce mix-
ture weights for each of the parallel sub-networks,
similarly to (Oualil and Klakow, 2017; Irie et al.,

2018; Zhou et al., 2022) except that the mixture
combines FOFE networks. The subsequent layer
averages the output of all parallel sub-networks
scaled by the corresponding weights of the mixture
sub-network softmax output.

Figure 3c shows the Application-Dependent
NNLM (AD-NNLM). This architecture uses the
application information to train a NNLM in a multi-
task style. This NNLM has a separate sub-network
and softmax output biases for each application. For
training we follow a multi-task approach. The in-
formation of the application for each data sample
is known and used to select the sub-network and
softmax output bias corresponding to the appli-
cation and only back-propagate through a part of
the NNLM. At inference time, data are forwarded
through the corresponding sub-network and soft-
max output bias belonging to the active application.

A word-level NNLM holds the majority of pa-
rameters in the embedding. Therefore, the disk size
for the mixture and AD-NNLM should increase
slightly compared to the baseline architecture. Also
the AD-NNLM speed should not increase since it is
equivalent to the baseline architecture at inference
time.

5 Experimental setup

The training data of our LMs consists of differ-
ent data sources: anonymized and randomly sam-
pled user requests from both VA and STT that are
manually or automatically transcribed, along with
synthetic tail-focused datasets. For the latter, we
sample from domain-dependent templates and lists
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of entities that can fill those slots, both of which are
derived from real user data. As mentioned in the
introduction, we train NNLMs for three languages:
US English, German and Mandarin Chinese.

For our NNLMs, we obtain weights according to
the method described in Section 3. For the AS mod-
els we sample 6B words while for the AA and AD
models we sample 12B words. We run Bayesian
hyperparameter optimization and select the final
values based on optimal size-accuracy trade off. As
a result, the models have a slightly different num-
ber of parameters, but we show in section 6 that
this does not impact results noticeably. All mod-
els have 4 feed-forward layers and an embedding
size of 256 – we tie the input and output embed-
ding weights to reduce disk size (Press and Wolf,
2017). The hidden size is 768 for the base FOFE
model, 512 for the AD FOFE and mixture FOFE
and 256 for the Transformer. The Transformer has
the same configuration as Vaswani et al. (2017) and
uses 4 attention heads of size 256. We use the top
100k most frequent words as vocabulary. To speed
up training, we use Noise Contrastive Estimation
(NCE) (Liza and Grzes, 2017) which is replaced
by softmax during inference.

We train our NNLMs with Block Momentum
Stochastic Gradient Descent (Chen and Huo, 2016)
with an initial learning rate of 0.256 for AS, AA
and AD FOFE and 1.024 for AA Mixture FOFE.
For AS models the optimization converges after
64 epochs while for AA and AD models the opti-
mum is delayed to 128 epochs. We keep the initial
learning rate fixed for 16 epochs for AS and 64
epochs for the other models and apply a learning
rate decay of 0.7 if the heldout perplexity increases
for 4 epochs. To stabilize the training a clip norm
of 6.0 is applied and the number of NCE samples
is set to 4096.

For evaluation, we test on three types of test sets:
(1) VA and (2) STT, which consist of user requests
sampled according to the distribution that we ob-
serve in our VA/STT and thus contain many head
queries, and (3) Tail, which is designed to focus on
queries with tail entities. Since these do not occur
often in our user data, Tail consists of synthetic re-
quests sampled from the same templates and entity
lists that generate the synthetic training data. The
requests cover a wide variety of domains such as
music, sports and home automation and the audio
is generated using Text-to-Speech. Table 1 shows
the number of words in each test set.

VA STT Tail
English 226k 292k 454k
German 130k 154k 204k
Mandarin 221k 219k 368k

Table 1: Number of words per test set per language.

We evaluate the accuracy of our models using
Word Error Rate (WER) and latency using P95 real-
time factor (RTF). If y is the duration of the audio
signal and x the time it takes to decode y, RTF is
defined as x/y. P95 refers to the 95th percentile
and thus captures the latency of the most difficult
queries. We run each test three times and average
the RTF numbers to capture outliers.

The ASR system uses a deep convolutional neu-
ral network acoustic model (AM) as described
in (Huang et al., 2020; Pratap et al., 2020). For
the AS models, we decode the VA and Tail test sets
with a VA-specific NNLM and the STT test sets
with a STT-specific NNLM. During decoding, the
context length of the NNLMs is limited to 8 words
to meet the memory and latency contraints of on-
device ASR. We perform a single decoding pass,
combining the AM scores with the NNLM scores
using optimized weights. We can achieve better
WERs by interpolating the NNLM with an n-gram
LM trained on tail data and by adding a rescoring
pass, but since we want to compare the impact of
using different neural architectures, we remove any
factors that might obscure that comparison.

6 Results

We first evaluate the accuracy of the different neural
architectures. Table 2 reports the WER for different
models on the VA, STT and Tail test sets, along
with the number of parameters of the model to give
an estimate of the size on disk. Note that for the AS
FOFE models, we have twice as many parameters
as the AA FOFE models because we train two
separate models, one for VA+Tail and one for STT.

We first observe that moving from AS to AA
FOFE and thus reducing the number of parameters
by half gives in some cases 1.5-3.8% WER degra-
dation. Secondly, even though the Transformer
architectures have been optimized using Bayesian
optimization similar to the FOFE-based models,
they give mixed results. For English VA and STT
we observe WER improvements while for all other
setups we see large degradations.

The AD FOFE model gives the best accuracy
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LM #Par VA STT Tail
English
AS FOFE 58M 4.02 3.68 17.48
AA FOFE 29M 4.11 3.68 17.78
AA Transf. 27M 3.99 3.56 47.56
AA M-FOFE 37M 3.99 3.56 17.53
AD FOFE 31M 3.99 3.62 17.51
German
AS FOFE 58M 5.32 6.47 29.46
AA FOFE 29M 5.32 6.35 29.93
AA Transf. 27M 11.76 23.34 34.42
AA M-FOFE 37M 5.29 6.26 30.37
AD FOFE 31M 5.25 6.33 32.36
Mandarin
AS FOFE 58M 5.17 6.04 39.96
AA FOFE 29M 5.25 6.27 38.84
AA Transf. 27M 8.88 13.29 40.66
AA M-FOFE 37M 5.13 5.94 38.16
AD FOFE 31M 5.12 6.05 36.41
Mandarin (equal number of parameters)
AS FOFE 68M 5.14 6.00 39.45
AA FOFE 34M 5.26 6.27 38.68
AA Transf. 34M 9.03 13.40 40.38
AA M-FOFE 34M 5.10 6.02 38.54
AD FOFE 34M 5.12 5.98 36.48

Table 2: Number of parameters (#Par) and WERs
for the VA, STT and Tail entity test sets for our
English, German and Mandarin setups. AS =
Application-Specific, AA = Application-Agnostic, AD
= Application-Dependent, Transf. = Transformer, M-
FOFE = Mixture FOFE.

on VA for all languages, while the AA Mixture
FOFE gives the best accuracy on STT, but the dif-
ferences between the two architectures are small.
They outperform the baseline AS/AA FOFE and
Transformer models in almost all cases. The only
exception are the English and German Tail test sets:
the AS FOFE models still achieve the best accu-
racy, probably because infrequent queries benefit
the most from doubling the number of parameters.

As explained in Section 5, we choose hyperpa-
rameters based on the optimal accuracy-size trade
off. As a result, the number of parameters of the
models at the top of Table 2 are not exactly the
same. To ensure that the small size differences
do not impact the results significantly, we evalu-
ated results for Mandarin models that all have 34M
parameters each and added the results at the bot-
tom of Table 2. We observe the same trends: the
AD FOFE and AA Mixture FOFE give the best

LM VA STT Tail
English
AA Transf. -18.00 -21.75 -11.30
AA M-FOFE -23.79 -31.54 -17.95
AD FOFE 7.40 -8.04 4.66
German
AA Transf. -19.59 -13.92 -24.85
AA M-FOFE -17.77 -31.45 -79.83
AD FOFE 7.84 3.41 5.58
Mandarin
AA Transf. -10.06 -14.04 -8.90
AA M-FOFE -9.89 -30.21 -36.23
AD FOFE -2.11 1.63 -3.83

Table 3: Latency results: relative P95 RTF reductions
with respect to the AA FOFE models for the VA, STT
and Tail entity test sets for our English, German and
Mandarin setups. AA = Application-Agnostic, AD
= Application-Dependent, Transf. = Transformer, M-
FOFE = Mixture FOFE.

results. We confirm that increasing the number of
parameters does not lead to better results.

Finally, we report the relative change in P95 RTF
(P50 RTF showed the same trend) compared to the
baseline AA FOFE model in Table 3. Since RTF is
hardware-dependent, we mostly care about relative
changes compared to the baseline. We observe
that both the Transformer and the Mixture FOFE
are significantly slower than the baseline. For the
English test sets, the Transformer is faster than the
Mixture FOFE, while for German and Mandarin
speed depends on the test set. The AD FOFE gives
the fastest inference speed of the proposed models
and even outperforms the vanilla FOFE on English
VA and all German test sets, while keeping the
degradation limited in the other setups.

7 Conclusion

We aim to develop a single NNLM that can serve
both VA and STT requests with the same accu-
racy and speed as application-specific NNLMs,
while reducing the disk size approximately by half.
We develop a method to optimally balance the
data of the VA and STT applications, and pro-
pose two novel FOFE feed-forward architectures.
The Application-Agnostic Mixture FOFE and the
Application-Dependent FOFE both outperform the
baseline FOFE and Transformer models in terms of
accuracy, and the latter is also competitive in terms
of latency.
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Limitations

The two proposed models (AD FOFE and AA
FOFE Mixture) have been tested on more lan-
guages than the ones mentioned in this paper, but
the comparison with Transformer models has not
been done for every language. This paper only uses
word-level LMs. We have done preliminary experi-
ments with subword-level LMs but more extensive
investigation is needed to draw proper conclusions.

Ethics Statement

This paper focuses on the LM of a real-world VA
and as such the results cannot be exactly repro-
duced: we are not aware of any public dataset that
mimics our setup, e.g. ASR that can serve both
VA and STT applications, training data in several
languages that exceeds 6B words along with test
sets of several hundreds of thousands of words
sampled from real user data, etc. All data have
been anonymized and randomly sampled, and hu-
man transcription to create the test sets is only per-
formed from opted-in user data.
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Černocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceed-
ings Interspeech, pages 1045–1048.

Youssef Oualil and Dietrich Klakow. 2017. A neural
network approach for mixing language models. In
Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 5710–5714.

Razvan Pascanu, Tomáš Mikolov, and Yoshua Bengio.
2013. On the difficulty of training Recurrent Neural
Networks. In Proceedings of the International Con-
ference on Machine Learning (ICML), pages 1310–
1318.

Vineel Pratap, Qiantong Xu, Jacob Kahn, Gilad Avi-
dov, Tatiana Likhomanenko, Awni Hannun, Vitaliy
Liptchinsky, Gabriel Synnaeve, and Ronan Collobert.
2020. Scaling Up Online Speech Recognition Using
ConvNets. In Proc. Interspeech 2020, pages 3376–
3380.

Ofir Press and Lior Wolf. 2017. Using the Output Em-
bedding to Improve Language Models. In Proceed-
ings of the Conference of the European Chapter of the
Association for Computational Linguistics (EACL),
pages 157–163.

Ernest Pusateri, Christophe Van Gysel, Rami Botros,
Sameer Badaskar, Mirko Hannemann, Youssef
Oualil, and Ilya Oparin. 2019. Connecting and com-
paring language model interpolation techniques. In
Proceedings Interspeech, pages 3500–3504.

Anirudh Raju, Denis Filimonov, Gautam Tiwari, Gui-
tang Lan, and Ariya Rastrow. 2019. Scalable Multi
Corpora Neural Language Models for ASR. In Pro-
ceedings Interspeech 2019, pages 3910–3914.

Holger Schwenk and Jean-Luc Gauvain. 2002. Con-
nectionist language modeling for large vocabulary
continuous speech recognition. In Proceedings of the
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 765–768.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of- experts layer. In In-
ternational Conference on Learning Representations
(ICLR).

Yangyang Shi, Martha A. Larson, and Catholijn M.
Jonker. 2015. Recurrent neural network language
model adaptation with curriculum learning. Com-
puter Speech and Language, 33(1):136–154.

Eric Michael Smith, Mary Williamson, Kurt Shuster, Ja-
son Weston, and Y-Lan Boureau. 2020. Can You Put
it All Together: Evaluating Conversational Agents’
Ability to Blend Skills. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 2021–2030.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM Neural Networks for Language Model-
ing. In Proceedings Interspeech, pages 194–197.

Jason Van Hulse, Taghi M. Khoshgoftaar, and Amri
Napolitano. 2007. Experimental perspectives on
learning from imbalanced data. In Proceedings of
the International Conference on Machine Learning
(ICML), pages 935–942.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS).

Yujie Xing, Jinglun Cai, Nils Barlaug, Peng Liu, and
Jon Atle Gulla. 2022. Balancing Multi-Domain Cor-
pora Learning for Open Domain Response Genera-
tion. In Proceedings of the Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL), pages 2104–2120.

Jianping Zhang and Inderjeet Mani. 2003. kNN Ap-
proach to Unbalanced Data Distributions: A Case
Study Involving Information Extraction. In Proceed-
ings of the Workshop on Learning from Imbalanced
Data Sets, pages 1–7. ICML.

Shiliang Zhang, Hui Jiang, Mingbin Xu, Junfeng Hou,
and Lirong Dai. 2015. The Fixed-Size Ordinally-
Forgetting Encoding Method for Neural Network
Language Models. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 495–500.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Y. Zhao, Andrew M. Dai, Zhifeng
Chen, Quoc Le, and James Laudon. 2022. Mixture-
of-experts with expert choice routing. CoRR,
abs/2202.09368.

275

https://doi.org/10.21437/Interspeech.2020-2840
https://doi.org/10.21437/Interspeech.2020-2840


Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 276–283

July 10-12, 2023 ©2023 Association for Computational Linguistics

Building Accurate Low Latency ASR for Streaming Voice Search

Abhinav Goyal, Nikesh Garera
Flipkart

{abhinav.goyal,nikesh.garera}@flipkart.com

Abstract
Automatic Speech Recognition (ASR) plays a
crucial role in voice-based applications. For
applications requiring real-time feedback like
Voice Search, streaming capability becomes
vital. While LSTM/RNN and CTC based
ASR systems are commonly employed for low-
latency streaming applications, they often ex-
hibit lower accuracy compared to state-of-the-
art models due to a lack of future audio frames.
In this work, we focus on developing accurate
LSTM, attention, and CTC based streaming
ASR models for large-scale Hinglish (a blend
of Hindi and English) Voice Search. We inves-
tigate various modifications in vanilla LSTM
training which enhance the system’s accuracy
while preserving its streaming capabilities. We
also address the critical requirement of end-of-
speech (EOS) detection in streaming applica-
tions. We present a simple training and infer-
ence strategy for end-to-end CTC models that
enables joint ASR and EOS detection. The eval-
uation of our model on Flipkart’s Voice Search,
which handles substantial traffic of approxi-
mately 6 million queries per day, demonstrates
significant performance gains over the vanilla
LSTM-CTC model. Our model achieves a
word error rate (WER) of 3.69% without EOS
and 4.78% with EOS while also reducing the
search latency by approximately ∼1300 ms
(equivalent to 46.64% reduction) when com-
pared to an independent voice activity detection
(VAD) model.

1 Introduction

As an e-commerce platform in India, we need to
cater to a variety of user bases, and a big part of that
consists of users who cannot or do not want to type
while interacting with the app, e.g., while search-
ing for a product. For such users, interaction via
a voice-based interface becomes an essential fea-
ture requiring an accurate and efficient Automatic
Speech Recognition (ASR) system.

Recent years have witnessed the popularity of
end-to-end ASR models, which have achieved

state-of-the-art results (Li et al., 2022). These
models offer simplified training and inference pro-
cesses and have demonstrated higher accuracy com-
pared to traditional pipelines with separate acous-
tic, pronunciation, and language models. Com-
mon approaches for end-to-end ASR models in-
clude CTC (Connectionist Temporal Classifica-
tion), AED (Attention-based Encoder-Decoder),
and RNNT (RNN-Transducer) (Graves et al., 2006;
Chan et al., 2016; Graves et al., 2013).

However, streaming capability plays a pivotal
role in choosing the most suitable ASR model.
While non-streaming models can leverage the en-
tire audio for text inference, streaming models have
access only to past context, which can result in re-
duced accuracy. Nevertheless, streaming models
provide immediate feedback, a critical requirement
for consumer-facing applications like Voice Search.
Additionally, low inference latency is essential to
ensure a user-friendly experience, as delayed feed-
back can adversely impact usability.

Another challenge in streaming ASR applica-
tions is accurately detecting the end of speech
(EOS). Conventional methods rely on standalone
Voice Activity Detection (VAD) models, which op-
erate independently from the ASR system and may
not offer optimal accuracy.

In this work, we focus on developing a stream-
ing ASR system for large-scale Hinglish Voice
Search. Our objective is to enhance accuracy and
reduce latency while preserving streaming capa-
bilities. Specifically, we propose modifications
to an LSTM and CTC based ASR system, aim-
ing to bridge the gap between streaming and non-
streaming ASR models. We also present a simple
training and inference strategy that enables joint
ASR and EOS detection within end-to-end CTC
models, effectively reducing user-perceived latency
in voice search. The contributions of this research
can be summarized as follows:

• Development of an accurate and efficient
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streaming ASR model based on LSTM, MHA
(Multi-Head Attention), and CTC for Hinglish
Voice Search;

• Introduction of a straightforward training and
inference strategy to enable joint ASR and
EOS detection within end-to-end CTC mod-
els, addressing the need for accurate EOS de-
tection in streaming applications.

• Analysis of the impact of model modifications
on reducing the performance gap between
streaming and non-streaming ASR models.

Next, we discuss some related work in Section 2.
Section 3 describe the model architecture we use,
EOS integration and the inference method. We
talk about the dataset and experimental setup in
Section 4. Finally, we conclude with a discussion
on results and limitations in Section 5.

2 Related Work

CTC, the first E2E approach developed for ASR
(Graves et al., 2006), has been widely used over
the last few years (Soltau et al., 2016; Li et al.,
2018). Although it provides simplicity, it makes
a conditional independence assumption, that out-
put token at any time doesn’t depend on past to-
kens, which can make it sub-optimal. AED and
RNNT models relax this assumption by leverag-
ing past output tokens. While AED models like
LAS (Listen, Attend and Spell) (Chan et al., 2016)
work very well for non-streaming tasks, they re-
quire complex training strategies for streaming sce-
narios (Raffel et al., 2017; Chiu and Raffel, 2017).
RNNT (Graves et al., 2013) provides a natural alter-
native in streaming scenarios but has high training
complexity and inference latency rendering it diffi-
cult to use in a real-world setting without complex
optimizations/modifications (Li et al., 2019; Ma-
hadeokar et al., 2021).

There have been many attempts to improve the
accuracy of CTC models that preserve their training
and inference simplicity. Fernández et al. (2007)
leverages hierarchical structure in the speech by
adding auxiliary losses to train a CTC-based
acoustic-to-subword model. Their hierarchical
CTC (HCTC) model predicts different text segmen-
tations in a fine-to-coarse fashion. Recent studies
have explored the use of attention in CTC models
to implicitly relax the conditional independence
assumption by enriching the features using other

time frames. Das et al. (2018) uses component
attention and implicit language model to enrich
the context while Salazar et al. (2019) evaluates
a fully self-attention-based network with CTC. In
this work, we explore how augmenting an LSTM-
based network with windowed self-attention can
help improve the transcription while preserving
streaming capability.

Another line of work in improving the output of
streaming models is the second pass rescoring that
uses an additional (usually non-streaming) compo-
nent to re-rank the streaming model’s hypotheses
(Sainath et al., 2020). While we also rescore the
candidate hypotheses at the last step, our system
doesn’t employ any external acoustic model to do
so and leverages the hierarchical losses that are part
of the model itself.

For addressing EOS detection, conventional ap-
proaches use VAD models with a threshold on si-
lence amount. This may lead to early termination
of user speech. Shannon et al. (2017) addresses
this by training an EOQ (End-of-Query) classifier
which performs better than VAD but is still opti-
mized independent of the ASR system. VAD based
on output CTC labels has also been explored to de-
tect EOS based on the length of non-speech (blank)
region (Yoshimura et al., 2020). Li et al. (2020)
jointly train an RNNT model for EOS detection by
using and extra < /s > token with early and late
penalties. Prediction of < /s > token by the model
during inference marks as the signal for EOS. We
follow a similar approach where we train the model
with early and late penalties. During inference, we
use a dynamic threshold on < /s > probability to
detect the endpoint before decoding the text.

3 Methodology

3.1 Model Architecture

Inspired by Fernández et al. (2007), we build a
3-level HCTC architecture based on LSTM and
attention as shown in Fig. 1. Going in a fine-to-
course fashion, the model predicts characters (73
tokens), short subwords (300 tokens) and long sub-
words (5000 tokens) at the respective levels. Each
level consists of an N-layer LSTM-attention block
(N being 5, 5 and 2) followed by a linear softmax
layer. A time convolution layer with a kernel size
of 5 and a stride of 3 after the second level reduces
the number of time steps to one-third. This helps
emit longer subwords at the third level by increas-
ing the context and receptive field of a time frame.
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Figure 1: ASR model. Characters, Subword 300 and
Subword 5000 are used as targets to compute the CTC
losses at resp. levels.

Along with the HCTC loss, we use label smooth-
ing (Szegedy et al., 2016) by adding a negative
entropy term to it. This mitigates overconfidence in
output distributions leading to improved transcrip-
tion. Mathematically, the loss for a given training
sample, (x, y) = (x, {ychar, ys300, ys5k}), is:

L(x, y) =
∑

k

[
CTCLoss(x, yk)

− λ
∑

t

Entropy(Pk(: |xt))
]

=
∑

k

[
− log(P (yk|x))

+ λ
∑

t,v

Pk(v|x)log(Pk(v|x))
]

For an N-layer LSTM-attention block (Fig. 2),
we stack N LSTM layers with 700 hidden dimen-
sions which are followed by a dot-product based
multi-headed self-attention layer (MHA) (Vaswani
et al., 2017). We use 8 attention heads and project
the input to 64-dimensional key, query and value
vectors for each head. We project back the 512
(8x64) dimensional output to 700 dimensions and
pass it through a linear layer with ReLU activation.
To retain the model’s streaming capabilities, we
restrict the attention to a 5-frame window (t±2)
instead of complete input i.e., for input features ft,
we use Q(ft) as the query vector and K(ft−2:t+2),
V (ft−2:t+2) as key-value vectors where Q,K and

V are linear projections. To improve the gradient
flow, we add a skip connection and layer normal-
ization after each layer.

We use 80 filterbanks from standard log-mel-
spectrogram as inputs, computed with a window of
20ms, a stride of 10ms, and an FFT size of 512. To
prevent overfitting, we use time-frequency masking
(Park et al., 2019) during training. We also stack
five adjacent frames with a stride of three, giving
an input feature vector of 400 dimensions with a
receptive field of 60ms and stride of 30ms for each
time step. Windowed MHA and time convolution
increase overall receptive field and stride to 780ms
and 90ms resp. Consequently, our model has a
forward lookahead of 390ms when deployed in a
streaming mode.

Figure 2: N layer LSTM-attention Block

3.2 Speech End-pointing

Once we have a trained ASR model, we augment
the vocabulary with an additional < /s > token
and use forced alignment to get the ground truth
speech endpoints. We use the output from 1st (char-
acter) level of the ASR model for alignment as it
has the least lookahead and empirically works bet-
ter than the output from other blocks. We append
the extra < /s > token at the end of each transcript
and add early-late (EL) penalties (Li et al., 2020)
to the training loss to fine-tune the model for a few
more iterations. EL penalties penalize the model
for predicting < /s > too early or too late. During
online inference, we determine if the current time
step (t) is the speech endpoint by evaluating the
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following conditions:

• There is at least one word in output text - to
avoid termination before the user starts speak-
ing;

• < /s > is the most probable token among all
vocab items i.e., Pt(< /s >) ≥ Pt(:) - call
this an EOS peak;

• Pt(< /s >) ≥ thresholdt = α1+nt/β where
nt is the number of EOS peaks before time t.

Thus, the earliest time step satisfying the above con-
ditions is the EOS. Here α controls the aggressive-
ness of EOS detection as decreasing α decreases
the EOS threshold for all time steps resulting in an
earlier EOS signal. Empirically, we observe that
the model gives a lower probability to < /s > to-
ken after each EOS peak. To address this, we add
an nt/β term that gradually reduces the threshold
whenever an EOS peak appears, giving an addi-
tional (but marginal) reduction in latency. For au-
dios where the above conditions are never satisfied,
a combination of a small independent VAD model
and a maximum time limit works as a backup.

3.3 Decoding and Re-scoring
For each chunk of input audio stream, we use prefix
beam search, with a beam size of 1000 hypothe-
ses, to decode the text from probability distribution
given by the last (subword 5000) level. We use the
same probability distribution to detect EOS as well.
When we observe an EOS or the stream ends, a 5-
gram KenLM and HCTC loss (sum of CTC losses
from all levels) are used to re-rank and select the
best hypothesis from the top 100 candidates. We
use grid search to find the weights of the scores.

4 Dataset and Training Setup

Queries from E-commerce Voice Search are our pri-
mary source of data. We also collect speech from
other sources like on-call customer support, crowd-
sourced read-speech, etc., to augment training data.
We transcribe all the utterances, except read-speech,
using an existing ASR system and manually cor-
rect them. The ASR system that generates refer-
ence transcripts progressively improves as part of
model iterations. Collectively, the training datasets
amount to ∼14M audio-text pairs (8M from the
target domain and 6M from other) or roughly 22.5k
hours of audio. For evaluation, we randomly sam-
ple ∼19k audios from e-commerce voice search

queries, transcribe it manually (without any refer-
ence text) and reduce the human error by using
multiple iterations of verification.

We categorize the test set into clean and noisy
subsets, containing ∼16k and ∼3k samples resp.
Clean utterances are audios where only one
speaker’s speech is intelligible. Noisy utterances
are those where more than one speaker has intel-
ligible speech (overlapping or non-overlapping).
In noisy utterances, the primary speaker is the
user whose utterance is more relevant for the e-
commerce voice search application. Note that clean
utterances may also have non-intelligible secondary
speakers. We train and evaluate the model to tran-
scribe only the primary speaker’s speech while ig-
noring the rest.

For training KenLM and Sentencepiece models,
we use a large corpus comprising text from various
sources like transcribed voice search queries and
on-call customer support queries, customer support
chatbot queries, and product catalogues.

We use a cyclical learning rate (LR) (Smith,
2017) with Adam optimizer to train the ASR model
for 200k iterations with a batch size of ∼55 min-
utes. Training the model on two A100 (40 GB)
GPUs takes ∼50 hours. For EOS detection, we
fine-tune the model with EL penalties for an addi-
tional 48k iterations (∼12 hours).

5 Results and Discussion

Figure 3: Mean EOS latency vs %WER as we change
α and β.

We report WER and mean EOS latency on the
test set for evaluating the performance of our model
in Table 1. We get the best results when the model
is first pre-trained on all the data and then fine-
tuned on the target domain, followed by fine-tuning
with EL penalties. To see how α and β affect the re-
sults, we do a sweep over both the parameters and
plot mean EOS latency vs %WER in Fig. 3. For fur-
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Model %WER Mean EOS Latency
all clean noisy all clean noisy

Google Speech-to-Text API* 13.14 12.62 16.30
LSTM-attention HCTC (all data) 4.03 3.11 9.52 2858 2457 5080
+ fine-tune on target domain 3.75 3.03 8.02 2858 2457 5080
+ EL penalty (our best model) 3.69 2.95 8.12 2858 2457 5080
+ EOS detection (without n/β term) 4.77 4.10 8.75 1565 1268 3215
+ EOS detection (with n/β term) 4.78 4.19 8.32 1525 1242 3096
Reduction in Latency 1333 1215 1985

Table 1: Results for the best model with and without EOS detection. EOS detection reduces mean latency by
∼1300 ms. *Google’s API has a much higher WER because it is trained for open domain whereas our data is in
e-commerce domain and also has background noise.

ther analysis, we consider the point with α = 0.8
and β = 2.0 that gives us a WER of 4.78% and a re-
duction of 1333 ms in mean EOS latency with EOS
coverage (fraction of audios receiving an EOS sig-
nal) of 64.13%. Our model performs significantly
better than Google Speech-to-Text API, which is
expected since Google’s API is trained for the open
domain, but our data is in the e-commerce domain.
The evaluation utterances also have a lot of noise
which our model is more robust to as it is trained
on similar data.

Model %WER ∆WER
LSTM-attention HCTC 5.37
- Windowed MHA 5.94 9.60%
- HCTC rescoring 6.19 4.04%
- HCTC loss 6.62 6.50%
- Skip connections 7.68 13.80%

(= Baseline LSTM CTC)

Table 2: Change in WER when each component is re-
moved. All results are with LM rescoring using the
same KenLM.

To understand how modifications in the archi-
tecture contribute to improving the accuracy of the
vanilla LSTM CTC model, we conduct an ablation
study and report the WER in Table 2. We train these
models for 200k iterations on a reduced dataset of
∼5500 hours sampled from the target domain. As
seen from the table, windowed MHA improves
the WER by 9.6%. Intuitively, the improvement
comes from an increased receptive field (780ms
with vs 180ms without attention) and the ability
to extract better context from neighbouring frames
using self-attention. HCTC loss forces the model
to learn hierarchical structure in the speech at mul-
tiple levels - from characters to short subwords and

then long subwords. The model can then utilize
this structure to achieve more accurate predictions.
Adding auxiliary losses at intermediate levels helps
the convergence as well. The hierarchical loss also
facilitates the rescoring since the combination of
losses acts like an ensemble of ranking models. To-
gether, HCTC loss and rescoring give a relative
improvement of 10.28%. Finally, skip connections
improve the gradient flow in training, which fur-
ther helps the convergence, improving the WER
by 13.80%. These modifications, when combined,
result in a significant total relative improvement of
∼30% in WER over the baseline.

5.1 Comparison with other models
In addition to the baseline LSTM CTC (Table 2),
we also compare our model with a non-streaming
BiLSTM version, and a streaming Conformer CTC
inspired by (Li et al., 2021). For Conformer CTC,
we use the causal encoder-only network and train
it using CTC loss. As evident from the results in
Table 4, the discussed modifications help bridge the
gap between streaming LSTM and non-streaming
BiLSTM CTC models. The streaming Conformer
CTC also performs only marginally better than our
LSTM-attention HCTC model while it has much
higher training complexity and inference latency.

We evaluate a bidirectional version of our model
to analyse the consistency of these improvements.
Observe that the same modifications improve the
BiLSTM CTC model by a relative 13.4%, vs
30% the LSTM CTC model because BiLSTM al-
ready has access to full future context, limiting
the scope of improvement. Even then, it per-
forms significantly better than a vanilla BiLSTM
CTC model and only slightly worse than a Trans-
former AED+CTC model (Nakatani, 2019). Thus,
these modifications also reduce the gap between
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Ground truth ASR output Reason for error
no search impact
mixer machine mixture machine wrong pronunciation
ooni kapda baby ooni kapda multiple speakers with similar voice
sasta sasta mobile vivo ka sasta mobile vivo ka overlapping speakers
choli photos choli photos choli photos repetition after EOS
chappal slipper chappal repetition after EOS (in other lang.)
-ve search impact
great cycle grey cycle background noise
capacitor cap sitter wrong pronunciation
earing car earing multiple speakers with similar voice
atlas three chaubis inch headlight three chaubis pin overlapping speakers
joota guitar two eligible primary speakers
oppo a thirty three back cover oppo a thirty three additional information after EOS

Table 3: Examples of different types of errors. The upper section of the table shows examples where the mistakes
don’t have any search impact, and the lower section shows the ones having a negative effect. Red indicates incorrect
words and insertion errors, and orange indicates deletions and correct counterparts of erroneous words.

Model %WER
all clean noisy

Streaming models
LSTM CTC 7.68 6.50 14.70
LSTM-atten. HCTC 5.37 4.57 10.12
Str. Conformer CTC 5.30 4.33 11.01
Non-streaming models
BiLSTM CTC 5.37 4.64 9.68
BiLSTM-atten. HCTC 4.65 3.97 8.69
Transf. AED+CTC 4.37 3.30 10.72
(Nakatani, 2019)

Table 4: Our model in comparison with others (details
in Sec. 5.1). All models are made similar in size and
trained on ∼5500 hours.

LSTM and transformer-based ASR models for
voice search in both - streaming and non-streaming
settings. One explanation could be that transform-
ers usually have an advantage in capturing long-
term dependencies. This doesn’t help as much for
speech recognition on short utterances as in our
dataset, where audios usually are 4-6 seconds long
with an average of 3.34 spoken words. For a fair
comparison, we ensure all models are similar in
size and use the same KenLM for rescoring.

5.2 Error Analysis

To understand the errors better, we analyze 50 ran-
dom utterances each from clean and noisy subsets
where the model makes mistakes. The most com-
mon reasons for errors in the clean subset are -

wrong pronunciation and background noise. For
noisy utterances, multiple speakers with a similar
voice, overlapping speakers, and more than one
eligible primary speakers contribute to additional
errors. Table 3 lists some examples demonstrating
these reasons. We also observe that around 62% of
the mistakes in the evaluation set have no negative
impact on search. In these cases, the errors are
usually in stop words or produce a variant of the
reference word which can be used, like singular vs
plural or the same word with a different spelling.

When using EOS detection, there are additional
errors due to early termination in 2.24% of the
utterances. In all such cases, EOS is detected pre-
maturely because of a pause in the speech. Usually,
after this pause, the user repeats their query, adds
more information, or corrects it. In around 47%
of the cases, not capturing this additional speech
has no negative impact on search. In the rest 53%
cases, i.e. 1.19% of the total samples, the missed
utterance usually has more information about the
query, added by the user, that could have helped in
refining the search results.

5.3 Conclusions

This work focuses on developing a robust and ef-
ficient streaming ASR model for Hinglish Voice
Search. We achieve this by utilizing an LSTM-
attention architecture and employing the HCTC
loss. We explore architectural modifications that
help bridge the accuracy gap between streaming
and non-streaming LSTM-based ASR models.
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Our proposed model performs on par with a
streaming conformer-based system but offers the
advantage of lower latency. Additionally, we
present a straightforward method to integrate End-
of-Speech (EOS) detection with CTC-based mod-
els, requiring only a small number of additional
training iterations and utilizing simple thresholding
during inference.

The simplicity and low latency of our model
contribute to a fast and accurate voice search expe-
rience, making it an appealing solution for practical
applications.

Limitations and Future Work

In our study, we focused on a high-resource setting
with access to approximately 22.5k hours of labeled
speech data. While we compared our models with
conformer and transformer-based AED and CTC
models, we did not include RNNT models due to
their higher compute resource requirements. To ac-
commodate deployment constraints, we employed
a smaller model with approximately 60 million pa-
rameters, which limited its performance.

Moving forward, our future work aims to explore
the potential benefits of leveraging large unsuper-
vised datasets and larger models to further enhance
our system and extend its applicability to other In-
dian languages, which typically have less available
data compared to Hinglish. Building upon our pre-
vious success in adapting a non-streaming model
for end-to-end speech-to-intent detection in cus-
tomer support voicebots (Goyal et al., 2022), we
are motivated to investigate the feasibility of devel-
oping a single joint model for Automatic Speech
Recognition (ASR), End-of-Speech (EOS) detec-
tion, and Spoken Language Understanding (SLU).
Additionally, we are keen on exploring the devel-
opment of multilingual ASR models.
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Abstract
Recently, neural models have been leveraged
to significantly improve the performance of in-
formation extraction from semi-structured web-
sites. However, a barrier for continued progress
is the small number of datasets large enough
to train these models. In this work, we in-
troduce the PLAtE (Pages of Lists Attribute
Extraction) benchmark dataset as a challeng-
ing new web extraction task. PLAtE focuses
on shopping data, specifically extractions from
product review pages with multiple items en-
compassing the tasks of: (1) finding product-
list segmentation boundaries and (2) extracting
attributes for each product. PLAtE is composed
of 52, 898 items collected from 6, 694 pages
and 156, 014 attributes, making it the first large-
scale list page web extraction dataset. We use
a multi-stage approach to collect and annotate
the dataset and adapt three state-of-the-art web
extraction models to the two tasks comparing
their strengths and weaknesses both quantita-
tively and qualitatively.

1 Introduction

Semi-structured data extraction, i.e., web extrac-
tion, is the task of extracting data found in tem-
plated text fields from HTML pages. Once ex-
tracted, the structured data can be utilized in vari-
ous downstream tasks such as information retrieval,
recommendation, and question answering.

While recent work has shown the potential of
neural approaches for web extraction (Lin et al.,
2020; Zhou et al., 2021; Li et al., 2021), there
are very few publicly available large-scale datasets
suitable for training and evaluation of these ap-
proaches, limiting progress in this area. Addi-
tionally, most existing datasets (Hao et al., 2011;

∗The work was completed while Aidan and Yuan were
interning at Amazon.

† Jan left Amazon, but the work was completed while he
was working at Amazon.

Figure 1: A single item (i.e. product) from a list page
for a board game (from gamesradar.com).

Hotti et al., 2021) focus on one subset of the prob-
lem; namely detail page extraction. In this paper,
we introduce the PLAtE (Pages of Lists Attribute
Extraction) dataset1, that specifically targets the
task of list page extraction and focuses on product
review pages in the shopping vertical, i.e., multi-
product review pages.

To elaborate, item pages can be broadly catego-
rized into two classes: detail pages and list pages.
Detail pages provide detailed information about a
single item. List pages comprise a list of items with
abridged detail, organized under a single theme, e.g.
“best board games”. This organization facilitates
direct comparison of each item and allows for the
extracted data to be easily integrated into recom-
mender, question answering, or dialogue systems
powering digital assistants (Linden et al., 2003;
Gupta et al., 2019; Zhang et al., 2018). Extracted
product data can be utilized by both content cre-
ators (publishers) as well as customers looking to
make purchase decisions. 2

Because PLAtE is built from list (multi-item)
pages, we can evaluate two tasks: segmentation

1PLAtE will be publicly available at https://github.
com/amazon-science/plate

2We provide an example of a list page and a detail page in
the appendix.
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and attribute extraction. In the segmentation task,
the model should determine the boundaries of each
product, i.e. where the information for each prod-
uct begins and ends. In the attribute extraction task,
each node in the HTML DOM tree can be assigned
any number of three labels: product name, prod-
uct review text, and product link. The dataset is
comprised of 52, 898 products from 6, 694 pages
split into: training, development, and held-out test
sets. To evaluate the dataset, we adapt two state-
of-the-art neural web extraction models; Marku-
pLM (Li et al., 2021) and DOM-LM (Deng et al.,
2022), as well as explore a text-based Transformer
model, RoBERTa (Liu et al., 2019). We achieve
an F1-score of 0.787 and 0.735 for segmentation
and attribute extraction tasks respectively. We eval-
uate the potential of multi-task learning to improve
performance and find that multi-task learning im-
proves recall but slightly decreases precision, for
both tasks. To summarize, our contributions are:
(1) creating the first large-scale list page web ex-
traction dataset, (2) adapting state-of-the-art neural
web extraction approaches to the segmentation and
attribute extraction tasks, and (3) qualitatively and
quantitatively comparing the performance of differ-
ent models on the two presented tasks; segmenta-
tion and attribute extraction.

2 Related Work

The vast majority of previous web extraction
datasets (e.g., SWDE (Hao et al., 2011), the Klarna
Product Page Dataset (Hotti et al., 2021), and WDC
(Petrovski et al., 2016)) are composed of single
item pages. Multiple item or list page datasets
are much less common. Zhu et al. (2006) created a
dataset of 771 list pages, while Dhillon et al. (2011)
created a small dataset (BSCM) of about 30 pages
from 4 verticals: Books, Seminars, CS Faculty and
MLConfs. Furche et al. (2012) built a dataset of
431 pages from two verticals: UK used car dealer
websites collected from a used car aggregator web-
site and UK real-estate websites collected from the
yellow pages. To the best of our knowledge, PLAtE
is the largest multi-item web extraction dataset. Ad-
ditionally, most previous web extraction datasets
assume a single DOM node has at most a single la-
bel. However, this assumption does not hold true in
many product pages. For example, for many prod-
ucts, the product name’s text-span is also a link
to the product. Our dataset does not have this as-
sumption; we allow a node to have multiple labels.

Finally, most existing list page datasets are not pub-
licly available. Table 1 compares the different web
extraction datasets.

From the methods side, web extraction has first
been tackled using wrapper induction methods that
create a set of rules (wrappers) to transform un-
structured input into structured output (Kushmer-
ick, 1997; Furche et al., 2014; Zheng et al., 2007;
Azir and Ahmad, 2017; Gulhane et al., 2011; Carl-
son and Schafer, 2008; Furche et al., 2012). Re-
cently, a number of advances have been made by
utilizing neural-based approaches to construct a
representation for each HTML node for the extrac-
tion task (Lockard et al., 2020; Lin et al., 2020;
Zhou et al., 2021; Li et al., 2021; Deng et al., 2022;
Xie et al., 2021).

Other tasks related to semi-structured informa-
tion extraction include boilerplate removal (Leon-
hardt et al., 2020), extraction from HTML ta-
bles (Cafarella et al., 2018; Deng et al., 2020;
Wang et al., 2021; Herzig et al., 2020), and seg-
menting pages, e.g., using clustering followed
by string alignment (Álvarez et al., 2008), op-
timization based on divide and conquer (Bing
et al., 2013), and Hierarchical Conditional Random
Fields (CRFs) (Zhu et al., 2006).

3 PLAtE Benchmark

In this work, we tackle two tasks: (1) segmentation,
i.e., identifying the boundaries of the individual
products in a given page and (2) attribute extrac-
tion, i.e., identifying the individual attributes for
each identified product. For each given product,
we extract the following three attributes: (1) prod-
uct name: This refers to the name of the product,
e.g. “iPhone 11”, (2) review text: This is generally
a high-level review or general description of the
product, and (3) purchase link: a link (or button)
to a merchant’s website (e.g., Amazon, Ebay). We
commonly see generic text such as “Buy Here”,
the name of the merchant such as “Amazon”, or
the name of the product. Similar to prior work, we
perform classification on the leaf nodes; i.e., only
nodes that contain text are passed to the classifica-
tion models.

3.1 PLAtE Construction Process

To construct PLAtE, we started with 270M docu-
ments from the large, publicly available web crawl
Common Crawl.3 We then filtered down to 6, 694

3https://commoncrawl.org/
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Name Pages/Vert. Sites/Vert. Records/Vert. Tot. Pages Year Mult. Item?

SWDE (Hao et al., 2011) 4,405-20,000 10 4,405-20,000 124,291 2011 ✗
WDC (Petrovski et al., 2016) 576 ? 576 576 2016 ✗
Klarna (Hotti et al., 2021) 51,701 8,175 51,701 51,701 2019 ✗
LDST (Zhu et al., 2006) 771 ? ∼ 8600 771 2006 ✓
(Dhillon et al., 2011) 5-15 5-8 ∼ 400 ∼ 30 2011 ✓
AMBER (Furche et al., 2012) 150-281 100-150 1608-2785 431 2012 ✓
PLAtE 6,694 43 52,898 6,694 2020 ✓

Table 1: Comparison of existing web extraction datasets against PLAtE. PLAtE has the greatest number of records
per vertical, and the freshest HTML content. Additionally, it has an order of magnitude larger number of records
than any of the other multiple item datasets. “?” Means the information is not available in the paper. The multi-item
dataset with the highest statistic is bolded and the overall dataset with the highest statistic is underlined.

candidate pages from 43 internet websites by (1)
removing duplicate URLs and non-English pages,
(2) filtering out non-multi-product pages using a
linear classifier with word embedding and TF-IDF
features as well as keywords-based heuristics (e.g.,
“best”, “compare”, etc.), (3) selecting top/popular
websites using the Tranco List (Pochat et al., 2019),
(4) selecting sites with the highest number of list
pages, and (5) filtering out pages with inappropriate
(i.e. sensitive or offensive) content.

After selecting the candidate pages, we per-
formed the initial segmentation and attribute ex-
traction by using CSS selector rules.4 Two ex-
pert annotators used a custom annotation tool to
annotate a representative page from each site by
selecting a CSS selector for each attribute. The
annotated CSS selectors were then used to extract
the attributes from the rest of the pages from the
same site. Multiple rounds of quality checks were
performed in order to ensure the quality of the final
selector rules.

The final step in creating PLAtE used Amazon
Mechanical Turk annotations in order to remove
any errors introduced by the rule-based extraction
step. For the Mechanical Turk annotation task, we
presented a web page to the annotators. We first
asked the annotators a set of page-level questions
to ensure that the web page is a valid multi-product
review page. We then asked the annotators to verify
that a piece of highlighted text within the web page
should be extracted as an attribute and asked them
to indicate if any text of the attribute of interest
was not highlighted, i.e., was not captured by the
rules.5 Overall, 20% of workers that attempted the

4CSS selector rules are patterns composed of HTML tag
names and HTML class names used to select one or more
HTML elements (e.g., [.product-slide p])

5We only qualified annotators from English speaking coun-
tries that completed at least 100 prior annotation tasks with
an acceptance rate of 95% or more, and who passed a custom

Site theinventory.com
URL theinventory.com/best-iphone ...
Product Index 4
Attr. Name Product Name
Num. Extracted 1
XPath /html/body/div[3]/ ... /span/a/strong
Text [’AirPods Pro’]

Table 2: An example PLAtE annotation.

Split # Sites # Pages # Products # Attrs

Train 28 4, 202 35, 383 103, 731
Dev 5 655 6, 038 18, 019
Test 10 1, 837 11, 477 34, 264

All 43 6, 694 52, 898 156, 014

Table 3: Statistics of the train, development, and test
sets.

qualification task were qualified, resulting in 77
annotators. To identify spammers, we blocked any
annotator that spent less than 20 seconds on aver-
age per annotation task. Finally, to minimize anno-
tation costs while ensuring high-quality evaluation
and development data, we used one annotation per
task for the training set and three annotations per
task for the development and test sets. Majority
vote was used to aggregate the annotations from
the development and held-out test sets.

To build the final dataset, we split the data such
that the training, development, and held-out test
sets have approximately the same distribution in
terms of number of products and pages. Moreover,
we ensured that sites from the same website family,
e.g., thespruce.com and thespuceeats.com, appear
in the same split. Table 2 shows a sample PLAtE
annotation, while Table 3 shows statistics of the
dataset.

qualification task.
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Figure 2: Sample Mechanical Turk task. In the left panel, the text-span “Honeywell42. Pt Indoor Portable
Evaporative Air Cooler” is highlighted as the extraction of interest. In the right panel, a checkbox denotes whether
the highlighted text-span falls under the named attribute, i.e., “Product Name”. The annotator is also asked to
determine whether the left panel is a valid product and if any named attributes are missing.

Attribute Tag Text Crowd Annotations Gold

Review Text <p> And those are our recommendations for the best mattresses!... [True, False, False] False
Product Link <a> Tempur-Pedic [True, True, False] True
Review Text <p> And those are our recommendations for best outdoor grills... [True, True, False] False
Product Link <a> Original Sprout’s miracle detangler [True, False, False] True

Table 4: Annotator disagreements on the page https://www.wisebread.com/the-5-best-mattresses.

Attribute Missing(%) Valid (%) Fleiss-Kappa

Product Name 2.7 97.0 0.596
Review Text 2.3 85.1 0.728
Product Link 6.0 96.7 0.560

Table 5: Annotation statistics.

3.2 Dataset Analysis
We manually analyzed PLAtE annotations to as-
sess their quality. In the annotation task, as seen
in Figure 2, the first two annotation questions were
designed to filter out cases of mislabeled or mal-
formed snippets. Specifically, the first question
asked whether the annotation snippet contained at
least one product while the second question asked
if the snippet contained more than one product.
Annotators indicated that 99.6% of snippets con-
tained at least one product and that only 0.8% con-
tained more than one product, indicating that the
vast majority of tasks sent to annotators were valid
product snippets. The next set of annotation ques-
tions are meant to identify if any annotations were
missing from the presented snippet. Between 3%
and 6% of the extracted attributes were missing
some text spans. Finally, the last set of questions
asked the annotators to select the text-spans that
matched an attribute from a set of check-boxes (all
text-spans matching the CSS rule). Overall, more
than 85% of the text-spans were correctly matched

to the corresponding attribute. We also calculated
the inter-annotator agreement using Fleiss-Kappa
(Fleiss and Cohen, 1973) to measure the quality
of the annotation guidelines and found that the
inter-annotator agreement is moderate for “Prod-
uct Name” and “Product Link” and substantial for
“Review Text”. For “Product Link”, some product
name spans were also product link spans, causing
confusion among the raters. The annotation statis-
tics are shown in Table 5. Percentage of missing
attributes is relatively low indicating that our CSS
selector rules have high recall. Additionally, per-
centage of valid extractions is quite high especially
for Product Name and Product Link indicating that
our CSS selector rules have high precision. Table
4 shows examples of annotator disagreement. The
third example is challenging because the text is
about outdoor grills in general, and not a particular
outdoor grill product, so it should be annotated as
False. In the fourth example, the annotators likely
missed the correct label (True), because the link
does not follow the standard format of “Buy Now”
or a retailer’s name such as “Amazon”.

4 Models

We evaluate the performance of three recent neural
models: RoBERTa (Liu et al., 2019), DOM-LM
(Deng et al., 2022) and MarkupLM (Li et al., 2021)
on PLAtE.
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Attribute Extraction Segmentation
Model Test P Test R Test F1 Test P Test R Test F1 Test ARI Test NMI

RoBERTa 0.843 0.652 0.735 0.692 0.665 0.678 0.693 0.744
DOMLM 0.815 0.655 0.726 0.718 0.728 0.722 0.716 0.764
MarkupLM 0.839 0.620 0.711 0.769 0.805 0.787 0.771 0.870

Table 6: Performance of the different models on the segmentation and attribute extraction tasks. For segmentation,
MarkupLM has the best performance while for attribute extraction, DOM-LM outperforms RoBERTa on Recall, but
RoBERTa overall has the highest F1.

RoBERTa is a Transformer-based (Vaswani
et al., 2017) model pre-trained with natural lan-
guage texts sourced from the BookCorpus (Zhu
et al., 2015) and Wikipedia. The pre-training task
is masked language modeling. In our experiments,
the input to RoBERTa is a sequence of text tokens
from the DOM tree. Consequently, it does not uti-
lize other types of information from the DOM tree
such as XPaths or HTML tags.

DOM-LM is designed to generate contextual-
ized representations for HTML documents. It uses
RoBERTa as the base encoder and is pre-trained
over the SWDE dataset (Hao et al., 2011) with
masked language modeling over the text tokens as
well as the DOM tree nodes. To encode a DOM
tree, DOM-LM first slices the tree into a set of
subtrees such that important tree-level context is
kept in each subtree. Then each node is represented
by its tag, text, class/id attributes, as well as a po-
sitional matrix based on its position in the DOM
tree.

MarkupLM is another RoBERTa-based model.
The input to MarkupLM is a node represented by
both an XPath embedding and its text. The XPath
embedding is created by embedding each tag and
subscript in the XPath separately and then concate-
nating and passing them through a FFN layer. The
model was pre-trained on three tasks: (1) masked
markup language modeling, (2) node relation pre-
diction, and (3) title page matching using 24 mil-
lion pages from Common Crawl.

For the segmentation task, we label each of the
nodes as begin (B) to denote the first text-span of a
product, or other (O) for the rest of the nodes. We
then apply a softmax layer to the logits and train
with cross-entropy loss. For the attribute extraction
task, the model predicts the attribute labels from
the logits using a multi-label sigmoid layer that
was trained with binary cross-entropy loss. As a
multi-label classification task, the model can assign
each node with any subset of the labels or no label.

In both tasks, we begin with one of the three pre-
trained models and then fine-tune on the training
set of PLAtE.

5 Experiments

For both segmentation and attribute extraction
tasks, we report the precision, recall, and F1-
score. Results are macro-averaged over the dif-
ferent classes. In addition, for segmentation, we re-
port clustering metrics following (Bing et al., 2014),
where the attributes in the same segment are consid-
ered to be in the same cluster. In our dataset, when
looking at two adjacent products in a page, there is
a single node which we label as a “segmentation
boundary”. In reality, there can be multiple nodes
which appear between two adjacent products and
split the products apart. If multiple valid segmenta-
tion boundaries for a product are possible, F1-score
will penalize the model for picking any segmenta-
tion boundary which is not labelled as such. On
the other hand, the clustering metrics provide a re-
laxation which checks that product attributes are
assigned to the correct product. For clustering met-
rics, we report adjusted rand index (ARI) (Hubert
and Arabie, 1985) and normalized mutual infor-
mation (NMI) (Strehl and Ghosh, 2002) where a
higher number indicates better performance. 6,7

Overall, we observe that MarkupLM performs
well on the segmentation task yielding scores of
0.787, and 0.771 and 0.870 for F1, ARI and NMI
respectively while DOM-LM performs worse on
this task with scores of 0.722 and 0.716 and 0.764
for F1, ARI and NMI respectively. This can likely
be attributed to the fact that MarkupLM was pre-
trained on the task of relation prediction between
nodes. Identifying if two nodes have a parent-child,
sibling, or ancestor-descendant relation could help
the model distinguish nodes within the same prod-
uct from nodes of different products, and conse-

6ARI ranges from −0.5 to 1 and NMI ranges from 0 to 1.
7We average all results for each of the two tasks over three

runs from different random seeds.
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Model Attribute P R F1

Product Name 0.858 0.645 0.737
RoBERTa Review Text 0.922 0.721 0.808

Product Link 0.750 0.590 0.661

Product Name 0.843 0.672 0.747
DOM-LM Review Text 0.863 0.695 0.769

Product Link 0.741 0.599 0.662

Product Name 0.885 0.621 0.730
MarkupLM Review Text 0.822 0.671 0.737

Product Link 0.808 0.569 0.667

Table 7: Precision, recall, and F1-score for all models
on the attribute extraction task by attribute type.

quently identify the product boundaries better.
The attribute extraction task shows a different

trend from segmentation where RoBERTa performs
the best, outperforming MarkupLM and DOM-LM.
We look into the reason behind this in Section 6.
Detailed results for both tasks are presented in Ta-
ble 6 while precision, recall, and F1-score for the
attribute extraction task broken down by attribute
are shown in Table 7. We find that product link ex-
traction performs worst while product review text
performs best. For product link, this difficulty can
be attributed to the diverse nature of product links
which can take the form of a product name, or the
price of the product e.g., a hyperlink with the text
$10 or a button (e.g. with the text “Buy Now”).
For review text, the higher performance is not sur-
prising given that it normally has a more consistent
style than product links.

To better understand the different factors affect-
ing the performance of the attribute extraction task,
we (1) break down the scores by site in our test
set to see whether some sites are more challenging
than others, (2) analyze the relationship between
the number of products in a page and attribute ex-
traction performance (3) explore whether the index
of the product (i.e., where it appears in the page) af-
fects the performance, (4) study the effect of adding
more pages (versus sites) to the training data, and
(5) explore whether a multi-task model that jointly
tackles both segmentation and attribute extraction
tasks can yield better performance through utiliz-
ing the complementary signals between both tasks.

As can be seen in Figure 3, extraction perfor-
mance varies greatly by site. We suspect that this
is due to the diverse page layouts and styles of
different sites. When grouping pages by number
of products, we find that for all three models, as

Figure 3: Precision, recall, and F1 of MarkupLM’s
attribute extraction scores grouped by site. We observe a
high variance in scores, due to differing HTML structure
between different sites.

the number of products increases, the F1-score im-
proves. We believe this is due to the increased
ease of the model to learn patterns within a page
given more examples in a page. When grouping
the scores by product index, we find that product
index does not have a significant impact on the per-
formance of attribute extraction; i.e. performance
is relatively uniform across different locations in
the page.8

To study the value of annotating more sites com-
pared to annotating more pages, we sampled two
subsets of pages from our original training set. We
collected all pages from 14 randomly sampled sites
from the training set for a total of 1514 pages, then
sampled 1514 random pages across all sites in the
training set. The 14 sites achieved an F1=0.595
compared to sampling from all sites achieving an
F1=0.681. From this, we can conclude there is in-
deed value in annotating a greater sites instead of
simply annotating more pages from the same site.
We suspect the model is better able to generalize
to the test set, when provided with a more diverse
training set of different sites. Finally, we look into
whether multi-task learning improves model per-
formance on PLAtE. To this end, we train a Marku-
pLM model with a shared encoder, but distinct loss
functions and output layers for the segmentation
and attribute extraction tasks.9 We find that multi-
task learning improves the recall of both tasks – as
shown in Table 8 – but slightly harms precision.
F1-score performance increases by 0.023 for the
segmentation task but goes down for the attribute
extraction task due to the decrease in precision.

8Figures showing the detailed results of these experiments
are provided in the appendix.

9We use a weighted sum of the loss functions for both
tasks and determine the weights empirically based on the
performance on the development set.
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Task Setting P R F1

Attribute
Extraction

No MTL 0.839 0.620 0.711
MTL (weight=0.5) 0.803 0.628 0.703

Segmentation No MTL 0.769 0.805 0.787
MTL (weight=0.25) 0.768 0.859 0.810

Table 8: Precision, recall, and F1 for Multitask Learning
(MTL) for the MarkupLM model.

6 Discussion

Contrary to our expectations, RoBERTa outper-
formed DOM-LM, a model specially designed to
model webpages, on the attribute extraction task.
As can be seen in Table 7, RoBERTa mainly out-
performs DOM-LM in review text precision. We
analyze 20 examples where DOM-LM makes a
false positive review text error and RoBERTa does
not. We find in 95% of the examples, the misclassi-
fied node is outside of the main review content, and
in 80% of the examples the misclassified node is a
<p> tag. This indicates that DOM-LM’s structural
encoder is likely over-fitting to the HTML tag and
disregarding the text content, hence is less able to
generalize to unseen HTML structures.

We perform additional analysis of the outputs
from the MarkupLM model, to identify areas
for improvement for the attribute extraction task.
Specifically, we sampled up to 5 false positive
(FP) and 5 false negative error examples for each
attribute from each site in the test set, and ended up
with a total of 257 examples.10 For product review
text, we find that many of the false negatives
are very short textspans such as “These”, “as
well”, and “require” representing a single text
leaf node within a larger paragraph. We suspect
that the model has not been trained with enough
examples of varied text length. In the future, we
could also consider training the model to classify
the parent nodes representing a whole paragraph
instead of classifying at the leaf node level. For
false positives, we find 4 examples of user-written
comments (as opposed to reviewer-written text).
While these do not represent the official review
text, they are semantically similar to the official
review text hence are easily confused by the model.
One such example is a user’s comment mentioning
that “the design and functionality of these cookers
is top-notch” which has a similar style to text
which could have been written by a reviewer. For

10Some sites had less than 5 errors, in which case we exam-
ined all errors.

product link, 17 false positives are hyperlinks that
link to a homepage rather than to a specific product
which indicates that the model is over-fitting to
the <a> tag. Training the model using contrastive
learning with positive and negative product link
<a> tag examples should help with this case.

Next we explore the effect of threshold-tuning
on the performance of attribute extraction. In the
presence of an oracle that specifies whether or not a
node should be tagged with an attribute, we can use
the argmax of the logits of the different attribute
classes in order to guarantee that the node is tagged
with one of the three attributes. Based on the very
high agreement between the argmax and the ac-
tual label for product name (89.4%) and product
review text (91.8%), it is clear that some of the
challenges in tagging nodes in PLAtE stem from
needing to determine whether or not a node should
be tagged with any attribute, on top of determining
what the correct attribute tag is.

Finally, we analyze the errors in the segmenta-
tion task, collecting all pages with an ARI and NMI
< 0.5 within test set. We find that in 97% of these
pages the number of gold segmentation boundaries
is higher than the number of predicted segmenta-
tion boundaries. This means that when ARI and
NMI are very low, the model is failing to split the
page into enough segments. To improve perfor-
mance, we could consider utilizing a structured
prediction to model segmentation interdependen-
cies e.g. the model could explicitly model that it is
unlikely that two segmentation boundaries appear
directly next to one another.

7 Conclusion

In this work, we introduce PLAtE, the first large-
scale list page dataset for web extraction. We
describe our methodology in creating the dataset,
from pre-processing to crowd-sourced annotation
collection. We evaluate the performance of three
strong web extraction baselines and achieve an F1-
score of 0.787 and 0.735 on the segmentation and
attribute extraction tasks respectively. While we
focus on shopping domain due to its importance to
several downstream applications, in the future we
intend to extend our work to other verticals to facili-
tate further research studying model generalization
and domain adaptation.
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Limitations

To ensure high quality extractions for PLAtE, we
optimize our annotation process for precision. For
example, for the Product Link attribute, we gener-
ally annotate only one product link per product. In
an application scenario, the user would not need
multiple links to a purchase page, but this could
potentially harm the precision of the evaluated mod-
els. In addition, we assume that all attributes are
text-based. This has the potential of missing addi-
tional product information which could be helpful
to users, such as images of the product. In future
work, we would like to extend PLAtE by incorpo-
rating other modalities.
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B Additional Tables

Attribute Argmax Correct (%)

Product Name 89.4
Review Text 91.8
Product Link 16.2

Table 9: Percentage of false negative examples where
the model would be correct if the argmax of the at-
tributes was chosen instead of requiring the activation
to be above the threshold 0.5.

C Additional Figures

Figure 4: An example extraction “Godinger Luminal
Hobnail Glasses” which is both a product name and
product link.

Figure 5: The average attribute extraction F1-score
based on product index normalized by number of prod-
ucts for the MarkupLM model. The performance is rela-
tively uniform across all indices indicating that product
index does not have a significant effect on extraction
performance. (We observed a similar trend for both
RoBERTa and DOM-LM.)

Figure 6: Average attribute extraction F1-score based
on number of products in a page. In MarkupLM, as the
number of products increases, F1-score also increases.
(We observed a similar trend for both RoBERTa and
DOM-LM.)
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Figure 7: An example of a list page compared to a detail page. On the left is a list page with two products:
“Blockbuster” and “Wingspan”. Both products have a similar format and directly comparable attributes from our
schema: Product Name, Product Link, and Review Text. On the right is a detail page with more in-depth details and
longer review text for the “Blockbuster” boardgame. (Screenshots from gamesradar.com)
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Abstract

Text-to-Image Synthesis (TIS) aims to gener-
ate images based on textual inputs. Recently,
several large pre-trained diffusion models have
been released to create high-quality images
with pre-trained text encoders and diffusion-
based image synthesizers. However, popular
diffusion-based models from the open-source
community cannot support industrial domain-
specific applications due to the lack of entity
knowledge and low inference speed. In this
paper, we propose Rapid Diffusion, a novel
framework for training and deploying super-
resolution, text-to-image latent diffusion mod-
els with rich entity knowledge injected and op-
timized networks. Furthermore, we employ
BladeDISC, an end-to-end Artificial Intelli-
gence (AI) compiler, and FlashAttention tech-
niques to optimize computational graphs of the
generated models for online deployment. Ex-
periments verify the effectiveness of our ap-
proach in terms of image quality and inference
speed. In addition, we present industrial use
cases and integrate Rapid Diffusion to an AI
platform to show its practical values. 1

1 Introduction

Text-to-Image Synthesis (TIS) is a prevalent multi-
modal task that aims to generate realistic images
based on textual inputs, which supports real-world
applications such as product appearance design and
art creation. Apart from Generative Adversarial
Network (GAN)-based approaches (Agnese et al.,
2020), recently, pre-trained diffusion models (Rom-
bach et al., 2022; Ramesh et al., 2022) have been

∗B. Liu and W. Lin contributed equally to this work.
†C. Wang and K. Jia are co-corresponding authors.

1The source code is publicly available in the EasyNLP
framework (Wang et al., 2022). URL: https://github.com/
alibaba/EasyNLP.

proposed to create artistic images with qualities
comparable to or better than those from humans.

Despite the exciting advancement, for industrial
domain-specific applications, we suggest that pop-
ular latent diffusion models from the open-source
community (such as the Stable Diffusion model
series2) are incapable of supporting those appli-
cations. The reasons are are twofolds. i) For
diffusion-based methods, a CLIP-based text en-
coder (or other similar models) is required to en-
code the input texts, providing conditional inputs
for the U-Net model (Rombach et al., 2022). As
entities (or objects) are usually the key elements for
generated images, CLIP models pre-trained over
text-image pairs collected from the Web may need
more abilities of concept understanding and are
challenging to capture the specific entity knowl-
edge required for realistic image generation (Ma
et al., 2022). ii) For industrial applications, the
model inference speed and the computational cost
are vital factors to be considered. The cumbersome
computation of the iterative diffusion process is
often the bottleneck of fast inference (Song et al.,
2021). Therefore, obtaining knowledgeable dif-
fusion models to generate high-resolution images
with moderate parameter sizes and optimized im-
plementations that support fast online inference is
desirable.

To address the above issues, we propose Rapid
Diffusion, a novel framework for the training and
deploying text-to-image diffusion models with rich
entity knowledge injected and networks optimized.
In Rapid Diffusion, a knowledge-enhanced CLIP
model is effectively trained for learning entity
knowledge from knowledge graphs (KGs). To

2https://stability.ai/blog/
stable-diffusion-public-release
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generate high-resolution images and avoid param-
eter explosion, we integrate an ESRGAN-based
network (Wang et al., 2018) after the diffusion
block for image super-resolution, instead of di-
rectly leveraging a large-scale hierarchical diffu-
sion model. For online deployment, an efficient
inference pipeline is designed with the neural archi-
tectures optimized based on FlashAttention (Dao
et al., 2022). The Intermediate Representation (IR)
of computational graphs built from the generated
models are further processed by a recently released
Artificial Intelligence (AI) compiler (Zhu et al.,
2021).

In the experiments, we evaluate the effective-
ness of Rapid Diffusion in terms of the qualities
of generated images from multiple application do-
mains and the model inference speed for online
deployment. We also provide industrial use cases
to show how our framework benefits real-world
applications. In addition, we have integrated the
proposed training and deployment workflows into
an industrial, cloud-native AI platform to facilitate
zero-code model training and elastic inference on
distributed GPU clusters. In summary, the major
contributions of this work are as follows:

• We propose the Rapid Diffusion framework
for the training and deployment of domain-
specific diffusion-based TIS models. Specif-
ically, a new knowledge-enhanced model
pipeline is designed for super-resolution TIS.
An efficient inference pipeline is further de-
signed to optimize the computational graphs
of our model for faster model inference.

• Experiments over multiple domains show the
effectiveness of Rapid Diffusion in terms
of both image quality and inference speed,
achieving an average FID score of 21.90 and
×1.73 acceleration ratio compared to all the
counterparties.

• We demonstrate the industrial use case and
the integration of Rapid Diffusion to a cloud-
native AI platform to show its practical values
for real-world applications.

2 Related Work

2.1 Text-to-Image Synthesis (TIS)

TIS is a multi-modal task of converting texts to
images with the same semantic meanings. In the
early years, traditional methods (Zhu et al., 2007)
mainly focused on analyzing the correlations be-

tween sentences and images but could not gen-
erate new images on the pixel level. Generative
Adversarial Network (GAN) (Goodfellow et al.,
2014) was proposed in 2014 and became the main-
stream approach in the image synthesis field (Ag-
nese et al., 2020). GANs and their variants (Reed
et al., 2016; Liu et al., 2022b) have proved their
effectiveness in TIS but still lack the ability to
generate high-resolution images. Diffusion mod-
els (Ho et al., 2020; Sohl-Dickstein et al., 2015)
have attracted the attention of researchers in recent
years. Leveraging large-scale text-image datasets,
pre-trained diffusion models (Rombach et al., 2022;
Ramesh et al., 2022) become competitive with hu-
man painters. However, these diffusion models
need help with the efficiency problem and more
knowledge for the generation process.

2.2 Efficient Methods for Diffusion Models

Diffusion models (Ho et al., 2020; Sohl-Dickstein
et al., 2015) typically add noise to images (or latent
tensors generated from images) and then learn to
denoise step by step. The number of steps while
training may be very large, making the sampling
time-consuming. To improve the sampling effi-
ciency, a recent study (Salimans and Ho, 2022)
introduces knowledge distillation to diffusion mod-
els. This acceleration method can reduce the steps
but requires additional training. Another family
of methods tries to construct new samplers with-
out further training. For example, DDIM (Song
et al., 2021) uses a deterministic generative process
to produce images much faster. Some numerical
solvers, including forward Euler and linear mul-
tistep method (Butcher, 2000), are leveraged to
reduce the steps (Karras et al., 2022). By using
a pseudo numerical algorithm to solve differen-
tial equations on manifolds, PNDM (Liu et al.,
2022a) further improves the generation quality
within a few given steps. The better implemen-
tation of attention algorithms can speedup the pro-
cess, which requires fewer IO accesses (Dao et al.,
2022). Colossal-AI (Bian et al., 2021) acceler-
ates the training speed of diffusion models and
reduces the GPU memory usage for deployment.
In addition, when diffusion models are deployed
online, the amount of computation can be reduced
with better-complied computational graphs of these
models. For example, TensorRT3 provides an in-
ference optimizer and runtime that achieves lower

3https://github.com/NVIDIA/TensorRT
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latency of model inference. In our work, we inte-
grate various techniques from both modeling and
engineering aspects to deliver better training and
inference experiences for diffusion-based, domain-
specific TIS applications.

3 The Proposed Framework

In this section, we formally present the techniques
of the proposed Rapid Diffusion framework in de-
tail. A brief overview of Rapid Diffusion is pre-
sented in Figure 1.

3.1 Model Architecture

As seen in Figure 1, our model converts input texts
to high-resolution images by modeling the trans-
formation and interaction between three represen-
tation spaces: i) knowledge-enhanced text embed-
ding space, ii) latent space, and iii) pixel space.

3.1.1 Knowledge-enhanced Text Embedding
Space

In this stage, we aim to encode the semantics of
input texts to text embeddings. A common prac-
tice is to leverage the text encoder of CLIP (Rad-
ford et al., 2021), which jointly learns textual
and visual representations in a unified space. Yet,
CLIP pre-trained over plain text-image pairs may
have weak representation power of entities. In
our work, we leverage the 100 million text-image
pairs from Wukong (Gu et al., 2022) as our multi-
modal pre-training corpus, as our real-world ap-
plications mostly focus on the Chinese language.
For entities, we leverage the largest Chinese KG
available to us, i.e., OpenKG4 (containing over 16
million entities and 140 million relation triples).
During the CLIP pre-training process, the input
representation of an entity token e appearing in
a sentence of the Wukong corpus is augmented
by: e⃗ = e⃗txt + e⃗kg where e⃗txt is the vanilla token
embedding of the entity e, and e⃗kg is the KG em-
bedding derived by the TransE algorithm (Bordes
et al., 2013) due to its effectiveness and simplicity.
Note that although we focus on the pre-training
of Chinese Knowledge-enhanced CLIP (CKCLIP)
models here, our method is language-invariant and
can be applied to other languages with minor mod-
ifications.

During the fine-tuning process of our domain-
specific TIS models, the parameters of the text

4http://openkg.cn/

encoder of our CKCLIP model are set to be train-
able to capture more domain-related semantics. We
further add some text prompts to the input text ac-
cording to the application scenario (e.g., “the photo
of [object]”, “the picture of [object]”) and obtain
its CLIP representation as the conditional input to
the next stage.

3.1.2 Latent Space
According to the given knowledge-enhanced text
embedding e⃗, we use a latent diffusion model to
generate image encoding with similar semantic
meaning in a latent space. The model architec-
ture is U-Net (Ronneberger et al., 2015) with a
cross-attention mechanism capturing the textual
conditioning information. In the training stage, the
image x is encoded into the latent space and then
we add Gaussian noise ϵ ∼ N (0, 1) to obtain xt,
where t = 1, . . . , T is the step in the diffusion pro-
cess. The loss function of image reconstruction is
formulated as follows:

LLDM = Ex,t∼U(1,...,T ),ϵ∼N (0,1)

(
||ϵ− ϵθ(xt, t)||22

)

(1)
The generation process is the reverse of the dif-

fusion process. Starting from the random Gaus-
sian noise xT , the latent diffusion model gradually
denoises the latent tensor and successively calcu-
lates xT−1, xT−2, . . . , x1. To improve the corre-
lation between the generated image and the input
prompt, we use the classifier-free guidance (Ho
and Salimans, 2021) to generate the corresponding
images. Additionally, to avoid the efficiency prob-
lem caused by too large step T , we employ PNDM
(Liu et al., 2022a) scheduler to reduce the steps.
In our work, we also pre-train the latent diffusion
model using the Wukong dataset (Gu et al., 2022)
and fine-tune the model using every downstream
dataset respectively.

3.1.3 Pixel Space
After generating the final latent x0, a KL-
regularized decoder D reconstructs the image from
x0 in the pixel space. In our design, the generated
images are not necessarily in high resolution. In-
stead, an ESRGAN-based network (Wang et al.,
2018) is applied after the decoder such that af-
ter a single forward pass, a corresponding high-
resolution image can be generated. An alternative
design choice is directly generating high-resolution
images using the diffusion model. However, this
setting can be sub-optimal to satisfy the require-
ments of moderate model size and fast inference
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Figure 1: An overview of the Rapid Diffusion framework.

speed. Consider a base 256× 256 diffusion-based
U-Net model that employed for the TIS task, where
one with a 256× 256 −→ 1024× 1024 diffusion-
based super-resolution U-Net model and the other
with an ESRGAN-based model. The former con-
tains more parameters and requires more steps for
inference, resulting in its inference time being sev-
eral times slower than the latter. Therefore, we
adopt an ESRGAN-based model to generate high-
resolution images efficiently.

3.2 Inference Speedup Designs

The inference process of the proposed model in
this paper consists of three main components. We
profile the inference speed of the original PyTorch
model in eager mode and observe that the bottle-
neck is primarily located in the loop of the U-Net
model, where the cross-attention computation dom-
inates the inference time. The profiling result can
be seen in Figure 2. To resolve this issue, we incor-
porate automatic slicing and compilation optimiza-
tion techniques to optimize the entire pipeline in
an end-to-end manner and introduce an IO-aware
attention implementation to enhance the inference
performance further.

3.2.1 Compilation Optimization
Our algorithm generates various low-level runtime
flows for models with dynamic shapes on spe-
cific devices. It is achieved by enhancing a set
of IR to create a complete dynamic shape repre-
sentation (Zhu et al., 2021). For the operations

（a）Entire Model Pipeline （b）U-Net

Figure 2: The profiling result of model inference in the
percentage of the entire CUDA time.

with intensive memory access, we fully utilized
shared memory to design larger-grained kernel fu-
sion strategies, effectively reducing the CPU/GPU
switches (Zheng et al., 2022). Optimal graph par-
titioning and kernel implementation selection are
performed for optimal inference speed. The opti-
mization has been applied throughout the comput-
ing module, resulting in a significant improvement
in inference speed.

3.2.2 Effective IO-Aware Attention
Based on the automatic compilation optimiza-
tion, we further utilize the FlashAttention tech-
nique (Dao et al., 2022) for the cross-attention op-
erator of U-Net, which is the core of the network’s
inference bottleneck. The technique is based on
the attention IO characteristics and performs tiling
operations on the attention calculation to reduce
memory read-write computation. We introduce dif-
ferent FlashAttention kernel implementations for
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various combinations of computing devices and
hardware architectures and dynamic inputs. The
technique mentioned in the previous section effec-
tively assists us in automatically finding the optimal
implementation. As a result, the cross-attention
calculation can be accelerated without deviation,
yielding a 1.9× speed-up for the U-Net module.

4 Experiments

4.1 Experimental Settings

We first pre-train the CKCLIP model in the follow-
ing experiments using the text-image pairs from
Wukong (Gu et al., 2022) and the OpenKG. After
that, the text encoder of CKCLIP and our diffu-
sion model are pre-trained using the same data
source. We fine-tune and evaluate the model over
three domain-specific datasets to show the values
of Rapid Diffusion in real-world applications. Im-
plementation details and parameter settings can be
found in the appendix.

4.2 Results of Three Application Scenarios

We report the performance of Rapid Diffusion over
three domain-specific scenarios (i.e., E-commerce5,
Chinese Painting (Li et al., 2021) and Cuisine,
which are closely related to our applications) in
terms of Frechet Inception Distance (FID) (Heusel
et al., 2017) score. Details of the three datasets,
together with the training/validation/testing splits,
are given in Table 4 in the appendix. We compare
our model with three popular open-source diffu-
sion models, namely Stable diffusion6, Stable diffu-
sion 27, and Taiyi Diffusion8 (which is the largest
Chinese diffusion model available so far). Note
that Stable diffusion and Stable diffusion 2 mainly
support English text inputs. Hence, we leverage
the Chinese-English translation model (Wei et al.,
2022) to translate our texts to English. The results
are shown in Table 1. It can be seen that Rapid Dif-
fusion outperforms all counterparties over the three
datasets, achieving the average FID score at 21.90.
The results indicate that our knowledge-enhanced
models over domain-specific scenarios understand
domain knowledge better and can generate more
realistic and varied images.

5https://tianchi.aliyun.com/muge
6https://huggingface.co/CompVis/

stable-diffusion-v-1-4-original
7https://huggingface.co/stabilityai/

stable-diffusion-2
8https://huggingface.co/IDEA-CCNL/

Taiyi-Stable-Diffusion-1B-Chinese-v0.1

Model E-commerce CP Cuisine Avg.
Stable Diffusion 48.32 70.31 26.89 48.51
Stable Diffusion 2 59.65 60.21 29.79 49.88
Taiyi Diffusion 42.43 59.56 24.08 42.02
Rapid Diffusion 22.72 29.79 13.20 21.90

Table 1: Performance of Rapid Diffusion and baselines
over the testing sets of three application scenarios in
terms of FID score. CP denotes “Chinese Painting”.

4.3 Effectiveness of Knowledge-enhanced
Chinese CLIP

As CLIP models aim to learn cross-modal repre-
sentations, we first intrinsically evaluate our model
by text-image retrieval. We compare the vanilla
Chinese CLIP model and our CKCLIP model us-
ing the same pre-training text-image corpus. Pre-
training details can also be found in the appendix.
For evaluation, we employ the standard split of
Flickr30K-CN (Lan et al., 2017), and then fine-
tune both models. Table 2 reports the text-to-image
and text-to-image retrieval results over the testing
set. Our CKCLIP model improves retrieval perfor-
mance by significant margin (especially for R@1
metric), showing its ability to learn cross-modal
representations. In addition, we provide some qual-
itative results from the Cuisine dataset to show how
more entity knowledge can lead to better represen-
tation and generation of the key objects in images,
as shown in Figure 3.

Model Text-to-image Image-to-text
R@1 R@5 R@10 R@1 R@5 R@10

CLIP 83.3 97.3 99.5 70.1 91.9 96.4
CKCLIP (ours) 90.0 98.7 99.7 75.0 93.6 96.5

Table 2: Performance of the knowledge-enhanced CLIP
for text-image retrieval in terms of Recall@1/5/10.

Strawberry Strawberry Strawberry
Ham Pizza Mixed Noodles Hamburger

Figure 3: Qualitative results of generated images with
entity knowledge injected during CLIP pre-training.
Note that the presented cuisines may not be existent
in the real world. “Strawberry” is the target entity.

4.4 Results of Inference Speedup
For the implementation of compilation optimiza-
tion, we employ BladeDISC (Zhu et al., 2021) as
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our underlying AI compiler, which is an end-to-
end dynamic shape compiler for machine learning
workloads. Results of the comparison between
our implementation and Torch Native (eager mode)
are displayed in Table 3. According to the re-
sults, U-Net inference takes the longest in the entire
process (in 1900ms), while the text encoder and
the image decoder take only 0.012ms and 0.04ms,
respectively. However, with the optimization by
BladeDISC, we speed up the inference time of the
text encoder, U-Net and the image decoder by ×3,
×1.91, and×1.9 times compared to the eager mode.
Additionally, FlashAttention assists us in further
optimizing U-Net, which decreases the inference
time from 994ms to 759ms. Finally, we are able
to generate images more quickly. Note that the un-
derlying GPU used in the experiments is NVIDIA
A100 (80GB), and the scheduler runs 50 in steps.

Inference Setting CLIP
(ms)

U-Net
(ms)

Decoder
(ms)

ESRGAN
(ms)

Total
(ms)

Torch Native 0.012 1900 0.04 54.5 3129
Ours (w/o. FA) 0.004 994 0.02 - 2042
Ours (w/ FA) - 759 - - 1807
Acceleration ratio ×3 ×1.91 ×1.90 - ×1.73

Table 3: Inference speedup results of Rapid Diffusion.
FA denotes “FlashAttention”.

4.5 Results of Super-resolution

For image super-resolution, the ESRGAN-based
network can be efficiently leveraged to achieve up-
scaling results. We can directly use the ESRGAN-
based network following the latent diffusion model
because it has been pre-trained on common-used
image datasets such as DIV2K (Agustsson and Tim-
ofte, 2017). However, considering the uniqueness
and consistency of domain-specific images, we
conjecture that fine-tuning enables the model to
perform better. Experiments show that after fine-
tuning, the model beats the pre-trained model ac-
cording to our qualitative and quantitative results,
which achieves 23.1 in terms of Peak Signal to
Noise Ratio9, while the pre-trained model achieves
only 22.7. Figure 4 further compares images with
and without our pre-trained/fine-tuned models.

4.6 Case Studies

We provide more cases from each application do-
main to show how much our model outperforms
previous ones. Refer to Figure 5 in the appendix.

9https://en.wikipedia.org/wiki/Peak_
signal-to-noise_ratio

Original w/o. Fine-tuning w/ Fing-tuning

Figure 4: 256× 256→ 1024× 1024 super-resolution
on Chinese cuisine images. The first line is the sample
for the image generated from our model based on user-
defined text prompts and the second line is a sample
from the validation set. (Best viewed zooming-in.)

5 Applications

In this section, we demonstrate the practical values
of Rapid Diffusion by industrial use case and the in-
tegration to Alibaba Cloud PAI (Machine Learning
Platform for AI).

5.1 Industrial Use Case
Here, we briefly discuss two real-world use cases.
The first is a fashion design for e-commerce manu-
facturers. The inputs to our system consist of key-
words for multiple elements, such as trend, fabric,
color and style. An automatic prompt generation
process is called to provide TIS models natural-
language-like inputs. For a single request of fash-
ion design, a handful of prompts can be generated,
each associated with multiple generated images.
The images are then regarded as materials for de-
signers. The cuisine dataset described previously is
from our online food delivery and local life service
platform. Our diffusion model for cuisine genera-
tion provides the inspiration functionality to help
service providers to create innovative menus where
users can select or freely enter all kinds of food-
related keywords to generate images. Note that the
images will be marked as “AI-generated” before
they are sent to our applications.

5.2 Integration to AI Platform
To allow users to create their models, we have in-
tegrated Rapid Diffusion into a cloud-native AI
platform to facilitate zero-code model training and
elastic inference. For model training, after upload-
ing training/validation datasets and checking hyper-
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parameters, a training job is automatically submit-
ted to our deep learning container, where the train-
ing command and the docker image have already
been prepared. After the job is completed, the re-
sulting model is available for deployment. Based
on Query Per Second (QPS) requirements, our pre-
diction service can scale to an adjustable number of
machines in the cloud. We can call the TIS service
via a RESTful API by HTTP requests.

6 Conclusion and Future Work

We present the Rapid Diffusion framework for
the training and deploying knowledge-enhanced,
domain-specific, high-resolution, diffusion-based
TIS models. Experimental results show the effec-
tiveness of Rapid Diffusion in both image qual-
ity and inference speed, achieving an average FID
score of 21.90 and ×1.73 acceleration ratio com-
pared to all the counterparties. We further show its
practical values through industrial use cases and the
integration into an AI platform. In the future, we
will extend the functionality of Rapid Diffusion and
further increase the inference speed by advanced
compilation optimization techniques.

Ethical Considerations

The techniques for inference speedup presented in
this work are fully methodological. Hence, there
are no direct negative social impacts. However,
as the models automatically generate the images,
they may have some negative impacts, such as the
generation of toxic content and the existence of
social biases. We suggest that the produced models
should not be used to generate offensive or inappro-
priate images for people intentionally. Users should
carefully deal with the potential risks by filtering
out these images when the models are deployed
online.
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A Generated Results of Case Study

We show more generated images from our model
and baselines, presented in Figure 5.

B Data Statistics

Table 4 shows the data statistics of our experiments.
We divide the E-commerce and Chinese Painting
datasets into training, validation and testing sets ac-
cording to the ratio of 80%, 10%, and 10%. For the
Cuisine dataset, we divide 10% for validation, 10
thousand images for testing and the rest for training.
Among these datasets, E-commerce and Chinese
Painting are public datasets, while Cuisine is an in-
house dataset provided by our online food delivery
and local life service platform.

Domain #Train #Valid #Test Sum
E-commerce 75973 9497 9497 94967
CP 71362 8921 8921 89204
Cuisine 804305 89367 10000 903672

Table 4: The statistics of three datasets used in the
experiments. CP denotes “Chinese Painting”

C Hyper-parameters Settings

For knowledge-enhanced CLIP pre-training, we
follow the hyper-parameter settings in (Gu et al.,
2022). For training the latent diffusion model, we
set the learning rate as 5× 10−5, the batch size as
80, and the image size as 256 × 256. The latent
dimension of the auto-encoder is 32 × 32. The
hidden dimension of the text-encoder is 768.

For fine-tuning the super-resolution model, we
obtain low-resolution images by down-sampling
high-resolution images using the bi-cubic kernel
function. Different from the original two-stage
training process, we directly employ the pre-trained
ESRGAN model as an initialization for the gener-
ator and the discriminator. We use Adam with
β1 = 0.9, β2 = 0.999. The batch size is set to 16
and the learning rate is set to 1× 10−4 and halved
at [50k, 100k, 200k, 300k] iterations.

During model training, all the experiments are
conducted on a single server with 8 NVIDIA A100
GPUs (80G).

C.1 Hyper-parameters of Model
Architectures

Table 5 shows the model sizes of all the experiment
models, including Stable Diffusion, Stable Diffu-
sion 2, Taiyi Diffusion and our Rapid Diffusion

model. Compared with the other three baselines,
Rapid diffusion is the most compact model with
better performance in our scenarios.

Model #Params
Stable Diffusion 1.37B
Stable Diffusion 2 1.29B
Taiyi Diffusion 1.35B
Rapid Diffusion 1.06B

Table 5: The numbers of parameters of all the experi-
ment models.

We further provide the detailed settings of the
entire Rapid Diffusion model pipelines in Table 6.

#Params Value
CLIP Text Encoder
context length 32
vocab size 21128
embedding dimension 768
layers 12
width 768
heads 12
Autoencoder
z-channel 4
resolution 256
in-channels 3
out-channels 3
channels 128
channel multiplier 1,2,4,4
U-Net
image size 32
in-channels 4
out-channels 4
model channels 320
attention resolutions 4,2,1
channel multiplier 1,2,4,4
context dimension 768
number heads 8
transformer depth 1
ESRGAN-Generator
type RRDBNet
in-channels 3
out-channels 3
hidden features 64
number blocks 23
grow channels 32
ESRGAN-Discriminator
type UNetDiscriminatorSN
in-channels 3
hidden features 64
skip connection True

Table 6: Detailed parameter settings of Rapid Diffusion.
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小炒黄牛肉
Stir-fried yellow beef

停车坐爱枫林晚，霜叶红于二月花
Stop the coach to enjoy the maple 

woods; frosty leaves are redder than 
the February flowers.

(ancient Chinese poem)

爆款冬季女士羽绒服
Best selling women's winter down 

jackets

Stable Diffusion Stable Diffusion 2 Taiyi Diffusion Rapid Diffusion

E-commerce

Chinese
Painting

Cuisine

18K玫瑰金女款时尚黄金项链
18K rose gold women's fashion 

golden necklace

夏季新款运动帆布鞋
New summer sports canvas shoes

千山鸟飞绝，万径人踪灭
From hill to hill no bird in flight, 
from path to path no man in sight.

(ancient Chinese poem)

接天莲叶无穷碧，映日荷花别样红
Green lotus leaves outspread as far as 

boundless sky, pink lotus blossoms 
take from sunshine a new dye.

(ancient Chinese poem)

鱼香肉丝米饭
Yuxiang shredded pork and rice

大杯烧仙草奶茶
Big cup of milk tea with grass jelly

Figure 5: Some examples of generated images from Rapid Diffusion and baseline models.304
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Abstract

E-commerce websites (e.g. Amazon) have a
plethora of structured and unstructured infor-
mation (text and images) present on the product
pages. Sellers often either don’t label or misla-
bel values of the attributes (e.g. color, size etc.)
for their products. Automatically identifying
these attribute values from an eCommerce prod-
uct page that contains both text and images is a
challenging task, especially when the attribute
value is not explicitly mentioned in the catalog.
In this paper, we present a scalable solution for
this problem where we pose attribute extraction
problem as a question-answering task, which
we solve using MXT, consisting of three key
components: (i) MAG (Multimodal Adapta-
tion Gate), (ii) Xception network, and (iii) T5
encoder-decoder. Our system consists of a gen-
erative model that generates attribute-values
for a given product by using both textual and
visual characteristics (e.g. images) of the prod-
uct. We show that our system is capable of
handling zero-shot attribute prediction (when
attribute value is not seen in training data) and
value-absent prediction (when attribute value
is not mentioned in the text) which are miss-
ing in traditional classification-based and NER-
based models respectively. We have trained
our models using distant supervision, remov-
ing dependency on human labeling, thus mak-
ing them practical for real-world applications.
With this framework, we are able to train a
single model for 1000s of (product-type, at-
tribute) pairs, thus reducing the overhead of
training and maintaining separate models. Ex-
tensive experiments on two real world datasets
show that our framework improves the abso-
lute recall@90P by 10.16% and 6.9% from the
existing state of the art models. In a popular e-
∗This work was done while author was in International

Machine Learning team.

commerce store, we have deployed our models
for 1000s of (product-type, attribute) pairs.

1 Introduction

E-commerce websites (e.g. Amazon, Alibaba) have
a very wide catalog of products. Seller provided
catalog of these products contain both textual in-
formation and product images. Apart from this
unstructured information, they also provide struc-
tured information about the products such as color,
material, size, etc. This information can be rep-
resented in terms of attribute-value pairs (see fig-
ure 1). In this paper, we will use the terms at-
tribute and attribute-name interchangeably. The
value of attribute will be referred as attribute-value.
However, while listing the products, sellers rarely
specify all attribute values or mistakenly fill incor-
rect values. These attribute values may or may
not be present in the unstructured textual product
information. Extracting/inferring the missing at-
tribute values from the unstructured textual product
information (and images) can improve the catalog
quality, thereby improving the customer experience
(again, refer figure 1 for an example of attribute
extraction).

Figure 1: Illustration of attribute extraction problem

PT-attribute: A PT-attribute is defined as a pair
of (product-type, attribute), where product-type (or
PT) is a broad category of products (e.g. "shoes",
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"dress", "laptops" etc.) and attribute is an attribute-
name (e.g. "color", "size" etc.). Typically, attribute-
extraction is done at the granularity of PT-attribute
(e.g. "extract the value of color attribute of shoe").

A good attribute extraction system has follow-
ing desirable properties: (1) Scalability: A single
model should handle multiple PT-attributes so that
there is no need to train a separate model for ev-
ery PT-attribute combination, (2) Multi-modality:
Model should be able to extract attributes from
multiple modalities like text, image, video etc., (3)
Zero-shot inference: Model should be able to ex-
tract attribute values that were not seen in the train-
ing data, and (4) Value-absent inference: Model
should extract attribute values that are not explicitly
mentioned in the text on the product page (but can
be inferred from image or some other reasoning).

Related Work: Extensive research has been
done to build attribute extraction models, which
can be categorized as extractive, predictive, or gen-
erative. Extractive models pose this problem as a
Named Entity Recognition (NER) problem (Zheng
et al., 2018). Some of the recent work in this space
include LATEX-numeric (Mehta et al., 2021), and
MQMRC (Shrimal et al., 2022b) . However, these
models don’t do value-absent inference. Moreover,
these are text based models and do not use product
images. Predictive models are the classifier mod-
els that take text (and image) as input and predict
the attribute values. CMA-CLIP (Liu et al., 2021)
is a recent multi-modal predictive framework for
predicting attribute values. However, these mod-
els can’t do zero-shot inference as the prediction
comes from the predefined classes only. Generative
models pose this problem as an answer generation
task given a question and context. Here, the ques-
tion is the attribute name, and context is the product
data (text and image), and the answer is the attribute
value. For example, Roy et. al. (Roy et al., 2021)
presented a generative framework to generate at-
tribute values using product’s text data. PAM (Lin
et al., 2021) introduced a multi-modal generative
framework, however their model requires (i) Train-
ing encoder and decoder from scratch, (ii) Manu-
ally modifying the vocabulary of outputs (attribute-
values) for different product-types.

In this paper, we present MXT, a multimodal
generative framework to solve the attribute extrac-
tion problem, that consists of three key components:
(i) MAG (Multimodal Adaptation Gate) (Rahman
et al., 2020b): a fusion framework to combine tex-

tual and visual embeddings, that enables generat-
ing image-aware textual embeddings, (ii) Xception
network (Chollet, 2017): an image encoder that
generates attribute-aware visual embeddings, and
(iii) T5 encoder-decoder (Raffel et al., 2020). The
models trained by our generative framework are
scalable as a single model is trained on multiple
PT-attributes, thus reducing the overhead of train-
ing and maintaining separate models. We remove
the disadvantages of PAM model by (i) finetuning
a strong pre-trained language model (T5 (Raffel
et al., 2020)) and thus leveraging its text generation
ability, (ii) providing product-type in the input it-
self so that output distribution is automatically con-
ditioned on the PT. Moreover, our trained model
satisfies all of the 4 desirable properties that were
mentioned previously.

Our system formulates the attribute extraction
problem as a question-answering problem, where
(a) question is the attribute name (e.g. "color"),
(b) textual context comprises of a concatenation of
product-type (e.g. "shirt"), and textual description
of the product, (c) visual context comprises product
image, and (d) answer is the attribute value for the
attribute specified in the question. Our model archi-
tecture consists of (i) a T5 encoder to encode the
question and textual context, (ii) encoding visual
context into product specific embeddings through a
pre-trained ResNet-152 model (He et al., 2016) and
fusing them with T5’s textual embeddings using a
multimodal adaptation gate (MAG) (Rahman et al.,
2020a), (iii) encoding visual context into attribute
(e.g. "sleeves", "collar" etc.) specific embeddings
through Xception model (Chollet, 2017) and fusing
them with previously fused embeddings through a
dot product attention layer (Yu et al., 2021), and
finally (iv) generating the attribute values through
T5 decoder. The detailed architecture of our system
is shown in figure 2.

In section 2, we explain our proposed model
MXT. In section 3, we compare our model’s perfor-
mance with NER-Based MQMRC (Shrimal et al.,
2022a) along with a popular multi-modal model
CMA-CLIP (Liu et al., 2021) and show that on
same precision, we outperform them (on recall)
for a majority of the attributes. We also show an
ablation study justifying the proposal of different
components in MXT. Finally, we also show that
our model is able to perform zero-shot and value-
absent inference. Our trained models using MXT
framework are being used to extract attributes for
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over 12000 PT-attributes in a popular e-commerce
store, and have extracted more than 150MM at-
tribute values.

2 MXT Framework

Given a set of product-types (PTs) P =
{p1, p2, . . . , pm} and attribute-names A =
{a1, a2, . . . , an}, we define MXTP,A as a multi-
PT, multi-attribute, and multi-modal generative
model that is trained on PT-attributes from (P,A),
and can be used to generate attribute value for any
product in the trained PT-attribute set. The overall
architecture of our model is described in figure 2.

2.1 Problem Formulation

We formulate the problem of attribute extraction as
the problem of answer generation given a question
and a context. Here question is the attribute-name
a ∈ A, and context consists of textual description,
product type p ∈ P and image of the product. All
of these are used to extract attribute values. The an-
swer generated from the model is the attribute value
for a. As shown in figure 2, our model architecture
mainly consists of 3 components: (a) Image-aware
Text encoder, (b) Attribute-aware Text-Image Fu-
sion, and (c) Text decoder. Below, we describe
each component in detail.

2.2 Image-aware Text encoder

We use T5 (Raffel et al., 2020), which is a trans-
former (Vaswani et al., 2017) based text only
Seq2Seq pretrained language model. It includes a
bidirectional encoder and a unidirectional (forward
only) decoder. In this section, we give an overview
of T5’s encoder and details of its usage for our task.
Our text input consists of (i) attribute-name (e.g.
"color"), (ii) product-type (e.g. "dress"), and (iii)
textual description of product. In our QnA format,
the question consists of attribute-name, and con-
text consists of concatenation of product-type and
textual description of the product. We tokenize
both question and context and create a single in-
put sequence of tokens. This input sequence x is
then fed to an embedding and positional encoding
layer to create input features Temb ∈ RN×d, where
N is the sequence length and d is the feature di-
mension. These input text embeddings are then
fused with Multimodal Adaptation Gate (MAG)
as described in Rehman et. al. (Rahman et al.,
2020b) to generate image aware text embeddings.
Due to MAG, the internal representation of words

(at any transformer layer) is shifted conditioned
on visual modalities. This attachment essentially
puts words into a different semantic space, which
is conditioned on the visual inputs. For e.g., the
meaning of the word “ripple” changes according to
the visual input soap image or paper image. With
soap, the meaning is “free and clear”, while with
paper, the meaning is “wavy pattern” as shown
in figure 3. This module shifts the meaning of
“ripple” according to visual modality. Since T5
is pretrained model and can understand only text
embeddings it is required to fuse the visual embed-
dings (VR ∈ Rd) with text before feeding it to T5
Encoder rather than feeding the visual embeddings
along with text. Specifically, in MAG, for each in-
put token i of the sequence, we first learn a gating
vector gi using concatenated embeddings of T i

emb

and VR: gi = RELU(Wg[T
i
emb;VR] + bg). This

gating vector highlights the relevant information
in visual modality conditioned on the input tex-
tual vector. We then create an image displacement
vector Hi by multiplying VR with each token’s gat-
ing vector gi: Hi = gi · (WHVR) + bH . Finally,
we shift the embedding T i

emb by the weighted dis-
placement vector Hi to get the multimodal vector
T̂ i
emb = T i

emb + α ∗ Hi. In this equation, α =

min(
||T i

emb||2
||Hi||2 ∗β, 1), where β is a hyper-parameter

whose value is taken as it is from the paper (Rah-
man et al., 2020b). This is then passed through a
layer normalization followed by a dropout layer to
get the final fused embedding FMAG from MAG
module, where F i

MAG = dropout(LN(T̂ i
emb)).

This fused output is then fed to the T5 encoder.
The encoder consists of L encoder-layers. It takes
FMAG as input gives Tenc as output. Equation 1
shows the encoding done by kth layer. Here SA is
the multi-head self attention layer, Res is the resid-
ual connection, LN is the layer normalization, and
FC is a fully connected layer.

T k
enc = LN(Res(FC(LN(Res(SA(T k−1

enc ))))))
(1)

2.3 Attribute-aware Text-Image Fusion
Xception(Chollet, 2017) model performs depth-
wise (or channel-wise) separable convolutions, i.e.,
it applies separate filters for different color chan-
nels. We propose another fusion layer based on
the Xception network. The advantage of using this
is that it can readily learn the visual features con-
ditioned on the attribute type. For example, for
the attribute “sleeve type” of a dress, it can iden-
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Figure 2: Architecture of MXT. (a) Generates image-aware text embeddings by fusing image embeddings (obtained
from ResNet-152) and text embeddings of the input text (concatenation of attribute name, product type, and
textual description of the product), (b) Image-aware text embeddings are then attended with region specific visual
embeddings obtained from separable convolution of Xception Network, which in turn passes only the attribute
specific embeddings to the decoder (c) Fused embeddings are passed through T5 decoder to generate attribute value.

Figure 3: Shift in text embeddings (e.g. "ripple") after
applying MAG with visual embeddings

tify the channel/color difference between sleeves
of dress and skin of the person, thus identifying
whether sleeve is half or full. We then fuse the
text and image embeddings using multi-head cross
attention. As shown in figure 2(b), a product im-
age has several regions of interest, for different
attributes like "neck style" and "sleeve type". This
region specific embeddings are learnt by separa-
ble convolutions in Xception which is then at-
tended with text embeddings to arrive at attribute
aware text embeddings. Now given text embedding
Tenc ∈ RN×d and image embedding VX ∈ R1×x

(from MXT), we create an attribute-aware fused
embedding FA ∈ RN×d (having same dimension
as of text embedding). This fused embedding is
created through a multi-head cross attention mod-
ule, that applies cross attention between textual and
visual embeddings as shown in figure 2. This fu-
sion has an advantage that for an attribute, different
attention scores can be learned for each object of

an image, allowing attending to specific portions
of the product image conditioned on the attribute
name in the question. For example, for the product
type "shirt" and attribute "sleeve-type", we may
want to concentrate only on the portions of the
image where sleeves are visible.

2.4 Text Decoder

We use T5’s unidirectional decoder to output the at-
tribute values. The input to the decoder is the fused
embedding vector FA =< F 1

A, F
2
A, . . . , F

N
A >.

The decoder iteratively attends to previously gen-
erated tokens y<j (via self-attention) and FA

(via cross-attention), then predicts the proba-
bility of future text tokens Pθ(yj |y<j , x, I) =
Dec(y<j , FA). For attribute generation, we fine-
tune our model parameters θ by minimizing the
negative log-likelihood of label text y tokens
given input text x and image I: LGEN

θ =

−∑|y|
j=1 logPθ(yj |y<j , x, I).

3 Experimental Setup & Results

30PT Dataset: We picked 30 product types (PTs)
consisting of total 38 unique attributes from a pop-
ular e-commerce store. For each product in the
dataset, we have textual information and image.
The dataset has 569k and 84k products in train and
validation data across 30 PTs. Our test data con-
sists of products from two product types with a
total of 73k products.
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PT #top
attributes

CMA-
CLIP

MXT

Multi-PT Single PT Without-
Xception

Without-
MAG

A
K=5 +6.16% +22.33% +19.58% +21.82% +20.93%

K=10 +6.70% +16.89% +15.50% +15.60% +15.19%

K=15 +1.81% +13.23% +11.64% +10.67% +10.45%

B
K=5 +8.34% +16.63% +12.86% +13.94% +13.58%

K=10 +18.46% +24.98% +22.46% +22.81% +22.55%

K=15 +11.72% +18.51% +15.50% +16.28% +15.68%

PT MXT

A +15.56%

B -1.47%

C -7.89%

D +9.98%

E +13.23%

Table 1: Left: Improvement in Recall@90P% of CMA-CLIP and MXT (with different ablation studies) over NER-
MQMRC on 30PT datasetE-commerce5PT dataset. Right: Improvement in F1-score of MXT over NER-MQMRC
on E-commerce5PT dataset

We evaluated MXT against two state of the art
methods on attribute extraction: (1) CMA-CLIP:
A multi-task classifier that uses CLIP (Radford
et al., 2021) for learning multi-modal embeddings
of products followed by using two types of cross-
modality attentions: (a) sequence-wise attention
to capture relation between individual text tokens
and image features, and (b) modality-wise atten-
tion to capture weightage of text and image fea-
tures relative to each downstream task, (2) NER-
MQMRC: This framework (Shrimal et al., 2022b)
poses Named Entity Recognition (NER) problem
as Multi Question Machine Reading Comprehen-
sion (MQMRC) task. This is the state of the art
model for the text-based attribute extraction task.
In this model, given the text description of a prod-
uct (context), they give attribute names as multiple
questions to their BERT based MRC architecture,
which finds span of each attribute value answer
from the context.

Left table in the figure 1 compares the re-
call@90P% of the three models. We show the
performance on top-5, top-10 and top-15 attributes
(by number of products in which they are present.
We can see that MXT outperforms MQMRC and
CMA-CLIP on both product types.

E-commerce5PT: This is a benchmark dataset
from NER-MQMRC paper (Shrimal et al., 2022b).
We take a subset of this dataset (removing numer-
ical attributes) consisting of 22 product-attributes
across 5 product types. This is a benchmark dataset
for NER based models since all attribute values
are present in the text in this dataset. The dataset
has 273,345 and 4,259 products in train and test
data respectively. We compare average F1 scores
(averaged across attributes for each product type)
of MXT model with NER-MQMRC on this dataset

where our model outperforms NER-MQMRC on
16/22 attributes. Right table in the figure 1 shows
the average F1-scores (across attributes in each
product type) of MXT and NER-MQMRC models.

3.1 Ablation Study

We show three ablation studies on 30PT dataset that
justify our choices in the MXT architecture. Left
table in the figure 1 shows the results of these stud-
ies. (a) Scalability: We show that our proposed
framework is highly scalable. For that, we com-
pute Recall@90P% of the MXT model trained on
individual PTs. The results show that (i) our model
leverages cross-PT information during training, (ii)
we don’t need to train separate model for each PT,
which makes model monitoring and refreshing eas-
ier in the production, (b) Xception network: We
show that Xception network helps concentrating
on certain attribute features. For this, we removed
the Xception network from our architecture and
trained and evaluated the model, (c) MAG: We re-
placed MAG with simple concatenation of text and
image embeddings in MXT. We can see in the table
that each of our ablation model under-performs the
MXT model trained on 30PTs, thus justifying our
design choices.

3.2 Zero-shot Inference and Value-absent
Inference

Most existing methods for attribute extraction face
two challenges: (i) Zero-shot inference: All the
predictive models (classification-based models) can
predict attribute values only from a predefined set
of values that are seen in the training data. They
are unable to do zero-shot inference i.e. they can’t
predict an attribute value if it is not seen in the train-
ing data, (ii) Value-absent inference: All NER-
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based models can extract values only which are
mentioned in the text data i.e. if an attribute value
is absent in the input text, they can’t extract that
value. Our generative model solves both of these
challenges. For example, in the E-commerce5PT
dataset, there are a total of 8289 product-attribute
pairs in the test data, out of which 970 product-
attribute pairs were not seen in the training data,
from which our model correctly generated 124
product-attribute pairs. For example, given a prod-
uct of product-type "dress" with title "Tahari ASL
Women’s Sleeveless Ruched Neck Dress with Hi
Lo Skirt", our model generated the value "Ruched
Neck" for the attribute "neck style". Here the value
"Ruched Neck" was absent from the training data.
Similarly, for the "dress" product shown in fig-
ure 1 , our model generated the value "mini" for
the attribute "item length" (by inferring it from the
image) even when this value is not mentioned in
the product text(thus solving the second challenge).

3.3 Training & Inference Details

We conducted training for each model over a span
of 20 epochs, employing a batch size of 4. The
training process was performed using distributed
multi-GPU training across 8 V-100 Nvidia GPUs,
each equipped with 16GB of memory. For text
encoder and decoder, we finetune the pretrained
t5-base 1 checkpoint. We obtained ResNet-based
image embeddings using a pretrained ResNet-152,
specifically with one embedding assigned to each
image. 2. During training, we employed the Adam
optimizer with learning rate of 5e−5 and warmup
ratio of 0.1. We chose the checkpoint having best
validation loss. For inference, we used greedy
search to generate attribute values.

4 Deployment

In a popular e-commerce store, we have deployed
MXT for 6 English speaking markets covering
>10K PT-attributes and have extracted >150MM
attribute values.
Design Choices: In popular e-commerce stores,
usually there are more than 100K PT-attributes
across various markets. Earlier models like NER-
MQMRC or CMA-CLIP could be trained only for
few 100s of PT-attributes. NER-MQMRC (Shrimal

1The t5-base checkpoint is available at https://
huggingface.co/transformers/model_doc/t5.html

2https://download.pytorch.org/models/
resnet152-b121ed2d.pth

et al., 2022a) architecture only allowed one prod-
uct type in one model training, while CMA-CLIP
couldn’t scale beyond few 100s of PT-attribute
pairs due to network explosion (as they had to cre-
ate an output layer for each of the different attribute
value). This had serious issues of monitoring, re-
freshing and maintaining the quality of models.
Our prompt-based approach in MXT allows us to
train a single model checkpoint for any number of
PT-attribute pairs.
Practical Challenges: We faced several challenges
during building and deploying the model. One of
the biggest challenge was lack of normalized at-
tribute values. Since we were relying on the dis-
tantly supervised training data from the catalog,
there were multiple junk values. Normalizing these
values is challenging without the support of anno-
tations. To overcome this problem, we used some
heuristic matches to merge similar values. We also
trimmed the tail attribute values to remove the junk
values further. The second major challenge was to
evaluate the model and find the threshold for every
PAC to achieve the desired precision. Since we had
>10K PT-attributes, even if we annotate 300 sam-
ples per PT-attribute, it leads to 3MM annotations,
which is not feasible. For that, we evaluated the
model automatically using the catalog data. Since
the catalog data can be noisy, we checked other
things like whether the predicted value is present in
text, whether the attribute should allow zero-shot
prediction etc. Based on these checks, we decided
the required precision accordingly.

5 Conclusion & Future Work

In this paper, we presented MXT, a large scale
multi-modal product attribute generation system to
extract product attributes from the products listed
in eCommerce stores. Our model infers the at-
tribute values using both textual and visual infor-
mation present on the product pages. We intro-
duced a novel architecture comprising a T5 based
encoder and decoder along with two fusion layers
to fuse text and image embeddings. We showed our
model can beat the existing state of the art extrac-
tive as well as predictive models on the benchmark
datasets. Our model is scalable to multiple prod-
uct types and countries by just specifying them in
the input text prompt. We further showed that our
model is able to perform zero-shot inference, as
well as it can generate attribute values not present
in the text. There are several future directions to ex-
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plore which can further improve the performance
of our model. First, we would like to create an
ensemble of NER-based and generative models
so that we can leverage the power of extraction
based models which work very well for numerical
attributes (e.g. size, length etc.). Second, our cur-
rent approach does not use relational information
among the products. Since similar products can
have common attribute values, we can use graph
based approaches to capture that relational infor-
mation. Specifically, we can approach the attribute
extraction problem through either link prediction
or node classification. In the former method, we
aim to predict missing links between products and
their attributes. Alternatively, the latter approach
involves using similarity between product features,
including text, images, and co-viewing informa-
tion, to determine graph edges for classification of
product nodes.

6 Limitations

In this section, we discuss some of the limita-
tions of our current model architecture: (1) Non-
English locales: Currently in our experiments, we
have trained and evaluated models only on English
datasets. Building models on non-English locales
is the direction for future work, (2) Use of pre-
trained tokenizer: The T5’s tokenizer in our mod-
els has been pre-trained on open-domain datasets,
and its vocabulary misses out on e-commerce spe-
cific terms. For example, the current tokenizer
of T5 tokenizes the phrase “skater midi dress” as
[“sk”, “a”, “ter”, “mid”, “I”, “dress”]. Here, the
meaning of words “skater” and “midi” is not cap-
tured in the tokenized text. We believe that we
can overcome this limitation by pre-training T5
on e-commerce data which would help tokenizer
understanding and tokenizing the e-commerce spe-
cific terms more correctly.
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Abstract
The categorization of massive e-Commerce
data is a crucial, well-studied task, which is
prevalent in industrial settings. In this work, we
aim to improve an existing product categoriza-
tion model that is already in use by a major web
company, serving multiple applications. At its
core, the product categorization model is a text
classification model that takes a product title as
an input and outputs the most suitable category
out of thousands of available candidates. Upon
a closer inspection, we found inconsistencies in
the labeling of similar items. For example, mi-
nor modifications of the product title pertaining
to colors or measurements majorly impacted
the model’s output. This phenomenon can neg-
atively affect downstream recommendation or
search applications, leading to a sub-optimal
user experience.

To address this issue, we propose a new frame-
work for consistent text categorization. Our
goal is to improve the model’s consistency
while maintaining its production-level perfor-
mance. We use a semi-supervised approach
for data augmentation and presents two differ-
ent methods for utilizing unlabeled samples.
One method relies directly on existing catalogs,
while the other uses a generative model. We
compare the pros and cons of each approach
and present our experimental results.

1 Introduction

In the last two decades, widespread use of e-
commerce platforms such as Amazon and eBay has
contributed to a substantial growth in online retail.
Such platforms rely on both explicit and implicit
product features in order to deliver a satisfying user
experience. There, the inferred product category is
typically a crucial signal for many application such
as browsing, search and recommendation.

We focus on improving an existing product cate-
gorization model, we refer to as ’the categorizer’,

∗The work was carried out during an internship at Yahoo
Research.

that is employed by our company for fast catego-
rization of billions of items on a daily basis. It
classifies e-commerce items, such as products or
deals, based on a predefined hierarchy of categories,
namely GPT (Google Product Taxonomy). Given
a product title, the categorizer assigns the most ap-
propriate label in the taxonomy. The model itself
is highly scalable and effective, so it is well-suited
for settings with large and rapidly growing item
catalogs. In our company, the categorizer is used
as a standalone component in various e-commerce
related services, such as recommendation, search,
and ad ranking.

A recent examination of the categorizer’s output
revealed inconsistencies in the labeling of similar
items. It was evident that in some cases small
variations in product titles, such as those relating
to colors or measurements, significantly affect the
categorizer’s output. This inconsistency negatively
impacts search and recommendation algorithms
that rely on the inferred category, leading to a poor
user experience.

The concept of consistency in NLP tasks has
been studied in various research works, including
robustness to paraphrasing (Elazar et al., 2021) and
robustness to adversarial attacks (Jin et al., 2020;
Wang et al., 2020). Other works relate consistency
issues with the misuse of spurious features during
the learning phase (Arjovsky et al., 2019; Veitch
et al., 2021; Wang et al., 2021).

When examining the performance of the catego-
rizer in terms of accuracy alone, the inconsistency
issue may be overlooked. But, since many rec-
ommendation pipelines depend on the output of
the product categorizer, an inconsistent model can
have severe implications on the user experience. In
most cases, the differences include returning the
parent category or a sibling category, rather than a
completely different category path.

To tackle this inconsistency problem, we use
different data augmentation techniques and enrich
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the training data with item versioning, leading to a
more consistent model. Data augmentation for im-
proving various NLP tasks has been widely studied
and surveyed (Shorten et al., 2021), and particularly
in the context of consistency (Xie et al., 2020). Gen-
erating such data, both manually (Kaushik et al.,
2019) and automatically (Rizos et al., 2019; Bari
et al., 2020; Kumar et al., 2020), has shown to
contribute to the robustness of learnt models in dif-
ferent settings. We chose to use data augmentation,
without changing the current architecture of the
already-in-use product categorizer for two main
reasons. First, for scalability reasons, any change
in the architecture might degrade the model’s abil-
ity to infer the categories of billions of items per
day. Second, maintaining the current model archi-
tecture expedites the productization process and
requires only minimal engineering effort.

This work defines a new framework, Consistent
Semi-Supervised Learning (Consistent-SSL), for
consistent text categorization in the context of
e-commerce (Section 2). We use an unlabeled clus-
tered dataset as a source of legit item versioning.
The dataset is derived from product catalogs, and
includes clusters of different versions of items. We
present two different methods to utilize this unla-
beled clustered data: a self-training method and
a generative approach (Section 3). We describe the
datasets and the experimental framework we use
for the evaluation of the proposed methods (Section
4). Finally, we detail results, showing an improve-
ment in the consistency rate of 4-10% above the
baseline model, and discuss the advantages and
weaknesses of each method (Section 5).

2 Consistent Semi-Supervised Learning

We now formalize our notion of consistent classi-
fication and introduce the settings for consistent
Semi-Supervised Learning (consistent-SSL).

2.1 Consistent Classification

In order to formalize consistent classification, let
X be our set of items, and Y = [c] for c ∈ N, be a
final set of labels. Each item x ∈ X corresponds to
a label y ∈ Y .

Additionally, let V : X → X , be a non-
deterministic perturbation function which trans-
forms an item from one version x to another
x̂. For example, if x = "blue T-shirt small size",
x̂ ∼ V(x) could be x̂ = "black T-shirt small size"
or x̂ = "blue T-shirt large size". We assume that

the perturbation function is label-preserving, i.e.
x, x̂ ∼ V(x) share the same label y. Let p(x, y)
be a joint distribution over items and labels and
p(x) the marginal distribution over items. The goal
of consistent classification is to learn a classifier
f : X → Y from a class F with a dual objective: a
high expected accuracy, i.e. high expected value
of the indicator that an item x ∈ X is labeled by f
to its correct label y:

E
(x,y)∼p(x,y)

[1 {f(x) = y}] (1)

and a high expected consistency, which we define
as:

E
x∼p(x),
x̂∼V(x)

[1 {f(x) = f(x̂)}] (2)

i.e. the expected value of the indicator of two items
x, x̂ ∼ V(x) to be transformed by f to the same
label. Therefore, the dual objective of f can be
formalized as:

min
f

E
(x,y)∼p(x,y),

x̂∼V(x)

[1 {f(x) ̸= y}+ λ1 {f(x) ̸= f(x̂)}]

(3)
where λ ∈ R controlling the balance between the
accuracy loss and the consistency loss.

Note that there could be a trad-off between the
accuracy objective and the consistency one. A
model that is trained to disregard specific features
like color or size would be more consistent but
as those features might be informative in order to
partition between some categories this could harm
the overall accuracy. For example, if the color pur-
ple is more likely to appear in sport shoes than
in evening shoes, a model that is trained to give
less weight to colors may have a harder time distin-
guishing between sports and evening shoes while
being more robust to changes in colors and thus
more consistent.

2.2 Consistent-SSL Settings

In SSL settings, we are given labeled data DL =
{(xi, yi)}li=1, which is assumed to be sampled i.i.d.
from p, and unlabeled data DU = {xi}l+u

i=l+1 possi-
bly sampled from another distribution q. We tune a
classifier f using both DL and DU .

This work extends the standard SSL settings to
consistent-SSL. The unlabeled dataDU is clustered
with respect to the perturbation function V , i.e. it
consists of u sets of items Xi, each set contains
ki versions x̂

(i)
j ∼ V(xi) of the same item xi.
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More formally, DU = {Xi}l+u
i=l+1, where, Xi ={

x̂
(i)
j

}ki

j=1
, and x̂

(i)
j ∼ V(xi) for j = 1 . . . ki.

The goal in consistent-SSL is to learn a classifier
f that optimizes the objective in Eq. (3) given DL

and DU . Note that V is unknown, and only appears
indirectly in the DU samples.

3 Methods

We present two methods for consistent-SSL, Con-
sistent Self Training (CST) and Consistent Gener-
ative Augmentation (CGA). Both methods utilize
the unlabeled samples from DU for data augmenta-
tion. In each method we create an augmented set
Daug usingDU and train a classifier f onDL∪Daug.
This approach optimizes indirectly the objective of
Eq. (3), as we add additional training samples Daug
that consists of different versions of the same items.
The goal is to expose f to a more diverse set of item
versions in training time, making it more robust to
minor changes.

Let us review our approach using an illustrative
example. Consider a dataset that contains clothing
items. Assuming thatDL, which was sampled from
the distribution p, exhibits a spurious correlation
between color of an item to its category (e.g. most
of the black items are coats and most of the red
items are dresses), then a classifier that was trained
solely on DL will tend to rely on the color of the
item when it predicts its category. When applying
the model, V could change the items’ colors and
therefore the classifier will not be consistent (e.g. if
V transforms a black coat to a red one, the classifier
might predict different categories). But, assuming
the training data includes an item in multiple colors
(e.g. black coat, red coat, blue coat, etc.), with the
same label (e.g. Coats & Jackets), then a model
that is trained on such data will not relate a specific
color to a specific label. Such a model will be
encouraged to ignore the color of an item when
it predicts the label, and therefore will be more
robust to changes in color. Note that colors here
are only an example of one kind of versioning of
items. Spurious features in the data could be related
to colors, measurements, models, materials etc.

3.1 Consistent Self Training (CST)
In our first method, named Consistent Self Training
(CST), we add samples from DU to the labeled
training data DL and a new classifier f is trained
on the unified dataset. Since the data of DU is
unlabeled, we perform a variant of self training

Figure 1: Illustration of CST pipeline. A base model
f base is trained on the labeled training set DL. It is then
used to assign pseudo labels for the unlabeled samples
from DU to create Daug. A classifier f is trained on
DL ∪ Daug.

(Lee et al., 2013; Arazo et al., 2020; Triguero et al.,
2015). To make sure that Daug is consistent, it’s
important that each item set Xi is assigned with
the same pseudo-label ỹi. To calculate ỹi, we first
train a base model fbase on the labeled dataDL and
then use it to choose a single pseudo-label for each
example set Xi, i.e. ỹi ← h(Xi; f

base), where h
is a function that given a set of examples and a
classifier fbase returns a single label. For example,
h could return the prediction of fbase that got the
highest confidence score, or the most frequent
prediction across Xi. The function h is an hyper-
parameter of the method. Finally, a classifier f is
trained over DL ∪ Daug. Figure 1 shows an illus-
tration of the CST pipeline, and a full description
of the algorithm is presented in Appendix A.

3.2 Consistent Generative Augmentation
(CGA)

We now detail our second method, we refer
to as Consistent Generative Augmentation
(CGA). Here, we train a generative model M
on DU in order to learn the perturbation func-
tion V , and we use it to generate new samples
based on the instances of DL. For this end,
an item-pair dataset of different versions of
items, Dpairs is constructed from DU ; Dpairs ={(

x̂
(i)
j , x̂

(i)
j′

) ∣∣∣l + 1 ≤ i ≤ l + u
∧
j, j′ ∈ [ki]

}
.

We trainM on Dpairs to generate the second item
given the first of each pair, while maintaining its
label. Note that x̂(i)j′ ∼ V(x̂

(i)
j ). Next, we generate

an augmentation set Daug using DL by applying
M on each (x, y) ∈ DL to get a new labeled
sample (x̂, y). Note that we can useM to generate
multiple new samples from a single sample x.
After creating Daug, we filter it using a score
function s : X × X → [0, 1] that aims to measure
the quality of the generated x̂ with respect to its
origin x. Additionally, we remove low quality
samples from Daug according to some predefined
filter threshold T . Finally, we train a classifier f
over DL ∪Daug. Both s and T are hyper-parameter

315



of the CGA method. Figure 2 shows an illustration
of the CGA pipeline, and a full description of the
algorithm is presented in Appendix B.

Figure 2: Illustration of CGA pipeline. A generative
modelM is trained on pairs of items from the catalog
dataset DU . Then it is used to augment the labeled
training set DL. The generated samples are filtered
using a score function s. A classifier f is trained on
DL ∪ Daug.

3.3 Methods Comparison
We compare the two proposed methods by three
main aspects: the quality of the augmented prod-
uct titles, the quality of the labels and the overall
distribution.

Considering the quality of the product titles, the
CST method utilizes the unlabeled clustered data
itself and thus provides product titles that are sam-
pled from the real world and captures information
about the true perturbation function V . In con-
trast, the CGA method uses generated product ti-
tles, which may not represent V accurately. Re-
garding the label quality, the CGA method utilizes
labels that are taken directly from the ground truth
labels of the original items and thus of a better
quality than the ones of the CST method, which
uses calculated "pseudo-labels". With respect to
the distribution of the data, the generated samples
in the CGA method are taken directly from the dis-
tribution p of the labeled training set. In contrast, in
CST the unlabeled data comes from a distribution
q that is different than p, thus biasing the overall
distribution of the training set.

The quality of the product titles in the augmen-
tation set impacts the consistency and corollary the
overall optimization of the model f . On the other
hand, both the quality of the labels and the distribu-
tion of the augmentation set influence the accuracy
which again affects the overall optimization of f .

4 Empirical Evaluation

We now present our experimental results. We note
that in all of our experiments, we use a model that is
based on FastText (Joulin et al., 2016) architecture,
and has an hierarchical structure. This specific
model is found to perform well on our task, as it

takes into account the hierarchical structure nature
of the labels. For more details, see Appendix C.

4.1 Train And Test Data

We conduct experiments using an e-commerce text
classification dataset in order to empirically evalu-
ate our methods. The items in this dataset are titles
of commercial products, represented as free text,
and the labels are the items’ categories. The la-
bels are taken from a hierarchic products taxonomy
with 4 levels of granularity {Li}4i=1. For example,
consider a product title such as "Greenies Breath
Buster Bites Fresh Flavor Grain-Free Dental Dog
Treats, 1.2-oz bag", and its corresponding category
Animals & Pet Supplies > Pet Supplies > Dog Sup-
plies > Dog Treats.

Our dataset contains 184k labeled samples with
3k different labels, and additional 1.3M unlabeled
samples. The labeled samples correspond to
real-world commerce related items, and are labeled
by human annotators. The unlabeled samples
are retrieved from a product catalog of multiple
retailers that includes grouping information. Each
group contains multiple versions of the same item,
e.g. "L.A. Girl, Matte Lipstick, Snuggle, 0.10 oz"
and "L.A. Girl, Matte Lipstick, Bite Me, 0.10 oz".
There are 363k different groups in the unlabeled
catalog data, each group contains 2 to 192 items,
and the average group size is 3.6. We note that
the labeled and unlabeled data sets originate from
different sources. This results in different category
representation between the labeled and unlabeled
data, e.g. several categories in the unlabeled data
have low coverage compared to the labeled one.

Our experiments measure both accuracy and con-
sistency of the tested models. To this end, we create
two different test sets:

Accuracy test. The accuracy test is a standard
test set that consists of labeled samples, on which
we compute the weighted average F1 score of a
given model. The accuracy test contains 23k la-
beled examples sampled uniformly at random from
the labeled data. We use the remaining 161k la-
beled samples as the DL.

Consistency test. The consistency test consist
of pairs of item titles (x̂1, x̂2), each pair includes
two different versions of the same item. We define
the consistency rate of a given model f to be the
percentage of the (x̂1, x̂2) pairs from the consis-
tency test that receive the same label prediction by
f , i.e. f(x̂1) = f(x̂2). We create this test set by
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(a) distribution of DL (b) distribution of complete DU (c) distribution of sub sampled DU

Figure 3: Distributions of the different versions of the data for CST. The labels are presented in L1 granularity.

(a) different T , fixed N (b) fixed T , different N (c) different T , different N

Figure 4: CGA experiments results.

sampling 9k groups from the unlabeled data, then
by sampling one pair of different titles (x̂1, x̂2)
from each group. Since the consistency rate of a
model on this test should be an empirical evalu-
ation of its consistency as defined in Eq. (2), the
distribution of the data in this test should be similar
to the distribution of the data in the accuracy test.
To mitigate some of the discrepancy between the
unlabeled and labeled datasets, we sub-sample the
unlabeled dataset according to the L1 distribution
of the labeled set. We use the unlabeled samples
that are not selected for the consistency test as DU

for training.

4.2 Experimental Framework

This subsection describes in detail the configuration
of the proposed methods, and the baselines that
were used for comparison.

4.2.1 Baselines

For the first Baseline model, we use the existing
product categorization model, trained using only
DL. The second baseline is a ColorsSizes-Blind
(CS-Blind) model. We train it using DL alone,
while omitting colors and measurements from the
data. We use predefined dictionaries of colors (e.g.
"red", "white") and measurements (e.g. "small",
"XL") to identify appearances in item titles and
replace them with constant tokens, one for colors
and another for sizes. This baseline simulates an

attempt to tackle the consistency issue by manually
identifying few spurious features in the data and
hiding them from the model to make it consistent.

4.2.2 CST
We evaluate CST with two configurations, each
utilizes a different version of DU : 1) the complete
data (354k groups with 1.3M samples), and 2) sub-
sampled (SS) data, sampled to be as similar as
possible to DL’s histogram (yielding 70k groups
with 250k samples). Fig. 3 provides an illustrations
of those histograms. In order to assign each group
of items with one single label, as described earlier,
we choose the category with the highest confidence
score within the group provided by fbase 1.

4.2.3 CGA
In order to empirically evaluate CGA, we construct
Dpairs from DU as described earlier and use a T5
model (Raffel et al., 2020) (a large Transformer
based seq-2-seq model) asM, which we fine-tune
on Dpairs for three epochs.

The impact of the filtering score function. We
examine two alternatives of the score function s; 1)
BLEU score (Papineni et al., 2002) and 2) a cosine-
similarity score that was computed on the out-
put vectors of an all-MinmLM-L6-V2 model (All-
MinmLM-L6-V2). This model maps sentences to

1Preliminary experiments showed that this method outper-
formed majority voting.
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Original Product Title Generated Product Title
BLEU
score

Polo Ralph Lauren Big Boys Fleece Hoodie Polo Ralph Lauren Little Boys Fleece Hoodie 0.795
Puff Sleeve T Shirt Ivory Frost T Shirt 0.135
Blackberries Prepacked 6 Oz Cranberry Prepacked 6 Oz 0.724
Sunnies Face Airblush in Peached Sunnies Face Airblush in Peached Wall Poster

With Pushpins
0.482

Artistry Signature Color Long-wearing Eye
Pencil Brown

Artistry Signature Color Long-wearing Eye
Pencil Black

0.850

Table 1: Examples of pairs of original product titles and their corresponding generated ones, together with the
computed BLEU score of the pairs.

a 384 dimensional dense vector space and can be
used for tasks such as clustering or semantic search.
We compute both scores for each pair of original
product title and a corresponding generated title.
Preliminary experiments show that filtering by the
BLEU score results in a more consistent model. For
the rest of the experiments we use the BLEU score
as s. Table 1 contains some examples of generated
titles and their corresponding BLEU score.

Using the T5 model, we generate 8 samples
based on each sample from DL, and compute the s
score of each of those samples. We then perform
three experiments to evaluate the impact of the fil-
tering threshold T and the augmentation size N .
Results are presented in Figure 4.

The impact of the filtering threshold. For each
threshold value T ∈ {0.5, 0.6, 0.7, 0.8}, we filter
the generated samples. Then, we sub-sample a
fixed amount of N = 200k samples into Daug and
train a model on DL ∪ Daug. As T gets higher, the
consistency rate of the trained model increases as
well, which indicates the need of a filtering phase.

The impact of the augmentation size. We filter
the generated samples using a fixed T = 0.7. Out
of the remaining generated samples, we sub-sample
N ∈ {50k, 100k, 200k, 400k} samples into Daug,
and train a model on DL ∪Daug. As N gets higher,
the consistency rate of the trained model increases
as well, which indicates that adding more generated
samples leads to a more consistent model.

The trade off between filtering threshold and
augmentation size. We filter the generated sam-
ples using different thresholds, and add the filtered
samples to Daug without sub-sampling them. We
train a model on DL ∪ Daug. Evidently, the consis-
tency rate of the trained model increases when T
gets higher but decreases for T = 0.8. As T gets
higher, the filtered samples are of better quality but

there are fewer of them, reaching an optimal trade
off at T = 0.7. Thus, for the rest of the paper, we
use T = 0.7.

5 Results and Discussion

We train each examined model 5 times and present
the mean score of the achieved results. For each
model, we compare the weighted average F1 score
for the accuracy test and the consistency rate of the
consistency test. Table 2 presents our results.

The ColorsSizes-Blind model performs similarly
to the baseline for both measurements; the slight
changes are within the std range, thus making the
differences insignificant compared to the baseline
model. This is an evidence that the item versioning
is more complex than just changing the size or
color and includes title rephrasing concepts that are
hard to tackle in a trivial way.

In addition, the results show that both of the
CST versions, complete and sub-sampled, achieve
significantly higher consistency rates than the base-
line, gaining lifts of 10% and 7% respectively. On
the other hand, both of the methods yield lower
F1 scores, reducing lift by 1.65% and 0.6% respec-
tively. A possible cause of the degradation in the
F1 score is the differences between the data distri-
bution of DL, which we sample the accuracy test
from, and the data distribution ofDU which we use
to augment our training data. The fact that using
the sub-sampled version of DU mitigates most of
this degradation supports this claim. An additional
cause could be the usage of the noisy pseudo-labels
in the augmented set instead of the unavailable
ground truth labels. Note that the amount of added
data using DU to tackle consistency is bigger than
the original DL, which aims to tackle accuracy.
The focus in terms of the training shifts from an
accuracy problem to a consistency problem, thus
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Method F1 F1 lift
Cnst.
rate

Cnst.
lift

Baseline 0.665 - 0.738 -
CS-Blind 0.664 -0.13% 0.740 0.26%
CST-Full 0.654 -1.65% 0.813 10.12%
CST-SS 0.661 -0.6% 0.790 6.99%
CGA 0.667 0.28% 0.771 4.46%

Table 2: Categorization results, indicating the mean.
Lift values are all compared to the Baseline model. The
std ranges between 0.001 to 0.002 for F1 and 0.001 to
0.009 for the consistency rate.

hurting the F1 of the new model. The higher consis-
tency rate of CST-Full compared to the CST-Sub-
Sampled can be explained by a difference of more
than 1M samples in the size of Daug.

Similarly, the CGA method also improves the
consistency rate, gaining lift of 4.5%, and doesn’t
significantly affect the accuracy score. As men-
tioned, we use a threshold T = 0.7, thus including
440k samples in Daug. These additional samples
correspond to a similar distribution as DL.The im-
provement in both the consistency and the accu-
racy indicates that the generative model is able to
correctly learn the real-world item versioning and
produce a significant amount of data with high ac-
curacy labels and the same distribution as in the
accuracy test.

Summarizing the above, our experiments high-
light three key factors in the consistent-SSL frame-
work: 1) Scale - enriching the learning set with
more examples of item versioning increases the
consistency. 2) Quality - augmenting the data with
real-world samples is better than using generative
ones in term of performance. 3) Distribution - pre-
serving the original distribution in the augmented
set is important for maintaining good accuracy.

6 Conclusions

This work presents a new framework for consistent
text categorization in the context of e-Commerce.
The aim of this work is to improve a product catego-
rization model that serves various services of a ma-
jor web company. We address the labeling inconsis-
tency issues found in the categorization of similar
items, leading to poor user experience in related rec-
ommendation and search applications. Our frame-
work utilizes an unlabeled clustered dataset in two
ways: a self-training approach and a generative-
augmentation method. We performed a thorough

investigation of the two approaches and investi-
gated several factors that majorly influence their
performance. Our experimental results suggest that
both proposed methods improve the consistency
rate by 4% to 10%, while maintaining the accuracy
of the current production model. Finally, our study
illustrates the trade off between the quality and the
scale of the augmented dataset, and its impact on
the performance of both methods.

Limitations

Our work has several limitations. First, our con-
sistency study focuses on our used categoriza-
tion model and was conducted on only one spe-
cific dataset. It might not perfectly generalize to
other problems. Second, the proposed solutions
are based solely on data augmentation without
changing the current production settings and model.
Other approaches such as changing the model’s ob-
jective function to take consistency into account
might also benefit the solution. Lastly, in terms of
user perspective, while our solution show signifi-
cant improvement over the baseline, inconsisten-
cies are still visible.

Ethics Statement

This NLP research study was designed and carried
out with strict adherence to ethical principles and
guidelines. The study was reviewed and approved
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searchers take full responsibility for ensuring the
ethical conduct of this study and are committed to
upholding the highest standards of ethical research
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A CST Algorithm

Algorithm 1 CST

Input: labeled training data DL = {(xi, yi)}li=1,
unlabeled data DU = {Xi}l+u

i=l+1, Xi ={
x̂
(i)
j

}ki

j=1
, set function h

1: train a base classifier fbase on DL

2: Daug ← ∅
3: for i = l + 1, l + 2, . . . , l + u do
4: ỹi ← h(Xi; f

base)

5: Daug ← Daug ∪
{
(x̂

(i)
j , ỹi)

}ki

j=1

6: train f on DL ∪ Daug
7: return f

B CGA Algorithm

Algorithm 2 CGA

Input: labeled training data DL = {(xi, yi)}li=1,
unlabeled data DU = {X̂i}l+u

i=l+1, Xi ={
x̂
(i)
j

}ki

j=1
, number of samples to generate

from each original sample n, score function
s, threshold T

1: Dpairs =
{(

x̂
(i)
j , x̂

(i)
j′

) ∣∣∣l + 1 ≤ i ≤ l + u
∧
j, j′ ∈ [ki]

}

2: train a generative modelM on Dpairs
3: Daug ← ∅
4: for i = 1, 2, . . . , l do
5: generate n new samples x̂(i)1 , . . . , x̂

(i)
n withM and xi

6: for j = 1, 2, . . . , n do
7: if s(x̂(i)j , xi) ≥ T

8: then Daug ← Daug ∪
{
(x̂

(i)
j , yi)

}

9: train f on DL ∪ Daug
10: return f

C Hierarchical-FastText

Hierarchical-FastText (HFT) consist of 4 FastText
models {fi}4i=1. In training time, each fi is trained
over the same data samples, but with different gran-
ularity of the labels: f1 is trained using only the
first level of the labels L1, f2 is trained using the
first and second levels of the labels L1 and L2 and
so on. In inference time, we use an iterative method,
were at each iteration i for i = 1, . . . , 4 we predict
the label using fi. If fi agrees with fi−1 on the
label until the level Li−1, the process continues,

otherwise it returns the prediction of fi−1. If the
process gets to the end, i.e. f4 agrees with f3 on
the label until L3, it returns the prediction of f4 as
the final prediction.
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Abstract

We present an efficient and reliable approach
to Natural Language Querying (NLQ) on
databases (DB) which is not based on text-to-
SQL type semantic parsing. Our approach sim-
plifies the NLQ on structured data problem to
the following "bread and butter" NLP tasks: (a)
Domain classification, for choosing which DB
table to query, whether the question is out-of-
scope (b) Multi-head slot/entity extraction (SE)
to extract the field criteria and other attributes
such as its role (filter, sort etc) from the raw
text and (c) Slot value disambiguation (SVD)
to resolve/normalize raw spans from SE to for-
mat suitable to query a DB. This is a general
purpose, DB language agnostic approach and
the output can be used to query any DB and re-
turn results to the user. Also each of these tasks
is extremely well studied, mature, easier to col-
lect data for and enables better error analysis by
tracing problems to specific components when
something goes wrong.

1 Introduction

With the recent revolution in information retrieval
and question answering, powered by deep learning
models, asking queries in a more natural question
format e.g. who scored the most points in the NBA
back in 2018? have become commonplace instead
of keyword based searches. More recently models
like ChatGPT 1 directly generate responses instead
of just highlighting text in webpages.
A large majority of work in large scale QA sys-
tems has been on documentQA (Chen et al., 2017;
Karpukhin et al., 2020), wherein both the query
and the retrieval unit is of text modality. Here,
both query and documents are generally embed-
ded into a vector representation (generally in the
same D-dimensional space) and fast maximum in-
ner product search is used to retrieve the top doc-
uments. Similar approaches have been used for

1Equal contribution.
1https://openai.com/blog/chatgpt/

image search (Dubey, 2021).
However, when the information to be retrieved is
in structured form i.e. table or group of tables in
a database; dual embedding approaches are less
common. Here, semantic parsing i.e. translating
the natural language query into a formal meaning
representation e.g. SQL are more common. This
has inspired several text-to-SQL approaches Zhong
et al. (2017); Yu et al. (2018); Finegan-Dollak et al.
(2018); Iyer et al. (2017). Yu et al. (2018) in-
troduced Spider, a large-scale complex and cross-
domain semantic parsing and text-to-SQL dataset.
Models are evaluated on (clause level) exact match
between the gold SQL query and the generated one,
and the execution accuracy.
However, building such models have many prac-
tical constraints, perhaps the most important one
being collection of domain specific annotated data.
Annotators not only need to be well versed in the
query language but also have detailed knowledge
of the comprehensive database schema, table struc-
ture etc. It is one thing to know a unique list of
all the tables and/or columns in a database, but
it is even more demanding to remember which
schema or table they belong to and have to refer to
this everytime to manually write an output query
(even with templates provided). Additionally, if
the schema/table structure changes with columns
added/dropped/moved from one table, then some
queries might become invalid. Furthermore, the
models themselves can suffer from some of the
common issues associated with auto-regressive gen-
erative models such as repetition, hallucination etc.
Although these can to some extent be mitigated
via decoding constraints, the process is still cum-
bersome and the gains in most practical use cases
might not be worth it. Finally, if the DB type is
changed and uses some other query language then
annotating newer data might require re-training the
annotation team and even existing queries would
need to be translated into the second language,
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which might be difficult for certain language pairs.
An alternative end-to-end approach first introduced
in Herzig et al. (2020) has also been explored in
the literature where the question and flattened table
are jointly embedded into a transformer model and
trained using masked language modeling (MLM)
to table cells. While this approach can work well
on smaller tables and documents with text and em-
bedded tables, it would be difficult to scale to large
tables and have even bigger controllable generation
issues than semantic parsing approaches.
In this paper, our primary contribution is proposing
a simple yet powerful and configurable framework
for a reliable question answering system on struc-
tured data by converting the multi-domain NLQ
on DB problem to (1) domain prediction (2) multi-
head slot tagging (3) raw slot value resolution or
disambiguation and (4) deterministic algorithm to
convert the outputs of the above three into a query
for given database. For (1) and (2) we use elemen-
tal NLP models for text classification and token
classification (like NER), respectively. For slot
value resolution we propose a suite of methods de-
pending on the data type of the slot extracted and
intrinsic nature of the problem (lexical vs seman-
tic similarity; contextual vs non-contextual resolu-
tions). This approach allows us to annotate data
much faster as annotators only need to know the
names of the tables and unique set of columns
across all tables. Furthermore, we can also indi-
vidually test, improve and troubleshoot potential
defects to particular components of the pipeline as
required; something critical in real world produc-
tion systems. We posit that our approach can be
applicable to a large majority of business use cases
where the natural language queries being asked do
not need overly complex sub-querying and joins.
Our method is capable of scaling to when the num-
ber of total unique columns (which is equivalent to
slot types) is of the order of tens to low hundreds
and same for number of tables/domains. In terms
of queries we are able to theoretically support se-
lection, filtering, sorting and aggregation and joins
(in a limited capacity as described below).

2 Methodology

2.1 Problem Setting

Our goal is to retrieve data from a structured
database using natural language questions. Given a
user question X and a database with tables T and set
of all unique columns C, our framework must be ca-

pable of converting it to a database query Q. There
must be no dependence on the type of DB (SQL
or NoSQL) and we must support select, filter, sort
and aggregate clauses and do simple joins. Further-
more, our framework must be reliable enough to
apply in a real world commercial setting; scalable
to be trained on large quantities of annotated data;
easy to gather annotated data without annotators
needing to know the query language or full schema
details; and engineers and scientists who build the
E2E system must be able to troubleshoot issues
quickly. Finally, while adding unique new tables
and columns can necessitate need for re-training,
editing the schema via dropping, renaming or mov-
ing tables or columns should require no re-training
of the NLU model components (this can be handled
in the query formulation function).
In the rest of this paper we demonstrate our ap-
proach via an example use case, which is currently
deployed in production, of querying two customer
transactions tables with eight unique columns. For
our particular use case only filtering of data is
needed and joins are not needed. However, we will
also explain how the framework can be generalized
and adapted to other settings.

2.2 Slot Domain Model

The first two steps of our four step framework
consists of a domain classification and slot extrac-
tion model, which corresponds to (multi-class or
multi-label) text classification and multi-head token
classification task, respectively. Depending on the
use case these can be separate models or they can
be done together using multi-task learning (MTL).
There is typically positive transfer between these
tasks and so unless there is good reason otherwise,
we propose using a model trained with multi-task
learning (MTL) for these tasks.
Functionally, the domain model would be used to
(a) select the appropriate table/collection relevant
to the user query and (b) detect when a given query
is unanswerable from the available structured data.
Having this module is advisable as even in the triv-
ial case of just one table, deciding whether the
query is answerable or not is practically crucial in
a real world setting where users are free to type in
anything. For joining multiple tables, the simpler
multi-class text classification problem would be-
come a multi-label classification problem with two
heads: one for the table name and another for the
type of join (inner, outer, full, or none), with the
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Figure 1: An overview of the proposed Natural Language Querying (NLQ) system. NLQ passes the user input to
the NLU engine which is responsible for identifying the appropriate domain and slots in a user utterance, following
which it disambiguates slot values using the different approaches mentioned in 2.3 and A.1. The disambiguated slot
values are used by NLQ to formulate the database query and return the results to the user

join done on common column names.
The next component is multi-head slot/entity ex-
traction which is framed as a multi head slot tag-
ging task which must predict the type, role and
function of a given span. The first head which we
call the type head, predicts a label that corresponds
to the column/field name. The second head pre-
dicts the role of that slot span e.g. filter, sort_asc,
sort_desc, aggregation, selection. The function
head predicts the aggregation function i.e. count,
sum, avg etc. The slot type and aggregation func-
tion (which can be None for no aggregation) is
always multi-class for a given span, but the role
is multi-label as the same column can appear in
multiple roles e.g. filter and sort or in select and
group by.
For example, in the query "what were my purchases
at Amazon in the last month"; purchases, Amazon
and last month are all slots with role filter only.
However, for "what were my largest purchases at
Amazon in the last month", Amazon and last month
are still only role of filter, while purchases has
both filter and sort_desc.

2.2.1 Model Architecture
For our purposes we utilize the DIET model pro-
posed by Bunk et al. (2020) whose implementation
is available in the Rasa open source library 2. Each
head for the domain and slot prediction has a loss
value associated with it. Softmax cross entropy loss
is used for multi-class heads while sigmoid loss is
used for multi-label heads. The total training loss
is the sum of all of the individual head losses; with
differentiated weighting possible if one or more
heads requires it. We use balanced mini-batching
to handle class imbalance and utilize data augmen-
tation to mitigate most underrepresented classes.
In our use case we use both sparse and dense fea-
ture inputs to DIET. Sparse features include word
and character n-gram counts while the dense fea-
tures are sentence level ([CLS]) and token level
features from a BERT (Devlin et al., 2018) pre-
trained language model, with in-domain masked
language modeling (MLM) pre-training. Since we
use sub-word tokenization, we employ a general
purpose custom token to span level label aggrega-
tion and conflict resolution also.

2https://github.com/RasaHQ/rasa
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Furthermore, since we utilize MTL for our use case,
it is possible that the slot type i.e. column and do-
main i.e. table might not match as our model does
not have direct knowledge of the schema. One way
to solve for this would be adding heuristic rules
in the query formulation step to handle conflicts,
say based on confidence, which is what we use.
Another method is not to use a joint model, rather
first predict the domain (which can map to a table)
and then train separate slot models for each.

2.3 Slot Value Disambiguation

Slot values extracted from the tagging model are
not fit to be used directly for querying a database. A
user might enter "last week" which needs to be re-
solved to an actual date range. They can enter free
form text with spelling mistakes or abbreviations
such as "amzn" instead of "Amazon.com, Inc"; or
in more complex cases use totally different values
than enumerated names or codes in the DB e.g. say
"coffee" whereas DB only has a category called
"Beverages" or say "hotel" while the DB has value
of "Hospitality". Therefore, the free form slot value
from a user input must be resolved to a compatible
value (generally from some knowledge base) be-
fore querying the DB. This task is commonly called
named entity disambiguation (NED) or entity link-
ing when we are in the context of Named Entity
Recognition (NER). However, since in our case this
is not only needed for named entities but broader
types and values e.g. dates, numbers, amounts, ex-
pense categories etc we call this more generic step
Slot Value Disambiguation (SVD).
Our solution for SVD utilizes the prediction of the
type head of the upstream slot tagger to determine
the type of disambiguation treatment applied to the
slot value. At a high level, we categorize the type
of slot values into four distinct categories.

2.3.1 Numeric slot values queried with strict
equality only

Numeric slots like account numbers, phone num-
bers, SSNs etc. which generally have distinct val-
ues which require an exact (or partial e.g. last 4
digits of credit card) lookup into the database, but
are never queried as ranges. For example, phone
numbers are not generally queried as a range and
hence such slot types will be used with minimal
post processing for lookup against the database,
such as removing dashes, commas or other non-
numeric characters as needed.

2.3.2 Numeric slot values queried with
equality or ranges

Other numeric values e.g. date, amounts, percent-
ages, area etc are potentially queryable using equal-
ity (e.g. "6/1") or ranges (e.g. "6/1-9/2") and they
also need to be normalized e.g. a dollar amount
could be represented as "$2,000" or "2000 dollars"
or "two thousand" etc. To normalize above into a
standard format we utilize Duckling 3, 4. Duckling
is an open-source probabilistic parser to detect slots
like dates, times, amounts and durations. It then
resolves these to standard values using rule based
methods. We found the entity extraction quality of
Duckling quite inferior to our in-domain trained
DIET model. Therefore, unlike typical usage of
duckling for both slot/entity extraction and disam-
biguation, we use it only for disambiguation and
provide the type of slot derived from the upstream
tagger (DIET). To handle potentially conflicting
DIET and Duckling types we supplement our SVD
with a set of curated rules, see Table 4 for full de-
tails. Additionally, our solution supplements Duck-
ling’s rules by accounting for many more variations
which are seen in natural language utterances, see
appendix A.1 for more details.

2.3.3 Non-contextual Textual SVD
For remaining types of slot values, SVD involves
mapping the raw value in the slot to one from a pro-
vided knowledge base (KB). The mapping can be
non-contextual (takes only slot value span as input)
or contextual (needs the entire utterance context for
the mapping).
For non-contextual SVD, our approach relies on
the comparing the similarity between the raw span
extracted from tagger against a finite set 5 of po-
tential resolution candidates to determine the final
normalized value which is used for querying the
database. We create a Resolution to Candidates
(R2C) mapping from the knowledge base contain-
ing final enumerated resolutions and a correspond-
ing list of candidates. The raw text span from the
tagger is compared against the candidate list and
the top-N candidates are selected which are then
mapped back to the final resolution using the in-
verse R2C mapping. The candidates are chosen via
a semi-automated approach. If available a subject
matter expert can provide a seed list of candidates,

3https://github.com/treble-ai/pyduckling
4https://github.com/facebook/duckling
5finite but need not be static i.e. the list of final resolutions

can change without necessarily needing re-training
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Figure 2: Overview of the candidate re-ranking and slot
value disambiguation (SVD) process

however this is completely optional and might not
be conducive in larger scale settings which is why
we have a multi-stage automated approach to gen-
erate additional candidates as follows:

• Most frequent span values annotated to a par-
ticular resolution from training utterances are
added as candidates to the R2C mapping.

• Sometimes, the same raw span might be
mapped to more than one resolution. If we
are in a multi-label setting, this is OK. How-
ever, for the multi-class case we tie break by
choosing the resolution for which a particular
span was most often assigned to by human
annotators.

• We also generate synonyms for selected can-
didates by augmenting them with character
perturbations and also derive candidate phrase
synonyms by choosing top N most similar
phrases from their phrase vector representa-
tions. Which phrase vector representation is a
design choice; but we use Trask et al. (2015)
in our experiments and its associated library 6

We use lexical and semantic similarity between
slot values and candidates from the R2C mapping.
More technical details on these techniques are pro-
vided in appendix A.2.

2.3.4 Contextual Textual SVD
For certain types of slot disambiguation, the nor-
malized value might be different according to the
context e.g. "apple" in "dining table purchased at
the apple store" should resolve to "Big Apple An-
tiques", a furniture store and not "Apple Inc". Here,

6https://github.com/explosion/sense2vec

the context is essential for the slot value disam-
biguation as only the word "apple" is not enough.
Finally, contextual and non-contextual SVD meth-
ods can be ensembled using either unconditional
(use all models) or conditional (only trigger other
models if first one is less confident) as described in
appendix A.3.

2.4 Query formulation
Given the table name and resolved slot values,
types and roles; we can write a deterministic func-
tion to generate the query. The filtering clause can
get slightly more complicated because filters can
be connected by AND, OR conditions and can have
ranges or equality conditions. We posit that AND
conditions are generally be among inter-column
filters and OR for intra-column filtering e.g. "how
many stocks of Apple and Amazon did I purchase
last week". Even though the user says "Apple and
Amazon", the intent is to filter on both compa-
nies, the (SQL) query actually would be something
like where (company_name="Apple Inc" OR com-
pany_name=Amazon.com Inc) AND (date between
<week_start> AND <week_end>). Additionally,
notice how we separated filter conditions on equal-
ity from ranges and this (also needed for SVD)
must be done by defining the type of the given
column.

3 Experimental Details

3.1 Dataset
Statistics for the domain and slot/entity types on
our internal dataset are provided in Table 1. We
aim to support searches on two large database ta-
bles in the retail and investment space. We add a
third domain other which serves as a background
class that bypasses the remaining pipeline for un-
supported queries. There are eight slot types in our
dataset.

3.2 Data augmentation for Domain Slot
Model

In order to mitigate high imbalance and improve
robustness we used various data augmentations.

• Backtranslation: Generated semantically sim-
ilar utterance reformulations by translating
an utterance to another language and then
translating it back to English. We then an-
notated these new utterances for missing slot
tags using combination of exact match and cer-
tain user defined transformation functions for
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Domains W/o Augmentation Augmented

retail 9871 67548
investments 541 1807

other 3150 15763

Slots W/o Augmentation Augmented

acc num 313 1909
amounts 5800 56931

dates 4096 22914
merchant 2557 17147

prod. name 649 4448
prod. type 1482 7356

spend category 1463 6229
txn type 6564 35439

Table 1: Training Dataset statistics

perturbed slot/entity spans e.g. "$50" would
match against "50 dollars".

• Paraphrase generation: Same idea as back-
translation, we used the Pegasus model
(Zhang et al., 2019), fine-tuned for paraphras-
ing, 7 to generate semantically similar utter-
ances to a source utterance. We used similar
post-processing described in back-translation.

• Keyboard perturbations: Introduce character
errors in words based on the proximity of char-
acter keys on the keyboard, based on a proba-
bility.

• Swap perturbations: Characters within a word
swapped, based on a probability.

• Deletion perturbations: Deleting randomly
chosen characters from word(s) in an utter-
ance, based on a probability.

• Short utterances: Generate short utterances,
given longer ones using keyword models, slot
span only utterances and extracting slot spans
with minimally required context words around
them as standalone utterances.

• Math operators for amount and date ranges:
Utterances with just operators along with
amount and date slots e.g. <$30.

3.3 Setup

We trained our model for 400 epochs, using a bal-
anced mini-batching strategy with batch sizes in-
creasing linearly from 32 to 64. We used an initial
learning rater of 0.001 for our optimizer, and used

7https://huggingface.co/tuner007/pegasus_
paraphrase

Slots P R F1

account number 86.09 100.00 92.52
amounts 98.13 99.25 98.68

dates 95.36 95.08 95.19
merchant 79.93 90.61 84.93

product name 90.29 95.64 92.89
product type 93.03 92.86 92.94

spending category 84.64 82.75 83.68
txn type 94.53 95.09 94.81

micro avg 92.53 95.17 93.83
macro avg 92.41 94.78 93.51

weighted avg 92.77 95.17 93.91

Table 2: Slot tagging results for different slot types

cross-entropy loss during training. Our domain and
slot tagging DIET model had 4 transformer layers
and was also trained using MLM along with do-
main and slot prediction. Along with this we used
a dropout rate of 0.2 for the encoder and applied
separate dropout to the sparse input layers but none
to the attention.

3.4 Results

In this section we present the results from the differ-
ent parts of our pipeline. Table 3 reports the perfor-
mance results of our approach for the components
of domain classification, slot value tagging and
disambiguation. The domain classification model
achieves an F1 score of 89.64, with the maximum
confusion occuring with the "other" class. At in-
ference this is mitigated by ignoring "other" pre-
dictions if some slot span is predicted. Table 2
shows the performance of our approach on slot tag-
ging. Because, dates and amount type slots are
subdivided into equality, from (start of range) and
to (end of range), their slot tagging results are an
average of the three subtypes. Overall our pipeline
is able to recognize relevant slots with avg F1 score
of 93.91. Finally, our SVD results can be found
in Table 3, as evident from the table, our model
performs the best on product type SVD (99.27 F1
score) followed by amounts and transaction type-
97% accuracy and 92.58 F1 score. For dates and
amounts SVD, since we do not map them to classes
i.e. the ground truths are point-in-time standardized
dates and amounts values, we can only calculate
accuracy to measure their performance for them.

4 Conclusion

We presented a simple, yet effective and highly con-
figurable framework for natural language querying
on structured database tables which circumvents
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Task P R F1 Acc.

Domain class. 89.6 90.0 89.6
Slot tagging 92.8 95.2 93.9

SVD (txn type) 93.0 94.8 92.6
SVD (prod. type) 98.6 100.0 99.3
SVD (prod. name) 90.8 90.1 88.9

SVD (spend category) 93.8 87.5 89.2
SVD (dates) 88

SVD (amounts) 97

Table 3: Performance on domain classification, slot
tagging and SVD

some of the practical constraints of generative text-
to-SQL approaches. While our approach might
not be all-encompassing especially w.r.t. complex
sub-query generation, we empirically see that these
queries are often required only in limited type of ap-
plications. Furthermore, the performance of SOTA
text-to-SQL approaches today is anyway quite far
away from the performance expected for commer-
cial applications and are therefore also effectively
limited to simpler queries anyway. In this setting,
we posit that our approach could provide a way to
quickly collect labelled data and scale to multiple
domains and/or database tables while also provid-
ing much more interpretability and controllability.

Limitations

As mentioned previously, the main limitation of
our approach is that, very complex joins e.g. se-
quences of joins of different types and joining on
columns which have different names in different
tables is not straightforward in our approach. One
extension to possibly handle this would be using a
decoder to generate the complex sequence of joins
and column relations. Note, however that this does
not complete revert to the constrained sequence-to-
sequence decoding as in semantic parsing, as its
not for the entire query but only the table joins or
the from section of a SQL statement. The select,
where, order by and group by can still be done via
our approach and we could also continue to use
MTL.
The second limitation of our approach is sub-
querying capability which currently we do not have
a strategy to handle queries which would require
them. However, this is notoriously hard even for
existing SOTA semantic parsing algorithms e.g. the
current leader on the Spider dataset Graphix-T5-3B
Li et al. (2023) achieves only 50 Exact Match (EM)
accuracy on the extra hard Spider data subset and
61.5 on the Hard subset. Overall this model has a

75.6 EM.
Finally, the last limitation is related to comparative
evaluation. We did not benchmark our method di-
rectly against SOTA semantic parsing text-to-SQL
methods on open-source datasets such as Spider.
This was because to do this we would have needed
to re-annotate Spider or any other dataset with
domain, slot extraction and resolution labels and
given the size of open source datasets this was in-
feasible given available annotation resources. How-
ever, we can say that on private datasets and use
cases, this approach was tested against some ex-
isting text-to-SQL approaches and was very com-
petitive especially as we could collect a lot more
data for these simpler tasks and also were able to
train, evaluate, troubleshoot and improve different
components individually.

Ethics Statement

All the work done and discussed in this paper meets
and upholds the ACL Code of Ethics.

References
Tanja Bunk, Daksh Varshneya, Vladimir Vlasov, and

Alan Nichol. 2020. Diet: Lightweight language un-
derstanding for dialogue systems. arXiv preprint
arXiv:2004.09936.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Shiv Ram Dubey. 2021. A decade survey of content
based image retrieval using deep learning. IEEE
Transactions on Circuits and Systems for Video Tech-
nology, 32(5):2687–2704.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology. arXiv preprint
arXiv:1806.09029.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng,
David Simcha, Felix Chern, and Sanjiv Kumar. 2020.
Accelerating large-scale inference with anisotropic
vector quantization. In International Conference on
Machine Learning.

Jonathan Herzig, Paweł Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. arXiv preprint arXiv:2004.02349.

328

https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1908.10396


Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback.
arXiv preprint arXiv:1704.08760.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023. Graphix-t5: Mixing pre-
trained transformers with graph-aware layers for text-
to-sql parsing. arXiv preprint arXiv:2301.07507.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Andrew Trask, Phil Michalak, and John Liu. 2015.
sense2vec-a fast and accurate method for word sense
disambiguation in neural word embeddings. arXiv
preprint arXiv:1511.06388.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-
marking zero-shot text classification: Datasets, eval-
uation and entailment approach. arXiv preprint
arXiv:1909.00161.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

A Appendix

A.1 Supplemental rules for numerical range
SVD using duckling

Since we use duckling just for disambiguation of
already extracted slots and not how its typically
used i.e. extraction and disambiguation with the
entire utterance provided, we need to (1) resolve
for certain potential conflicts between slot type
from our trained DIET slot tagger and duckling’s
internal slot type, see Table 4 which contains one
such example for date ranges; (2) help improve
duckling’s resolution performance using certain
pre and post-processing rules as below:

• Merging separate slot spans split by the slot
tagger. Example: "August 2nd to 10th" are
tagged by the slot tagging model as [August
2nd](date_from) to [10th](date_to). In this
case duckling would fail to resolve "10th" as
"10th of August". Hence we merge two oth-
erwise independent spans to [August 2nd to
10th] from which duckling is capable of re-
solving the range correctly.

• Use regex patterns to map diverse date formats
e.g. "mm/ddyy", "mmdd/yy", "mmddyy",
"mm/ddyyyy", "mmdd/yyyy", "mmddyyyy"
to standardized "mm/dd/yyyy" to make SVD
process output more consistent and reliable.

• Combining multiple duckling outputs during
post-processing e.g. for "May 2021", duck-
ling does not understand it is May in the year
2021 but splits "May" and "2021" and detects
it as May of the current year (say 2022) and
the entire year of 2021, which is incorrect.
Our custom post-processing corrects the reso-
lution.

• For dates add "st", "nd", "rd", "th" etc. as
applicable e.g. "1" -> "1st" to help duckling
resolution.

• Prepend extracted amount span values without
$ sign with a dollar sign, Ex. "$30 to 200" or
"$30-200" can only be interpreted correctly
when $ is prepended to 200.

A.2 Non-contextual SVD methods
A.2.1 Lexical ranking
This ranking approach relies on the lexical similar-
ity between the raw slot value in the tagged span
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Duckling Slot from_date to_date

value date_eq from_date to_date
value date_from from_date None
value date_to None to_date

from date_eq from_date None
from date_from from_date None
from date_to from_date None

to date_eq None to_date
to date_from None to_date
to date_to None to_date

from+to date_eq from_date to_date
from+to date_from from_date to_date
from+to date_to from_date to_date

Table 4: Dataset statistics pre and post augmentation

and the candidates of the slot type R2C mapping to
identify the most relevant candidate. The top candi-
date(s) are used to lookup the inverse R2C mapping
to obtain the final resolutions. For example, con-
sider the phrase "starbks crd" in a user utterance
of the form, "my purchases using my starbks crd",
needs to be resolved to the name "Starbucks Card".
We might not be able to come up with all possi-
ble variations, mis-spellings, abbreviations, or syn-
onyms of Starbucks and so we collect these from
our training data (SVD ground truth labels tagged
by human annotators) to improve our R2C map-
ping for recall. Then we use fuzzy string matching,
specifically a length normalized Levenshtein dis-
tance, but other string similarity metrics could also
work.
The advantages of this Fuzzy string match approach
are:

• Relatively quick to execute, especially when
the candidate list is small.

• Needed when slot values and resolutions are
more lexically than semantically similar e.g.
people names, company names etc.

The disadvantages are as follows:

• If words have similar meaning but widely dif-
fer in characters (e.g. beverages and coffee)
then simple string similarity is insufficient.
While this can be somewhat mitigated by R2C
augmentations from labelled data, one needs
large enough dataset for this.

• Does not use context surrounding the word
hence cannot be utilized for contextual meth-
ods.

A.2.2 Semantic similarity
With certain spans it might be preferable to use
semantic information for disambiguation. For the
coffee and beverage example above, using lexical
similarity would lead to poor results if "coffee"
was not a candidate in the R2C mapping for "bev-
erage". The most intuitive method to do this is by
training a phrase embedding model using classical
techniques like word2vec (Mikolov et al., 2013b,a)
or GloVe (Pennington et al., 2014) and calculating
a phrase similarity of the raw slot value embedding
against the candidates in the inverse R2C mapping.
For very large number of candidates where pair-
wise similarity is impractical, approximate nearest
neighbor (ANN) algorithms like FAISS (Johnson
et al., 2019) or ScaNN (Guo et al., 2020) could be
used.
Finally, we also experimented with an alternative
zero-shot approach which can be used in certain
cases. Based on the method put forth in (Yin et al.,
2019) we formulate our task into one of textual
entailment, where spans and the candidates are
converted into (premise, hypothesis) pairs using
a predefined template, with high entailment score
signifying semantic similarity.

The advantages of using semantic similarity:

• Works even when the candidate is not lexically
similar to the span value mentioned in the
customer utterance.

• Can be used in unsupervised way but can also
be fine-tuned to specific domain if training
data is available.

• These methods can be used for contextual
SVD as well, if in-domain data is available.

The disadvantages are as follows:

• Might need in domain training data especially
for specialized domains where unsupervised
or self-supervised learning is insufficient.

• On average are slower than a string based al-
gorithms, although this is less of a problem in
recent times due to availability of fast ANN
algorithms as mentioned earlier.

A.3 Ensemble SVD Re-ranking
We can chain multiple SVD components for the
same slot value resolution, choosing the best res-
olution using pre-defined criteria such as majority
voting. The decision of whether to execute all SVD

330



Figure 3: Ensemble SVD Re-ranking

components in the sequential chain can be based
on confidence (conditional chaining) or not (uncon-
ditional chaining).
Conditional chaining works as follows and is high-
lighted in figure 3:

• The first SVD module returns the top candi-
dates using a threshold.

• If the confidence score exceeds a set value
and/or the first N values are within a given am-
biguity threshold we directly return the SVD
outputs.

• Else, we proceed to the next SVD module to
help improve the final disambiguation, repeat-
ing this until the last available SVD module
or until a high confidence prediction can be
made.
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Abstract

Clinical prediction is an essential task in the
healthcare industry. However, the recent suc-
cess of transformers, on which large language
models are built, has not been extended to
this domain. In this research, we explore the
use of transformers and language models in
prognostic prediction for immunotherapy using
real-world patients’ clinical data and molecu-
lar profiles. This paper investigates the poten-
tial of transformers to improve clinical predic-
tion compared to conventional machine learn-
ing approaches and addresses the challenge of
few-shot learning in predicting rare disease ar-
eas. The study benchmarks the efficacy of base-
lines and language models on prognostic pre-
diction across multiple cancer types and inves-
tigates the impact of different pretrained lan-
guage models under few-shot regimes. The
results demonstrate significant improvements
in accuracy and highlight the potential of NLP
in clinical research to improve early detection
and intervention for different diseases.

1 Introduction

Predicting and measuring treatment response is
among the most fundamental tasks in clinical
medicine. Particularly, in cancer immunother-
apy (Pardoll, 2012), antibodies against pro-
grammed death-1/programmed death ligand 1 (PD-
1/PD-L1) have led to US FDA approval of several
PD-1/PD-L1 treatment strategies for patients with
metastatic cancer. However, not all patients derive
clinical benefits (Topalian et al., 2016), empha-
sizing the need to identify who will respond to im-
munotherapy (Chowell et al., 2021). Thus, accurate
treatment response and disease progress forecast
based on the patient’s clinical features and molec-
ular profile will effectively improve the treatment
efficiency and spur the development of precise med-
ication. In order to facilitate medical decision-
making and health outcomes, clinical prediction
models (Steyerberg, 2008; Smeden et al., 2021)
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Figure 1: Pilot study. We evaluate the prediction perfor-
mance (AUC) of a patient’s probability of immunother-
apy response across multiple cancer types under settings
with a small number of training samples on a public clin-
ical dataset from Chowell et al. (2021).

play an increasingly crucial role in contemporary
clinical care by informing professionals, patients,
and their relatives about outcome risks.

Given the fact that most clinical data is stored in
tabular form, current mainstream machine learning
approaches (Topol, 2019; Rajkomar et al., 2019)
to cancer prognosis (Chowell et al., 2021) are
still tree-based ensemble models such as boost-
ing (Chen and Guestrin, 2016; Ke et al., 2017) and
bagging (Breiman, 2004; Ishwaran et al., 2019). In
contrast, transformers (Vaswani et al., 2017) have
revolutionized enormous fields including natural
language processing (NLP) (Devlin et al., 2019;
Brown et al., 2020) and computer vision (Doso-
vitskiy et al., 2021). Many attempts to apply
transformers on tabular modeling (e.g., TabTrans-
former Huang et al., 2020) have also achieved suc-
cess. Considering that the disparity between clini-
cal data and other natural tabular data is not large,
it is appealing that we can also translate this suc-
cess from other domains to clinical prediction. As
such, we seek to answer the first question in this
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Cancer
Type Age Albumin Drug 

Class OS Months

Bladder 74 4.1 PD1/PDL1 9.1

NSCLC 72 4.2 Combo 27.3

Input: A patient has been diagnosed with
Bladder cancer. The age is 74. The albumin is
4.1. The drug class is PD1/PDL1, etc. 

Template: The {attribute} is {value}.

LLM
s    

Encoder    

Finetuning

Multi-Loss
Objetive

Serialization

Figure 2: An illustration of adapting LLMs for clinical prediction. The clinical data entry is first serialized into
sequences of natural language tokens and then fed into the frozen LLMs, followed by a randomly initialized encoder
(transformers or MLPs or identical blocks) to finetune with the multi-loss objective same as Eq. 1.

paper: To what extent can transformers promote
the performance of clinical prediction compared to
conventional machine learning approaches?

Although transformers have advantages in mod-
eling high-dimensional tabular data thanks to the
capacity of long-distance dependency modeling,
their efficacy can still be hampered when labeled
data is scarce given the nature of data-hungry and
low inductive bias (d’Ascoli et al., 2021). This
could be vital to predicting many rare disease areas
where historical patient records are extremely lim-
ited (Haendel et al., 2019). Our pilot investigations
(see Figure 1) also confirmed this. Meanwhile, we
seek to provide a systematic solution to the clini-
cal prediction that functions both in the presence
and absence of much labeled data. Recently, large
language models (LLMs) built as a stack of trans-
formers such as BERT (Devlin et al., 2019), GPT-
3 (Brown et al., 2020) provide a viable direction.
The simple and scalable self-supervised learning
(e.g., masked signal prediction (Devlin et al., 2019;
Chen et al., 2022)) on a nearly unlimited corpus
of text (e.g., PubMed1, PMC2) has led LLMs to
not only continuous performance improvements
but also a surprising emergence of in-context learn-
ing capability, which is especially powerful under
settings with only a small number of learning sam-
ples also known as few-shot learning (Snell et al.,
2017; Sanh et al., 2022). Though recent work has
demonstrated that LLMs are good few-shot clinical
information extractors (Agrawal et al., 2022), this
success has yet not been extended to tasks with a
higher precision requirement, such as cancer prog-
nostic prediction. In this work, we therefore seek
to address this second question: How can language
models boost clinical prediction in few-shot set-
tings?

In addressing these questions, we conduct a

1https://pubmed.ncbi.nlm.nih.gov/
2https://www.ncbi.nlm.nih.gov/pmc/

benchmarking study on a real-world clinical dataset
MSK-IMPACT (Chowell et al., 2021) to assess
the efficacy of a set of baselines and LLMs on
prognostic prediction across multiple cancer types
(melanoma, NSCLC, bladder, etc.). More impor-
tantly, we explore how different pretrained LLMs
using different knowledge resources (domain-
specific or domain-agnostic) may affect the down-
stream performance of clinical prediction, espe-
cially under few-shot settings. Our results show sig-
nificant improvements in accuracy through overall
survival, progression-free survival and best overall
response prediction across multiple disease types.

2 LLMs for Few-Shot Clinical Prediction

Figure 2 is an overview of applying LLMs for clin-
ical prediction. As discussed in Section 1, purely
supervised learning via transformer encoders is of-
ten hampered when training samples are limited.
LLMs provide a viable direction with astonishing
in-context learning capability that exploits knowl-
edge from other resources to downstream tasks
with minimal tuning.

Serialization. To leverage LLMs on clinical tab-
ular data, the feature columns must be serialized
into sequences of natural language tokens that
LLMs can comprehend and encode. Recently, there
have been a few trials (Yin et al., 2020; Bertsi-
mas et al., 2022) investigating various serializa-
tion techniques and exploring the corresponding
performance across different tasks, which turns
out that LLMs for tabular modeling rely more on
the correct values than the structure of the fea-
tures (Hegselmann et al., 2022). To avoid repetitive
work, in this work, we focus more on how dif-
ferent pretrained LLMs using different knowledge
sources may affect the prediction performance by
simply following a manual serialization template,
The {attribute} is {value}., which has been
proven to generate competitive results compared to
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other LLMs prompting-based regeneration meth-
ods by Hegselmann et al. (2022).

Knowledge Sources. The pretraining corpus is
also known as the knowledge source for LLMs.
Clinical language is notably different from the stan-
dard NLP text in terms of vocabulary and syn-
tax (Wu et al., 2019). As a result, following ad-
vancements in language modeling from the larger
NLP community, the clinical NLP sub-community
frequently trains domain-specific models on clin-
ical corpora. Following BERT (Devlin et al.,
2019), various clinical and biomedical versions
appeared quickly, including BioBERT (Lee et al.,
2019), ClinicalBERT (Alsentzer et al., 2019), SciB-
ERT (Beltagy et al., 2019), PubMedBERT (Gu
et al., 2020), etc. However, domain-agnostic LLMs
like GPT-3 have so far been unable to achieve com-
petitive results on biomedical NLP tasks (Moradi
et al., 2021; Gutierrez et al., 2022), revealing the
fact that the relevance and the knowledge reserva-
tion of pretraining sources have a significant impact
to the knowledge migration in downstream tasks
(e.g., finetuning or prompting). Thus, we aim to
evaluate the downstream performance in few-shot
settings with a few different LLMs pretrained on
different resources and benchmark the gaps.

Omnivorous Loss Objective. Compared to con-
ventional machine learning approaches, deep learn-
ing allows efficient end-to-end learning of im-
age/text encoders in the presence of multi-modality
along with tabular data benefiting from the modu-
larized design. More importantly, the customized
loss objectives corresponding to different tasks can
often be combined for joint training, also known
as multi-task learning (Ruder, 2017). The induc-
tive transfer across related tasks can help improve
a model by introducing an inductive bias, which
causes a model to prefer some hypotheses over
others, that generally leads to solutions that gen-
eralize better. In cancer prognostic prediction, we
usually have multiple endpoints to predict. For
example, overall survival (OS), progression-free
survival (PFS), and best overall response (BOR),
etc. As such, in this work, we consistently adopt a
join learning paradigm that merges multiple end-
points into one unified loss objective Lf for all
studies using the following term:

Lf =
I∑

i

αi`i (1)

Flattened

Transformer
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Embedding Layer Normalize

Categorical
Features
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Transformer

TabTransformer ClinTaT

Figure 3: An illustration of ClinTaT (right). Com-
pared to original TabTransformer (left), we add a contin-
uous embedding layer for modeling continuous features
(e.g., lab values) and feed the concatenated inputs into
the transformer backbone.

where I is the total number of tasks and αi repre-
sents the soft weight for any task i. More specifi-
cally, in our experiments, we adopt CrossEntropy
loss for BOR and CoxPH loss for OS and PFS pre-
diction following DeepSurv (Katzman et al., 2018).

3 Experiments and Results

Data. This dataset is acquired by Memorial
Sloan Kettering Cancer Center (MSKCC) from a
comprehensively curated cohort (MSK-IMPACT)
with 1,479 patients treated with immune check-
point blockade (ICB) across 16 different cancer
types (Chowell et al., 2021), where patients are
either responder (R) or non-responders (NR) to
the treatment (PD-1/PD-L1 inhibitors, CTLA-4
blockade or a combination) based on Response
Evaluation Criteria in Solid Tumors (RECIST)
v1.1 (Eisenhauer et al., 2009) or best overall re-
sponse on imaging. Each patient was collected
up to 16 biological features, including genomic,
molecular, clinical, and demographic variables.
The train set contains 1,184 patients, and the test
set contains 295 patients. The evaluation target is
to predict clinical response to immunotherapy (bi-
nary classification) and both overall survival and
progression-free survival (regression) in the test
data across different cancer.

Transformers for Tabular Modeling. As we
need to compare with transformer baselines, we
also introduce ClinTaT (see Figure 3 right) with
some improvements based on the original Tab-
Transformer (Huang et al., 2020), including 1)
adding a continuous embedding layer which is con-
sisted of several independent linear layers corre-
sponding to the number of continuous features; 2)
directly concatenating the embedded categorical
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Figure 4: Model performance across multiple cancer types on test data. Comparison of predictive performance
on MSK-IMPACT in terms of ROC curves and AUC between ClinTaT and other baselines in melanoma, NSCLC,
other cancer types and Pan-cancer.
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Figure 5: Model predicts OS and PFS across multiple cancer types on the test data. Comparison of differences
in overall survival between predicted responders and non-responders across multiple cancer types by ClinTaT.

and continuous variables together, and feed them
into the transformer instead of only categorical vari-
ables.

Training settings. For fair comparison, we adopt
a hidden dimensionality of 768 for both ClinTaT
and BERTs (base versions). Specifically, ClinTaT
is a stack of 6 transformer encoder layers with 8
heads. To prevent overfitting, we set the attention
dropout rate to 0.3 and feedforward dropout rate
to 0.1. For BERTs, all layers are frozen while
we add one independent encoder on top of it to
finetune. In the main figures and tables, we utilize
a single linear layer to demonstrate the feasibility
of LLMs for few-shot regimes. In ablation studies,
we also investigate other encoder types such as
another small transformer encoder. The optimizer
of AdamW is adopted consistently for all trainings,
and the basic learning rates for ClinTaT and BERTs
are 1.25e−4 and 1.25e−5 with a weight decay of
0.01, correspondingly. A linear warmup (up to 5
epochs with a total training of 200 epochs) with
cosine annealing strategy (warmup learning rate is
set to 2.5e−7) is also applied. For other machine
learning baselines, we utilize the grid search to find
the optimal hyper-parameters and report the best
results. More details can be found in the appedix.

How do transformers promote clinical predic-
tion performance? We first calculated the area
under the receiver operating characteristic (ROC)
curves using the response probabilities computed
by transformers and other baselines. Our proposed
ClinTaT achieved superior performance on the test
set, as indicated by the area under the curve (AUC),
in predicting responders and non-responders across
cancer types compared to conventional machine
learning models such as logistic regression, ran-
dom forest, and XgBoost, suggesting that the self-
attention mechanism for long-range dependency
modeling contributed to the overall prediction per-
formance. (Figure 4, Table 1 using all samples).
Furthermore, the differences in OS between respon-
ders and non-responders predicted by transformers
were significantly higher than differences between
responder and non-responder groups predicted by
other baselines across various cancer types (Fig-
ure 5). Especially for the predicted non-responders,
the predicted survival curves almost fit the ground-
truth ones perfectly, while it is interesting to ob-
serve that transformers tend to underestimate the
response probability with an attempt to balance out
the prediction performance across different can-
cer types compared to other baselines (0.809 of
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Model
Number of Samples

6 12 18 24 30 36 42 48 all
LogRes 0.534 0.535 0.573 0.511 0.527 0.570 0.601 0.678 0.758
RandomForest 0.643 0.527 0.672 0.539 0.594 0.667 0.651 0.701 0.795
XgBoost 0.500 0.602 0.670 0.586 0.613 0.664 0.651 0.681 0.796
ClinTaTours 0.641 0.619 0.653 0.607 0.584 0.659 0.664 0.676 0.815

Table 1: Test AUC performance on treatment response prediction of ClinTaT and other baselines on MSK-IMPACT.
Each column reports the k-shot performance for different values of k. ClinTaT outperforms other traditional
approaches with all training samples, however not significant in the most few-shot regimes.

Model
Number of Samples

6 12 18 24 30 36 42 48 all
LogRes 0.500 0.503 0.551 0.511 0.545 0.557 0.549 0.564 0.649
RandomForest 0.637 0.502 0.614 0.536 0.591 0.610 0.626 0.631 0.682
XgBoost 0.500 0.555 0.601 0.539 0.618 0.628 0.614 0.609 0.688
ClinTaTours 0.583 0.615 0.614 0.639 0.610 0.647 0.643 0.645 0.724

Table 2: Test C-index performance on Overall Survival prediction of ClinTaT and other baselines on MSK-IMPACT.
ClinTaT generally outperforms other traditional approaches under many settings, however still not significant in the
very-few-shot regime (e.g., ≤ 6 samples).

Model
Number of Samples

6 12 18 24 30 36 42 48 all
LogRes 0.515 0.513 0.538 0.514 0.537 0.549 0.565 0.596 0.648
RandomForest 0.611 0.529 0.612 0.532 0.580 0.619 0.615 0.627 0.666
XgBoost 0.500 0.514 0.594 0.569 0.600 0.619 0.612 0.620 0.671
ClinTaTours 0.585 0.505 0.547 0.520 0.538 0.553 0.555 0.617 0.684

Table 3: Test C-index performance on Progression-free Survival prediction of ClinTaT and other baselines on
MSK-IMPACT. ClinTaT performs better than other approaches only with all training samples.

ClinTaT versus 0.828 of XGB in Fig. 4). It is addi-
tionally beneficial to rare diseases prediction when
the training sample pool is not large.

To test whether our approach could also pre-
dict overall survival (OS) before the administration
of immunotherapy, we further calculated the con-
cordance index (C-index) for OS and PFS, which
ranges between 0 and 1 (0.5 being random perfor-
mance). We found that the C-indices of the ClinTaT
predictions were significantly higher than those
generated by other baselines (Table 2, pan-cancer
C-index 0.724 for ClinTaT versus 0.688 for Xg-
Boost versus 0.682 for Random Forest, p < 0.05;
Table 3, pan-cancer C-index 0.684 for ClinTaT ver-
sus 0.671 for XgBoost versus 0.666 for Random
Forest, p < 0.05). These results demonstrate that
the transformers can accurately forecast response,
OS, and PFS before administering immunotherapy.

However, Table 1, 2 and 3 also show that under
settings with only a small number of samples, the
prediction capability of transformers does not gen-

eralize well (e.g., 0.583 for ClinTaT versus 0.637
for Random Forest with only 6 samples on OS pre-
diction; 0.585 for ClinTaT versus 0.611 for Ran-
dom Forest with only 6 samples on PFS prediction)
due to the nature of data-hungry and low inductive
bias (discussed in Section 1).

How do LLMs boost few-shot learning? Ta-
ble 4 shows the performance of different BERTs
pretrained on different resource corpus followed
by a single linear layer for finetuning using only
[cls] token on MSK-IMPACT test data (averaged
over three seeds). The PubMedBERT (Gu et al.,
2020) outperforms all other variants and the base-
line transformer across all k-shot settings with an
average of improvements over 5%. In the very few
shot settings (4 samples), the language model fine-
tuning shows significant improvements over the
baseline (Table 4, 9.4%), indicating the benefit of
the capability of knowledge transferring to down-
stream tasks brought by LLMs when samples are
insufficient. Also, our results indicate that the sam-
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Model
Number of Samples

4 6 8 10 12 14 16 18

ClinTaTbaseline 0.593 0.641 0.638 0.628 0.619 0.643 0.639 0.653

BERT (Devlin et al., 2019) 0.590 0.618 0.652 0.636 0.633 0.637 0.632 0.631
BioBERT (Lee et al., 2019) 0.570 0.512 0.527 0.532 0.536 0.532 0.524 0.530
SciBERT (Beltagy et al., 2019) 0.506 0.506 0.578 0.577 0.560 0.549 0.513 0.557
ClinBERT (Alsentzer et al., 2019) 0.604 0.550 0.545 0.560 0.567 0.576 0.574 0.558
PubMedBERT (Gu et al., 2020) 0.649(↑9.4%) 0.643(↑0.3%) 0.641(↑0.5%) 0.657(↑4.6%) 0.663(↑7.1%) 0.677(↑5.3%) 0.695(↑8.8%) 0.685(↑4.9%)

Table 4: Few-shot learning AUC performance of ClinTaT and variants of language models pretrained with different
corpus sources on MSK-IMPACT. Best results are in bold and the relative improvements have been marked in
purple. PubMedBERT (Gu et al., 2020) generally outperforms all the other variants across most settings with an
average of improvements over 5%.

Backbone Encoder AUC COS CPFS

BERT
linear 0.725 0.593 0.622
transformer 0.773 0.699 0.657

BioBERT
linear 0.678 0.590 0.625
transformer 0.766 0.707 0.672

SciBERT
linear 0.689 0.588 0.620
transformer 0.786 0.711 0.656

ClinBERT
linear 0.669 0.591 0.616
transformer 0.751 0.719 0.665

PubMedBERT
linear 0.745 0.599 0.634
transformer 0.771 0.700 0.662

Table 5: Ablation study on applying different encoders
for finetuning of treatment response prediction, includ-
ing a simple linear layer and a six-layer transformer
encoder. Best results across backbones are in bold. Best
results across encoders are marked by purple. An addi-
tional transformer encoder on top of LLMs consistently
performs better than a simple linear layer.

ple efficiency of using LLMs’ embeddings is highly
domain knowledge dependent. The performance
of SciBERT is worse than that of BioBERT and
ClinicalBERT as SciBERT was pretrained on all
semantic scholar 1.14M articles towards a more
general scientific knowledge learning.

In contrast, BioBERT and ClinicalBERT were
pretrained on the more domain-specific corpus,
such as PubMed, PMC, and clinical MIMIC III
notes3. However, we cannot claim that domain-
specific pretraining is necessary for all clinical pre-
diction tasks as Table 4 also reveals that vanilla
BERT is the second best and performs even bet-
ter than SciBERT pretrained on medical and com-
puter science articles. As we know, vanilla BERT
learns more general knowledge understanding from
domain-agnostic corpora such as Wikipedia and
Book corpus. One of our preliminary conjectures
is that domain-specific knowledge transfer is su-

3https://mimic.mit.edu/

perior when the pretraining corpus is sufficiently
profound. However, the generalization capability
learned by domain-agnostic models also works un-
der scenarios where the resource knowledge is nei-
ther domain-agnostic nor morally domain-specific.

Additionally, the performance down gradation
on BioBERT and ClinicalBERT compared to Pub-
MedBERT released more interesting findings as
PubMedBERT was pretraining from scratch. At the
same time, the other two models were pretrained
by inheriting vanilla BERT and BioBERT v1.04,
correspondingly. Gu et al. (2020) has also pointed
out that pretraining only sometimes benefits from
more text, including out-domain text. The prior
biomedical-related BERT models have yet to be
pretrained using purely biomedical text. Our Ta-
ble 4 also shows that domain-specific pretraining
from scratch can be superior to mixed-domain pre-
training for downstream applications.

Though all the results in Table 4 are generated
by adding one single linear layer on top of LLMs
for finetuning, we conduct more ablation studies in
Table 5 to evaluate the performance change using
different encoders (see Figure 2). The transformer
in Table 5 consists of only the transformer encoder
of a depth of six layers with a dimension of 768.
The results indicate that adding compute complex-
ity to LLMs can still lift the semantic representa-
tion learning of clinical features, as transformer
architecture performs better than a superficial lin-
ear layer. It also provides an alternative way to
reexamine the right size of LLMs and inspires us
for the next step, which is to adopt more scaled
LLMs such as PubMedGPT5, GPT-3 or T5 (Raffel
et al., 2019) for clinical prediction.

4https://huggingface.co/dmis-lab/biobert-v1.1
5https://crfm.stanford.edu/2022/12/15/

pubmedgpt.html

337

https://mimic.mit.edu/
https://huggingface.co/dmis-lab/biobert-v1.1
https://crfm.stanford.edu/2022/12/15/pubmedgpt.html
https://crfm.stanford.edu/2022/12/15/pubmedgpt.html


4 Limitations

This study is based on a single clinical cohort con-
sisted of 1479 patients, which may limit the gen-
eralizability of the results to other clinical cohorts.
This specific cohort of patients may not be represen-
tative enough of the general population, which may
inject certain level of bias brought by the dissimilar
distributions of gender, age, race, etc. While we en-
vision the generalization capability of the language
models is applicable to other clinical prediction
tasks, the focus of this work is majorly about prog-
nostic prediction of cancer immunotherapy, and we
hereby have not provided solid evidence to prove
that the success can also be extended to other rel-
evant trials. Additionally, we have yet only com-
pared a limited set of transformers and language
models, and it is possible that other models may
perform better on the tasks evaluated in this study.
Finally, it is important to note that while the mod-
els in this study achieve high accuracy in clinical
prediction, the ultimate value of these models in im-
proving patient outcomes will depend on how well
they are integrated into clinical decision-making
processes and the impact they have on patient care.

5 Ethical Considerations

As this work uses real-world patients’ clinical data
and molecular profiles, which may raise concerns
about data privacy and confidentiality. We ensure
that all the patients’ data is de-identified and pro-
tected from unauthorized access and use. The pub-
lic patient data 6 was approved by the Memorial
Sloan Kettering Cancer Center (MSKCC) 7 institu-
tional review board for scientific use. Researchers
have ensured that they obtain proper ethical ap-
proval and informed consent from patients before
using their data. Even though this is a dataset that
has been carefully curated to prevent the negative
impact brought by human bias, there maybe ex-
isting a risk of introducing bias into the clinical
cohort of data we analyze, particularly in the selec-
tion of patients and the choice of clinical features
and molecular profiles. Additionally, the use of pre-
dictive models to guide clinical decision-making
might raise concerns about fair access to healthcare.
We hereby ensure that the use of predictive models
does not result in the inequitable distribution of
healthcare resources and that patients from all so-
cioeconomic backgrounds have equal access to the

6http://www.cbioportal.org/
7https://www.mskcc.org/msk-impact

best possible care. This study uses natural language
processing and machine learning algorithms to pre-
dict disease prognosis, which may raise broader
ethical considerations related to the responsible use
of technology in healthcare. We ensure that the use
of all approaches discussed in this work is guided
by general ethical principles, such as transparency,
accountability, and patient-centered care.

Even though we focus on relatively large scale
language models in this work, our finetuning strat-
egy only requires a considerably small amount of
computation as only the encoder part needs to be
finetuned. In practice, the single linear layer fine-
tuning can be obtained in about 2 hours on a ma-
chine with single Nvidia A10 GPU; training com-
pletes within 5 hours on a machine with one Nvidia
A10 GPU for another transformer encoder with
a depth of 6 and dimensionality of 768. All the
pretrained language model weights are publicly
available (e.g., huggingface).
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Abstract

This paper presents EvolveMT for efficiently
combining multiple machine translation (MT)
engines. The proposed system selects the out-
put from a single engine for each segment by
utilizing online learning techniques to predict
the most suitable system for every translation
request. A neural quality estimation metric
supervises the method without requiring refer-
ence translations. The online learning capabil-
ity of this system allows for dynamic adaptation
to alterations in the domain or machine transla-
tion engines, thereby obviating the necessity for
additional training. EvolveMT selects a subset
of translation engines to be called based on the
source sentence features. The degree of explo-
ration is configurable according to the desired
quality-cost trade-off. Results from custom
datasets demonstrate that EvolveMT achieves
similar translation accuracy at a lower cost than
selecting the best translation of each segment
from all translations using an MT quality esti-
mator. To our knowledge, EvolveMT is the first
meta MT system that adapts itself after deploy-
ment to incoming translation requests from the
production environment without needing costly
retraining on human feedback.

1 Introduction

Machine Translation (MT) has experienced sub-
stantial progress in recent years, resulting in im-
proving accuracy and more human-like translation
output. Despite these advancements, challenges
remain, particularly in ensemble modeling. En-
semble models integrate predictions from multiple
individual models to achieve a more accurate fi-
nal output. However, the effective combination
of these models is often a complex task that re-
quires thoughtful consideration of factors such as
the model architecture, training data, and predic-
tion combination methods. One of the significant
challenges in MT ensembling is that the training
data used to train the ensemble model, may not be

fully representative of the data to be translated later,
leading to a mismatch between the model and the
data. This paper presents EvolveMT, a method that
addresses data drift in ensemble models by contin-
ual self-adaptation for optimal performance during
usage.

In the subsequent section, we review existing
machine translation (MT) quality estimation met-
rics in the literature, which have been trained on
human evaluation or post-editing datasets. In the
Approach section, we present a comprehensive ex-
planation of the proposed method. In the Experi-
ments section, we describe our experimental design
and provide quantifiable results demonstrating the
enhancement resulting from the application of the
proposed method, as compared to state-of-the-art
quality estimation metrics. Finally, we discuss the
obtained results and present our conclusions.

2 Related Work

In the WMT20 Metrics Shared Task (Mathur et al.,
2020), four reference-free metrics were submit-
ted to evaluate machine translation outputs in the
news translation task. These metrics use bilingual
mapping of contextual embeddings from language
models such as XLM-RoBERTa (Conneau et al.,
2019) to assess cross-lingual semantic similarity.
However, they often struggle to accurately differ-
entiate between human and machine translations,
except for COMET-QE (Rei et al., 2020), the only
reference-free metric capable of doing so.

The study by Freitag et al. (2021a) evaluated top
MT systems from WMT 2020 using Multidimen-
sional Quality Metrics (MQM) and professional
translator annotations. Their results showed a low
correlation between crowd worker evaluations and
MQM, leading to different rankings and question-
ing previous conclusions. The study also found
that automatic metrics based on pre-trained em-
beddings can outperform human crowd workers,
suggesting that models trained with crowd-sourced
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human evaluations may have higher accuracy.
The WMT21 Metrics Shared Task (Freitag et al.,

2021b), used MQM expert-based human evalua-
tion to acquire reliable ratings, and evaluate met-
rics on news and TED talk translations produced by
MT systems. Results showed reference-free met-
rics COMET-QE and OpenKiwi performed well
in scoring human translations but not as well with
MT outputs, and were strong at segment-level hu-
man translation evaluation while competitive with
reference-based metrics in system-level evaluation.

REGEMT (Štefánik et al., 2021) is a reference-
free metric in WMT21 that uses an ensemble of
surface, syntactic, and semantic similarity met-
rics as input to a regression model. As demon-
strated by CushLEPOR (Han et al., 2021), it al-
lows customization, outperforming lexical seman-
tic similarity-based metrics with a higher computa-
tional cost.

Onception (Mendonça et al., 2022) used active
learning to converge an MT ensemble in a produc-
tion environment to the best MT with evaluations
acquired online.

(Naradowsky et al., 2020) used bandit-learning
to adapt MT policies based on simulated user feed-
back, outperforming the best single MT in mixed-
domain settings. A contextual bandit strategy
was proposed to make instance-specific decisions,
but the system still required a human-in-the-loop
(HITL) process.

3 Approach

EvolveMT is a quasi MT ensemble technique. In
contrast to the traditional multi-system MT ap-
proach, which combines outputs from multiple MT
systems to enhance translation accuracy and flu-
ency, EvolveMT prioritizes the selection of the
most optimal translation from a finite set of MT
systems, as we demonstrate in this section. Figure 1
below shows the system architecture of EvolveMT.
The system is centered around a multi-class clas-
sification model that drives multiple processes to
select the best MT model for translation requests.

For each incoming machine translation request,
we use SpaCy (Honnibal and Montani, 2017) and
Stanza (Qi et al., 2020) frameworks to extract mor-
phological and lexical features. These features
include the count of tokens, characters, and the
average word length, as well as the frequency
of Part-of-Speech labels (such as nouns, verbs,
adjectives, etc.), the frequency of Named Entity

Recognition labels (including entities such as per-
sons, locations, organizations, etc.), and the fre-
quency of morphological features (e.g. gender
and aspect). These features are combined with
the 1024-dimensional embedding vector generated
by the XLM-RoBERTa encoder of the COMET-
QE model and stored alongside the input sentence
in the Ranked Batch Requests Queue. This queue
serves the purpose of prioritizing translation re-
quests that necessitate precedence in processing.

At the outset, requests in the Ranked Batch Re-
quests Queue are ranked based on the order in
which they are added. The highest-ranked Machine
Translation (MT) request is selected for transla-
tion. The Multi-class MT Classifier employs the ex-
tracted features of the selected MT request to deter-
mine the MT systems to be utilized. The classifier
prioritizes MT systems with a higher probability of
having a higher COMET-QE value. Exploration of
additional MT systems becomes more likely only
if the probabilities from the classifier’s prediction
exhibit high entropy. This enables EvolveMT to
minimize the cost of exploration when the best MT
is predicted with high certainty.

Finally, the selected MT systems are utilized
to translate the MT request, and the COMET-QE
score is calculated for each translation. The trans-
lation with the highest score is chosen and returned
in response to the MT request. The Multi-class
MT Classifier is then updated online with the best
MT system, as determined by the COMET-QE
score, serving as a label for the extracted features
of the MT request. The online machine learning
(ML) functionality of FLAML AutoML framework
(Wang et al., 2021) is utilized for online learn-
ing. This capability enables the optimization of
model hyper-parameters during the iterative course
of ML, facilitating continual ML without repeti-
tively hyper-tuning the classifier from scratch.

Subsequently, the classifier is employed to re-
rank the Ranked Batch Requests Queue, based on
the uncertainty of the classifier, with requests hav-
ing higher entropy being placed at the top of the
queue for prioritized translation. Getting the MT
request with the maximum entropy from the queue
after each iteration, helps prioritize the most infor-
mative sample for the iterative training of the classi-
fier. As the classifier improves its ability to predict
the best MT model for MT requests via learning, it
reduces the likelihood of exploring other MT(s).

The driving algorithm in EvolveMT, which out-
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lines the primary process of the proposed method,
is presented in pseudo-code form in Algorithm 1.

Algorithm 1 EvolveMT with online active-learning
Require: MTQueue: list of tuples (source text, features),

and MaxMTs: maximum number of MTs to sample
while len(MTQueue) do

Classifier.rankByUncertainty(MTQueue)
source, feats←MTQueue.popMaxEntropyItem()
predMT, classProbs← Classifier.predict(feats)
predTrans← Translate(source, predMT )
randMTs← sampleMTs(classProbs,MaxMTs)
maxEnt← normalizedEntropy(classProbs)
if randMTs0 = predMT and maxEnt < α then

Classifier.learn(feats, predMT )
else

sampled← Translate(source, randMTs)
randScores← CometQE(source, sampled)
predMTScore← CometQE(source, predTrans)
if max(randScores) > predMTScore then

Classifier.learn(feats, randMTs)
IndexOfBestMT ← randScores.argMax()
predTrans← sampledIndexOfBestMT

else
Classifier.learn(feats, predMT )

end if
end if
respondMTRequest((source, predTrans))

end while

Incoming MT Request(s)

Extract Source- only Features

Ranked Batch Request Queue

Request with Maximum Entropy

MT Sampling via Class- Probabilities

Translations of Sampled MT(s)

Select Best MT via COMET- QE

Ensemble MT 
OutputMulti- Class

MT Classifier

Figure 1: EvolveMT System Architecture

4 Experiments

4.1 Data
A multi-lingual corpus of 37,500 human-translated
sentences in Czech, German, and Russian, along
with their corresponding English source-texts, was
collected for the OPUS repository (Lison and
Tiedemann, 2016; Aulamo and Tiedemann, 2019)
using stratified random sampling for each language
and dataset. To evaluate EvolveMT, translations for
each sentence in the corpus were obtained from one
open-source machine translation system (Tiede-
mann et al., 2022) and five major machine trans-
lation service providers in the industry (Google,
Azure, AWS, ModernMT, and AppTek).

4.2 Setup
Experiments were conducted on a 64-bit Ubuntu
22.04 LTS computer system with an AMD Ryzten
5950X CPU (16 processors, 32 threads) and 64GB
of memory. An Nvidia GeForce RTX GPU was
used for XLM-RoBERTa embedding extraction
from the fine-tuned COMET-QE encoder. The re-
sults showed an average 2.88 (±0.06) millisecond
response time for the EvolveMT system to return
an MT output and update its classifier when the
MT request queue contained a single item. Depend-
ing on GPU usage, the feature extraction time was
(183.43 -244.80) milliseconds. It’s worth noting
that in a production setting, feature extraction can
be performed in parallel for multiple MT requests.

4.3 Evaluation criteria and baselines
In this paper, grid search is used to evaluate the
impact of two hyperparameters, maxMTs and α,
on the classifier’s performance. maxMTs refers
to the maximum number of machine translation
systems the classifier can select, and α is the maxi-
mum entropy threshold (as described in Algorithm
1). The grid search involves varying maxMTs
from 1 to 6 (the maximum number of the MT sys-
tems we are using), and α from 0.1 to 1.0 with
increments of 0.1. The experimental results are
obtained by averaging 100 repetitions to account
for the method’s inherent stochasticity. For clarity
in the results section, we present the results over
the maxMTs range while setting α to its optimal
value of 0.2, determined through the grid search.

For the evaluation, we adopt the reference-based
quality score COMET-DA, as detailed in (Rei et al.,
2020), as the evaluation metric for our ensemble
output. This choice is motivated by the results

343



of prior research which have demonstrated that
COMET-DA exhibits a higher correlation with hu-
man evaluation scores compared to other widely
used machine translation metrics, such as BLEU
and METEOR. The evaluation of EvolveMT is be-
ing conducted against the following baselines:

• COMET-QE Ensemble: translation is per-
formed utilizing the six MT systems. The
translation with the highest COMET-QE score
is selected for each input sentence as the en-
semble translation. Then, the COMET-DA
score is calculated using selected translations.

• Best MT: involves translating the entire data
using all six MT systems. The MT system
that produces the highest overall COMET-DA
is then selected as the Best MT to employ.

4.4 Results

The comparison of COMET-DA scores of the
COMET-QE ensemble and Best MT concern-
ing various variants of EvolveMT with vary-
ing MaxMTs values are presented in Table 1.
The results are depicted for the three language
pairs of English-to-Czech, English-to-German, and
English-to-Russian. In addition, the average trans-
lation cost of each system across the three lan-
guages is also documented in the table. The find-
ings indicate that EvolveMT approximates the
COMET-QE ensemble’s quality while incurring
significantly lower costs.

Furthermore, the results in the table reveal that
the optimal cost-quality trade-off for EvolveMT
varies depending on the target language. Specif-
ically, for all three language pairs, it can be ob-
served that EvolveMT with MaxMTs = 3 and
MaxMTs = 4 provide the best balance between
cost and quality when compared to other individ-
ual and ensemble MTs. As MaxMTs increases,
EvolveMT can achieve higher MT quality by ex-
ploring a larger pool of MT systems from which
the best translation can be selected. Hence, the
MaxMTs parameter can be adjusted to achieve
the desired cost-quality trade-off.

Notably, after only a few hundred Machine
Translation (MT) requests from the total dataset,
the EvolveMT algorithm demonstrates conver-
gence towards an upper limit of its weighted F1-
score, which depends on the parameter maxMTs.
Figure 2 shows the confusion matrix between the
outputs of EvolveMT (with MaxMTs = 4) and

Figure 2: The normalized confusion matrix between
EvolveMT (MaxMTs = 4) and COMET-QE after 100
translations requests.

the COMET-QE ensemble after 100 translations re-
quests. The swift convergence of EvolveMT with a
limited number of requests is mainly due to the uti-
lization of XLM-RoBERTa embeddings that have
been fine-tuned specifically for the COMET-QE
task. This exemplifies the model’s effectiveness,
as it begins with no prior knowledge, and within
a few hundred requests, it can converge and ap-
proach the performance of the COMET-QE ensem-
ble. It is crucial to mention that the results pre-
sented in Table 1 encompass the "warm up" phase
where EvolveMT starts from zero knowledge until
full convergence is achieved. If this phase were
excluded, the COMET-DA scores of EvolveMT
would likely be even higher.

5 Discussion

The cost-benefit analysis of EvolveMT highlights
the trade-off between run-time efficiency and train-
ing expenses. While the run-time cost of EvolveMT
may be higher than that of Best MT, it does not
require the extensive and time-consuming train-
ing process required for traditional MT ensemble
methods. This training process involves obtaining
translations from all MTs and scoring them using
references generated by annotators.

However, the increased run-time cost of
EvolveMT is offset by its ability to achieve superior
production quality and adapt to changes in the data
domain with a minimum amount of overhead. As
the data domain changes, traditional MT ensemble
techniques require costly retraining to accommo-
date the new domain, whereas EvolveMT can adapt
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COMET-DA
Model Cost ($) English-to-Czech English-to-German English-to-Russian

Best MT (1) 20.000 0.867 0.586 0.617
COMET-QE (6) 77.000 0.900 0.605 0.658
EvolveMT (1) 12.312 0.851 0.567 0.605
EvolveMT (2) 23.442 0.870 0.586 0.627
EvolveMT (3) 32.358 0.878 0.591 0.637
EvolveMT (4) 39.905 0.882 0.596 0.643
EvolveMT (5) 46.067 0.887 0.598 0.647
EvolveMT (6) 51.095 0.887 0.599 0.651

Table 1: The Cost and COMET-DA comparison of the Best MT system, COMET-QE and EvolveMT ensembles for
various MaxMTs parameters (indicated in parentheses). The MT quality increases as COMET-DA scores increase

to changes with a few hundred MT requests.

This versatility and adaptability of EvolveMT
make it a robust solution for machine translation
tasks that may be subject to data variation, as it can
adjust to these changes with minimal effort. The
cost-benefit analysis results clearly demonstrate
that the increased run-time cost of EvolveMT is
outweighed by its high performance and adaptabil-
ity in the face of changing data domains.

6 Limitations

The performance of the EvolveMT system is contin-
gent upon the reliability of the COMET-QE model
in providing accurate labels for the MT requests.
Utilizing the encoder’s embeddings as features ne-
cessitates that the COMET-QE model performs
effectively on blind MT requests. The batch re-
ranking of MT requests after each learning step
may result in a computational bottleneck if the
queue size is substantial. To mitigate this issue,
an asynchronous re-ranking process could be im-
plemented, whereby the queue is only reorganized
once the re-ranking is completed. Additionally,
before the re-ranking process, a diverse subset
of the queue can be selected based on the XLM-
RoBERTa embeddings, which reflect the novelty
of the requests relative to previously processed MT
requests. The source embeddings from the XLM-
RoBERTa model can be cached in parallel during
the batch feature extraction process utilizing GPU
capabilities, thus facilitating efficient COMET-QE
inference. EvolveMT could also be optimized for
cost-effectiveness by incorporating the cost of each
MT in the ensemble into the algorithm.

7 Conclusion and Future Work

This study presents a novel approach called
EvolveMT for ensembling machine translation
(MT) engines, focusing on minimizing the number
of engines required to be queried to achieve optimal
quality. To evaluate the efficacy of the proposed
method, a series of experiments were conducted,
wherein EvolveMT was implemented with varying
levels of granularity in terms of the maximum num-
ber of engines permitted for each individual MT
request. The quantitative results of the experiments
indicate that, compared to the traditional method
of querying all available MT engines, EvolveMT
offers a more cost-effective solution for the ensem-
bling process without compromising the quality of
the resulting translations.

EvolveMT presents a unique advantage in terms
of cost efficiency compared to COMET-QE En-
semble. This is achieved by utilizing a stochastic
exploration approach that selectively queries ad-
ditional MT engines based on predicted probabili-
ties, which are also employed in an active-learning
framework by re-ranking MT requests after each
learning step. Furthermore, unlike traditional MT
ensemble techniques, EvolveMT can adapt in real-
time to changes in customers’ translation requests,
without incurring the cost of acquiring human ref-
erences or undergoing costly re-training or fine-
tuning.

In conclusion, this paper presents four significant
contributions to the field of machine translation: (1)
the introduction of the first self-improving MT sys-
tem that operates without the need for human feed-
back; (2) the capability of adaptively optimizing the
MT ensemble in response to production environ-
ment translation requests through online machine-
learning; (3) the development of a novel approach
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for selectively querying MT engines rather than
relying on translations from all available engines;
and (4) the implementation of an active-learning
framework that leverages uncertainties from the
ensemble for batch translation.

8 Ethics and Impact Statement

EvolveMT is a high-quality machine translation
(MT) system for individuals or organizations. It
can improve translation accuracy if validated on
a specific MT corpus. EvolveMT is trained from
scratch for each customer or project, eliminating
biases in the algorithm but may still present bi-
ases in the quality estimation metric or training
dataset. The system is self-adaptable, secure, and
protects user privacy by deleting data immediately
after translation. EvolveMT eliminates the need for
re-training and re-hypertuning, reducing compu-
tational costs and being environmentally friendly.
The only potential harm is to linguists who per-
form post-editing as it reduces their dependence on
references or evaluations.
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Abstract
Large language models trained on code have
shown great potential to increase productiv-
ity of software developers. Several execution-
based benchmarks have been proposed to eval-
uate functional correctness of model-generated
code on simple programming problems. Never-
theless, it is expensive to perform the same eval-
uation on complex real-world projects consid-
ering the execution cost. On the contrary, static
analysis tools such as linters, which can detect
errors without running the program, haven’t
been well explored for evaluating code genera-
tion models. In this work, we propose a static
evaluation framework to quantify static errors
in Python code completions, by leveraging Ab-
stract Syntax Trees. Compared with execution-
based evaluation, our method is not only more
efficient, but also applicable to code in the
wild. For experiments, we collect code context
from open source repos to generate one mil-
lion function bodies using public models. Our
static analysis reveals that Undefined Name
and Unused Variable are the most common er-
rors among others made by language models.
Through extensive studies, we also show the im-
pact of sampling temperature, model size, and
context on static errors in code completions.

1 Introduction

Automatic code completion by large language mod-
els trained on numerous code repositories has
demonstrated great potential in accelerating soft-
ware development. Code assistant services pow-
ered by these models provide developers with code
suggestions following the current context in real-
time. However, it has been shown that about 70%
of the suggestions are discarded by users in a recent
study (Ziegler et al., 2022). Even worse, mislead-
ing recommendations can lead to failure in complet-
ing programming tasks (Vaithilingam et al., 2022).
Therefore, it is important to understand the weak-
ness of current code generation models through
comprehensive evaluation and analysis.

Figure 1: A function completion example, with an Un-
used Variable error (gray) in context, and an Undefined
Name error (red) in completion.

Recently, execution-based evaluation has be-
come increasingly popular, where model-generated
code is executed with unit tests to check functional
correctness. Several benchmarks have been pro-
posed along this direction, such as HumanEval
(Chen et al., 2021), MBPP (Austin et al., 2021),
MBXP (Athiwaratkun et al., 2022), CodeContests
(Li et al., 2022), and DS-1000 (Lai et al., 2022).
Although these benchmarks are highly reliable and
accurate, they only focus on well-defined algorith-
mic and data science problems, which do not reflect
the need in general software development. Running
execution-based evaluation with real-world code-
bases is, however, prohibitively expensive because
each project requires a different setup and the com-
putation cost is potentially unbounded.

In contrast to the execution-based approach,
static program analysis (or static analysis) can an-
alyze programs without executing them. Although
static analysis is usually unable to determine func-
tional correctness, it covers a large collection of
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static error types, such as undefined names or un-
used variables that are illustrated in Figure 1. More
importantly, the analysis can be very fast and does
not require any project specific environment setup,
which allows us to evaluate model completions for
complex real-world code at large scale. Static anal-
ysis tools such as linters have been widely used, for
example in code editors, to examine human-written
code, but their value in evaluating code generation
models has not been well explored yet.

In this work, we propose a static evaluation
framework for Python language. Code snippets
are first parsed into Abstract Syntax Trees (ASTs)
and then analyzed by Pyflakes1, a popular static
analysis tool for Python. To simulate real-world
use cases of auto completion, we collect code from
public Github repositories to build a function com-
pletion dataset of 100K problems. In each problem,
we randomly mask out a function body in a Python
file and ask the model to complete it given the pre-
ceding context up until the function header. We
then evaluate public models by sampling 10 com-
pletions for each problem, resulting in one million
generations for each model and sampling tempera-
ture, which will be examined by our static evalua-
tion pipeline.

During AST parsing, we find most of the errors
arise from incomplete generations that hit the max
length limit. Otherwise, models of all sizes perform
quite well in producing parsable codes. Moving
forward, Pyflakes analysis reveals that Undefined
Name and Unused Variable are the most prominent
static errors in model-generated code. We also ob-
serve higher temperatures consistently lead to more
errors. Scaling up the model, while able to reduce
errors of many types, do not show a clear benefit
for preventing undefined names. Through a more
fine-grained classification, we find larger models
generate fewer undefined variables but more un-
defined methods, which add up to a mixed result.
Finally, we demonstrate that errors in context can
lead to errors of the same type in generation, which
is likely a consequence of large language models’
in context learning capability.

In summary, our main contributions include the
following. (1) We propose a static evaluation frame-
work for code completion. (2) Our evaluation on
public models reveals common static errors and
how they are impacted by various factors such as
temperature, model size, and context.

1https://github.com/PyCQA/pyflakes

2 Background

Code Generation with Transformers Over re-
cent years, it has become increasingly popular
to train Transformer-based language models on
source code (Feng et al., 2020; Ahmad et al., 2021;
Wang et al., 2021; Lu et al., 2021; Guo et al.,
2022) to support software engineering tasks (Iyer
et al., 2018; Tufano et al., 2019). In particular, sev-
eral decoder-only transformer models have been
developed to facilitate code generation, such as
Codex (Chen et al., 2021), CodeGen (Nijkamp
et al., 2022), Incoder (Fried et al., 2022), and Al-
phaCode (Li et al., 2022). These pretrained causal
language models can be used to predict the contin-
uation of input code without any finetuning.

Abstract Syntax Tree An Abstract Syntax Tree
(a.k.a., AST) is used to represent a source code
in a concise tree form. By discarding unnecessary
details of the underlying code and its corresponding
parsed tree, AST only presents the main structural
content of the source code following the language
grammar (Aho et al., 2007).

Static Analysis Static analysis is a common way
to detect software bugs without executing the pro-
gram (Ayewah et al., 2008; Chess and McGraw,
2004; Chess and West, 2007; Zheng et al., 2006).
Static analyzers tend to detect bugs by analyzing
the static code text, its AST, documentation, etc.
The users usually need to specify the error patterns
and static analyzers use different AST, graph, and
path analysis to find those patterns in the code.
There are a plethora of static analysis tools and
they can detect a wide range of errors depending
on the specified patterns (Emanuelsson and Nils-
son, 2008). For example, Linter is a popular tool
that checks for coding style errors and thus, tries to
enforce a coding standard (Van Oort et al., 2021).

3 The Function Completion Dataset

We introduce the function completion task, which
is one of the most important use cases of auto com-
pletion services. Given an input code snippet that
ends with a function signature plus an optional doc-
string, the model is asked to generate the function
body. Previous works on code completion (Lu et al.,
2021; Svyatkovskiy et al., 2019) have mainly fo-
cused on single-line completion. However, a single
line is often too short to reveal models’ capability
in writing syntactically correct code. We believe
function, as the fundamental building block in most
programming languages, better serves this purpose.
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Figure 2: Evaluation pipeline. Left: We parse [context] and [context + generation] into ASTs. If [context] is not
parsable, we stop without reporting any error on generation. If [context] is parsable, but [context + generation] is
not, we report the AST error in generation. Right: If both are parsable, we run Pyflakes on the trees, which reports
errors in [context] and errors in [context + generation]. Taking the difference gives us errors in generation.

Software developers use code generation models
as black-box services on a diverse set of coding
projects. To better simulate the real-world scenario,
we build an evaluation set by sampling from pub-
lic Github repositories. Specifically we collected
permissively licensed Python code in repositories
that were created between April, 2022 and August,
2022. The selection criterion precludes any chrono-
logical overlap between our evaluation data and the
training data of models to be tested in this work.2

The collected Python codes are reformatted as
function completion problems. We first use tree-
sitter3 to parse the whole file to identify all the func-
tions. Then a function that contains a docstring is
randomly selected. The code from the beginning
of the file up until the end of the docstring is used
as the context, and the function body is considered
as the groundtruth. The rest of the file is discarded.
At test time, we prompt the model with the con-
text part as input, and let the model generate the
function body. We choose only functions with doc-
strings so that context is well-defined and model
can generate meaningful code completions. We
further select test samples whose context length is
between 64 and 768 tokens, and groundtruth length
is shorter than 256 tokens, to match our model gen-
eration setting. Our final evaluation set consists of
100K function completion problems.

4 Static Error Analysis

We propose an evaluation pipeline to detect errors
in function completions generated by models, illus-
trated in Figure 2. Suppose the model generates a
completion x given the input context c. We cannot

2CodeGen models were trained on data up until Oct, 2021.
3https://tree-sitter.github.io/tree-sitter/

directly analyze x which is partial code without
context. Meanwhile, c may also contain errors es-
pecially in real-world cases. Therefore, we perform
our analysis in two passes. We first check c for any
errors in the input that need to be excluded, and
then do another pass on the full code (c, x), the
concatenation of the context and model completion.
Any error that is identified in (c, x) but not in c
must arise from x, or in other words, be generated
by the model. More specifically, we conduct the
following two steps of analysis for Python code.

4.1 AST parsing

In the first step, we parse both c and (c, x) into
abstract syntax trees using Python’s native ast mod-
ule. If the code is parsable, an AST will be returned.
Otherwise, a syntax error is captured. Based on the
parsing outcomes, we take the following actions:

1. If c is not parsable, we are unable to conclude
any error in generation. Empirically this rarely
happens, as we will show in the next section.

2. If c is parsable but (c, x) is not, then we can
confirm the reported syntax error is caused by
model generation. However, notice that only
one error will be returned even if there are mul-
tiple, due to the nature of AST parsing.

3. If both c and (c, x) are parsable, there’s no AST
error in model generation. The ASTs will be
used for static analysis in the next step.

4.2 Static analysis with Pyflakes

If both c and (c, x) can be parsed into ASTs, we
perform static analysis using Pyflakes. Pyflakes is a
static analysis tool that checks a Python source file
for errors by examining the AST. One advantage
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is that the analysis does not rely on dependencies
of the source file, which is important given the
diversity of packages used in real-world code. We
run Pyflakes on c and (c, x) to identify errors in
context and in full code. Errors that are detected in
(c, x) but not in c are considered as introduced by
model completion.

5 Experiments

With the proposed pipeline we conduct error analy-
sis for CodeGen models (Nijkamp et al., 2022) on
the test set described in Section 3, and present the
analysis results.

5.1 Experiment Setup

We evaluate CodeGen-mono models of all sizes,
ranging from 350M to 16B. We generate function
completions using nucleus sampling with top-p
0.95. Sampling temperature is varied between 0.2
and 0.8 for the 2B model, and fixed to 0.4 for the
rest models. We sample 10 generations for each
problem, which results in one million code comple-
tions for each model and temperature. The maxi-
mum generation length is 256 tokens. Generated
code completions are then passed to our static eval-
uation pipeline built with Python 3.8 and Pyflakes
3.0.1. Evaluating one million generations takes
only a few hours on a single CPU thread, and can
be fully parallelized for acceleration.

5.2 Validation of Model Output

While we mainly focus on static errors in this study,
it is also important to validate that the models do
generate relevant code. A counter-example would
be to generate a single line of "return" for every
function signature, which is syntactically correct
but not meaningful at all. Towards this end, we
calculate the edit similarity between model genera-
tion and groundtruth, and compare against Pass@1
from HumanEval (Chen et al., 2021) which is a pop-
ular execution-based benchmark to evaluate code
generation models. Specifically, for both datasets
we generate 10 samples per problem, and report the
averaged edit similarity or pass rate over all gen-
erations. As shown in Table 1, models of all sizes
and temperatures are able to achieve reasonable
edit similarity on the function completion dataset,
which means the generations are semantically rel-
evant. Moreover, edit similarity and HumanEval
Pass@1 both improve as the model scales up, high-
lighting that model scale is crucial for accurate

Model Temp Edit
Similarity

HumanEval
Pass@1

CodeGen-16B

0.4

72.07 31.83
CodeGen-6B 68.76 26.46
CodeGen-2B 64.83 23.72
CodeGen-350M 56.47 12.62

CodeGen-2B

0.2 65.10 25.06
0.4 64.83 23.72
0.6 64.09 21.28
0.8 62.62 17.56

Table 1: Edit similarity on function completion dataset
and Pass@1 on HumanEval, of CodeGen models across
different sizes and temperatures. (1) Edit similarity
and HumanEval Pass@1 are positively correlated across
different settings, which justifies edit similarity can be
used as an alternative metric for model evaluation. (2)
As expected, larger models have better edit similarity (a
proxy to accuracy) on function completion task.

code generation. Finally, the strong positive corre-
lation between the last two columns shows that edit
similarity on the function completion dataset can be
used as an alternative metric for model comparison.

5.3 AST Results
We run AST parsing and find there are only 0.42%
cases with unparsable context that need to be dis-
carded. For the rest, we report percentage of gen-
erations with AST errors in Table 2. A full list of
error types is included in Appendix A. For each
type, we also show a code example in Appendix B.

While there are about 7-8% of unparsable gener-
ations, most of the parsing errors happen at the end
of file (EOF), which means the generated code is
incomplete due to the 256 max token limit. Extend-
ing generation length may help reduce EOF errors,
but will require more computation and increase the
perceived latency of the auto-completion service.

On the other hand, non-EOF errors only account
for a tiny fraction, usually around 0.1-0.2%, which
indicates CodeGen models can generally follow
the abstract syntax grammar to produce parsable
codes, regardless of model size and temperature.

Finding 1. Codes generated by models, unless in-
complete, are mostly parsable into ASTs, regardless
of model size or temperature.

We also show the top-3 non-EOF error types
ranked by frequency, which are Invalid syntax,
Print Missing Parentheses, and Keyword Argu-
ment Repeated. Notably, the first two categories
are often related to Python’s interpreter version.
To illustrate, Python2-style print like print "abc"
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Model Temp Total EOF Non EOF Invalid
Syntax

"print"
Missing

Parentheses

Keyword
Argument
Repeated

CodeGen-16B

0.4

7.330% 7.236% 0.094% 0.042% 0.041% 0.004%
CodeGen-6B 7.446% 7.253% 0.193% 0.081% 0.094% 0.006%
CodeGen-2B 7.272% 7.177% 0.095% 0.052% 0.018% 0.008%
CodeGen-350M 8.703% 8.593% 0.110% 0.041% 0.016% 0.028%

CodeGen-2B

0.2 8.067% 7.982% 0.085% 0.045% 0.018% 0.008%
0.4 7.272% 7.177% 0.095% 0.052% 0.018% 0.008%
0.6 6.823% 6.713% 0.110% 0.060% 0.020% 0.008%
0.8 7.496% 7.337% 0.159% 0.085% 0.029% 0.014%

Table 2: Percentages of AST errors across different model sizes and temperatures. We show (1) total AST errors;
(2) errors at the end of file (EOF); (3) errors not at EOF; (4) top 3 non-EOF errors. Models generally perform well
at AST level except for EOF errors caused by max generation length limit.

Figure 3: Number of undefined variables versus unde-
fined functions. Larger models generate more undefined
functions but fewer undefined variables.

will lead to Print Missing Parentheses in Python3.
Another example is that using async as a variable
name will cause Invalid Syntax because async has
become a reserved word since Python3.7. Models
learn to make such errors from their training data
which consists of code written for different Python
versions. In many cases, it is difficult for a model to
infer the intended interpreter version directly from
the limited context. An interesting future direction
is to guide models to generate version-compatible
code given the target environment.

Finding 2. Interpreter version mismatch is one of
the major reasons for non-EOF AST errors.

5.4 Pyflakes Results

We present frequencies of top 6 linter errors from
Pyflakes in Table 3, with code examples in Ap-
pendix B. While Pyflakes also finds other problems
in code, most of them are very sparse and thus less
important, which we leave to Appendix A. Notice
that one code snippet may contain multiple errors.
We count each type only once in every test sample.

Among all errors, Undefined Name and Un-
used Variable are the most common ones, where

the model either calls a variable that is not defined,
or defines a variable but never uses it. Closely
related are Unused Import, Redefined While Un-
used and Undefined Local, which can be consid-
ered as special cases of the first two. Models also
sometimes unnecessarily use f-strings by not giv-
ing any placeholder. It is worth pointing out that
not all Pyflakes errors will impact execution. In
fact among the six types, only Undefined Name
and Undefined Local may cause runtime problems.
However, all these errors can harm readability and
maintenance which are critical for software devel-
opment. Hence, it is important to address them to
improve the quality of auto code completion.

Across sampling temperatures, we observe in
every column that more errors are generated under
higher temperatures, which is expected because
generations in such cases are less confident.
Finding 3. Higher temperature always leads to
more errors of every type.

The impact of model size on error rate is less
consistent though. For Unused Variable, Unused
Import, and Undefined Local, error rate does de-
crease as the model scales up. However, the other
three categories do not manifest such correlation.
We investigate the underlying reason for this mixed
result particularly in the case of Undefined Name.
Notice that if an undefined name is a function call,
it can potentially be defined afterwards outside the
current function completion scope. While not guar-
anteed, the model might be able to fix this error by
itself if we allow generating longer code instead
of only one function. In contrast, using a vari-
able without first defining it is usually a mistake.
Even in some rare cases where the variable defi-
nition is made up correctly after the usage, such
ordering is often less preferred in terms of coding
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Model Temp Undefined
Name

Unused
Variable

FString
Missing

Placeholders

Unused
Import

Redefined
While

Unused

Undefined
Local

CodeGen-16B

0.4

4.323% 1.729% 0.135% 0.107% 0.131% 0.047%
CodeGen-6B 4.374% 1.775% 0.089% 0.149% 0.126% 0.055%
CodeGen-2B 4.364% 1.810% 0.147% 0.150% 0.146% 0.065%
CodeGen-350M 4.472% 2.032% 0.151% 0.173% 0.155% 0.095%

CodeGen-2B

0.2 4.206% 1.751% 0.125% 0.139% 0.139% 0.067%
0.4 4.364% 1.810% 0.147% 0.150% 0.146% 0.065%
0.6 4.711% 2.000% 0.188% 0.170% 0.159% 0.076%
0.8 5.377% 2.490% 0.240% 0.247% 0.184% 0.086%

Table 3: Percentages of Pyflakes errors across different model sizes and temperatures. Higher temperatures always
lead to more errors in every category. On the other hand, larger models do not necessarily generate fewer errors.

style. In Figure 3, we break down the undefined
names into variables and functions. We find that
larger models yield fewer undefined variables, but
more undefined functions, which demonstrates that
the correlation between error count and model size
varies for different errors types.

Finding 4. While larger models are more accurate
code generators (Nijkamp et al., 2022), scaling
up model size does not lead to reduction in error
counts for all error categories.

5.5 Correlation with Errors in Context

We further study the correlation between errors in
context and in generation. Denote by c the input
context, x the model generation, e the error type.
We write e ∈ c to mean c contains an error of type e.
For every e,4 we calculate P(e ∈ x|e ∈ c), the gen-
eration error rate when context contains the same
type of error(s). We also report the relative ratio
P(e∈x|e∈c)
P(e∈x|e/∈c) to measure the impact of context. From
Table 4, if the model observes errors in context, it
is more likely to produce the same type of errors in
generation, and the error rate can be amplified by
7∼200 times depending on the type. This is pos-
sibly an undesired consequence of the in-context
learning capability of large language models.

We also calculate P(e ∈ c|e ∈ x) to show how
many of the generation errors co-occur with con-
text errors. As indicated by the last column of Ta-
ble 4, even though context errors can significantly
amplify generations errors, the co-occurrences of
two do not account for a large fraction. This im-
plies problematic context is not the only factor for
problematic generation, and it is often the case for
models to produce errors even with correct context.

4We omit Unused Import from Table 3 because it is valid to
have unused imports in the context that is yet to be completed.

Error type P(e∈x|e∈c)
P(e∈x|e∈c)

P(e∈x|e/∈c)
P(e∈c|e∈x)

Undefined Name 26.33% 7.80 25.99%

Unused Variable 14.13% 8.45 8.56%

FString Missing
Placeholders 20.63% 215.50 35.08%

Redefined
While Unused 2.44% 21.16 22.30%

Undefined Local 7.00% 108.68 1.08%

Table 4: Correlation between errors in context and in
generation for the 2B model. First two columns indicate
errors in context can amplify errors in generation; the
last column shows not all generations errors can be
attributed to context. Other models have similar results.

Finding 5. Errors in context generally lead to more
errors in generation.

6 Discussion

We present a static evaluation framework for code
completions generated by large language models.
By utilizing the proposed framework, we conduct
error analysis of CodeGen models on a large scale
real-world Python evaluation set. Our experiment
reveals common static errors made by pretrained
models, as well as their frequency trend across
model sizes and sampling temperatures. By point-
ing out weaknesses of existing models, we hope our
study also sheds light on future directions towards
more accurate code generation.

There are a few limitations of this study. First,
we focus on left-to-right code generation without
considering right-side and cross-file context, which
can be used to determine broader categories of
errors with improved precision. Second, each static
analysis tool has its own limitations. Thus, the
presented analysis is limited by Pyflakes’s accuracy
and coverage to detect certain code issues.
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A Full Error Categories

In addition to those discussed in Section 5, we list
all error categories that can be detected in model
generated code in our experiments, with a minimal
frequency of 0.001% by any of the models (i.e. 10
observations out of the total 1 million generations).

AST errors (EOF errors indicated by aster-
isk):

1. *unexpected EOF while parsing

2. *EOL while scanning string literal

3. *invalid syntax at EOF

4. *EOF while scanning triple-quoted string lit-
eral

5. invalid syntax not at EOF

6. missing parentheses in call to "print"

7. keyword argument repeated

8. leading zeros in decimal integer literals are not
permitted; use an o prefix for octal integers

9. unmatched ")"

10. cannot assign to function call

11. positional argument follows keyword argu-
ment

12. expression cannot contain assignment

Pyflakes issues:

1. undefined name

2. unused variable

3. f-string missing placeholder

4. unused import

5. redefined while unused

6. indentation error

7. import shadowed by loop var

8. raise not implemented

9. invalid print syntax

10. is literal

11. string dot format extra positional argument

12. multi value repeated key literal

13. percent format positional count mismatch

14. tab error

15. string dot format extra named arguments

16. import star not permitted

17. percent format unsupported format character

18. assert tuple

19. percent format extra named arguments

B Examples for Top Error Types

Below we list one code example for each of the
error categories shown in Table 2 and 3. Following
the definition of function completion task, in every
example, context is from the beginning until the
end of the docstring of the last function, and model
completion is the body of the last function.
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1 """ Secondary Structure dataset."""
2

3 import numpy as np
4 from megatron import print_rank_0
5 from .data import ProteinPredictionAbstractDataset
6 from .data import build_tokens_paddings_from_text
7

8 class SecondaryStructureDataset(ProteinPredictionAbstractDataset):
9 def __init__(self ,

10 name: str ,
11 datapaths ,
12 tokenizer ,
13 max_seq_length: int):
14 super().__init__(’secondary_structure ’, name , datapaths , tokenizer ,

max_seq_length)
15

16

17 def build_samples(self , ids , paddings , label , unique_id , seq_len):
18 """ Convert to numpy and return a sample consumed by the batch producer.

"""
19

20 # Seperate inputs and labels in lists
21 input_tokens = [self.tokenizer.tokenize(seq) for seq in ids]
22 input_tokens = [token for seq in input_tokens for token in seq]
23 labels = [self.tokenizer.tokenize(seq) for seq in label]
24 labels = [label for seq in labels for label in seq]
25

26 # Add special tokens
27 input_tokens , labels = self.add_special_tokens(input_tokens , labels)
28

29 # Truncate and pad
30 input_tokens , labels , paddings = self.truncate_and_pad(input_tokens ,

labels ,
31 self

Listing 1: unexpected EOF while parsing (line 31)
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1 from pathlib import Path
2 from wasabi import msg
3 from .remote_storage import RemoteStorage
4 from .remote_storage import get_content_hash , get_command_hash
5 from .. _util import load_project_config
6 from .. _util import project_cli , Arg , logger
7

8

9 @project_cli.command("push")
10 def project_push_cli(
11 # fmt: off
12 remote: str = Arg("default", help="Name or path of remote storage"),
13 project_dir: Path = Arg(Path.cwd(), help="Location of project directory.

Defaults to current working directory.", exists=True , file_okay=False),
14 # fmt: on
15 ):
16 """ Persist outputs to a remote storage. You can alias remotes in your
17 project.yml by mapping them to storage paths. A storage can be anything that
18 the smart -open library can upload to, e.g. AWS , Google Cloud Storage , SSH ,
19 local directories etc.
20

21 DOCS: https ://xxx
22 """
23 for nlp in load_project_config(project_dir , {"directories": [ANIMAL_TRAIN_DIR

]}:
24 remote_storage = RemoteStorage.get(remote)
25 for command in ["train"]:
26 logger.debug(f"Uploading {command} to remote storage ’{remote_storage}’")
27 path = Path(project_dir) / ANIMAL_TRAIN_DIR / command
28 upload_project(remote_storage , path)

Listing 2: invalid syntax (line 23)

1 def prod(F, E):
2 """ Check that the factorization of P-1 is correct. F is the list of
3 factors of P-1, E lists the number of occurrences of each factor."""
4 M = prod_of_prime_factors(F, E)
5 if not all(i == 1 for i in M):
6 print "Error in prod"
7 print F, E
8 return
9 P = product(F)

10 P_1 = 1
11 for i in range(len(F)):
12 P_1 *= F[i]**E[i]
13 if P != P_1:
14 print "Error in prod"
15 print F, E
16 print P
17 print P_1
18 return

Listing 3: Missing parentheses in call to "print" (line 6)
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1 import unittest
2 from datetime import datetime , timezone
3

4 from dateutil.relativedelta import relativedelta
5

6 from bot.utils import time
7

8

9 class TimeTests(unittest.TestCase):
10 """ Test helper functions in bot.utils.time."""
11

12 def test_humanize_delta_handle_unknown_units(self):
13 """ humanize_delta should be able to handle unknown units , and will not

abort."""
14 self.assertEqual(
15 time.humanize_delta(datetime.utcnow (), datetime.utcnow () -

relativedelta(months=1, months =2)),
16 "1 month and 2 months"
17 )

Listing 4: keyword argument repeated (line 15)

1 """
2 This program will continually ask our user to give a number
3 and will calculate the factorial result of the number and print it on the console

.
4

5 The program ends when the user enter the EXIT number.
6 """
7

8 EXIT = -100
9

10

11 def main():
12 """
13 This program will calculate the factorial result according to the number an

user
14 inputs.
15 """
16 print(’<<< Welcome to the Factorial Calculator! >>>’)
17 num = int(input(’Enter a number: ’))
18 print(’The factorial of {} is {}.’.format(num , factorial(num)))
19 if num == EXIT:
20 print(’\n<<< Thank you for using the Factorial Calculator. >>>’)
21 else:
22 main()

Listing 5: undefined name "factorial" (line 18)
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1 def check(full_path , encoding):
2 assert type(full_path) == str , f’\’full_path\’ is of {type(full_path)}. Only

type \’str\’ is acceptable.’
3 assert full_path != "", "\’full_path\’ is empty."
4 assert type(encoding) == str , f’\’full_path\’ is of {type(encoding)}. Only

type \’str\’ is acceptable.’
5 assert encoding != "", "\’encoding\’ is empty."
6

7 def file_read(full_path: str , encoding = "utf8"):
8 ’’’
9 Author: xxx

10

11 Reads file at "full_path" and returns its data in a list.
12 ’’’
13

14 check(full_path , encoding)
15 encoding_check = encoding
16 full_path = full_path.strip()
17 f = open(full_path , "r", encoding = encoding)
18 lines = f.readlines ()
19 f.close()
20 lines = [line.replace("\n", "") for line in lines]
21 return lines

Listing 6: local variable "encoding_check" is assigned to but never used (line 15)

1 import os
2 import json
3

4 from convinse.library.utils import store_json_with_mkdir , get_logger
5

6

7 class HeterogeneousAnswering:
8 def __init__(self , config):
9 """ Initialize HA module."""

10 self.config = config
11 self.logger = get_logger(__name__ , config)
12

13 def train(self , sources =["kb", "text", "table", "info"]):
14 """ Method used in case no training required for HA phase. """
15 self.logger.info(f"No need to train.")
16 pass

Listing 7: f-string is missing placeholders (line 15)
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1 import os
2 import urllib.parse
3 import sqlite3
4

5 SQL = """
6 SELECT p.ZAUTHOR , p.ZTITLE , e.ZTITLE , e.ZASSETURL , e.ZPUBDATE
7 from ZMTEPISODE e
8 join ZMTPODCAST p
9 on e.ZPODCASTUUID = p.ZUUID

10 where ZASSETURL NOTNULL;
11 """
12

13

14 def check_imports ():
15 ’’’ Prompts for password to install dependencies , if needed ’’’
16 import os, importlib , importlib.util
17 import urllib.parse
18

19 # Check for dependency installs
20 # Can be done more simply , but this way I can avoid importing anything from

zmodel ,
21 # which is nice since I can see what’s going on.
22 for k, v in DEPS.items():
23 try:
24 importlib.import_module(k)
25 except ImportError as e:
26 importlib.util.find_spec(k)
27 if importlib.util.find_spec(k) is None:
28 os.system(f’pip install {v}’)

Listing 8: "urllib.parse" imported but unused (line 17)

1 import kfp.deprecated as kfp
2 from kfp.deprecated import components , dsl , compiler
3

4 def get_run_info(run_id: str):
5 """ Example of getting run info for current pipeline run."""
6 import kfp.dsl as dsl
7 client = kfp.Client ()
8 run = client.run_details(run_id)
9 print(f"Run details :\n{run}")

10 print(f"Pipeline details :\n{run.pipeline_runtime}")

Listing 9: redefinition of unused "dsl" from line 2 (line 6)

1 """ Check for nonlocal and used -before -assignment """
2 # pylint: disable=missing -docstring , unused -variable , no-init , too -few -public -

methods
3

4 __revision__ = 0
5

6 def test_ok ():
7 """ uses nonlocal """
8 cnt = 1
9 def wrap():

10 nonlocal cnt
11 cnt = cnt + 1
12 wrap()
13

14 def test_fail ():
15 """ doesn’t use nonlocal """
16 cnt = 1
17 def wrap():
18 cnt = cnt + 1 # [used -before -assignment]
19 wrap()

Listing 10: local variable "cnt" defined in enclosing scope on line 16 referenced before assignment (line 18)

360



Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 361–367

July 10-12, 2023 ©2023 Association for Computational Linguistics

Scalable and Safe Remediation of Defective Actions
in Self-Learning Conversational Systems

Sarthak Ahuja, Mohammad Kachuee, Fateme Sheikholeslami, Weiqing Liu, Jaeyoung Do
Amazon Alexa AI, Seattle, WA

{sarahuja, kachum, shfateme, lweiqing, domjae}@amazon.com

Abstract

Off-Policy reinforcement learning has been a
driving force for the state-of-the-art conver-
sational AIs leading to more natural human-
agent interactions and improving the user sat-
isfaction for goal-oriented agents. However,
in large-scale commercial settings, it is often
challenging to balance between policy improve-
ments and experience continuity on the broad
spectrum of applications handled by such sys-
tem. In the literature, off-policy evaluation and
guard-railing on aggregate statistics has been
commonly used to address this problem. In
this paper, we propose a method for curating
and leveraging high-precision samples sourced
from historical regression incident reports to
validate, safe-guard, and improve policies prior
to the online deployment. We conducted exten-
sive experiments using data from a real-world
conversational system and actual regression in-
cidents. The proposed method is currently de-
ployed in our production system to protect cus-
tomers against broken experiences and enable
long-term policy improvements.

1 Introduction

Conversational AI systems such as Apple Siri,
Amazon Alexa, Google Assistant, and Mi-
crosoft Cortana rely on multiple components for
speech recognition, natural language understand-
ing (NLU), skill routing, and generating a response
to the user. A skill routing block selects the right
skill/provider and NLU interpretation to serve a
user’s request. Skill routing is a challenging prob-
lem due to the number of skills present in a real-
world conversational system. Furthermore, new
skills are being introduced every day, existing skills
may change behavior over time while some oth-
ers getting deprecated leading to an ever changing
customer-skill dynamic (Sarikaya, 2017; Park et al.,
2020).

To address such challenges, state of the art skill
routing systems cast the problem as a reinforcement

Figure 1: To immediately mitigate the business impact
of a reported defect usually a high-recall hot-fix is added
to the system such that the problematic traffic segment
is redirected away from the RL policy (Π) towards a
hand-crafted rule policy (Γ) representing this hot-fix;
We propose to maintain a dataset of regression and pro-
gression samples (R/P) associated with the defect to
guard-rail against future recurrence and eventually as-
similate the redirected traffic back to the RL policy.

learning (RL) problem where the agent performs
periodic off-policy updates. The RL agent continu-
ally improves or self-learns by exploring alternative
decisions and learning from the logged customer
interaction data (Kachuee et al., 2022). While the
RL-based approach has many merits around scala-
bility such as no need for expensive human anno-
tation, it also has a tendency to cause instabilities
in the agent’s behavior which not only regress user
retention and trust, but also manifest as revenue
loss for business-critical domains (Kachuee and
Lee, 2022; Ke et al., 2022).

Any policy update inherently entails a risk of
breaking certain current user experience, as each
deployment despite improving the overall aggre-
gate performance, may regress on certain sub-
populations and edge cases which is not acceptable
in a commercial system (Li et al., 2021). Further-
more, the frequent and automated nature of these
refreshes proportionately increases this risk for the
policy to deviate from its stable state when han-
dling edge cases. Techniques like pre-deployment
offline evaluation and constrained optimization are
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proposed to guardrail against such regressions but
are often limited by volatile predefined segmenta-
tion of data and metrics that only consider coarse
sub-populations (Kachuee et al., 2021, 2022; Hoff-
man et al., 2014; Balakrishnan et al., 2018).

These statistical approaches to learning and eval-
uation further struggle to let the agent protect, learn
and retain knowledge of historical regressions that
are self-reported by users. Such incidents are usu-
ally characterized as belonging to a narrow traffic
segment but of high importance where reward met-
rics are not very reliable. Typically, to mitigate
them, high-recall hot-fixes are deployed to override
policy and quickly address the incident as depicted
in figure 1. Note that these hot-fixes are often hand-
crafted rules that are not reliable for guard-railing
against recurrence and performing a long-term re-
mediation (Karampatziakis et al., 2019).

In this paper we posit that for business-critical
user-reported defects it is crucial to consider indi-
vidual cases so as to learn and gate on the instance-
level behavior directly. In other words, we propose
complementing the current learning and evalua-
tion mechanisms operating on aggregate metrics
with high-precision instance-level analysis. Herein,
we outline a novel architecture that extends RL-
based skill-routing to use a set of curated high-
value user-reported defective samples, for guard-
railing against re-occurrence and performing long-
term remediation to re-onboard those cases to the
policy; thereby retiring the hot-fixing rules intro-
duced during the short-term mitigation. A high-
level overview of the proposed system is presented
in figure 2.

To evaluate the suggested framework, we con-
ducted extensive online and offline experiments
using data from a real-world conversational agent.
We observe that the proposed approach leads to a
high assimilation (> 70%) of the defective traffic
back to RL policy i.e. long-term remediation and
eventual retirement of the hot-fixes. Further, the
deviation percentage in decision replication rate
and the expected reward in both offline and online
settings indicate that the proposed approach has no
statistically significant side-effect on the remaining
traffic segments.

2 Proposed Method

2.1 Problem Formulation

We consider the general formulation for an RL
agent characterized by Πθ(a|X) where θ are train-

Figure 2: Post mitigation, for more permanent remedi-
ation, we leverage the R/P dataset to provide an auxil-
iary signal during policy updates and assimilate the in-
stance level behavior from the samples back into policy,
thereby retiring the hot-fixes over time. We promote an
updated policy to production after evaluating it against
test R/P data and ensuring that the resulting metrics
clear a set of guard-rails that prevent recurrence of a
historically reported defect.

able parameters to specify the action selection dis-
tribution for each action a ∈ {1 . . . T} conditioned
on the current state/context, X . Here, after taking
an action, the agent observes a reward denoted by
r. The task for the agent is to learn from the experi-
ences collected from the current policy, Π0(a|X),
interactions in an off-policy setting, to train a new
policy parameterized by θ, Πθ(a|X).

Off-policy updates are not always stable and oc-
casionally lead to unsatisfactory decisions (Swami-
nathan et al., 2016; Joachims et al., 2018; Lopez
et al., 2021). These incidents are reported in the
form of a handful of samples reproducing the de-
fective action called regression samples. Alongside
the regression samples, typically, the report is fur-
ther supplemented with complementary and con-
trasting samples by the user that convey the desired
agent behavior. Such samples are referred to as
progression samples here. Collectively we denote
the dataset of all such reported regression and pro-
gression (R/P) samples across all incidents as DRP .
These high value samples are carefully stored with
additional meta-data and used in evaluating against
their recurrence of these incidents (section 2.2) as
well as for their long-term remediation by getting
assimilated into the policy (section 2.4). The meta-
data may contain information such as unique sam-
ple identifiers, description of the issue, type of the
sample (i.e. regression or progression), severity of
the corresponding incident, date which the sample
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was reported, and the current life-cycle status of
the sample (i.e. deprecated or active).

Remediation involves providing supervision sig-
nals for policy updates which is a non-trivial and
time-consuming process. Meanwhile, to imme-
diately mitigate business impact from an incident,
hot-fixing is usually employed by introducing hand-
crafted rules on the problematic segment. The
set of hand-crafted rules from all incidents re-
ported in a time period, define an eligibility cri-
teria, G(Πθ, X) that decides based on the input
sample X and the associated policy Πθ, if an input
sample is eligible for the RL policy or should be
handled by the hand-crafted rules. We use the nota-
tion G(Πθ, X) ∈ {0, 1} to represent the logic that
returns one if a sample should be handled by Πθ,
or zero if should be redirected to hot-fixes.

The set of hot-fixes can be thought of as a sepa-
rate abstract policy Γ(a|X) that runs on incoming
traffic whenever the eligibility criteria G(Πθ, X) is
not satisfied:

Πθ(a|X) =

{
Γ(a|X) G(Πθ, X) = 0

Πθ(a|X) otherwise
. (1)

2.2 Evaluation
The evaluation process starts by replaying the new
policy Πθ on the curated samples (X, a, r) ∈
{DRP } to get the policy action propensities Πθ(X).
Then, we compute the most likely action under the
new policy as â = argmax(Πθ(X)).

For progression samples, we report a sample as
pass if â is equal to the logged action a, other-
wise it is considered as a fail case. Alternatively,
for regression samples, it would be considered as
a fail if and only if the logged unsatisfactory ac-
tion was repeated by the new policy. Also, to as-
sign fail/pass certainties for each case, we compute
the likelihood of each assignment as Πθ(â|X) for
passed progression or failed regression, and other-
wise 1−Πθ(â|X).

Additionally, we can compute the expected eli-
gibility of a sample given the new policy as:

Q(X) : = E[G(Πθ, X)]

=
∑

i∈1...|a|
G(Πθ(ai|X))Πθ(ai|X) (2)

Intuitively, E[G(Πθ, X)] measures the expected
likelihood of handling sample X by policy Πθ

rather than a hot-fix.
Thus in short, we report the following evaluation

metrics for each R/P sample in the evaluation stage:

Figure 3: An example of report generated during R/P
evaluation consisting of unique identifier (uid), samples
type, pass/fail evaluation status, pass/fail certainty, and
likelihood of handing by policy rather than hot-fixes
(eligibility). In this example, the second sample failed
with high certainty but since eligibility is relatively low,
it would be less concerning for potential deployment.

1. Expected Eligibility (Q): probability that a
particular sample will be served by the RL
policy given the current state of hot-fixes in
place; 0 ≤ P (Q) ≤ 1.

2. Sample Status Certainty (C): confidence
on the assigned sample status (PASS/FAIL)
based on the evaluation of the policy output
for that particular sample; 0 ≤ P (C) ≤ 1.

The last step for the evaluation is to generate a
report to be used by human operators as well as au-
tomated guard-railing (next step) to understand any
failures, their certainty, and likelihood of exposing
such behavior to the end user. Figure 3 shows an
example of such report.

2.3 Guard-railing

Hot-fixes introduced for mitigating business im-
pact due to high-severity regression incidents are
conditioned on the policy input (X) and the out-
put (Πθ(a|X)). Thus in the event of a subsequent
policy refresh, there is always a chance that the
associated eligibility criteria G(Πθ, X) for the as-
sociated hand-crafted rules gets out-dated and starts
to redirect the problematic traffic segments to the
RL model. To prevent the recurrence of the regres-
sions, we perform pre-deployment guard-railing
right after every policy update using the evaluation
parameters defined in section 2.2

For the sample X, assumed at index i of DRP ,
we perform gating on their intersection probabil-
ity of the experiment eligibility and sample status
certainty P (Ci ∩Qi) i.e. a sample being eligible
for the RL policy with a high certainty of caus-
ing a misroute. For failing cases (Ci = FAIL),
the best (most lenient) and worst (most strict) case
scenario are depicted in figure 4. To prevent any
unnecessarily blocks, we use the best case setup
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Figure 4: left: in the best case scenario there would
be a minimal overlap between sample spaces that are
eligible for the RL policy and will lead to potential
defects. right: in the worst case scenario there would be
a maximum overlap between the aforementioned sample
spaces.

Algorithm 1: Guard-railing on a single fail-
ing regression/progression sample

input : i (RP sample index),
P (C = FAIL) ∼ P (C) (failure certainty),
P (Q) (expected eligibility),
Tf (failure threshold for guard-railing)

1 if P (Ci) + P (Qi) > 1 then
/* get minimum P (Ci ∩Qi) */

2 P (Ci ∩Qi)← P (Ci) +P (Qi)−P (Ci ∪Qi)
/* max P (Ci ∪Qi) can be 1 */
/* P (Ci ∩Qi) ≥ P (Ci) + P (Qi)− 1 */
/* min P (Ci ∪Qi) */

3 P (Ci ∩Qi)← P (Ci) + P (Qi)− 1
4 if P (Ci ∩Qi) > Tf then

/* fail guard-railing */

5 else
/* pass guard-railing */

6 else
/* skip guard-railing */

when comparing the minimum intersection proba-
bility against a set failure threshold Tf . For passing
samples (Ci = PASS) we simply invert the sample
certainty value and keep the remaining logic as is.
Algorithm 1 summarizes the guard-railing logic for
the failing case for a single sample.

When a guard-rail condition assertion fails, the
associated hot-fix is updated by operators to make
the guard-rail criteria is met. It should be noted
here that adding and updating hot-fixes is only a
temporary solution because it takes away traffic
from the RL policy and redirects it towards make-
shift hand-crafted rules which hampers the scala-
bility of the larger system. It is therefore crucial to
start the process of properly assimilating the traffic
handled by these rules back to the RL policy after
the short-term mitigation.

Figure 5: Model architecture used for the RL policy;
augmented R/P sample batches are injected with gaus-
sian noise during the forward pass at their hidden-layer
representations as shown in the blue box.

2.4 Remediation

As a part of a regular training cycle for off-policy
learning, we optimize a loss function L0. For sim-
plicity of explanation, in this paper, we use the
inverse propensity scoring (IPS) objective as an ex-
ample for the case of contextual bandit formulation
(Dudık et al., 2014):

L0 = EX,a,r∼D = −rΠθ(a|X)

Π0(a|X)
. (3)

We inject R/P samples in the training loop to
the regular training batches and replay them during
each iteration. To improve the generalization and
data efficiency of using the limited R/P data, we
perform representation space data augmentation.
This is done on a mini-batch of R/P samples using
Gaussian noise injection during the forward pass
on each hypothesis at hidden-layer representations
as depicted in figure 5. It is further defined in the
equation below where x̄ is the hidden space feature
vector for hypothesis x, x̄′ is the augmented sample
vector, j is the feature index and λ is the noise
scaling factor.

x̄′
j = x̄′

j + λc, c ∼ N (0, 1) (4)

The auxiliary loss (LRP ) is computed from the
regular loss objective (L0) albeit on augmented
data sampled from R/P dataset, DRP , represented
as D′

RP . When introducing the R/P samples as a
part of the training data, we make adjustments such
that the added samples discourage action replica-
tion for regression cases and encourage replication
logged of actions for progression cases. To im-
plement this, we reshape reward values such that
regression and progression cases get the lowest and
highest possible reward. We represent this reshaped
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Algorithm 2: Augmented Exp. Replay
input :D (dataset of logged interactions from Π0),

DRP (dataset of R/P samples),
η (train replay loss mix ratio),
α (# R/P sample per regular batch),
β (# augmentations per R/P sample),
λ (noise scaling factor)

1 D← preprocess(D)
2 DRP ← preprocess(DRP )
3 D′

RP ← reshapeReward(DRP )
4 for d in nextBatch(D) do

/* sample R/P batch with replacement */
5 drp = sampleBatch(D′

RP , size = α ∗ β)
/* loss on regular data batch */

6 L0 ← loss(Πθ, d)
/* loss on rp data batch */

7 LRP ← loss(Πθ, drp, noise = λ)
/* combine regular and R/P loss */

8 L← (1− η)L0 + (η)L′

/* use any optimizer f for Πθ */
9 θ ← f(θ,∇θL)

reward via r′, and the auxiliary loss in equation 5.

LRP = EX,a,r′∼D′
RP

= −r′Πθ(a|X)

Π0(a|X)
. (5)

Finally, we perform a weighted average of the
auxiliary loss (LRP ) with the regular loss (L0) us-
ing a weight term η to get the overall loss as de-
picted in equation 6.

L = (1− η)L0 + (η)LRP , 0 < η < 1. (6)

Additionally, we have parameters, α and β, that
control the number of R/P samples per batch and
number of augmentations to perform per R/P sam-
ple in the training loop respectively. Refer algo-
rithm 2 for more step by step details.

3 Experiments

3.1 Setup
To evaluate the proposed remediation approach, we
conducted online and offline experiments in real-
world production settings. In this section, we use
the term baseline policy to refer to the approach
suggested by Kachuee et al. (2022). The proposed
framework extend the baseline approach and hence-
forth referred as R/P policy.

To simplify the comparisons, we follow the same
model architecture and design choices as suggested
by Kachuee et al. (2022). In summary, input to
the model is a set of routing candidates, i.e., a
combination of embedded ASR, NLU, and context
vectors as well as skill embeddings. The output
is the softmax-normalized propensity of selecting

each candidate to handle the user request. The
final model has about 12M trainable parameters
consisting of a language model to encode utter-
ance, embeddings for contextual signals, and fully-
connected layers.

To train and evaluate our models, we use logged
data from a current production policy. The ob-
served reward is based on a curated function of
user satisfaction metrics. Our dataset consists of
about 90M samples roughly divided into 75% train-
ing, 12.5% validation, and 12.5% test hold-out sets
covering tens of domains with imbalanced num-
ber of samples. Our R/P dataset consists of ∼50
samples and split into 67% training and 33% test
hold-out sets containing roughly an equal number
of regression and progression samples (collected
over 10-15 reported defects). We ensure that each
incident finds similar representation in both the
train and test hold-out set. Data used in this work
was de-identified to comply with our customer pri-
vacy guidelines. Also, due to confidentiality con-
cerns, we are not able to share specifics about the
historical regression incidents.

3.2 Metrics1

3.2.1 Remediation Metrics
We use remediation percentage as a key metric to
quantify the percentage of R/P samples with status
FAIL that were directed back to the RL policy with
status PASS in a single model update using the
remediation approach shared in section 2.4. In an
ideal scenario we would expect this metric to be
as high as possible. It is defined more concretely
in equation 7 below where C and C ′ represent the
sample statuses obtained from baseline and R/P
policy respectively.

|DRP|∑
i=0

1(Ci=FAIL) −
|DRP|∑
i=0

1(C′
i=FAIL)

|DRP|∑
i=0

1(Ci=FAIL)

∗ 100 (7)

3.2.2 Deviation Metrics
To validate that the auxiliary R/P loss is not having
an adverse effect on other data segments, we track
the deviation in decision replication rate and the
expected reward for the remainder of traffic. In
an ideal scenario we would expect both deviation
metrics to be as small as possible.

1To comply with our privacy and business guidelines, in
all instances, we only report relative and normalized results
which do not represent the actual scales or metric values.
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3.3 Hyperparameters

For the train replay loss mix ratio η we use values
from {0.02, 0.2} and for noise variance λ we use
values from {0, 0.05, 1.0, 2.0, 3.0} to find the best
parameters based on the remediation percentage.
We particularly note during an ablation that having
no noise leads to poor generalization on the R/P
hold out set. Consequently, we use a grid search
for finding the best setting for the number of R/P
samples per batch α ∈ {2, 5, 10} and number of
augmentation per R/P sample β ∈ {1, 20, 50} to
find the best settings for each benchmark. Based
on this search, we finally used η as 0.2, α as 5, β
as 20 and λ as 2.0.

3.4 Training Details

For the baseline policy we trained each model for
8 epochs and take the best performing model based
on the macro-averaged violation rate of added do-
main based constraints measured on the validation
set. We used a cluster of 32 NVIDIA V100 GPUs
to process a mini-batch size of 32K samples (1000
samples on each GPU). Each individual run took
between 14 to 16 hours. During R/P policy training
we added an augmented batch of 100 R/P samples
(α = 5, β = 20) to each GPU creating a further
addition of 3200 samples to each mini-batch. Each
experiment was run four times using different ran-
dom seeds for weight initialization to report the
mean and ±2 standard deviation of each result.

4 Results

We conducted offline experiments and measured
off-policy estimated impact of the proposed method
on replication and reward metrics. For the estimat-
ing the expected reward, we used an IPS estimator.
On our training set we observed an average remedi-
ation percentage of 70.0% (71.42% for regression
and 66.6% for progression samples) indicating that
the proposed approach leads to a high assimila-
tion of the defective traffic back to RL policy. The
number can also be interpreted as the normalized
percentage of reduction in RP samples that used to
be handled by the hot fixes and instead be handled
correctly by the RL policy. Using this approach we
were successfully able to absorb the entire hold out
set to the RL policy and identify the potential to
retire ∼70% of the representative hot-fixes.

Table 1 shows the deviation percentage in deci-
sion replication rate and the off-policy estimated
reward on the hold out dataset. We see negligi-

ble difference between both the policies indicating
that the remediation has minimal side-effect on the
remaining traffic segments.

Offline Replication (%) Expected Reward (%)
Baseline Policy 98.31±0.0005 89.55±0.0005

RP Policy 98.31±0.0071 89.56±0.0052

Deviation (%) 0.00±0.0072 0.01±0.0054

Table 1: Comparison of the overall replication and ex-
pected reward on our offline test set reported for the
baseline and RP policies.

We then compared our proposed approach to
the baseline on live production traffic in an online
A/B based setup consisting of a large number of
actual customers. The results in Table 2 show that,
similar to our offline analysis, we observed minimal
and non-statistically significant deviation in the
measured reward between control and treatment.
This further validates our claim that the proposed
remediation has negligible impact on the remaining
traffic segments.

Online Measured Reward (%)
Baseline Policy 87.81
R/P Policy 87.80
Deviation (%) -0.01 (p-value 0.4)

Table 2: Overall deviation between the baseline and
the RP policy on the actual reward received during an
online A/B. Here, p-value of 0.4 indicates no significant
side-effect as a result of our proposed remediation.

5 Conclusion

In this paper, we presented a method to leverage
historical regressions reported by customers of a
conversational AI to guard-rail against future recur-
rences of similar issues and to improve the trained
policies to learn from such high-value experiences.
In summary, the introduced method consists of cu-
rating a regression/progression dataset from histor-
ical incidences, logic to evaluate future polices on
such data prior to the potential online deployment,
performing guard-railing against deploying poli-
cies that pose a high risk of incident recurrences,
and finally leveraging such a high-value dataset
as a source of supervision during the training pro-
cess to enable long-term behavior corrections. We
conducted extensive online and offline experiments
and deployed this work in a real-world production
system to ensure serving best experience for our
customers.
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Limitations

We believe a potential limitation of this work is
its reliance of curated samples from historical in-
cidents. Due to the complexity of real-world con-
versational agents, the decision to introduce a new
sample to the R/P set requires human expert in-
volvement which could be costly and pose chal-
lenges in terms of reliability. Another challenge
we faced after the deployment of this framework
was managing the life-cycle of the collected R/P
samples. In a dynamic environment, a regression or
progression pattern may lose relevance over time.
Therefore, we find it challenging to re-actively deal
with retirement of such historical samples.

Ethics Statement

This work is centered on ensuring the best expe-
riences are served by a conversational AI through
learning and validation of customer initialed re-
ports. Therefore, we do not assess any particular
ethical risks associated with this work. However,
one penitential though unlikely risk area would be
human expert decisions for data collection to be
biased on certain use-cases or interactions. We did
not observe manifestation of such risk impacting
our experiments and after the production deploy-
ment. Regarding human data handling practices,
we ensured anonymity of data samples used in this
study and did not reveal any specifics that would
violate our internal policies or our customer privacy
policies.
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Abstract

Deploying NMT models on mobile devices
is essential for privacy, low latency, and of-
fline scenarios. For high model capacity, NMT
models are rather large. Running these models
on devices is challenging with limited storage,
memory, computation, and power consumption.
Existing work either only focuses on a single
metric such as FLOPs or general engine which
is not good at auto-regressive decoding. In
this paper, we present MobileNMT, a system
that can translate in 15MB and 30ms on de-
vices. We propose a series of principles for
model compression when combined with quan-
tization. Further, we implement an engine that
is friendly to INT8 and decoding. With the
co-design of model and engine, compared with
the existing system, we speed up 47.0× and
save 99.5% of memory with only 11.6% loss
of BLEU. The code is publicly available at
https://github.com/zjersey/Lightseq-ARM.

1 Introduction

As a classic subfield of natural language processing,
neural machine translation (NMT) has achieved
great success in recent years. Most of the studies
focus on improving the accuracy of large machine
translation systems, ignoring whether such models
are easy to be deployed in real-world scenarios.

Here we adopt four metrics to evaluate whether
an NMT model is deployment-friendly. (1) Model
size is the most important metric in model com-
pression (Han et al., 2016). (2) Floating-point
operations (FLOPs) is commonly used to evaluate
computational complexity in neural architecture
design. (3) Memory or Memory mapped I/O
(MMI/O) reflects the memory requirements of the
real running system. (4) Decoding speed depends
on many realistic factors such as engine implemen-
tation and the power of avaliable processors.

∗This work is done during the internship at ByteDance.
†Corresponding author.
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Figure 1: These metrics are measured on Google Pixel
4. Each result is the average of 200 runs on a sample of
src/tgt length 30.

In this paper, we propose MobileNMT, a
Transformer-based machine translation system that
can translate in 15MB and 30ms. First, we propose
three principles for designing parameter-limited
MT models: 1) To compress embedding, reducing
vocabulary size is simple and effective compared
to embedding factorization; 2) To compress the
encoder and decoder, reducing the model width
is much more efficient in computation and mem-
ory than cross-layer parameter sharing; 3) Encoder
depth is very important to ensure accuracy. To
achieve higher accuracy, we adjust the training
hyperparameters according to the newly designed
structure, and adopt sequence-level knowledge dis-
tillation. For industrial deployment, we optimize
general matrix multiplication (GEMM) and mem-
ory in our own inference engine and use the 8-bit
integer for storage and computation. As shown in
Table 1, the 10MB MobileNMT achieves 88.4%
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Figure 2: Model performance of different methods in Section 2 and Section 3 (Scaling E: scaling embedding
dimension; Scaling V: scaling vocabulary size; Sharing: cross-layer parameter sharing; Width: reducing model
width).

::::::
Scaling

::
V

::::::::
performs

:::::
better

::::
than

::::::
Scaling

:::
E.

:::::
Width

::::::::
performs

:::::
nearly

:::
the

:::::
same

::::
with

:::::::
Sharing.

performance of Transformer-big with only 1.1%
size and runs 47.0× faster on decoding, which can
be easily deployed and used.

Our contributions are summarized as follows:

• We propose three principles for parameter-
limited MT models to make more efficient use
of computation and memory resources.

• We adjust training strategies according to the
newly designed structure to achieve higher
translation accuracy.

• We develop a mobile inference engine to
bridge the gap between industrial practice and
theoretical research.

2 Architecture Design Principles

For model compression and acceleration, most stud-
ies focus on a single metric such as model size
or FLOPs, without considering the real-world ap-
plications. In this section, we consider four met-
rics including model size, FLOPs, memory usage,
and decoding speed, and then propose three design
principles for parameter-limited MT models. We
choose Transformer (Appendix A) as our baseline
because of its great success in machine translation.

2.1 Embedding Compression
The vocabulary size V usually reaches tens of thou-
sands in NMT models (Akhbardeh et al., 2021).
The parameters can reach tens of millions and
greatly affect the overall parameter efficiency.

Embedding Factorization (Scaling E). For
model compression, embedding factorization has
been widely studied (Lan et al., 2020; Grave et al.,
2017; Baevski and Auli, 2019). To decouple the

Module Dim Base Small Tiny

Embed
Vocab

[
40,000

] [
40,000

] [
40,000

]Embed N/A ×1 N/A ×1 N/A ×1
Hidden 512 256 128

Encoder
Hidden

[
512

] [
256

] [
128

]Head 8 ×6 4 ×6 2 ×6
FFN 2048 1024 512

Decoder
Hidden

[
512

] [
256

] [
128

]Head 8 ×6 4 ×6 2 ×6
FFN 2048 1024 512

Params 64.5M 21.5M 8.0M

Table 1: The detailed settings of Base, Small and Tiny.

embedding dimension E and hidden dimension H ,
it additionally introduces a trainable transforma-
tion weight W T ∈ RE×H , where E ≤ H . After
factorization, the embedding parameters will be
decreased from O(V ×H) to O(V ×E+E×H).

Reducing Vocabulary Size (Scaling V). A more
direct way to compress embedding is to reduce the
vocabulary size V . To reduce the risk of out-of-
vocabulary words, here we adopt Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016; Ott et al., 2018;
Ding et al., 2019; Liu et al., 2020). For most stud-
ies on machine translation, the adopted BPE merge
operations range from 30∼40K (Ding et al., 2019).
Volt proves that we can find a well-performing
vocabulary with higher BLEU and smaller BPE
merge operations (Xu et al., 2021). Experiments
in Lin et al. (2021)’work also show that smaller
vocabularies may be better.

Reducing Vocabulary Size Performs Better.
To compare the two embedding compression meth-
ods, here we select three baseline models of differ-
ent sizes. The model settings are shown in Table 1.
As shown in Table 2, the parameters and FLOPs are
almost the same in these two methods. As shown
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Figure 3: The left two figures show weight and output ranges for each layer. The right figure shows the model
performance of Post Training Quantization (PTQ) in cross-layer parameter sharing vs. reducing model width.

:::::
These

:::::
figures

:::::
show

::::
that

:::::::
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::::::
model

:::::
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::
is

::::
more

:::::::::::::::::
quantization-friendly

::::
than

::::::::::
cross-layer

::::::::
parameter

:::::::
sharing.

Metric Scaling E

vs.

Scaling V
Base Small Tiny Base Small Tiny

Params (M) 47 12 3 47 12 3
FLOPs (G) 1.41 0.38 0.11 1.41 0.38 0.11
MMI/O (M) 48 15 6 47 14 5
BLEU 25.46 21.03 14.48 26.17 22.49 17.10

Metric Sharing

vs.

Width
Base Small Tiny Base Small Tiny

Params (M) 28 12 6 28 12 6
FLOPs (G) 1.95 0.65 0.24 0.85 0.38 0.17
MMI/O (M) 66 24 10 30 15 7
BLEU 25.41 22.37 17.75 25.18 22.62 18.60

Table 2: Parameters, FLOPs, and model perfor-
mance (FLOPs and MMI/O are estimated on a sam-
ple with src/tgt length of 30.).

:::
For

::::::::::
embedding

:::::::::::
compression,

::::::::
reducing

::::::::::
vocabulary

::::
size

::::::::
(Scaling

:::
V)

:
is
:::::

more
:::::::

simple
::::
and

::::::::
effective.

:::::
For

::::::::::::::
encoder/decoder

:::::::::::
compression,

:::::::
reducing

::::::
model

::::::
width

:::::::
(Width)

::
is

:::::
more

:::::::
efficient

::
in

::::::::::
computation

:::
and

::::::::
memory.

in the first row of Fig. 2, compared to reducing
vocabulary size, the model with embedding factor-
ization performs poorly in most cases, especially
when the parameters are limited.

2.2 Encoder/Decoder Compression

For encoder and decoder compression, here we
compare models with cross-layer parameter sharing
and model width reduction.

Cross-Layer Parameter Sharing (Sharing).
The most widespread use of parameter sharing is in
convolutional neural networks (Long et al., 2015).
In recent years, it has also been investigated on
NLP and NLU tasks. Among them, cross-layer pa-
rameter sharing can provide stronger nonlinearity
along the model depth while keeping the parame-
ters unchanged (Dehghani et al., 2019; Takase and
Kiyono, 2021; Lan et al., 2020).

Reducing Model Width (Width). Since model
depth has been proven to be important in natural
language processing tasks such as machine trans-
lation (Devlin et al., 2019; Liu et al., 2020; Wang
et al., 2022; Liu et al., 2020), here we keep the
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Vocab Size
Encoder Depth
Decoder Depth
Hidden Size
FFN Dim

Figure 4: Performance (BLEU) vs. parameters (M). Dif-
ferent marks denote different dimensions. Points near
large red circles have a greater impact on model perfor-
mance than points near small red circles.

:::::::
Encoder

:::::
depth

:::
can

::
be

:::::::::
considered

::
as
:::
the

:::::
most

::::::::
important

:::::::::
dimension.

depth unchanged and reduce the model width.
Reducing Model Width is More Efficient and

Quantization-Friendly. In the second row of Fig.
2, these two methods perform nearly the same.
However, Table 2 shows that there is a large differ-
ence in FLOPs and MMI/O, which means reducing
model width is much more efficient in computa-
tion and memory. Since it is necessary to quantize
these models for greater compression, we further
compare the weights and output ranges of the two
methods in Fig. 3. It can obviously be observed
that models with parameter sharing have larger
ranges of values for both weight and output, which
is not quantization-friendly. The right figure also
verifies this: when we apply post-training quan-
tization (PTQ) (Sung et al., 2015; Banner et al.,
2019; Choukroun et al., 2019) to these two meth-
ods, cross-layer parameter sharing performs poorly.

2.3 Deep Encoder and Shallow Decoder
Fig. 4 studies how different dimensions affect the
Transformer performance. In order to analyze the
impact of each dimension separately, here we only
change one specific dimension and keep the others
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Module Dim MobileNMT-10MB MobileNMT-20MB

Embed
Vocab

[
8,000

] [
8,000

]Embed N/A ×1 N/A ×1
Hidden 256 384

Encoder
Hidden

[
256

] [
384

]Head 4 ×12 6 ×12
FFN 512 768

Decoder
Hidden

[
256

] [
384

]Head 4 ×2 6 ×2
FFN 512 768

Params ≈10M ≈20M

Table 3: The detailed settings of MobileNMT.
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Figure 5: Running examples of the FFN and attention
quantizers. Here red lines denote values that will be
quantized, black lines denote values with full precision.

unchanged. The point on the left of the Small
Baseline represents scaling one dimension down,
while the point on the right represents scaling one
dimension up. We can see that Encoder Depth �
is more important than other dimensions, which
is consistent with the related work on large-scale
models (Wang et al., 2019, 2022). Based on the
above discussion, we finally build a deep encoder
and a shallow decoder, while reducing the vocab
size and model width. Two MobileNMT models
of different sizes are built here and the detailed
settings are shown in Table 3.

3 Training Strategies

3.1 Pre-Training with Knowledge Distillation

In order to improve the performance of compressed
models, recent studies distill knowledge from a
well-trained full-precision teacher network to a stu-
dent network (Mishra and Marr, 2018) or directly
use a quantized teacher network (Kim et al., 2019).
Here we adopt sequence-level knowledge distilla-
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ferent dropouts on base model vs. MobileNMT.
The right part shows performance before vs. after
PTQ.
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tion because it has shown to be effective for NMT
tasks. The most basic full-precision Transformer-
base model is adopted as the teacher.

3.2 Quantization

The process of quantizing a transformer model can
be divided into two steps: 1) constructing quan-
tizers; 2) applying the quantization-aware training
(QAT) (Courbariaux et al., 2015) based on the pre-
trained model we have obtained in Section 3.1.

FFN and Attention Quantizers. The original
Transformer layer includes two types of sublayers:
the attention sublayer and feed-forward network
(FFN) (Vaswani et al., 2017). Here we construct
the quantizer for each linear in the attention and
FFN, and quantize both the weights and activations
as shown in Fig. 5. Since most computations are
spent on matrix multiplication, all biases and resid-
uals are kept in full precision for accuracy preser-
vation. Since quantization will change the range of
network outputs, here we add a learnable weight
γi to the i-th sublayer to learn how to combine the
output and the residual surrounding it.

Quantization-Aware Training. Since Mo-
bileNMT only has 10M/20M parameters, quantiz-
ing such a small model inevitably results in perfor-
mance loss, so we perform QAT after constructing
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Figure 8: The left two figures show weight and output ranges for each layer. The right figure shows the performance
of different L2 regularizations before vs. after PTQ.
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:::
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model

::::
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the quantizers. Before QAT, we pre-compute all
scaling parameters based on a forward running on
the pre-trained distillation model obtained in Sec-
tion 3.1. It takes nearly no additional costs, but
provides a good initialization. For engineering de-
velopment, we choose the uniform quantization
scheme because of it is hardware-friendly (Liu
et al., 2022). For 8-bit quantization, we use the
element-wise quantization (Lee et al., 2021). For
lower-bit quantization, such as 4-bit integer, we use
the row-wise quantization (Faraone et al., 2018).

3.3 Training Hyperparameters

Compared to the original Transformer model, Mo-
bileNMT introduced in Section 2 has fewer parame-
ters and different architectures, so different training
hyperparameters are needed.

Removing Dropout. Since our models have
fewer parameters, we do not need to impose strong
regularizations on them and we remove dropout
from the entire model. The left part of Fig. 6 shows
that removing dropout will lead to an improvement
of almost two BLEU points.

Larger Learning Rate. Here we follow the
configuration provided in Wang et al. (2019) with a
larger learning rate (0.01→ 0.02), a larger training
batch (4096 → 8192), and more warmup steps
(4000 → 8000). As shown in the right part of
Fig. 6, it can improve model performance by more
than 0.5 BLEU points (red bars). However, after
PTQ, the model with 0.02 learning rate performs
significantly worse than 0.01 (blue bars). As shown
in Fig. 7, the network weights and outputs become
larger when using a larger learning rate, which is
not quantization-friendly.
L2 Regularization. To solve the above prob-

lem, this paper adopts L2 regularization applied
to weight (also called weight decay). It adds the
squared magnitude of the network weights as the
penalty term to the original loss function and en-
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Figure 9: An example of processing multiple integers
in a single SIMD instruction.

courage the weights to be smaller. As shown in
the left two parts of Fig. 8, with L2 regularization,
both the network weights and output values will
become significantly smaller. The right part of Fig.
8 shows the performance of PTQ when applying
different degrees of L2 regularization. The red and
blue bars represent the model performance before
and after PTQ. We can see that L2 regularization
does improve the model performance after PTQ.

4 The Engine

This section introduces the detailed implementa-
tions of our inference engine.

4.1 GEMM Optimization

According to statistics on the ONNX Runtime plat-
form, general matrix multiplication (GEMM) ac-
counts for 80.44% of the overall decoding time,
demonstrating that optimizing GEMM is the key
to decoding speed up. We optimize GEMM from
three aspects: (1) Replacing 32-bit floating points
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System Params (M) Size (MB) Memory (MB) Latency (ms) Test Valid
E

n-
D

e
Transformer-big 218 ↑1× 872 ↑1× 2886.6 ↑1.0× 1281.5 ↑1.0× 28.36 ∆-0.00 26.75 ∆-0.00
Transformer-base 65 ↑3× 260 ↑3× 908.5 ↑3.2× 332.3 ↑3.9× 27.40 ∆-0.96 25.81 ∆-0.94
Transformer-small 22 ↑10× 88 ↑10× 759.5 ↑3.8× 158.0 ↑8.1× 24.20 ∆-4.61 23.91 ∆-2.84
Transformer-tiny 8 ↑27× 32 ↑27× 398.9 ↑7.2× 73.0 ↑17.6× 20.97 ∆-7.39 21.53 ∆-5.22
MobileNMT-20MB 20 ↑11× 20 ↑44× 26.0 ↑111.2× 46.3 ↑27.7× 27.09 ∆-1.27 25.72 ∆-1.03
MobileNMT-10MB 10 ↑22× 10 ↑87× 14.9 ↑194.0× 27.3 ↑47.0× 25.08 ∆-3.28 24.85 ∆-1.90

E
n-

Fr

Transformer-big 259 ↑1× 1036 ↑1× 2987.6 ↑1.0× 1345.6 ↑1.0× 39.05 ∆-0.00 44.12 ∆-0.00
Transformer-base 86 ↑3× 344 ↑3× 944.8 ↑3.2× 358.9 ↑3.7× 38.64 ∆-0.41 43.80 ∆-0.32
Transformer-small 22 ↑12× 88 ↑12× 782.3 ↑3.8× 178.5 ↑7.5× 34.76 ∆-4.29 40.01 ∆-4.11
Transformer-tiny 8 ↑32× 32 ↑32× 418.8 ↑7.1× 80.3 ↑16.8× 30.36 ∆-8.69 36.01 ∆-8.11
MobileNMT-20MB 20 ↑13× 20 ↑52× 26.7 ↑111.9× 53.7 ↑25.1× 37.67 ∆-1.38 43.81 ∆-0.31
MobileNMT-10MB 10 ↑26× 10 ↑104× 15.8 ↑189.1× 28.9 ↑46.6× 36.00 ∆-3.05 41.87 ∆-2.25

Table 4: Results on WMT14 En-De and WMT14 En-Fr tasks. These metrics are measured on Google Pixel 4.
Transformer-big/base/small/tiny results are tested on TFLite and MobileNMT-20MB/10MB are tested on our engine.
All results are based on a sample with src/tgt length of 30.

with 8-bit integers in GEMM for model quantiza-
tion. (2) The Arm instruction set we use allows
multiple integers to be processed in parallel in a
single instruction, which takes full advantage of
the processor throughput. (3) To improve the cache
hit and the register usage, we adjust the layout of
the tensor in memory to ensure that the instruction
reads data from continuous space. Specifically, we
convert each 4× 4 block in the original layout into
a contiguous vector of size 16. An example can be
seen in Fig. 9.

4.2 Memory Optimization

As shown in Fig. 10 in the appendix C, except for
GEMM, other operations account for only 19.56%
of the decoding time but will be frequently per-
formed, resulting in a large amount of temporary
memory. To improve memory efficiency, we take
two strategies: (1) To avoid frequent memory-
mapped I/O and footprint, our engine integrates
all adjacent fine-grained operations between two
GEMM operations into one fused operation. (2)
To save temporary memory, different operations
are allowed to share the same space, provided that
these operations do not interfere with each other at
the same time. Through memory sharing, only two
8-bit memory buffers, and one 32-bit buffer need
to be pre-allocated in the Transformer encoder to
hold intermediate results.

5 Experiments

5.1 Setups

We evaluate our methods on two WMT bench-
marks. For the WMT14 En-De task (4.5M pairs),
we choose newstest-2013 as the validation set and

System
Params(M)

FLOPs(G) BLEU
w/ w/o

Transformer-base 65 44 1.9 27.40
DeLighT 37 31.4 - 27.60
Universal Transformer N/A 7.4 1.9 26.20
Lite Transformer (small) N/A 2.9 0.2 22.50
Lite Transformer (medium) N/A 11.7 0.7 25.60
Lite Transformer (big) N/A 17.3 1.0 26.50
EdgeFormer w/o LA N/A 8.6 1.8 26.50
EdgeFormer (Adapter-LA) N/A 9.4 1.8 26.90
EdgeFormer (Prefix-LA) N/A 8.6 1.9 26.80
MobileNMT-10MB 10 7.9 0.3 25.08
MobileNMT-20MB 20 17.7 0.6 27.09

Table 5: The comparison of MobileNMT with other
parameter-efficient Transformers, including DeLighT
(Mehta et al., 2021), Universal Transformer (Dehghani
et al., 2019), Lite Transformer (Wu et al., 2020) and
EdgeFormer (Ge et al., 2022) (Parameters w/ or w/o
embedding layer are both provided. FLOPs is estimated
on a sample with src/tgt length of 30.).

newstest-2014 as the test set. For the WMT14 En-
Fr task (35M pairs), we validate the system on
the combination of newstest-2012 and newstest-
2013, and test it on newstest-2014. Details of the
architecture were introduced in Section 2, and train-
ing hyperparameters were introduced in Section 3.
For model compression ratio and decoding speed
up, we choose Transformer-big as the benchmark
(1.0×). Other details of experimental setups are
introduced in Appendix D.

5.2 Results

Table 4 shows the results of different sys-
tems on WMT14 En-De and En-Fr. Table 5
shows the comparison of MobileNMT with other
parameter-efficient methods based on Transformer.
MobileNMT-10MB and MobileNMT-20MB are
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two models we have built with different sizes,
which are introduced in Table 3.

On WMT14 En-De, our MobileNMT-10MB re-
quires only 4.6% of the parameters to maintain
88.4% performance of Transformer-big, while it
achieves 87.2× compression ratio and 47.0× speed
up. Our MobileNMT-20MB can maintain 95.5%
performance of Transformer-big with only 9.2%
parameters, while it achieves 43.6× compression
ratio and 27.7× speed up. Experiments on En-Fr
show similar results. In addition, thanks to the
memory optimization strategies adopted in our en-
gine, MobileNMT requires significantly less run-
ning memory than other models (0.5%∼0.9% of
Transformer-big). All these experiments demon-
strate that MobileNMT is efficient in terms of pa-
rameters, computation, and memory, and can be
easily deployed on mobile devices.

6 Conclusion

We propose MobileNMT, a Transformer-based ma-
chine translation system that can translate in 15MB
and 30ms. It uses existing resources efficiently
and can be easily deployed in real-world scenarios.
We develop a mobile inference engine with GEMM
and memory optimization, hoping that it can bridge
the gap between theoretical research and real-world
applications on efficient machine translation.
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Limitations

Multilingual Translation. Here we mainly dis-
cuss the design principles of efficient architectures
for bilingual machine translation. Compared with
bilingual translation, multilingual translation tasks
require significantly more parameters and compu-
tations to perform well, and different model scales

may lead to different design considerations. We
will leave this for future exploration.
Knowledge Distillation. As a small model that re-
quires only 10MB/20MB of storage, MobileNMT
will inevitably suffer from performance loss com-
pared to other Transformer-based models. To re-
duce performance loss, here we adopt knowledge
distillation and choose the Transformer-base model
as the teacher. From a training efficiency per-
spective, although the teacher model can help Mo-
bileNMT improve performance, it also introduces
additional training costs.
Compatibility. Here our inference engine only
provides implementation for the ARM CPU. We
will make it available for other AI accelerator (such
as NPU) on mobile devices in the future.
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A Transformer Architecture

We chose Transformer for study because it is one
of the most successful neural models for machine
translation. It consists of a N -layer encoder and
a M -layer decoder, where N=M=6 in the origi-
nal Transformer-base and Transformer-big. Each
encoder layer consists of two sublayers, includ-
ing the self-attention and feed-forward network
(FFN). Each decoder layer has an additional cross-
attention sublayer to bridge the encoder and de-
coder.

The self-attention takes the output X of the pre-
vious sublayer as its input. The cross-attention is
similar to the self-attention, except that it takes the
encoder output as an additional input. Both types
of attention first compute the attention distribution
Ax and then averageX byAx. We denote the trans-
formation matrices ofQ,K, V asWq,Wk,Wv, the
subsequent transformation matrices as Wo, and the
attention as Ya = Attn(X), then:

Ax = SoftMax(
XWqW

T
k X

T

√
d

) (1)

Ya = AxXWvWo (2)

The FFN applies non-linear transformation to its
input X . We denote the FFN as Yf = FFN(X):

Yf = ReLU(XW1 + b1)W2 + b2 (3)

where W1 and b1 denote the weight and bias of the
first linear transformation, W2 and b2 are parame-
ters of the second transformation.

Here we preprocess each sublayer input by the
layer normalization (Ba et al., 2016). All sublayers
are coupled with the residual connection (He et al.,
2016a).

B PTQ and QAT

As an appealing solution to model compression,
quantization enables the model to use lower-bit
values (such as 8-bit integer) to compute faster and
consume less storage space (Hubara et al., 2016;
Micikevicius et al., 2018; Quinn and Ballesteros,
2018; Jacob et al., 2018).

Post-Training Quantization (PTQ) can be seen as
the basis for Quantization Aware Training (QAT),
it adds quantization nodes to a well-trained floating-
point model. To quantize a floating-point tensor r
to a tensor with n bits, a scale s is introduced to
map these two types of values (Wu, 2020):

s =
max(r)−min(r)

2n − 1
(4)

System Params (M) Size (MB) BLEU
Transformer-base 65 260 27.40
+ Reducing Vocab 48 192 26.20
+ Reducing Width 10 40 22.01
+ Other Dimensions 10 40 22.54
+ Distillation 10 40 23.77
+ Quantization 10 10 23.76
+ Hyperparameters 10 10 25.48
+ Greedy Search 10 10 25.08

Table 6: Ablation study on MobileNMT-10MB. The
colors refer to Model Architecture in Section 2,
Training Strategies in Section 3 and Greedy Search.

To get a faster computation speed, both weights
and activations will be quantized to n-bit. Suppose
rm = min(r), the quantization function is:

Q(r) = b(r − rm)/se × s+ rm (5)

where b·e represents rounding to the nearest integer.
However, in PTQ, applying quantization directly

to the floating-point network will result in signif-
icant performance losses. Based on PTQ, QAT
simulates the behavior of n-bit computation by min-
imizing quantization errors during training, which
helps the model achieve higher accuracy. In addi-
tion to the learnable weights of the model itself, s
is also learnable.

C Operations except GEMM

Since general matrix multiplication (GEMM) ac-
counts for 80.44% of the overall decoding time, we
have concluded that optimizing GEMM is the key
to decoding speed up in Section 4. As for opera-
tions except GEMM, Fig. 10 shows the proportion
of running time in the decoding process. The corre-
sponding data is measured in 32-bit floating point
format on the ONNX Runtime.

D Setups

All sentences were segmented into sequences of
sub-word units (Sennrich et al., 2016). In the im-
plementation, we adopt the normalization before
layers (Baevski and Auli, 2019; Xiong et al., 2020;
Nguyen and Salazar, 2019). Most previous work
only shared source and target vocabularies on the
En-De task. In our MobileNMT, both En-De and
En-Fr adopt shared vocabularies for efficiency rea-
sons, which leads to a larger compression gain at
the expense of performance. We test on the model
ensemble by averaging the last 5 checkpoints and
report SacreBLEU scores (Post, 2018).
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Figure 10: Proportions of different operations (except GEMM) on the Transformer-base model.

System
Params Bits Size

BLEU
(M) (W-E-A) (MB)

Transformer-base 65 32-32-32 260 27.40

MobileNMT-10MB

10 32-32-32 40 25.79
10 8-8-8 10 25.08
10 4-8-8 5 25.43
10 3-8-8 3.75 24.09
10 2-8-8 2.5 21.25

MobileNMT-20MB

20 32-32-32 80 27.30
20 8-8-8 20 27.09
20 4-8-8 10 26.96
20 3-8-8 7.5 26.23
20 2-8-8 5 24.33

Table 7: Results of quantizing weights to lower bits.

For the experiments of MobileNMT in Table 4,
we use the greedy search algorithm in our engine.
Compared with beam search, greedy search can
lead to more efficient decoding. For the experi-
ments of TFLite in Table 4, since TFLite will ex-
pand all loop subgraphs, it is hard to support the en-
tire decoding process (30 steps) of the Transformer-
big/base model with limited memory (6GB in
Google Pixel 4). For the memory of these two
models, we only record the running memory of 1
step. For the corresponding latencies, we estimate
the 30-step latency according to the 1-step and 5-
step latencies. It is worth noting that except for the
memory and latency on Transformer-big/base, all
other data statistics are measured in real-world.

E Analysis

E.1 Ablation Study
Table 6 summarizes how each part of Section 2 and
Section 3 affects the overall performance. Each
row in Table 6 represents the result of applying the
current part to the system obtained in the previous
row.

To reduce the model parameters from 65M to
10M, the model performance decreased from 27.40
to 22.54, which illustrates the importance of net-
work parameters on model capacity. We observe
that both knowledge distillation and tuning hyper-
parameters can bring significant performance im-
provements (from 22.54 to 25.48), which effec-
tively compensate for the performance loss caused
by parameter reduction.

E.2 Quantization Study
Table 7 studies how performance changes when
quantizing the model to lower bits (i.e., 4-bit, 3-bit,
and 2-bit). As introduced in Section 3.2, for 8-bit
quantization, we use the element-wise quantization
method (Lee et al., 2021). For lower-bit quantiza-
tion, we use the row-wise quantization for accuracy
preservation (Faraone et al., 2018).

As shown in Table 7, 8-bit and 4-bit quantization
have almost no negative effect on model perfor-
mance. When quantizing the model to lower bits,
such as 3-bit and 2-bit integers, model performance
will drop dramatically.
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Abstract

Multi-document summarization is gaining
more and more attention recently and serves
as an invaluable tool to obtain key facts among
a large information pool. In this paper, we
proposed a multi-doc hybrid summarization
approach, which simultaneously generates a
human-readable summary and extracts corre-
sponding key evidence giving a multi-doc in-
put. To fulfill that purpose, we crafted a
salient representation learning method to in-
duce latent noteworthy features, which are ef-
fective for joint evidence extraction and sum-
mary generation. In order to train that model,
we performed multi-task learning to optimize
a composite loss, which is hierarchically con-
structed over the extractive and abstractive
sub-components. We implemented such a
fine system based on a ubiquitously-adopted
transformer architecture and conducted experi-
ments on a variety of datasets across two do-
mains, achieving superior performance than
the baselines.

1 Introduction

Multi-document summarization (MDS) aims to pro-
duce a concise summary of non-redundant salient
facts based on multiple source documents under the
same topic (Cao et al., 2017; Yasunaga et al., 2017),
which is prevailingly useful in many application
domains such as news-wire article summarization
(Fabbri et al., 2019; Gu et al., 2020; Lee et al.,
2022), scientific literature comparison (Lu et al.,
2020; Shen et al., 2022a), civil rights lawsuits sum-
marization (Shen et al., 2022b), and many others
(Bražinskas et al., 2021; DeYoung et al., 2021).

Two main principled approaches are developed
accordingly, multi-doc extractive methods (Cao
et al., 2015a,b; Yin and Pei, 2015; Zhang et al.,
2017) and multi-doc abstractive methods (Bražin-
skas et al., 2020; Amplayo and Lapata, 2021; Liu
and Liu, 2021; Nan et al., 2021a; Pang et al., 2021).
Extractive multi-doc approaches intend to directly

Generated Summary: 

California and New York impose COVID-19 Restrictions. 
California Gov. Gavin Newsom (D) called for all Californians 
to stay at home on Friday as the state's coronavirus death 
toll rose to more than 1,000. New York Gov. Andrew  
Cuomo (D), meanwhile, called for a statewide lockdown 
on Friday. 

Extracted Evidence: 

(0.2295) LOS ANGELES/NEW YORK (Reuters) - California ordered  
nearly 40 million people to stay home and New York state on Friday  
told all non-essential workers to do the same while pleading for  
more medical personnel and supplies to treat coronavirus cases  
that could overwhelm hospitals. 

(0.1626) Gavin Newsom announced extraordinary measures directing  
all californias to stay at home amid the coronavirus outbreak,  
Contra Costa County on Friday announed its first death related  
to the virus. 

(0.1625) Andrew Cuomo ordered a statewide lockdown amid the  
worsening coronavirus pandemic Friday that will shut down most of the  
Empire State -- including New York City. 

(0.1171) New York, California impose toughest restrictions yet in  
U.S. coronavirus fight.

Figure 1: The illustration of our hybrid system’s out-
puts. The top rows present the generated summary
and the bottom rows present the extracted key evidence
(aka., salient sentences). For each salient sentence,
we also prepend the predicted salient score. This il-
lustration demonstrates that the proposed novel system
provides a useful explainability mechanism to the final
summary.

extract non-redundant salient information from the
original source (Mao et al., 2020; Wang et al., 2020;
Parnell et al., 2022). It is usually carried with
two stages, salience prediction and redundancy de-
tection, where the former is trained with (pseudo-
)salience labels (Cao et al., 2015b; Mao et al., 2020;
Wang et al., 2020), and the latter is employed with
ranking/selection tricks such as Maximal Marginal
Relevance (MMR) (Carbonell and Goldstein, 1998;
Zhang et al., 2017; Mao et al., 2020). Nonetheless,
abstractive multi-doc approaches suggest para-
phrasing the input to rewrite a smooth summary
(Fabbri et al., 2019; Lewis et al., 2020; Ernst et al.,
2022), where recent works are usually designed
with dedicated components such as special atten-
tions/encoders (Fabbri et al., 2019; Zhang et al.,
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Figure 2: The architecture of the proposed multi-doc hybrid summarization system, powered by joint salient
representation learning and multi-task training/prediction.

2020a; Pasunuru et al., 2021; Parnell et al., 2022;
Song et al., 2022; Xiao et al., 2022).

In this paper, we advocate for a hybrid MDS
system, which produces a paraphrased summary,
achieved by the abstractive prediction module, at-
tached with corresponding salient evidence, ob-
tained from the joint extractive prediction module,
where both modules are coupled and learned to-
gether, within an encoder-decoder-architectured
transformer (Vaswani et al., 2017; Lewis et al.,
2020; Xiao et al., 2022). This is motivated from
real-world business scenarios where enterprise
customers are specifically requesting evidence ex-
traction and alignment for abstractive summaries,
which, as far as we know, was not fully supported
in most commercialized AI platforms. Please refer
to Figure 1 for one such example to better under-
stand it. In order to train such a hybrid system, we
conducted multi-task learning to jointly optimize
an extraction loss and generation loss. To align
those two prediction tasks (aka., summary gener-
ation and evidence extraction) appropriately, we
exploited a salience attention with a gating mech-
anism, to effectively induce salient features. We
present the overall architecture in Figure 2. In brief,

given a multi-doc input, we feed it to our enhanced
transformer for salient representation learning to
jointly predict a final summary and extract notable
evidence. Empirically, we carried extensive quanti-
tative evaluations across multiple datasets, on var-
ious metrics such as ROUGE scores (Lin, 2004;
Peng et al., 2021), perplexity (Jelinek et al., 1977),
BERTScore (Zhang et al., 2020b), besides a manual
qualitative evaluation with case studies (Novikova
et al., 2017).

In summary, our contributions are twofold: 1)
We proposed a novel multi-doc hybrid summariza-
tion system to generate linguistically-smooth sum-
maries and to extract corresponding key evidence,
based on the multi-doc inputs; 2) We conducted
thorough empirical studies to quantitatively vali-
date the effectiveness of the proposed approach and
manually verify the quality of the extracted salient
evidence.

2 Proposed Approach

Let x be a multi-doc input with n documents of the
same topic, x = {di}ni=1, and each document be a

sequence of sentences, e.g., di =
[
si1, . . . , s

i
j, . . .

]
,

where sij is the j-th sentence of the i-th docu-
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ment di. Similarly, each sentence is a sequence
of words/tokens, e.g., sij =

[
wi,j

1 , . . . ,w
i,j
k , . . .

]
,

where wi,j
k indicates the k-th word/token of sen-

tence sij. In this work, we are developing a pre-
diction machine M : X → Y × S × Z to map
the input x to a triplet output such thatM (x) =(
y, {sj′}qj′=1, {zj′}

q
j′=1

)
, of which y is an abstrac-

tive summary, {sj′}qj′=1 is an evidence list of ex-
tracted q salient sentences, and zj′ is the corre-
sponding salient score for sj′ .

Based on this hierarchical input, we first flatten
the whole word sequences and insert a document-
separator token, <d>, utilized to capture global
interactions (Xiao et al., 2022), along with a
sentence-separator token, <s>, used to assist sen-
tence salience extraction. We then feed that flat
sequence to our enhanced transformer (Figure 2),
for joint salient representation learning and multi-
task training/prediction.

2.1 Salient Representation Learning
Recently, encoder-decoder-based transformer has
achieved great successes in the literature for a
variety of generation tasks (Lewis et al., 2020),
such as machine translation, summarization, and
etc. Hence, our hybrid summarization system
performed salient representation learning by en-
hancing such a transformer. Considering that we
are tackling multi-doc inputs, where each instance
(multiple documents) could be much longer than
a single sentence or a short paragraph, we choose
the longformer-encoder-decoder (LED) (Beltagy
et al., 2020) as our backbone to implement such
enhanced transformer, due to the fact that it has
already demonstrated its capability to efficiently
handle that longer sequences.

In general, our enhanced components consist of
a salient evidence extraction module, which is con-
structed on top of the transformer encoder, and a dy-
namic salience integration module built across the
encoder and decoder. Let he ∈ Rl×m be the hidden
output of the transformer encoder, and P : Rl×· →
Rls×· be the sentence selection/filtering operator,
where l denotes the whole sequence length and ls
denotes the number of sentence candidates. We
first use a fully-connected feed forward (FF) layer
with a dropout, followed with sentence candidate

selection, to predict salience scores such that1

ẑ = P (FF (Dropout (he))) ∈ Rls . (1)

Then, we use the predicted salience scores ẑ to
induce an attention weight for each sentence can-
didate and apply them to the sentences’ hidden
representations for self-aggregation. In particular,
we adopt a salience attention to produce a global
salience vector hs such that,

hs =

ls∑

j=1

ajP (he)j ∈ Rm, (2)

where aj =
exp(ẑj)∑
j′ exp(ẑj′)

is the attention weight for

the j-th sentence.
Further, we connect this predicted global

salience feature with decoder via dynamic integra-
tion during auto-regressive text generation. Specifi-
cally, we employ a gating mechanism (Zhou et al.,
2016) to inject global salience features. Let hd ∈
Rm be the hidden output of the transformer decoder
at one particular step, with this gating mechanism,
the model is capable to dynamically select salience
representations, such that,

os = hs � g + hd � (1− g) ∈ Rm,

g = Sigmoid (FF (hg)) ,

hg = GELU
(
Dropout

(
FF
(
hs ⊕ hd

)))
,

(3)

where � is element-wise product and ⊕ denotes
concatenation, Sigmoid (·) and GELU (·) are the
nonlinear activation functions (Hendrycks and Gim-
pel, 2016; Mishkin and Matas, 2016). We then use
this dynamically gated salience representation os
to generate a summary ŷ. Note that the predicted
salient scores ẑ will be sorted to retrieve salient
sentences/evidence (̂s) during the inference stage.

2.2 Multi-Task Learning and Prediction
Due to the dual functionalities, we conduct a joint
optimization wrt. the salient evidence extraction
loss and the abstractive summary generation loss,
such that

J = `1 (y, ŷ) + α`2 (z, ẑ) , (4)

where α is a trade-off parameter, `1(·) denotes the
abstractive loss, e.g., token-level cross-entropy loss,

1For notation simplicity, we do not differentiate row and
column vectors, assuming that the dimensionalities of them
can be inferred from the context.
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Source Target Source→ Target

Domain Dataset Samples Docs Words Sents Words Sents Coverage Density Compression Ref
News MULTI-NEWS 56,216 2.7 2164.5 84.3 264.0 10.0 0.83 5.01 8.18 (Fabbri et al., 2019)

Table 1: The dataset statistics on the news domain, including document/sentence/word counts and source-to-target
coverage/density/compression ratios.

Test Lexical Semantic Fluency Pred Summary

Domain Dataset Samples Method R-1f1 ↑ R-2f1 ↑ R-Lf1 ↑ BSf1 ↑ PP↓ Words Sents

News MULTI-NEWS 5,622 BART 49.75 20.00 24.76 35.61 13.22 263.4 9.6
PRIMERA 47.53 19.58 24.95 35.10 13.89 207.0 8.1

MHS-SRL 49.81 20.68 25.67 36.24 12.42 252.4 9.8

Table 2: Empirical results on the news domain, where we underlined the numbers if the proposed system outputs
the baselines, and used the bold-font to highlight the best number for each metric.

Split

Domain Dataset Samples Train Valid Test

NEWS MULTI-NEWS 56,216 44,972 5,622 5,622

Table 3: The dataset-split stats on the news domain.

and `2(·) denotes the extraction loss, e.g., salience
score error such as MSE.

As we can see, this paradigm of training requires
labeled information for all candidate sentences.
Hence, we employed a weakly supervised method
to construct salience scores. Specially, we designed
a hierarchical scoring method by first calculating
the lexical coverages, aka., ROUGE-1, ROUGE-2,
ROUGE-L (Lin, 2004), against the same gold sum-
mary and averaging them based on their F1 scores.
Next, we computed a factuality-style score, NER-
precision (Nan et al., 2021b) and averaged them to
produce the pseudo salience labels for supervised
training.

In summary, our systems share the similar func-
tionality, respectively, with the extractive and ab-
stractive method. Nevertheless, we performed them
in a joint hierarchical way. Besides, our salience
labels are more robust as we explored a compos-
ite method to combine lexical coverage measures
(Lin, 2004) and a factuality-style measure (Nan
et al., 2021b). Moreover, we used a dynamic gating
mechanism to effectively integrate global salience
during summary generation, enabling better align-
ment between two prediction tasks (aka., summary
generation vs. evidence extraction).

3 Experiments on the News Domain

In this section, we present empirical investigations
for the proposed summarization system on news
domain to justify its effectiveness.

3.1 Experimental Setup
The MULTI-NEWS dataset2 (Fabbri et al., 2019)
contains human-written summaries from the
newser.com3 site by professional editors, which are
based on/linked with multiple source articles.We
calculated important stats for this dataset in Ta-
ble 1 and Table 3. In particular, we used the spaCy
library4 with the en_core_web_sm model to calcu-
late word and sentence counts and used the Grusky
et al. (2018)’s original tool to compute the cover-
age/density/compression ratios.

We compare our proposed system, MHS-SRL
with two baselines: BART (Lewis et al., 2020),
which is widely used for summarization tasks,
and PRIMERA (Xiao et al., 2022), which is tailored
to MDS systems. We set the batch size to be
8 and learning rate to be 3e−5, choose α from
{0.1, 1, 10, 102} based on the validation perfor-
mance (dev/validation set), and used the Hugging-
face tool5 for implementations.

3.2 Main Results
For each method, we finetuned it on the target
dataset. We compare the proposed summarization
system to the corresponding baselines with various
metrics in Table 2, including the ROUGE scores
(Lin, 2004) to estimate the lexical coverage, the

2https://github.com/Alex-Fabbri/Multi-News
3https://www.newser.com/
4https://spacy.io/
5https://huggingface.co
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Gold Summary – Kathryn Schurtz and Joseph Kearney were on their way to their wedding when the unthinkable
happened Wednesday. The New Jersey couple was driving to Pittsburgh for the nuptials when a
crash occurred ahead of them on I-78 in Windsor Township, Pa. Traffic slowed, but a tractor-
trailer behind the couple wasn’t able to stop in time and hit their car, pushing it into the back of
another tractor-trailer. That crash caused a fiery chain reaction ultimately involving the coupleś
car, which caught on fire, and five tractor-trailers, the Reading Eagle reports. Three other people
were injured, NBC Philadelphia reports. Now, instead of a wedding, family will be attending
funeral services. Schurtz, 35, "will be remembered for her voracious appetite for reading, love
of cooking, and trailblazing new adventures with Joseph," says her obituary. Born and raised
in New Jersey, she graduated from George Washington University before getting her MBA at
Notre Dame. She was working for Oracle Data Cloud in New York City, and living back in New
Jersey, when she was killed. Little information was available on her fiance, but NJ.com reports
that per his Facebook profile, Kearney was originally from Pittsburgh. (This couple was married
just one and a half hours before tragedy struck.)

Generated Summary – A New Jersey couple was on their way to their dream wedding when they got caught up in
a deadly chain-reaction crash on a busy Pennsylvania highway on the day before. Kathryn
Schurtz, 35, and Joseph Kearney, 34, of Jersey City were driving to their wedding in Pittsburgh
on Wednesday when they were hit from behind by a tractor-trailer and pushed into the back
of another truck, which then pushed them into another truck and set them on fire, reports the
Star-Ledger. The two were killed and three others were injured in the second crash on I-78
in Berks County, Pa., around 2:30pm, reports WNEP. Police say traffic was heavy in both
westbound and eastbound lanes of the highway at the time of the crash, which occurred after an
earlier crash. The crash slowed and stopped traffic for hours, and the highway was shut down
for hours after the first crash. One lane of westbound traffic opened up around 7pm, but the two
westbound lanes were still shut down as of Thursday morning. A family friend tells WFMZ that
the couple, who had planned to marry in Pittsburgh, had been planning a wedding for a year and
a half. "They were just so excited to get married," the friend says. "It was a dream come true." A
GoFundMe page has been set up for the family, which has raised more than $10,000 so far.

Extracted Evidence A New Jersey couple on their way to get married in Pittsburgh were killed in a fiery chain-reaction
crash last week on Interstate 78 in Berks County, Pennsylvania. (0.1461)

Kathryn Schurtz, 35, and her fiancé, Joseph Kearney, were driving on I-78 westbound in Windsor
Township, Berks County, on Wednesday around 2:30 p.m. when the accident occurred. (0.1324)

What to Know Loved ones are mourning a New Jersey couple who died in a chain reaction crash
on I-78 in Berks County while driving to their wedding. (0.1251)

Last week the couple was on their way to Pittsburgh the day before their dream wedding, when
they got caught up in a tractor trailer crash in Berks County. (0.1205)

Loved ones are mourning a New Jersey couple who died in a chain reaction crash on I-78 while
on the way to their wedding. (0.1172)

Kathryn M. Schurtz, 35, and Joseph D. Kearney, both of Jersey City, died in the collision
Wednesday afternoon in Windsor Township. (0.1105)

Kathryn Schurtz, 35, and her fiancé, Joseph Kearney, both died in the accident which involved
their vehicle and five tractor trailers. (0.1099)

Two people were killed and three were injured in a fiery chain-reaction crash on Interstate 78 in
Windsor Township on Wednesday. (0.1080)

It struck the couple’s vehicle, which was then pushed into the back of another tractor-trailer and
set off a chain reaction crash that included three more tractor-trailers. (0.1079)

The couple was on the way to their wedding in Pittsburgh, Pennsylvania, at the time of the crash.
(0.1035)

Table 4: Examples on the MULTI-NEWS dataset (1).

BERTScore (Zhang et al., 2020b) for semantic sim-
ilarity6, and the perplexity (Jelinek et al., 1977) for
language smoothness. In addition, we present the

6We used the debert model with baseline rescaling, which
correlates better with human judgment, based on the authors’
suggestions.

word/sentence stats for the generated summaries
for reference. As we can see, the proposed sys-
tem performs much better than the corresponding
baselines on all metrics by exploiting those effec-
tive salient features. Based on the ablation study,
without the salient representation learning with the
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Source Target Source→ Target

Domain Dataset Samples Docs Words Sents Words Sents Coverage Density Compression Ref
LEGAL MULTI-LEXSUMD→T 1,603 10.7 125437.7 4591.0 24.7 1.4 0.85 1.88 5182.77 (Shen et al., 2022b)

D→S 3,138 10.3 105255.2 3889.4 130.2 4.6 0.92 2.89 775.26
D→L 4,539 8.8 79632.5 2930.1 649.6 23.2 0.89 3.60 91.05

Table 5: The dataset statistics on the legal domain, including document/sentence/word counts and the source-to-
target coverage/density/compression ratios.

Test Lexical Semantic Fluency Pred Summary

Domain Dataset Samples Method R-1f1 ↑ R-2f1 ↑ R-Lf1 ↑ BSf1 ↑ PP↓ Words Sents

LEGAL MULTI-LEXSUMD→T 312 BART 25.39 8.18 20.79 29.50 20.36 27.6 1.4
PRIMERA 30.83 12.13 25.03 34.74 15.45 30.8 1.7

MHS-SRL 31.13 12.52 25.64 36.15 20.33 25.2 1.6

D→S 616 BART 43.60 20.96 30.32 37.20 7.80 100.7 3.8
PRIMERA 46.88 23.06 32.50 41.17 8.77 102.5 4.0

MHS-SRL 47.72 23.56 32.41 40.76 8.56 128.0 4.1

D→L 908 BART 48.13 22.84 28.21 37.14 12.17 366.2 12.2
PRIMERA 53.52 26.57 31.21 41.70 12.89 479.4 17.4

MHS-SRL 53.25 27.64 31.26 42.73 12.15 479.4 17.4

Table 6: Empirical results on the legal domain. For each task, we underlined the numbers if the proposed system
outperforms the baselines, and used the bold-font to highlight the best number for each metric.

Split

Domain Dataset Samples Train Valid Test

LEGAL MULTI-LEXSUMD→T 1,603 1,130 161 312
D→S 3,138 2,210 312 616
D→L 4,539 3,177 454 908

Table 7: The dataset-split stats on the legal domain.

extraction loss, our system could drop the average
ROUGE score by 4.26% and the BERTScore by
3.15%. To further justify that, we conduct a follow-
on experiment by adding such salient representa-
tion learning with the extractive loss to the BART
backbone, we observed a similar performance gain,
aka., uplifting the average ROUGE score by 2.49%,
and the BERTScore by 1.57%.

3.3 Evidence Extraction vs. Summary
Generation

Next, we focus on validating the extraction quality.
Note that our system is able to produce a salience
score for each sentence besides an abstractive sum-
mary. Hence, we conduct a qualitative evaluation
by comparing the extracted evidence with the gen-
erated summary. From the test set, we randomly
pick some examples for manual verification and
present the results in Table 4. Note that the gold
summary contains about 10 sentences on average
(refer to Table 1). We then rank all the sentences
based on the predicted salience scores and surface

the top-10 as the evidence. To help the comparison,
we also include the gold summary in Table 4. As
we can see, the extracted evidence is indeed well
aligned with the generated summary.

4 Experimental Results on the Legal
Domain

In this section, we conduct experimental studies
on the legal domain. The MULTI-LEXSUM dataset7

(Shen et al., 2022b) contains about 9K expert-
authored summaries, distributed into three subsets
(tiny, short, long), based on source documents of
legal cases. Similarly, we present certain impor-
tant stats in Table 5 and dataset-split stats in Ta-
ble 7, and report the experimental results in Ta-
ble 6. From Table 6, we can see that PRIMERA

method works much better than the BART method
due to the fact that the transformer architecture of
PRIMERA is more effective to handle much longer
sequences (4096 vs 1024). Besides, another bene-
fit comes from the task-specific pretraining vs. the
task-agnostic pretraining, which is employed by the
BART method. For the MHS-SRL system, it could
leverage the advantages of the PRIMERA method in
that both methods share a similar architecture. In
addition, the dedicated salient representation learn-
ing, jointly trained with multi-task losses, brings in
additional benefits. Given that our system is trained

7https://github.com/multilexsum/dataset
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to score salience, we also quantitatively evaluated
the extraction quality, which obtains the MSE score
of 1.4e−4 on the MULTI-LEXSUMD→L subset, and
3.0e−4 for the MULTI-LEXSUMD→S. All those empir-
ical results validated the efficacy of joint salience
extraction and summary generation.

Finally, we present the stats about the model pa-
rameter size and memory consumption in Table 8,
which shows our hybrid approach is very efficient,
which doesn’t incur too much additional computing
and memory resources.

Model #Params Est Mem Size
BART 406 M 813 MB
PRIMERA 447 M 894 MB
MHS-SRL 450 M 901 MB

Table 8: The stats of model parameters.

5 Conclusion

In this paper, we proposed to simultaneously per-
form summary generation and salient evidence ex-
traction in a consistent way, where extracted salient
representations are directly employed to enhance
abstractive summary paraphrasing. To validate the
efficacy, we conducted thorough experimental stud-
ies over multiple datasets across different domains.
Both quantitative and qualitative results reveal the
effectiveness of this novel summarization system.
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A More examples on the MULTI-NEWS

dataset

In Table 9 and Table 10, we provide additional
examples.
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Gold Summary – Madonna doesn’t mind criticism of her new movie, WE—a good thing, since it bombed at
the Venice Film Festival and, Reuters notes, subsequently received a one-star review in the
Guardian—as long as that criticism is directed at the movie, and not at the Material Girl. "I can
tell when people are reviewing my film and when they’re reviewing me personally," Madonna
said yesterday at the Toronto International Film Festival, where WE is screening. "So when
they stick to the film, then I do care" what critics think, she explained. She also described
King Edward VIII, whose romance with Wallis Simpson is depicted in the film, as “very punk
rock,” the Telegraph reports. That’s why she put the Sex Pistols’ “God Save the Queen” on
the soundtrack, she explained: “I thought [the king] was quite rebellious and cutting edge in
his point of view about life and about how to run the empire and using the Sex Pistols was a
perfect marriage.” (She also, the Telegraph adds, broke into song at one point during the Q&A
session—watch at left.) Click for another story coming out of the film festival—apparently,
Madge doesnt́ like to be looked at by volunteers...

Generated Summary – Madonna’s new film, W.E., about King Edward VIII and his affair with Wallis Simpson, got
a standing ovation at its premiere at the Toronto International Film Festival last night, and the
Queen of Pop didn’t mince words when talking about how she felt about the “very punk rock”
King Edward. “I thought he was quite rebellious and cutting edge in his point of view about life
and about how to run the empire and using the Sex Pistols was a perfect marriage,” she said,
according to the Guardian. The song “God Save the Queen” from the punk band was on the
soundtrack for the film, Reuters notes, and Madonna also said she could sympathize with the late
King Edward because he was an outsider, an American living in London. "I empathize with Wall
is. Public figures or icons are often just reduced to a sound-bite, just a handful of attributes. I
think that’s why I feel so strongly about Wallis," she said. The film, which debuted at the Venice
Film Festival earlier this month, has received some negative reviews, but Madonna says she
doesn’t mind, so long as they’re directed at the film and not at her, the Guardian reports. " I can
tell when people are reviewing my film and when they’re reviewing me personally. I welcome
criticismsof my film when it’s viewed as an artistic form and not when people were mentioning
things about my personal life or my achievements in any other field because they’re irrelevant to
the film. So when they stick to the movie then I do care, I pay attention to it.”

Extracted Evidence "I welcome criticisms of my film when it’s viewed as an artistic form and not when people are
mentioning things about my personal life or my achievements in any other field because they’re
irrelevant to the film. (0.3320)

Madonna said: "I thought he (King Edward VIII) was quite rebellious and cutting edge in his
point of view about life and about how to run the empire and using the Sex Pistols was a perfect
marriage." (0.2817)

She had a wonderful time at the festival and was especially delighted that she got to spend so
much time with her fans in front of the theatre which is a famous tradition at the Festival ... We
are still trying to figure out who and why anyone would ask the volunteers to turn away from
Madonna. (0.1724)

"I can tell when people are reviewing my film and when theyŕe reviewing me personally,"
Madonna said when asked whether she cared about what critics thought. (0.1604)

In Venice, where the film premiere earlier this month, the Queen of Pop said there were "elements
of myself" in the film, and said she could sympathise with Wallis as an outsider, an American
living in London. (0.1387)

"I can tell when people are reviewing my film and when they’re reviewing me personally," she
said. (0.1290)

Madonna described King Edward VIII as "very punk rock," at the North American opening of
her film W.E about his infamous romance with American divorcee Wallis Simpson - and his
subsequent abdication. (0.1199)

Speaking at the Toronto Film Festival, the singer said she wanted reviewers to focus on her work
as a director – not on her personal life. (0.1144)

The singer-turned-film-director was explaining how an anarchist anthem by punk band The Sex
Pistols ended up on the soundtrack for her second directorial work, starring British actors James
D’Arcy and Andrea Riseborough. (0.1059)

TORONTO (Reuters) - Madonna on Monday said she said she doesn’t mind any criticism of her
filmmaking abilities, so long as it is directed at her movie and not at herself. (0.1018)

Table 9: Examples on the MULTI-NEWS dataset (2).
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Gold Summary – A British man who hacked his way into Pentagon computers looking for information on UFOs
has lost his final appeal against extradition. Gary McKinnon, who suffers from Asperger’s
syndrome, is now expected to be sent to the US for trial within weeks, the Independent reports.
The 43-year-old Londoner could face up to 60 years in jail if found guilty of what US authorities
call the biggest military hack in history. Opposition lawmakers and McKinnon’s supporters
slammed the decision to reject the appeal, citing medical reports that said deportation was
likely to make him suicidal. "To force a peaceful, vulnerable, misguided UFO fanatic like Gary
thousands of miles away from his much-needed support network is barbaric," his mother told the
Telegraph. "This is a cruel and miserable decision.

Generated Summary – Gary McKinnon, the UK hacker accused of hacking into NASA and the military to find
evidence of UFOs, is now "at an even higher risk of self- harm and suicide" and will kill
himself in order to be extradited to the US, according to a new medical report. McKinnon
has Asperger’s syndrome and has a “ fixed-psychological conviction he will kill myself in
preference to being extradited,” the report says, adding that suicide is now an “almost certain
inevitability.” The British government "is terrified of speaking up to America, and now they are
allowing vulnerable people to be pursued for non-violent crime when they should be going after
terrorists," McKinnon’s mother told the Telegraph. "This is a cruel and miserable decision. to
force a peaceful, vulnerable, misguided UFO fanatic like Gary thousands of miles away from
his much-needed support network is barbaric. If the severity of Gary’s medical condition isn’t
sufficient to prevent his extradition, I can’t imagine what is." McKinnon could face up to 60
years in prison in the US.”

Extracted Evidence She added: "This government is terrified of speaking up to America, and now they are allowing
vulnerable people to be pursued for non-violent crime when they should be going after terrorists.
(0.2463)

If the severity of Gary’s medical condition isn’t sufficient to prevent his extradition, I can’t
imagine what is." (0.1838)

The medical report said Mr McKinnon, who is known to suffer Asperger’s syndrome, a form
of autism, also has a “fixed-psychological conviction he will kill himself in preference to being
extradited”. (0.1696)

Mrs Sharp said: "To force a peaceful, vulnerable, misguided UFO fanatic like Gary thousands of
miles away from his much-needed support network is barbaric. (0.1637)

But following the failure of Mr McKinnon’s bid to have his case heard at the Supreme Court, he
concluded that he was now "at an even higher risk of self harm and suicide", something he said
was a "real probability". (0.1603)

Extracts of Prof Turk’s report, disclosed in the Daily Mail, show that he recorded in September
that Mr McKinnon, 43, suffered from a "’very serious Major Depressive Disorder.... aggravated
and complicated by anxiety and panic attacks with multiple psychosomatic symptoms on a
background of his having Asperger’s syndrome". (0.1517)

The family said last night that Mr McKinnon, who could be sentenced to up to 60 years in prison
in the US, was "at risk of suicide" after being told there will be no 11th hour reprieve. (0.1470)

To force a peaceful, vulnerable, misguided UFO fanatic like Gary thousands of miles away from
his much-needed support network is barbaric. (0.1392)

In July Mr McKinnon went to the High Court in an attempt to get the extradition order overturned
but was told being sent for trial in the US was "a lawful and proportionate response" to his
actions. (0.1350)

His mother, Janis Sharp, was "extremely worried" about her son’s mental state and said the
Government and Mr Johnson should "hang their heads in shame" for caving in to American
pressure. (0.1307)

Table 10: Examples on the MULTI-NEWS dataset (3).
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Abstract

Learning on noisy datasets is a challenging
problem when pre-trained language models are
applied to real-world text classification tasks.
In numerous industrial applications, acquiring
task-specific datasets with 100% accurate la-
bels is difficult, thus many datasets are ac-
companied by label noise at different levels.
Previous work has shown that existing noise-
handling methods could not improve the peak
performance of BERT on noisy datasets, and
might even deteriorate it. In this paper, we
propose SaFER1, a robust and efficient fine-
tuning framework for BERT-based text classi-
fiers, combating label noises without access to
any clean data for training or validation. Utiliz-
ing a label-agnostic early-stopping strategy and
self-supervised learning, our proposed frame-
work achieves superior performance in terms
of both accuracy and speed on multiple text
classification benchmarks. The trained model
is finally fully deployed in several industrial
biomedical literature mining tasks and demon-
strates high effectiveness and efficiency.

1 Introduction

Large Language Models (LLMs) have dominated
Natural Language Processing (NLP) in recent years
and achieved state-of-the-art performance in a va-
riety of industrial applications. Among them, the
most widely-adapted LLMs are transformer-based
models, including BERT, T5, GPT, etc (Devlin
et al., 2018; Raffel et al., 2020; Brown et al., 2020).
LLMs learn general natural language knowledge
from large corpora and the representations for text
data can be utilized in various downstream NLP
tasks. Such a paradigm is also extensively imple-
mented in both industrial and research domains and
achieves considerable performance improvement
compared with traditional statistical approaches.

∗Equal Contributions.
†Corresponding author.

1Code will be released at GitHub.

Text classification is one of the most important
tasks in the industrial domain (Sanchez-Pi et al.,
2014; Han and Akbari, 2018; Wei et al., 2018; Ar-
slan et al., 2021; Chen et al., 2018; Cheng et al.,
2021), including sentence classification, named en-
tity recognition, etc. Typically, these tasks can be
accomplished by leveraging embeddings generated
by the encoder architecture of LLMs. Unfortu-
nately, the performance is always limited by the
data quality in either pre-training or fine-tuning
stage. Real-world datasets, especially those col-
lected for industrial applications, usually contain
a substantial proportion of mislabeled data (Song
et al., 2022). Such label noise can be induced by
crowd-sourcing, human mistakes, system errors,
or the uncertainty itself in the weakly-supervised
labeling methodology. The corrupted labels can
dramatically influence the model performance and
robustness, which has been validated theoretically
and experimentally (Song et al., 2022; Zhu et al.,
2022b). Worse still, re-labeling procedures can be
cost-intensive and time-consuming due to lack of
domain experts. That means in most cases we can
only access the noisy validation set and lose the
validation with ground truth.

Previous work addressed the label noise issue
by proposing robust loss functions, recovering the
noise transition matrix, and incorporating unsuper-
vised learning strategies (Jindal et al., 2019; Yao
et al., 2020; Lukasik et al., 2020; Jenni and Favaro,
2018; Wei et al., 2020; Tan et al., 2021). However,
the label noise issue of using LLMs in NLP tasks is
still an open problem and remains unsolved, espe-
cially in text classification tasks. Zhu et al. (2022b)
demonstrate that directly incorporating existing
noise-encountering methods cannot consistently
improve and even deteriorate the BERT model per-
formance under noisy labels in text classification.
This conclusion is also supported by the results of
our industrial implementation and ablation study
(Appendix C). By investigating the process of fine-
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tuning LLMs on noisy sets, we observe that the
model is experiencing a “convex” learning curve
under label noise (Appendix C Figure 3): the model
gradually increases the accuracy by learning easy
samples in the earlier stage, but continuously expe-
riences performance drop by over-fitting the noise
labels. Hence, can we reserve the knowledge of the
first stage and mitigate the over-fitting in the sec-
ond stage without using any clean data validation?

Following this intuition, we propose SaFER:
a noiSe-resistant Framework for Efficient and
Robust BERT fine-tuning to perform robust LLMs
fine-tuning under noisy classification NLP tasks,
without using any clean labels. Generally, this
framework is compatible with any LLM that con-
tains an encoder architecture to encode sequences
into latent representations. We first fine-tune the
model following a typical manner but perform early
stopping with a label-agnostic strategy. Then, we
leverage contrastive learning with an NLP-specific
augmentation strategy and implement structural
learning to further combat noisy labels.

To evaluate our proposed framework, we per-
form experiments on text classification tasks us-
ing pre-trained BERT models (Devlin et al., 2018).
Here, we select the BERT family to represent
LLMs due to their widespread recognition in both
the industry and research domains. We imple-
ment several state-of-the-art robust learning meth-
ods against label noise as our baseline methods
(Appendix B.1). These methods are designed to
mitigate the general classification label noise issue
without explicitly considering the usage of LLMs.
The experiment results show the consistent and su-
perior performance of our proposed learning frame-
work. Finally, we implement SaFER in two indus-
trial biomedical literature mining tasks under un-
avoidable human labeling noise and achieve robust
practical performance compared with baselines.

The main contributions are as follows:

• We propose an efficient and robust learning
framework: SaFER, for BERT fine-tuning on
datasets with noisy labels without accessing
any clean data.

• We empirically show that SaFER achieves su-
perior performance on text classification tasks
using BERT.

• We demonstrate the practical feasibility of
SaFER on two industrial biomedical literature
mining tasks.

2 Methods

2.1 Problem Settings
We focus on the classification task on text data.
Suppose X ⊂ Rd is the d dimensional input space
and Y = {0, 1}k is the label space in a one-hot
manner. In a typical text classification task, a clean
training corpus C = {(xi, yi)ni=1} drawn from the
joint distribution X × Y is provided, where xi de-
notes a data sample, yi is the corresponding ground-
truth label of xi, and n is the size of the corpus.
However, in the noisy label setting, a certain pro-
portion of the training data are not correctly labeled.
Given a noisy training corpus Ĉ = {(xi, ŷi)ni=1}
drawn from a noisy joint distribution X × Ŷ , with
noise level being ρ = |{(xi, ŷi)|ŷi ̸= yi}|/n, we
hope to train a classifier f(·; θ) that gives correct
predictions on unseen data.

Some noise handling methods assume that a
small clean set is available (Tänzer et al., 2021;
Shu et al., 2019). However, such clean data is often
not easy to obtain in real-world industrial settings.
In our problem, we assume that there is no fully
clean data available. In the subsequent sections,
by saying “noisy” we mean there is a non-zero
probability that such data item is wrongly labeled.

2.2 SaFER
2.2.1 Motivation
We identify two problems caused by noisy labels:
1) early stopping at the wrong training step on noisy
validation sets, therefore one would miss the best
model parameters, and 2) noisy supervision from
incorrect labels, thus preventing the model from
improving its performance or even deteriorating it.
Improper Early Stopping Traditional strategy
(Tänzer et al., 2021) relies on a clean validation set
to find the point where the model reaches its highest
generalization capability. If a model reaches a high
performance on the validation set at some training
step, and such performance is not exceeded in a
certain amount of further steps, then the model is
early stopped. In our settings, nevertheless, such
a validation set is not clean and the performance
on such a set may not be a reliable indicator of
early stopping, as shown in Appendix C Figure 4.
Moreover, evaluating the model for every few steps
is very time-consuming, especially when it comes
to doing inference with large language models with
a huge amount of parameters.
Noisy Supervision Under label noises, the opti-
mization with loss function L on a noisy batch ĈB
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Figure 1: Illustration of SaFER framework.

sampled from the noisy dataset Ĉ at time step t is
formulated as:

θt+1 = θt − η∇


 1

|ĈB|
∑

(x,ŷ)∈ĈB

L(f(x; θt), ŷ)


 ,

(1)
where the noisy label ŷ participates in the loss
calculation and can corrupt the model parameters
through backward propagation, thus misleading the
optimization progress.

2.2.2 Label-Independent Early Stopping
To find the point where the generalization reaches
the best performance, we need a reliable signal
that indicates when the classifier starts to overfit
the noisy labels. Intrinsic Dimensionality (ID) is
a measure of the number of variables needed to
minimally represent a set of data, and it has been
proven to be a good indicator of the generaliza-
tion ability of DNNs (Amsaleg et al., 2017; Ma
et al., 2018b,a; Ansuini et al., 2019; Nakada and
Imaizumi, 2020; Birdal et al., 2021). When con-
sidering each sample in the dataset, we have Local
Intrinsic Dimensionality (LID) that measures the
dimensional complexity of the local subspace in
its vicinity. Previous studies on DNN learning dy-
namics empirically show that the ID curve behaves
like a concave shape at the beginning of the train-
ing, which applies to several types of DNNs. When
LID reaches a low point, the DNN could reach high
generalization ability before starting to memorize
label noises. We show that the BERT encoder also
follows such a manner (Appendix C Figure 2) and
propose to utilize such characteristics to find the
proper stopping point.

Following Ma et al. (2018b), we estimate the
LID score within batches. Consider a BERT-based
classifier h : P → Rk where k is the number of
classes. Given a transformed text batch XB ⊂ X

sampled from the training corpus, and a reference
point x ∼ P , the estimated LID score of x can be
calculated as:

L̂ID(x,XB) =

−
(
1

k

k∑

i=1

log
ri(g(x), g(XB))

rmax(g(x), g(XB))

)−1

,

(2)
where g is the output from the second-to-last
layer of BERT, ri(g(x), g(XB)) is the distance of
g(x) to its i-th nearest neighbor in the batch, and
rmax(g(x), g(XB)) is the maximum distance of
g(x) to its neighbors in the batch (or the radius
of the batch, centered on x). Using the estimated
LID score as a stopping indicator, we can quickly
warm up the classifier without any noise-handling
modules, as shown in stage 1 of Algorithm 1 in
Appendix D. As for why we do not apply any noise
handling at the first stage, Zhu et al. (2022b) has
shown in Figure 1 of their paper that the pure BERT
method is the fastest one to reach its peak perfor-
mance compared with other methods that add extra
modules to BERT, and such peak performance is
already very high, thus being a good start.

2.2.3 Noise-Tolerant Supervisor
To further improve the model’s performance after
warming up, we introduce unsupervised learning to
apply label-independent supervision, thus prevent-
ing label noises from misleading the optimization.
The second stage incorporates a simple multi-layer
perceptron (MLP) as a projection head, which is
trained along with the classifier and simultaneously
imposes constraints on the representation space of
the classifier.

Given a noisy batch ĈB = {(xi, ŷi)bi=1} drawn
from Ĉ, the BERT encoder f with parameters θ1
takes the tokenized sentence xi as input and pro-
duces the sentence embedding zi = f(xi; θ1). The
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classification head g with parameters θ2 transforms
zi into a k-dimensional vector ui = g(zi; θ2) (k
is the number of classes), which is supervised by
noisy labels with cross-entropy loss:

LCE(ui, ŷi) = −
k∑

j=1

ŷi
(j) log(u

(j)
i ),

LCE({ui}bi=1, {ŷi}bi=1) =
b∑

i=1

LCE(ui, ŷi).

(3)

On the other hand, we train a projection head
h with parameters θ3 using contrastive learning.
Borrowing experience from the unsupervised Sim-
CSE framework (Gao et al., 2021), we forward
passed xi through f and g twice and got two rep-
resentations vi = h(f(xi,m; θ1); θ3) and v′i =
h(f(xi,m

′; θ1); θ3) as positive pairs, where m and
m′ are two random dropout masks of BERT, while
representations for other sentences are treated as
negative samples. The reason why we adopted
SimCSE is that it is an extremely simple but ef-
ficient way to build positive pairs for sentences,
and it has been proven to perform much better in
sentence representation than other traditional NLP
data augmentations such as crop and word deletion.
Using the output representations, we calculate the
standard InfoNCE loss (Oord et al., 2018):

Lcon(vi) = − log
exp(S(vi, v

′
i)/τ)∑b

j=1 exp(S(vi, v
′
j)/τ)

,

Lcon({vi}bi=1) =
b∑

i=1

Lcon(vi),

(4)

where S is a measurement of similarity between
representation vectors and τ is a temperature hyper-
parameter. As for why we need such a projection
head h, the reason is that it prevents noisy labels
from corrupting the classifier’s representation space
by forcing the classification head g to “agree” with
its output. This is realized by applying a structural
loss (Tan et al., 2021) to h and g. Minimizing the
KL-divergence between the similarities of classi-
fier outputs and those of projector outputs, struc-
tural loss applies a structure-preserving constraint
on output features of g, keeping its representation
space structure similar to that of h:

Lstr({ui}bi=1,{vi}bi=1) =
∑

p ̸=q

R(vp, vq) log
R(vp, vq)

R(up, uq)
,

(5)

where R is a similarity metric. Notice that only the
classification head is trained with structural loss,
while BERT and the projection head are frozen.

2.2.4 Two-Stage Fine-tuning Framework
We design a two-stage framework for fine-tuning
models. For the first stage, a classifier with pre-
trained BERT as the backbone is fine-tuned on
the noisy set without any noise-handling methods,
but monitored by a reliable early stopper. After
the early stopping is triggered, we enter the sec-
ond stage where a projection head is trained along
with the classifier using an unsupervised learning
method, and it simultaneously applies regulariza-
tion to the representation space of the classifier.
With a strong knowledge base built at the first stage
and further boosting at the second stage, the clas-
sifier can reach a high generalization capability
quickly. The entire SaFER framework is illustrated
in Figure 1 and Algorithm 1 in Appendix D.

3 Experiment

3.1 Implementation
Injected Label Noise Following previous work
on modeling noisy datasets (Reed et al., 2014;
Van Rooyen et al., 2015), we define two types of
synthetic label noise: the single-flip noise

P(ŷ = j|y = i) =





1− ρ, for i = j

ρ, for one i ̸= j

0, else

and the uniform-flip noise

P(ŷ = j|y = i) =




1− ρ, for i = j
ρ

k − 1
, else

According to statistics shown in the survey done by
Song et al. (2022), we define four levels of injected
noises: low (ρ = 0.2), medium (ρ = 0.3), high
(ρ = 0.4), and extreme (ρ = 0.45).
Models We use the pre-trained BERT-base model
from Huggingface as the pre-trained BERT back-
bone, and the BERT fine-tuning strategy follows
Devlin et al. (2018). The classifier head is a linear
layer with input size being the hidden size of the
BERT backbone and output size being the num-
ber of classes. The projection head is a two-layer
perceptron in which the input size is the hidden
size of the BERT backbone, the intermediate size
is 512, and the output size is 128 (i.e., the feature
dimension of the projection).

393



Baselines We compare SaFER with the follow-
ing methods (implementations were adapted from
code provided by Zhu et al. (2022b)): Without
Noise-Handling, Noise Matrix, Noise Matrix with
Regularization, Label Smoothing, Robust Loss, Co-
Teaching, and Co-Learning. Note that all of them
use a noisy validation set for early stopping. We
refer readers to Appendix B.1 for more details.
Environment The model is fine-tuned by single
NVIDIA Tesla V100-32G GPU under PyTorch
(v1.12.1) framework. We refer the readers to Ap-
pendix B.2 for more implementation details.

3.2 Text Classification with BERT

IMDB (Maas et al., 2011) is a dataset for binary
sentiment classification containing around 50K
movie reviews, most commonly used for sentiment
analysis, i.e. models should predict “positive” or
“negative” for the reviews. We use a set of 25K
reviews for training/validation, and 25K for testing.
Following Zhu et al. (2022b), we inject single-flip
noise into the IMDB dataset.
AG-News (Zhang et al., 2015) is a sub-dataset
of AG’s corpus of more than 1 million news ar-
ticles gathered from more than 2K news sources,
having the 4 largest classes (“World”, “Sports”,
“Business”, “Sci/Tech”) of AG’s Corpus. The AG-
News contains 30K training samples and 1,900
test samples for each class. Following Zhu et al.
(2022b), we inject uniform-flip noise into the AG-
News dataset.

Before injecting label noises, we assume that
IMDB and AG-News themselves are 100% clean.
Their test splits remain the same, while the train-
ing/validation splits are modified by the aforemen-
tioned injected noises. Table 1 and 2 show the ex-
periment results: SaFER performs the best across
all noise levels on AG-News, and also achieves
state-of-the-art performance on IMDB, except that
at medium noise level, it reaches comparable re-
sults with Co-Learning. When the noise level is
low or medium, all methods maintain good per-
formance. But when it comes to higher noise, all
the baselines showed varying degrees of decline in
accuracy, while SaFER still maintains high perfor-
mance thanks to the feature-dependent information
gained from unsupervised learning. Especially, we
notice that on extremely noisy IMDB, Co-Teaching
stops at the wrong training step where the accu-
racy is just 52.53% because the validation set is so
noisy that the highest validation accuracy does not

match the highest test accuracy (above 70%). But
SaFER uses label-independent method for early
stopping, thus avoiding such a problem. Notably,
SaFER is the only method that maintains accuracy
above 90% on AG-News across all five levels of
noise.

Regarding efficiency, SaFER has also shown su-
perior results compared with other baseline meth-
ods. Noise Matrix, Label Smoothing, and Robust
Loss do not differ much from pure BERT because
they introduce only limited extra computations.
But Co-Teaching needs to maintain two neural net-
works, thus being very slow during backward prop-
agation, and Co-Learning trains the BERT back-
bone twice: once with the classifier and once with
the projector, therefore it is also very inefficient.
However, SaFER uses pure BERT for the first stage,
which largely cut down the training time. Most
importantly, the LID-based early stopping strat-
egy does not require inference on a validation set,
thus saving much time at each evaluation step. As
shown in the table, SaFER only takes around half
of the time per training step that is required by
Co-Teaching and Co-Learning.

3.3 Ablation Study

To verify the effectiveness of using two-stage, we
compare SaFER with one-stage pure BERT and
one-stage BERT with unsupervised learning. The
test accuracy v.s. training step on IMDB is shown
in Appendix C Figure 3. Note that the two-stage
scheme actually uses pure BERT for stage one and
next uses BERT with unsupervised learning for
stage two. As we can see, pure BERT climbs up
very fast at the initial 500 steps, while BERT with
unsupervised learning cannot reach the same accu-
racy until its 1500th step. However, pure BERT’s
accuracy starts to drop after it reaches maximum
performance, while BERT with unsupervised learn-
ing continues going up. SaFER combines their
advantages: the accuracy quickly gets to a high
point and continues climbing with a stable pace,
therefore its curve is at the highest place.

Early stopping for stage one is used to find the
transition point from pure BERT to BERT with
unsupervised learning. We also studied whether
to apply early stopping to stage two to find the
converging point of the classifier, as shown in Ap-
pendix C Table 4. It can be seen that with early
stopping at stage 2, SaFER reaches an accuracy of
89.06%, which is much higher than pure BERT’s
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Methods ρ = 0.0 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.45 time/step
Without Noise-Handling 93.36 91.08 90.96 86.72 77.76 5.43s
Noise Matrix 93.18 91.19 90.30 87.37 81.45 5.49s
Noise Matrix with Regularization 93.29 91.40 90.71 88.16 79.26 5.42s
Label Smoothing 93.34 91.49 90.10 86.42 73.72 5.48s
Robust Loss: MAE 91.98 88.74 85.98 78.66 73.93 5.46s
Robust Loss: SCE 93.26 88.75 85.74 83.92 76.21 5.89s
Co-Teaching 93.42 90.98 90.96 84.84 52.53 5.94s
Co-Learning 93.56 91.83 91.46 86.76 78.37 6.15s
SaFER 93.73 92.64 91.27 89.06 82.48 3.31s

Table 1: Comparing accuracy(%) with SOTA methods on IMDB. ρ stands for noise level, and time/step is the
average time needed for each training step (including the necessary time for validation or LID score calculation).

Methods ρ = 0.0 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.45 time/step
Without Noise-Handling 91.35 90.76 88.63 85.32 87.34 3.82s
Noise Matrix 92.93 89.00 88.67 85.34 83.27 3.97s
Noise Matrix with Regularization 90.72 89.23 88.52 85.73 84.60 3.84s
Label Smoothing 91.35 89.97 89.72 90.12 88.53 3.90s
Robust Loss: MAE 90.18 90.01 90.12 89.03 87.89 3.92s
Robust Loss: SCE 92.98 90.13 88.71 89.38 88.80 4.03s
Co-Teaching 91.25 89.89 87.84 87.02 86.37 4.40s
Co-Learning 91.82 90.78 89.82 89.86 88.30 4.52s
SaFER 93.07 92.22 91.66 91.13 90.92 2.16s

Table 2: Comparing accuracy(%) with SOTA methods on AG-News. ρ stands for noise level, and time/step is the
average time needed for each training step (including the necessary time for validation or LID score calculation).

84.49% and BERT with unsupervised learning’s
77.33% and even better than fine-tuning BERT with
unsupervised learning till the end (88.59%).

3.4 Biomedical Literature Mining

We further deploy our framework on two industrial
biomedical literature mining tasks. These tasks are
binary classification tasks used to recognize spe-
cial biomedical phrases in the literature to assist
our medication and biomedical experts in patents
and literature reading. The data is acquired from
several experts in daily work who have different
technology stacks. The data is labeled by experts
themselves or organized from the web resource in
daily work. Hence, the data itself is highly cor-
rupted by label noise due to crowd-sourcing and
labeling preference. Unfortunately, unifying the
label standard and relabeling all data is impossi-
ble due to the high workload of our experts and
the large quantity of data: both tasks share the
same data space which has around 40K data with
an average of 60 text lengths. To evaluate our pro-
posed method, we invite one human expert to exam-
ine and relabel part of the dataset which contains
2K data, and suppose that this part of the data is
clean. We use this part of the data as a test set
for model evaluation and find that the label noise

level for both tasks is around ρ = 0.3. We shuf-
fle and split the remaining noisy data by 20% and
80% for validation and training, and fine-tune the
original BERT model in a typical training manner
and our proposed SaFER framework, separately.
Experiment results are listed in Table 3, showing
the practical effectiveness of SaFER in industrial
settings. We deploy our trained model as a new
online service in our company to assist biomedical
researchers in literary readings.

Methods Task 1 Task 2
BERT w/o noise-handling 75.24 91.02
SaFER 80.03 94.75

Table 3: Accuracy (%) for two industrial biomedical
literature mining tasks.

4 Conclusion

We propose a novel framework SaFER to perform
robust and efficient BERT fine-tuning in text clas-
sification tasks under label noises. This framework
is evaluated on both open-source datasets with syn-
thetic label noise and industrial tasks with human
label noise, compared with several state-of-the-art
noise handling methods. Experiments show that
SaFER not only achieves superior results but also
demonstrates significant improvement in efficiency.
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Limitations

SaFER framework is designed for handling BERT
classification label noise without using any clean
data. Despite the fact that the BERT is one of the
most extensively used models in the industrial do-
main, the influence of label noise on GPT models
and prompt should be further studied in light of the
recent rapid progress. We believe that our frame-
work is compatible with these models, however,
further evaluation is required.

Another limitation is the types of label noise.
We analyze SaFER using synthetic datasets with
uniform and flip label noise which are typical class-
level noise in practice. However, in industrial appli-
cations, the model may experience instance-level
label noise, which is beyond the scope of our inves-
tigation. Although SaFER achieves robust results
in our biomedical literature mining task under hu-
man label noise, we encourage users to examine
the label noise type first in their own application.

Ethics Statement

All experiments can be conducted on a single
NVIDIA Tesla V100-32G GPU. The datasets
(Maas et al., 2011; Zhang et al., 2015) used to
compare SaFER with previous methods are pub-
licly available, and we did not modify any data or
labels in these datasets. The dataset used for indus-
trial biomedical literature mining tasks is protected
and we do not plan to make it public in this work.
But the source code and instructions for using our
framework will be released along with the paper.
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A Related Work

In this section, we briefly review previous work on the problem of robust learning with label noises and
focus on applying such methods to pre-trained language models like BERT.

Noise matrix is a transition matrix added to the end of DNNs to model the underlying label transition
pattern of the noisy dataset (Sukhbaatar et al., 2014; Bekker and Goldberger, 2016; Patrini et al., 2017;
Hendrycks et al., 2018; Yao et al., 2020; Jindal et al., 2019). Patrini et al. (2017) proposed Forward-
Correction, which corrects wrong labels during forward propagation by multiplying the estimated noise
transition matrix with the model’s outputs. To obtain trustworthy noise matrices, Hendrycks et al. (2018)
proposed gold loss correction that corrects loss using available trusted labels and then turns the confusion
matrices of trusted labels into accurate transition matrices. Different from them, Jindal et al. (2019) trained
transition matrices with an l2 regularization which is not necessarily normalized into probability matrices.
However, noise matrix methods have shown large estimation errors when only noisy data is available or
when the noise level is high, which may not be feasible in real-world settings.

Regularization is widely used to prevent the overfitting of DNNs. Label smoothing (Szegedy et al., 2016)
is such a method via softening ground truth labels by mixing the one-hot label with a uniform vector. As
shown by Lukasik et al. (2020) and Zhang et al. (2017), label smoothing is an effective way to combat
label noises. Jenni and Favaro (2018) proposed bilevel learning, which introduces a bilevel optimization
using a clean validation dataset to regularize the overfitting of DNNs. However, the extended features
introduced by regularization slow down the convergence of training, and the performance gain is very
limited unless the models are deeper.

Robust Loss methods re-design the loss function to mitigate the negative impacts brought by incorrect
labels. Kumar et al. (2020) has mathematically defined the pre-requisite for robust loss on multi-label
classification tasks. Ghosh et al. (2017) showed the mean absolute error (MAE) loss satisfies such a
condition and helps models achieve better generalization ability than the traditional cross-entropy loss.
Wang et al. (2019) introduced symmetric cross entropy (SCE) loss that combines a reverse cross-entropy
loss with the standard cross-entropy loss, achieving higher performance than previous methods. However,
robust loss methods perform well only in simple cases where data patterns are easy to learn or the number
of classes is small.

Co-Training is a family of methods that use two DNNs to help combat incorrect labels. Decoupling
(Malach and Shalev-Shwartz, 2017) maintains two networks and updates them using instances with
different predictions. Similarly, Co-teaching (Han et al., 2018) also trains two networks, but it selects
small-loss data to teach the peer network, which is improved by Co-Teaching+ (Yu et al., 2019) through
selecting small-loss data from only disagreement data. JoCoR (Wei et al., 2020) maintains two networks
too, but it trains them together with a joint loss to maximize their agreement. However, the differences
between two networks of the same architecture are very limited, especially during the later training
period, so they can provide only slightly different views of the data. To solve such problems, Tan et al.
(2021) proposed Co-Learning that introduced self-supervised learning to assist supervised learning of the
classifier. However, the extra-introduced optimization largely slows down the convergence of the model.

Language models’ robustness to label noises has not been as widely studied as Computer Vision models.
Several attempts (Moradi and Samwald, 2021; Zhu et al., 2022a; Wang et al., 2020) have been made
to improve language models’ robustness to input perturbations, but they mainly focused on noisy data
instead of noisy labels. Zhu et al. (2022b) showed that for text classification tasks with modern NLP
models like BERT, existing noise-handling methods, including some methods mentioned above, do not
always improve its performance under noisy labels of different noise rates, and may even deteriorate it.
Jindal et al. (2019) proposed a CNN-based architecture that incorporates a non-linear processing layer to
model the label noise statistics. But this method changes the commonly used NLP architecture, making
pre-trained language models not usable, therefore it may be not applicable in various real-world corpora.
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B Experiment Details

B.1 Baseline Descriptions
We compare SaFER with the following baselines:

• Without Noise-Handling, which does not apply any noise-handling modules to the classifier’s training.

• Noise Matrix (Sukhbaatar et al., 2014), which appends a noise matrix after BERT’s output to
transform the clean label distribution to the noisy one.

• Noise Matrix with Regularization (Jindal et al., 2019), which also appends a noise matrix after
BERT’s output, but the matrix is trained with l2 regularization.

• Label Smoothing (Szegedy et al., 2016), which mixes each one-hot label with a uniform vector.

• Robust Loss, which leverages robust loss function (Mean Absolute Error Loss (Ghosh et al., 2017))
or designs new loss function (Symmetric Cross Entropy Loss (Wang et al., 2019)).

• Co-Teaching (Han et al., 2018), which trains two networks to select “clean” training subsets for each
other.

• Co-Learning (Tan et al., 2021), which trains a projector along with the classifier to apply constraints
on the classifier’s learning.

The time per training step shown in Table 1 and Table 2 is calculated by averaging the total training
duration across all label noise types on each dataset, including the time for model loading, training, and
validation.

B.2 Hyperparameters
We set the following hyperparameters for SaFER evaluation:

Field Value
BERT dropout rate 0.1
number of training steps (stage 1) 5000
number of training steps (stage 2) 5000
training batch size 32
evaluation batch size 64
evaluation frequency 25
feature dimension (projection) 128
number of batches for LID estimation 10
initial LID calculation step 5
LID window size 5
BERT learning rate 2e-5
SGD momentum 0.9
SGD dampening 0
SGD weight decay 0.0005
SGD nesterov True
patience for early stopping 25

C Ablation Study Results

Here, we report the ablation study results in Section 3.3. We compare SaFER with one-stage pure BERT
and one-stage BERT with unsupervised learning. The results is shown in Figure 3. We studied whether to
apply early stopping to stage 2 to find the converging point of the classifier. The result is shown in Table 4.
We also investigate the two early stopping strategies of fine-tuning the BERT classifier in noisy sets and
evaluation in clean sets. The result is shown in Figure 4.
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stage 1 stage 2 early stop stage 2? accuracy (%)
BERT w/o noise-handling BERT+unsup yes 89.06
BERT w/o noise-handling BERT w/o noise-handling yes 84.49
BERT+unsup BERT+unsup yes 77.33
BERT w/o noise-handling BERT+unsup no 90.01
BERT w/o noise-handling BERT w/o noise-handling no 62.64
BERT+unsup BERT+unsup no 88.59

Table 4: Ablation study on the two-stage scheme.

Figure 2: A typical LID curve in the label noise problem.
Recorded at every 25 steps for training BERT-based
classifier (without noise-handling) on IMDB dataset
with low noise level (ρ = 0.2).

early stopping 
is triggered

projection head 
needs some training

Figure 3: Comparing two-stage scheme with one-stage
counterparts. Pure BERT method first gets to a high
point and then drops significantly, but unsupervised
learning could help avoid such a problem. Results are
recorded when training on IMDB dataset with a high
noise level (ρ = 0.4). The green box denotes the neces-
sary steps for the projection head to catch up with the
training.
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LID stop point

traditional stop point

highest test ACC

Figure 4: Comparing two early stopping strategies’ results of fine-tuning BERT classifier without handling noise on
IMDB (fast test), with extreme noise level (ρ =0.45), recorded for every 25 steps. The LID-based stopping strategy
(middle) stops at the correct time, while the traditional strategy (bottom) misses the highest point.
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D Algorithm

We demonstrate the full algorithm of SaFER in Algorithm 1.

Algorithm 1 SaFER: Two-Stage Finetuning

Input: Noisy training corpus Ĉ, pre-trained BERT backbone f(·; θ1), batch size b, number of stage
training steps T1, T2 for stage 1 and 2

Output: Trained text classifier f · g
{STAGE 1: Fast Warming Up}

1: Initialize classification head g(·; θ2).
2: for each t from 0 to T1 − 1 do
3: Sample a batch from Ĉ:

x← {xi}bi=1, ŷ ← {ŷi}bi=1

4: Obtain predictions:
u← g(f(x; θ1); θ2)

5: Update θ1, θ2 using Eq. 3.
6: Calculate batch LID scores using Eq. 2 and get the average score lidavg.
7: if lidavg reaches turning point then
8: Save θ1, θ2 and break.
9: end if

10: end for
{STAGE 2: Combating Label Noises}

11: Initialize projection head h(·; θ3).
12: for each t from 0 to T2 − 1 do
13: Sample a batch from Ĉ and get a copy:

x← {xi}bi=1, ŷ ← {ŷi}bi=1; x′ ← x
14: Encode sentences with BERT:

z ← f(x; θ1), z
′ ← f(x′; θ1)

15: Get predictions from classifier g:
u← g(z; θ2)

16: Get projections from projector h:
v ← h(z; θ3), v

′ ← h(z′; θ3)
17: Update θ2 using Eq. 5.
18: Update θ1, θ2 using Eq. 3.
19: Update θ1, θ3 using Eq. 4.
20: end for
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Abstract 1 

In this paper, we introduce the benchmark 2 

datasets named CLUB (Chemical 3 

Language Understanding Benchmark) to 4 

facilitate NLP research in the chemical 5 

industry. We have 4 datasets consisted of 6 

text and token classification tasks. As far as 7 

we have recognized, it is one of the first 8 

examples of chemical language 9 

understanding benchmark datasets 10 

consisted of tasks for both patent and 11 

literature articles provided by industrial 12 

organization. All the datasets are internally 13 

made by chemists from scratch. Finally, we 14 

evaluate the datasets on the various 15 

language models based on BERT and 16 

RoBERTa, and demonstrate the model 17 

performs better when the domain of the pre-18 

trained models are closer to chemistry 19 

domain. We provide baselines for our 20 

benchmark as 0.7818 in average, and we 21 

hope this benchmark is used by many 22 

researchers in both industry and academia. 23 

The CLUB can be downloaded at 24 

https://huggingface.co/datasets/bluesky333/che25 

mical_language_understanding_benchmark. 26 

1 Introduction 27 

Transformer is the prevalent network architecture 28 

in natural language processing (NLP) (Vaswani et 29 

al., 2017). It uses self-attention to capture each 30 

word’s influence on another in a given text. 31 

Leveraging this architecture, recent advances in 32 

pre-training language models has reached state-of-33 

the-art performances on many NLP benchmark 34 

datasets, including results that surpassed human 35 

performance (Wang et al., 2019). Such 36 

advancements in language models and NLP 37 

technologies can potentially streamline and 38 

simplify the labor-intensive work for the literature 39 

and patent analysis, which are crucial in the 40 

research and development domain.  41 

The benchmark datasets such as GLUE and 42 

SuperGLUE played a pivotal role in facilitating 43 

the advancement of NLP using language models 44 

(Wang et al., 2018 and Wang et al., 2019). This 45 

has inspired efforts to create benchmark datasets 46 

in the science domain as well (Yu Gu et al., 2020). 47 

However, these attempts are limited within the 48 

field of biology and medicine. 49 

In chemistry, there are few datasets available, 50 

however, as far as we know there are no 51 

benchmark datasets that include tasks for both 52 

literature articles and patents (Mysore et al., 2019, 53 

Friedrich et al., 2020, He et al., 2021). Given the 54 

predominant reliance on patents in the chemical 55 

industry’s research, especially in the early stages 56 

of product development, it is important to have 57 

datasets with patent documents to enable 58 

language models to comprehend the distinctive 59 

patent writing style, thereby performing better on 60 

tasks with patent documents.  61 

On the other hand, academic literature often 62 

serves as the source of information that leads to 63 

new ideas for experimentation. Thus, it is critical 64 

to build a language model that understands both 65 

literature articles and patents and benchmark 66 

datasets with texts from both patents and papers 67 

for the evaluation.  68 

In this paper, we present Chemical Language 69 

Understanding Benchmark (CLUB) to facilitate 70 

NLP research in the chemical industry, especially 71 

the language model pre-training. CLUB consists of 72 

two datasets for patents and two datasets for papers. 73 

In terms of tasks, it includes two datasets for token 74 

classification such as chemical named entity 75 

recognition, and two datasets for text classification 76 

such as patent area classification. All these datasets 77 

are internally made by chemists. We do not rely on 78 

any preexisting publicly available datasets or 79 

shared tasks. Finally, we provide the performance 80 

of various language models including the ones pre-81 

trained with chemistry literature articles and 82 

patents as the baselines for our benchmark datasets. 83 

Chemical Language Understanding Benchmark 
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 84 

Tasks 
Class Group  

(source corpus) 

 Sample 

Type 

(Number) 

Average 

token 

length 

(std) 

Class name Definition Train Dev 

Text  

CLS 

PETRO-

CHEMICAL  

(Patent)  

Paragraph 

(2,775) 

448.19 

(403.81) 

Household 
Patents for products used in 

household such as PET bottles 
436 120 

Construct 
Patents for products used in 

construction such as PVC pipes 
77 25 

Automobile 
Patents for products used in 

automobile such as Tires 
312 89 

HouseConst 
Patents for products used in 

household and construction 
481 93 

IndustConst 
Patents for products used in 

industrial and construction 
274 62 

Catalyst 
Patents for catalyst used for 

production 
334 94 

Process 
Patents for production process of 

the products 
306 72 

RHEOLOGY 

(Journal)  

Sentence 

(2,017) 

55.04 

(16.46) 

Biodegrad_Poly 
biodegradable polymer (plastic 

material) 
553 151 

Poly_Struc 

the crystal structure of polymer 

which is related with mechanical 

properties  

421 105 

Biodgrad_Prop 
biodegradable property of 

polymer  
470 97 

Mechanical_Prop mechanical property of polymer  90 31 

Rheological_Prop 

rheological property of polymer 

which is related with polymer 

processability  

78 19 

Token  

CLS 

CATALYST 

(Patent)  

Sentence 

(4,663) 

42.07 

(14.59) 

Precatalyst 
Pre-catalyst form of metallocene 

catalyst  
365 71 

Olefin 

Include monomers and 

comonomers that participate in 

the synthesis of supported 

catalyst  

947 153 

Solvent 
A solvent that creates a reaction 

environment  
1,287 356 

Additive 

Additives necessary for the 

catalyst synthesis reaction 

include scavengers and 

cocatalysts.  

402 131 

Support Support material for synthesis 417 83 

BATTERY 

(Journal)  

Sentence  

(3,750) 

40.73 

(10.79) 

Cathode_Material 

Lithium compound used for 

cathode electrode among the 

components of lithium ion 

battery 

1,411 402 

Coating_Material 

Materials coated for the purpose 

of improving structural stability 

and chemical resistance of 

cathode materials  

1,510 359 

Coating_Method 

Method for coating the coating 

material on the surface of the 

cathode material  

409 134 

Table 1: CLUB datasets for text and token classification (CLS). 
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2   Tasks 85 

The CLUB Benchmark is created from scratch to 86 

evaluate language models that understand the 87 

fields of chemistry and materials science. The 88 

benchmark dataset includes two types of tasks: text 89 

classification and token classification. To evaluate 90 

the representation power of the language model for 91 

both patents and literature articles, each task 92 

consisted of a dataset created from the patent text 93 

and a dataset created from the paper text. Various 94 

topics such as polymers, rheology, catalysts, and 95 

batteries were selected to evaluate different fields 96 

of chemistry and materials science. The detailed 97 

composition of the data set is summarized in Table 98 

1. 99 

2.1 Text Classification 100 

Text classification task is to assign a sentence or 101 

document to a proper class. In this paper, we 102 

present two classification datasets: RHEOLOGY 103 

for sentence classification and 104 

PETROCHEMICAL for document classification. 105 

These datasets comprise corpora from both 106 

patents and journal articles with a focus on the 107 

topics of polymers, rheology, and overall 108 

petrochemicals. Each dataset is available in JSON 109 

format with “id”, “sentence”, and “labels” as keys. 110 

 111 

RHEOLOGY sentence classification dataset 112 

contains the five groups that represent the 113 

polymer structures and properties, especially for 114 

biodegradable polymers. It consists of 2,017 115 

sentences collected from the research paper. Each 116 

sentence of the RHEOLOGY classification 117 

dataset is annotated by experts manually. The 118 

detailed explanation of each group is presented in 119 

Table 1.  120 

 121 

PETROCHEMICAL dataset categorizes patents 122 

into seven groups within the petrochemical 123 

industry. Each group of patents accounts for 124 

important parts of the industry. The petrochemical 125 

industry uses catalysts to make the final polymer 126 

products for different applications such as PET 127 

bottles (household applications), rubber 128 

(automobile applications), and PVC plastics 129 

(construction applications). This production is 130 

done on a factory scale, so it has its production 131 

process. The seven groups consist of 5 132 

applications: 1) household, 2) automobile, 3) 133 

construction, 4) household & construction, and 5) 134 

automobile & construction. The other two groups 135 

are catalysts and processes. 136 

2.2 Token Classification 137 

Token classification, which includes named entity 138 

recognition task, identifies tokens belonging to 139 

defined classes. Considering our interests, we 140 

defined the CATALYST class group and the 141 

BATTERY class group as shown in Table 1. We 142 

created the named entity recognition benchmark 143 

dataset based on these definitions. The labeling 144 

was performed by expert researchers with over 145 

five years of experience in relevant fields. The 146 

labeling was done in IOB format (inside, outside,  147 

beginning). The labeled data was then converted 148 

into JSON format with “id”, “tokens”, and “labels” 149 

as keys. 150 

We preprocess the token classification datasets 151 

to adjust the sentence length to be less than the 152 

maximum sequence length. As for named entity 153 

recognition, each token has labels, and tokens that 154 

come after the maximum sequence length would 155 

be discarded. Thus, the model would not be able 156 

to learn from those discarded tokens. We 157 

minimized this issue by making the distribution of 158 

the sequence length more like the gaussian 159 

distribution (Appendix A). 160 

 161 

CATALYST is a dataset for recognizing 162 

materials involved in catalyst synthesis reactions 163 

in the full text of patents. Pre-catalyst, additive, 164 

olefin, solvent, and supporting material are 165 

substances that participate in this reaction, and 166 

these are defined as classes. “Pre-catalyst” is the 167 

main substance to make the catalyst. “Additives” 168 

are added to make the polymer with different 169 

characteristics. “Olefin” is the monomer that 170 

makes the polymer using the catalyst. “Solvent” is 171 

for the polymerization of the monomer to the 172 

polymer for the catalyst. “Supporting material” is 173 

used to support the catalyst to do the 174 

polymerization better as well as more stable. 175 

 176 

BATTERY is a dataset for recognizing cathode 177 

materials from literature articles related to 178 

lithium-ion batteries including all-solid-state 179 

batteries. There are four key components of a 180 

battery: cathode material, anode material, 181 

separator, and electrolyte. “Cathode material” 182 

refers to the lithium compound used in the 183 

positive electrode of a battery and is the most 184 

important element in a battery because it has a 185 

decisive effect on the energy density, power 186 

output, and cycle life of the battery. This dataset 187 

also has "coating material" and "coating method" 188 

classes which are material and method to coat the 189 

surface of the cathode material.  190 
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3 Dataset Statistics 191 

All datasets have been divided into a training set 192 

and a development set (also known as the 193 

evaluation set), following an 80/20 split ratio.  194 

3.1 PETROCHEMICAL dataset 195 

The PETROCHEMICAL dataset is composed of 196 

2,775 paragraphs.  As the dataset is created with 197 

titles, abstracts, and claims of patents, so it has the 198 

average paragraph length of 448.19 tokens, which 199 

is considerably longer than the other three datasets. 200 

Also, the standard deviation for the paragraph 201 

length is 403.81 tokens, which is also larger than 202 

the others. For the seven classes of the dataset, the 203 

respective counts of paragraphs are as follows: 204 

“Household” – 556, “Construct” – 102, 205 

“Automobile” – 401, “HouseConst” – 574, 206 

“IndustConst” – 336, “Catalyst” – 428, and 207 

“Process” – 378. 208 

3.2 RHEOLOGY dataset  209 

The RHEOLOGY dataset is made up of 2,017 210 

sentences with an average sentence length of 211 

55.03 tokens.  The standard deviation of the 212 

sentence length is 16.46 tokens. 704 sentences 213 

were labeled as “Biodegrad_Poly” class and 526 214 

sentences were labeled as “Poly_Struc”. The 215 

“Biodegrad_Prop”, “Mechanical_Prop”, and 216 

“Rheological_Prop” classes, which are classes 217 

related to material’s properties, were labeled with 218 

567, 121, and 97 sentences, respectively. 219 

3.3 CATALYST dataset  220 

The CATALYST dataset consists of 4,663 221 

sentences. The average sentence length is 42.07 222 

tokens with 14.59 tokens for standard deviation. 223 

“Solvent” class was labeled the most with 1,643 224 

times, followed by “Olefin” class which as labeled 225 

1,100 times. “Precatalyst”, “Addtive”, and 226 

“Support” were labeled 436, 533, and 500 times, 227 

respectively. 228 

3.4 BATTERY dataset  229 

The BATTERY dataset consists of 3,750 230 

sentences, and the average sentence length is 231 

40.73 tokens with 10.79 tokens as standard 232 

deviation. The token classification breakdown 233 

shows that “Cathode_Material” and 234 

“Coating_Material” classes were labeled 1,813 235 

times and 1,869 times, respectively. Meanwhile, 236 

the “Coating_Method” class was 543 times. 237 

4 Methods 238 

4.1 Baseline Models 239 

BERT-Base We use the BERT-base weights 240 

released on Hugging Face model repository 241 

(Devlin et al., 2018). Both cased and uncased 242 

versions of the model are used. We refer to each 243 

version as BERT-cased and BERT-uncased 244 

respectively throughout our papers. The model is 245 

pre-trained with a corpus made up of BooksCorpus 246 

and text parts of English Wikipedia for 1 M steps. 247 

The corpus is about 16GB. The pre-training batch 248 

size is 256 sequences. This model utilizes a 249 

wordpiece vocabulary. The vocab size is 28,894. 250 

 251 

BioBERT We use BioBERT-v1.2 weights released 252 

on Hugging Face model repository (Lee et al., 253 

2020). This is a BERT-base-cased model pre-254 

trained with PubMed abstracts from the BERT-255 

base-cased initial checkpoints. It was trained for 256 

200K steps on PubMed abstracts, 270K steps on 257 

PubMed Central (PMC) full texts, and another 1 M 258 

steps on PubMed abstracts. The pre-training corpus 259 

is about 25GB. The pre-training batch size is 192. 260 

As a continued pre-trained model, it uses the same 261 

vocabulary as the BERT-base-cased model.  262 

 263 

SciBERT We use sciBERT-scivocab-uncased 264 

released on Hugging Face model repository 265 

(Beltagy et al., 2019). This is a pre-trained BERT 266 

model with 1.14 M Semantic Scholar papers, 267 

which is comprised of computer science (18%) and 268 

biomedical domain (82%). It differs from 269 

BioBERT as it is pre-trained from scratch. The 270 

papers are full texts and resulting in a corpus size 271 

of 20GB. The pre-training batch size and steps are 272 

unknown. It has its own wordpiece vocabulary 273 

made from the pre-training corpus. The vocabulary 274 

has more science terms. The vocab size is 30,990. 275 

 276 

RoBERTa We use RoBERTa-base model released 277 

on Hugging Face model repository (Liu et al., 278 

2019). It is an improvement of BERT model with a 279 

larger pre-training dataset and better optimized 280 

hyperparameter settings. The model is pre-trained 281 

with a 160GB corpus made up of BERT pre-282 

training corpus plus News and Web contents 283 

crawled. It is trained for 1 M steps. The pre-training 284 

batch size is 256 sequences. The model uses byte 285 

pair encoding (BPE) vocabulary, which is different 286 

from BERT’s wordpiece vocabulary. The vocab 287 

size is 50,000. 288 
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RoBERTa-PM-M3 We use RoBERTa-base-PM 289 

weights released on Hugging Face model 290 

repository (Lewis et al., 2020). It is a RoBERTa-291 

base model pre-trained with a text corpus made of 292 

27GB of PubMed abstracts, 60GB of PMC full 293 

texts, and 3.3 GB of the Medical Information Mart 294 

for Intensive Care (MIMIC-III). The model is 295 

trained for 500K steps on the corpus with a batch 296 

size of 8,192 sequences. It uses byte-pair encoding 297 

vocabulary made from the corpus, so it has a 298 

different BPE encoding vocabulary from 299 

RoBERTa-base. The vocabulary has more 300 

biomedical terms. The vocab size is 50,000. 301 

 302 

4.2 Pre-training 303 

For the chemistry pre-training, we gathered a 304 

large amount of chemistry patents and literature 305 

articles to train two different versions of models.  306 

RoBERTa-lit We use RoBERTa-PM-M3 307 

weights as the initial checkpoint to pre-train the 308 

model with chemistry articles. We collected the 309 

abstracts of the articles using Open Academic 310 

Graphs and used the chemistry field of study to 311 

filter the ones that belong to the chemistry domain 312 

(Tang et al., 2008 and Sinha et al., 2015). For the 313 

filtered ones, all the abstracts were used as the 314 

training corpus. We train the model with the 315 

corpus for 1 epoch.  316 

 317 

RoBERTa-lit-pat We use RoBERTa-lit weights 318 

as the initial checkpoint to pre-train the model this 319 

time with chemistry patents. We collected the 320 

patents using USPTO BulkDownload. We filtered 321 

the chemical patents using the CPC code. For the 322 

filtered ones, abstracts, claims, and embodiment 323 

texts were used as the training corpus together 324 

with the RoBERTa-lit’s corpus. We train the 325 

model with the corpus for 1 epoch.  326 

 327 

RoBERTa-lit and RoBERTa-lit-pat were pre-328 

trained with NVIDIA V100 GPU and the 329 

hyperparameter setting follows the pre-training 330 

setup for RoBERTa-PM-M3. We also used 331 

mixed precision for training. We used the masked 332 

language model objective for the pre-training.  333 

 334 

We expect that by pre-training the models with 335 

chemistry data, the models can learn the 336 

chemistry domain knowledge better and thus 337 

perform better on the CLUB benchmark. 338 

 339 

4.3 Finetuning Language Models 340 

For each dataset, we fine-tuned each models for 341 

10 epochs with a 5e-05 learning rate on a single 342 

V100 GPU. We used 0.1 warm-up ratio, and 343 

cosine with restarts as the learning scheduler type. 344 

The training batch size was 128 and the evaluation 345 

batch size was 128. The maximum input length 346 

was 256. AdamW was used as the optimizer with 347 

a weight decay of 0.01. We used mixed precision 348 

for efficient training. We fine-tuned the model for 349 

10 different seed initializations. 350 

 Text classification (Accuracy) Token classification (F1)  

Task RHEOLOGY PETRO- 

CHEMICAL 

CATALYST BATTERY Average 

BERT-cased 0.7970 0.8099 0.6601 0.7532 0.7550 

BERT-uncased 0.7921 0.8105 0.6944 0.7571 0.7635 

RoBERTa 0.7958 0.7990 0.6899 0.7658 0.7626 

BioBERT 0.7978 0.8086 0.7092 0.7636 0.7698 

SciBERT 0.7938 0.8045 0.7314 0.7602 0.7724 

RoBERTa-PM-M3 0.7983 0.8079 0.7194 0.7815 0.7767 

RoBERTa-lit 0.8017 0.8126 0.7332 0.7772 0.7811 

RoBERTa-lit-pat 0.7968 0.8205 0.7323 0.7777 0.7818 

Table 2: Performance of the model for the benchmark tasks. The evaluation for the text classification tasks 

was done using accuracy and the evaluation of the token classification tasks was done using macro-average 

of F1 scores. The evaluation result is the average of performances over ten runs. 
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4.4 Evaluation 351 

We evaluated all models using the accuracy for 352 

text classification tasks and the macro-average F1 353 

score for token classification tasks. We chose the 354 

accuracy as the evaluation metric for the text 355 

classification due to its interpretability in 356 

measuring the effectiveness of the models. For 357 

token classification tasks, the use of the IOB 358 

scheme, which resulted in the “O” label being the 359 

dominant class, limited us from using the 360 

evaluation metric as text classification tasks. To 361 

provide a more balanced evaluation, we computed 362 

the F1 score of each token class excluding the “O” 363 

class, and used the macro-average of these F1 364 

scores as the evaluation metric. For both types of 365 

tasks, the performance was averaged over ten runs 366 

with different seed initializations to reduce 367 

variance caused by randomness. 368 

5 Results and Discussion  369 

The performance of each model on the benchmark 370 

tasks is shown in Table 2. In general, our 371 

RoBERTa-lit-pat model outperformed the other 372 

models on average across the tasks. The result of 373 

BioBERT models pre-trained with a bio-related 374 

corpus was better than that of BERT base models, 375 

highlighting the impact of domain specific pre-376 

training. SciBERT model pre-trained with a broad 377 

scientific literature articles performed well, 378 

especially in CATALYST task, though it still had 379 

a lower performance than RoBERTa models pre-380 

trained with chemistry corpus. RoBERTa-PM-M3 381 

model outperformed other models in the 382 

BATTERY task, but its overall performance was 383 

lower than that of the RoBERTa-lit-pat model. 384 

In the text classification task, RoBERTa-lit 385 

model was the best model in the RHEOLOGY task 386 

and RoBERTa-lit-pat model score the highest in the 387 

PETROCHEMICAL task. This suggests that 388 

inclusion of patents in pre-training yields better 389 

performance in tasks with patent documents. As the 390 

PETROCHEMICAL dataset includes titles, 391 

abstracts, and representative claims of patents, the 392 

terminology used in the dataset is quite different 393 

from the terminology used in other datasets made 394 

up of literature articles. This is due to the nature of 395 

patents to protect an invention, leading them to be 396 

written in a more general manner to encompass a 397 

broader patent space.  398 

In the CATALYST task, it was very interesting 399 

that RoBERTa-lit model, solely pre-trained on 400 

academic papers, showed the best results in the task 401 

with patents. This task involved labeling only the 402 

embodiment section of the patent. The terminology 403 

used in the embodiment part of the patent is closer 404 

to academic language than the language used in 405 

patent claims. This could explain why a model 406 

trained only on articles could perform better in this 407 

task.  408 

For the BATTERY task, RoBERTa-PM-M3 409 

model had the best performance, closely followed 410 

by RoBERTa-lit-pat model. Notably RoBERTa-lit 411 

and RoBERTa-lit-pat models still showed good 412 

average performance despite only being pre-413 

trained for one epoch. It is plausible that the 414 

performance of RoBERTa-lit-pat improves further 415 

with additional training epochs. Due to our GPU 416 

infrastructure limitations, we leave this for future 417 

work. 418 

6 Conclusion 419 

Chemical Language Understanding Benchmark 420 

(CLUB) is the first benchmark in the chemistry 421 

industry aimed at chemical language model 422 

evaluation with tasks for both patents and journal 423 

articles. The introduction of this benchmark is 424 

expected to catalyze research in natural language 425 

processing, particularly in information extraction, 426 

within the chemistry domain. 427 

In the course of establishing baseline 428 

performance for the CLUB, we tested existing pre-429 

trained models as well as our novel pre-trained 430 

models. Remarkably, the RoBERTa model pre-431 

trained on cheimcal patents and literature articles, 432 

reached the highest average score, 0.7818. This 433 

performance highlights the advantage of pre-434 

training models with a corpus closely aligned with 435 

the target domain. 436 

Our benchmark provides a powerful tool for 437 

evaluating language models’ learning capacity in 438 

the chemistry context. In addition, the tasks in our 439 

benchmark can be leveraged to accelerate the 440 

literature and patent analysis by automatically 441 

extracting information such as new chemical 442 

molecules and experiment settings.  443 

Thus, these tasks can be the foundation of an 444 

information extraction based expert system. This 445 

system would generate structured knowledge from 446 

a large volume of papers and patents and help 447 

researchers to conduct their experiments on time 448 

without falling behind the research trends.  449 

Our benchmark sets the foundation for future 450 

advancements in chemical language understanding. 451 
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It contributes to the acceleration of scientific 452 

discovery in the field by integrating natural 453 

language processing into chemical research and 454 

development. 455 

Limitations 456 

Because we were doing the manual labeling with 457 

experts in the field, we were only limited to two 458 

types of tasks: token classification and text 459 

classification. We hope to expand the benchmark to 460 

include other types of tasks such as summarization, 461 

question and answering, and sentence similarity in 462 

the future. Sentence similarity for patents is the task 463 

we aim to add for the next version because it can 464 

be used to find the infringement in patents.  465 

While the CLUB provides a robust benchmark for 466 

evaluating language models in the context of 467 

chemistry, it is not without its limitations. The 468 

present version of CLUB only includes two types 469 

of tasks: token classification and text classification. 470 

This constraint arises primarily from the manual 471 

labeling process which involved domain experts. 472 

However, we aim to extend the benchmark in the 473 

future to include a wider range of tasks such as 474 

summarization, question answering, and sentence 475 

similarity assessments. We are particularly 476 

interested in the sentence similarity task for patents 477 

as this could be leveraged for identifying potential 478 

patent infringements. 479 
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A Adjust sentence length 602 

Figure 1. shows the distribution of sentence lengths 603 

in the dataset before and after the preprocessing. 604 

After adjusting the sentence length, the sequence 605 

length distribution follows more of a Gaussian 606 

distribution than before. In the case of CATALYST 607 

dataset, the number of sentences was reduced from 608 

12,368 to 4,663. However, in the case of 609 

BATTERY dataset, there was no change in the 610 

number of the sentences. We made this 611 
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Abstract

Pretraining and fine-tuning language models
have become the standard practice in indus-
trial natural language processing (NLP), but
developing and deploying general-purpose lan-
guage models without the abundant compu-
tation or data resources is a real-world is-
sue faced by smaller organizations or com-
munities whose main focus is languages with
less accessible resources (e.g., non-English).
This paper explores the sequence-to-sequence
(seq2seq) language model architecture as a
more practical and compute-efficient alterna-
tive to the decoder-oriented approach (e.g.,
GPT-3), accompanied by novel findings in
compute-optimality analyses. We successfully
trained billion-scale Korean-language seq2seq
language models that strongly outperform other
competitive models in Korean benchmarks.
Moreover, we demonstrate that such language
models can be more efficiently utilized by em-
ploying a heavy pre-finetuning strategy, by
showcasing a case study on dialog-task adap-
tation. Our case study shows that adopt-
ing language models with more readily avail-
able domain-specific unlabeled data greatly
improves fine-tuning data efficiency in low-
resource settings.

1 Introduction

Pretraining large-scale Transformer-based lan-
guage models and finetuning them for specific
tasks have become the cornerstone of modern NLP
pipelines. Among various Transformer-based lan-
guage model architectures proposed in the field,
generative decoder-based architectures, such as the
GPT family (Brown et al., 2020), have gained more
traction from their impressive ability to scale well
into large language models (LLMs) (Kaplan et al.,
2020; Chowdhery et al., 2022) and follow high-
level natural language instructions with few or even
in the absence of demonstrations (Wei et al., 2022).

∗ Equal contributions.
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Figure 1: Benchmark of notable pretrained seq2seq lan-
guage models with Korean capability. The benchmark is
aggregated from key Korean understanding and reason-
ing tasks, including sentiment classification, topic clas-
sification, natural language inference, and reading com-
prehension. Our proposed model, HyperT5, strongly
outperforms previous models including mT5 (Xue et al.,
2021), a multilingual variant of the text-to-text trans-
former.

However, acquiring pretrained language models
(PLMs) is a data- and compute-intensive process
(Patterson et al., 2021), which many organizations
cannot afford to pursue. This disparity is exacer-
bated for the communities of non-English or non-
Latin languages (e.g., Korean) that have limited
access to resources and share fewer linguistic fea-
tures with English, making the cross-lingual trans-
fer from the top language more challenging (Scao
et al., 2022).

As a more cost-efficient alternative to the pure
generative architecture, the sequence-to-sequence
(seq2seq) Transformer (T5) (Raffel et al., 2022)
may offer a reasonable middle ground between
the generative LM and the encoder-oriented archi-
tecture (e.g., BERT (Devlin et al., 2019)), which
are known to lack robustness in generation abili-
ties. Additionally, T5 has been demonstrated to
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Data Source Accessibility Tokens

Blog Proprietary 146.1B
Online Community Proprietary 44.5B
News Proprietary 39.4B
Crawled Comments Proprietary 21.9B
Korean QA Website Proprietary 14.6B
Modu Datasets Public 3.2B
En. & Jp. Wikipedia Public 2.8B
Others Public / Proprietary 27.5B

Total 300B

Table 1: Data sources of the pretraining corpus.

be good few-shot learners (Liu et al., 2022a) and
task/domain adapters (Aribandi et al., 2022; Gupta
et al., 2022).

This paper aims to provide an industrial perspec-
tive on the language model pretraining strategies
with small- to medium-scale budgets. We conduct
compute-optimality analyses to find the optimal
pretraining strategy given our compute budget and
argue that the text-to-text Transformer architecture
is a superior approach compared to decoder-only
models under restricted compute resources (§5.1).
Based on this finding, we share our experience
with training HyperT5 (§3), the state-of-the-art
seq2seq Transformer for the Korean language (Fig-
ure 1). Moreover, we showcase how HyperT5 can
be further refined to improve data and modeling
efficiency in specific domains (i.e. dialogs) using
relatively abundant unlabeled resources (§4).

2 Related Work

PLMs and Efficiency As we gain more under-
standing of core PLM architectures (Devlin et al.,
2019; Brown et al., 2020; Raffel et al., 2022) and
their scaling laws (Kaplan et al., 2020), research ef-
forts for improving their training efficiencies have
diverged in various directions, including improving
the scaling curve (Tay et al., 2022; Chung et al.,
2022), maximizing optimality (Hoffmann et al.,
2022), and efficient fine-tuning (Lester et al., 2021;
Hu et al., 2022). Our work offers a comprehensive
overview and case study of optimizing the language
modeling efficiency for a less resourceful language.

Non-English Language Models Previously, sig-
nificant works have explored pretraining language
models on multiple languages to support low-
resource languages and maximize cross-lingual
knowledge transfer without explicit supervision
(Devlin et al., 2019; Conneau and Lample, 2019;
Xue et al., 2021; Scao et al., 2022). Recently, lan-

guage models that target specific non-English lan-
guages started to become more common (Zeng
et al., 2021; Kim et al., 2021a; Nagoudi et al., 2022;
Fuadi et al., 2023), especially low-resource or non-
Latin languages that share fewer commonalities
with English. There have been several Korean text-
to-text Transformers proposed in the past, such as
KoBART* and KE-T5 (Kim et al., 2021b), but our
work, among other Korean seq2seqs, is the first
to systematically achieve powerful billion-scale
seq2seq models and conduct extensive analyses
in terms of efficiency and performance.

Dialog-Oriented Language Models Adapting
language models for the purpose of building dialog
agents has been a long-standing goal in the lan-
guage modeling community (Zhang et al., 2020;
Adiwardana et al., 2020; Roller et al., 2021). How-
ever, from the industrial application perspective,
building dialog response generators is not the only
task that can benefit from the advances in language
modeling. In a more recent line of work, several ap-
proaches have been proposed to prepare language
models for various dialog-related tasks (Mehri
et al., 2019; Gu et al., 2021; Chen et al., 2022). In
parallel to dialog adaptation, multi-task fine-tuning
is another line of work that covers dialog-related
tasks, as a subset of dialog-related tasks is included
in the multi-task set, and expanding the task set
to cover dialog-related tasks is trivial (Sanh et al.,
2022; Aribandi et al., 2022).

3 HyperT5

This section describes the details of the pretraining
corpus, pretraining strategy, and evaluation meth-
ods.

3.1 Pretraining Corpus

Inspired by the pretraining corpus proposed by Kim
et al. (2021a), we design our pretraining data to
cover a wide range of domains and data distribu-
tions to ensure that the model trained on top of the
corpus will achieve robustness and generalizabil-
ity. Various sources of written and spoken texts
are included in the corpus (Table 1), although on-
line web texts take a large portion of the data (Ta-
ble 5). While online texts are certainly vulnerable
to the compound effect of biases, the collectively
massive and unfiltered nature provides a compre-
hensive impression of the language distribution

*https://github.com/SKT-AI/KoBART
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Model nlayer dmodel nhead dhead dff

HyperT5SMALL 16 512 6 64 1024
HyperT5BASE 24 768 12 64 2048
HyperT5LARGE 48 1024 16 64 2816
HyperT51.7B 48 1536 24 64 4096
HyperT53B 48 2048 32 64 5120

Table 2: Configurations of different model sizes.

(Scao et al., 2022). We conducted additional stud-
ies to investigate the feasibility of data composition
re-adjustment through sampling (Appendix A.1).
However, we found that the benefit was not clear-
cut.

3.2 Pretraining Setup

Our research employs the transformer encoder-
decoder architecture, similar to T5 of Google (Raf-
fel et al., 2022). However, we have opted for the
T5.1.1 structure, a variation of T5, due to its supe-
rior performance based on experimentation results.
It is worth noting that our HyperT51.7B model size
is not a derivative of Google’s T5, but rather an
interpolation of the LARGE and the 3B model. De-
tailed information on the configuration of different
model sizes can be found in Table 2.

For all model has been pre-trained on a total of
300B tokens, utilizing the replace corrupted spans
method proposed by Google’s T5 as one of their
unsupervised objectives. Specifically, we set the
corruption rate to 15%, while maintaining a mean
span length of 3.

Furthermore, we employed the inverse square
root learning rate schedule with 10k warmup steps
at a learning rate of 0.01 when using the Adafactor
optimizer (Shazeer and Stern, 2018). Both of our
pretrained models were trained using a batch size
of 1024 and a maximum sequence length of 512
for the encoder and decoder, respectively.

By using distributed data-parallel (Li et al.), we
were able to parallelize the training process across
multiple GPUs, effectively reducing the overall
training time and enabling us to train larger models
with higher performance. Specifically, we used 64
A100 GPUs for the small to large models and 1024
A100 GPUs for the 1.7B and 3B models.

3.3 Evaluation Methods

Benchmark The primary objective of the Hy-
perT5 evaluation is to address various natural lan-
guage processing tasks specific to the Korean lan-
guage in a reproducible way. To quantify the effec-

tiveness of our model in these tasks, we designed
a series of benchmarking experiments that cover
a wide range of tasks. The detailed components
of our benchmark are described in Appendix A.2.
Note that while all of our benchmark datasets are
publicly available for reproducibility, some datasets
(YNAT, KLUE-NLI, KLUE-STS, KorQuAD) have
not made the test set publicly available, hence some
of the report values are based on the development
or validation set where the test set is inaccessible.

Baselines We compare not only structures that
are identical to ours but also encoder and decode-
exclusive architectures. Models based on the BERT
and RoBERTa architecture released by KLUE
(Park et al., 2021) are encoder-only models spe-
cialized for natural language understanding. On
the other hand, HyperCLOVA (Kim et al., 2021a)
is a decoder-only structure like GPT. Note that Hy-
perCLOVA does not provide fine-tuning results,
and thus, we compare the ICL and P-tuning (Liu
et al., 2022b) results reported for this model. We
also compare three models with the same structure
as our model. KoBART has the encoder-decoder
structure but follows the learning method and de-
tails of BART (Lewis et al., 2019). The mT5 (Xue
et al., 2021) and KE-T5 (Kim et al., 2021b) mod-
els share the exact same structure as our HyperT5
model, with the difference being that mT5 is a mul-
tilingual model and KE-T5 is a Korean and English
cross-lingual model.

3.4 Evaluation Results
Main Benchmark Results On our Korean bench-
mark, HyperT5 achieves state-of-the-art perfor-
mances across all tasks (Table 3), outperform-
ing other seq2seq architectures by a large mar-
gin. Specifically, the smallest version of our model
(97M) was able to perform on par with the largest
KE-T5 (large) on the average benchmark (87.96 vs
88.61). Compared to large-scale decoder architec-
tures, our largest model (3B) is still able to outper-
form the 39B-scale HyperCLOVA with p-tuning
(93.29 vs 93.00). Although a more comprehensive
benchmark is desirable, the preliminary results on
NSMC suggest that our approach has an advantage
in scaling efficiency for the current compute-budget
range (§5.1).

Parameter-Efficient Fine-Tuning To under-
stand how our model can be further efficiently fine-
tuned using parameter-efficient fine-tuning (PEFT)
techniques, we benchmarked HyperT5 models that
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Model Params. NSMC YNAT KLUE-NLI KLUE-STS KorQuAD Avg.

Metrics Acc. F1 F1 Pearson EM / F1

Encoder-Only Pretrained Language Models

KLUE-BERTBASE 110M - 85.73*† 81.63*† 90.85*† - -
KLUE-RoBERTaSMALL 68M - 84.98*† 79.33*† 91.54*† - -
KLUE-RoBERTaBASE 125M - 85.07*† 84.84*† 92.50*† - -
KLUE-RoBERTaLARGE 355M 91.44 85.69*† 89.17*† 93.35*† - -

Decoder-Only Pretrained Language Models

HyperCLOVA (ICL) 13B 87.2∗ - - - - -
39B 88.0∗ - - - - -
82B 88.2∗ - - - - -

HyperCLOVA (P-Tuning) 137M 87.2∗ - - - - -
13B 91.7∗ - - - - -
39B 93.0∗ - - - - -

Encoder-Decoder Pretrained Language Models

KoBARTBASE 124M 90.24∗ - - - - -

mT5SMALL 300M 88.82 83.57 70.18 80.95 70.83 / 82.02 81.11
mT5BASE 580M 89.59 86.57 78.27 89.09 75.74 / 86.17 85.94
mT5LARGE 1.2B 90.81 87.17 89.96 91.69 80.03 / 88.35 89.00
mT5XL 3.7B 90.34 86.58 87.20 90.58 78.58 / 87.53 88.45

KE-T5SMALL 77M 89.78 86.44 74.37 87.55 80.98 / 89.91 85.61
KE-T5BASE 247M 89.75 86.58 77.58 88.35 83.46 / 91.94 86.84
KE-T5LARGE 783M 91.09 86.94 86.15 86.15 84.19 / 92.72 88.61

HyperT5SMALL 97M 90.91 87.31 79.43 90.32 83.03 / 91.82 87.96
HyperT5BASE 277M 91.82 87.83 87.48 91.87 85.97 / 93.98 90.60
HyperT5LARGE 822M 93.02 88.31 92.39 93.09 87.98 / 94.95 92.35
HyperT51.7B 1.7B 93.11 88.43 93.02 93.43 88.32 / 95.22 92.64
HyperT53B 3B 93.29 88.65 94.07 93.98 88.74 / 95.58 93.11
∗ Reported by the authors. † Reported on the test set, which is not publicly available.

Table 3: Korean understanding and reasoning benchmark results for Korean language models of various architectures.
Our model significantly outperforms all other models, regardless of size and architecture.

Model Params. NSMC YNAT KLUE-NLI KLUE-STS Avg.

Metrics Acc. F1 F1 Pearson

LST (Sung et al., 2022)

HyperT5SMALL 1.3M 88.96 (-2.14%) 85.33 (-2.27%) 72.15 (-9.17%) 86.61 (-4.11%) 83.26 (-4.29%)
HyperT5BASE 5.1M 89.80 (-2.20%) 86.34 (-1.70%) 78.87 (-9.84%) 89.09 (-3.03%) 86.03 (-4.15%)
HyperT5LARGE 17.9M 91.21 (-1.95%) 88.35 (+0.05%) 86.61 (-6.26%) 91.14 (-2.09%) 89.33 (-2.59%)
HyperT51.7B 39.8M 91.77 (-1.44%) 88.50 (+0.08%) 89.18 (-4.13%) 91.65 (-1.91%) 90.28 (-1.87%)
HyperT53B 69.3M 92.02 (-1.36%) 88.10 (-0.62%) 90.10 (-4.22%) 92.00 (-2.11%) 90.56 (-2.10%)

LoRA (Hu et al., 2022)

HyperT5SMALL 0.2M 88.96 (-2.14%) 85.29 (-2.31%) 73.25 (-7.78%) 87.95 (-2.62%) 83.86 (-3.60%)
HyperT5BASE 0.5M 90.60 (-1.33%) 86.31 (-1.73%) 84.43 (-3.49%) 91.02 (-0.93%) 88.09 (-1.85%)
HyperT5LARGE 1.3M 92.22 (-0.86%) 88.12 (-0.22%) 91.46 (-1.01%) 92.68 (-0.44%) 91.12 (-0.64%)
HyperT51.7B 2M 92.63 (-0.52%) 88.58 (+0.17%) 91.55 (-1.58%) 92.97 (-0.49%) 91.43 (-0.61%)
HyperT53B 2.7M 93.19 (-0.11%) 88.47 (-0.20%) 93.43 (-0.68%) 93.44 (-0.57%) 92.13 (-0.39%)

Table 4: Parameter-efficient fine-tuning (PEFT) benchmarked on HyperT5. The relative performance loss in
percentage is shown next to the corresponding results. Overall, a minor performance loss is observed across all
tasks and PEFT techniques, despite using a small number of trainable parameters.
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are fine-tuned using LoRA (Hu et al., 2022) and
Ladder-Side Tuning (LST) (Sung et al., 2022), re-
spectively, and compared the performances against
the full fine-tuning results in Table 3. Results show
that the performance degradation of employing
PEFT compared to the full fine-tuning baseline
is less than 5% on average, while the ratio of pa-
rameters used for training is less than 2.3%. And
as the model scales larger, the issue of performance
degradation is relatively alleviated, falling to 0.39%
for HyperT53B with LoRA. Model scaling and the
specific PEFT technique to employ will be the key
strategic factors for large-scale deployment.

4 Case Study: Efficient Adaptation for
Dialog-Oriented Tasks

Domain and task-family adaptation can further im-
prove the utilization of PLMs in low-resource set-
tings (Maronikolakis and Schütze, 2021). This
section explores the use case for adapting HyperT5
to dialog-related tasks.

4.1 Training Setup

For dialog adaptation, we propose to heavily train
HyperT5 on a 1B-token unlabeled dialog-oriented
data, with the multiple utterance masking (MUM)
objective in the curriculum learning setting. We
take the replace corrupted spans method to a more
challenging strategy, MUM, to help the model hold
a better understanding of dialog structures. During
training, multiple utterances are randomly masked
per dialog session with a pre-defined corruption
rate. We further adopt curriculum learning to grad-
ually raise the training difficulty by increasing the
MUM corruption rate. HyperT5 models, from
small to large, are trained for 5 epochs with a global
batch size of 64 using 2 A100 GPUs. Like pretrain-
ing, the dropout rate is set to 0. MUM corruption
rate sweeps sigmoidally from 5% to 40%.

Training Data We collect a dialog-oriented train-
ing corpus from both open-sourced and proprietary
Korean dialog datasets (Appendix B.1). The cor-
pus consists of 3.3M dialog sessions† in various
domains (e.g. social chats, customer service, broad-
cast transcripts, etc.). The resulting corpus pro-
vides a wide range of topics and aspects of different
dialog-oriented tasks, making it suitable for dialog
adaptation.

†We preprocessed the dialog corpus by truncating and
splitting the original dialogs into up to 20-turn sessions.
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Figure 2: Data efficiency analysis. (AI Hub ToD).

4.2 Evaluation Methods

We conducted an extended series of benchmark-
ing experiments for our dialog-adapted models
(DialogHT5) in both scarce and full data settings.
The benchmark results consist of three generative
tasks, i.e., dialog in-filling (DI), dialog response
generation (DR), and dialog summarization (DS),
and one discriminative task, i.e., dialog classifica-
tion (DC). We only use the open-sourced Korean
dialog-oriented datasets from AI Hub‡. AI Hub
task-oriented dialog (ToD) and open-domain dia-
log (ODD) datasets are used for both DI and DR,
while AI Hub broadcasting media transcript sum-
marization dataset (Script-Summ) for DS. Since
the AI Hub ToD dataset is annotated with dialog
topics, we used the dataset for DC (Appendix B.2).

4.3 Dialog Benchmark Results

Data Scarce Experiments To investigate the
data efficiency of DialogHT5, we first compare
their performance against HyperT5 over scarce
data settings. We benchmarked DialogHT5 and Hy-
perT5 as sweeping the number of training samples
from 0.1k to 5k. Results describe that DialogHT5
mostly achieves a higher score against HyperT5
(more details in Appendix B.3). Especially, Di-
alogHT5 outperforms HyperT5 with the gain of
up to 8 R1 score in the dialog in-filling task, as
shown in Figure 2. DialogHT5SMALL can save the
in-domain data resource approximately ten times
to score tie with HyperT5SMALL of 5k training sam-
ples (Figure 2a), which highlights the effectiveness
of dialog adaptation.

Full Data Experiments Full data benchmark re-
sults show that DialogHT5 obtains higher perfor-
mance compared to HyperT5 in all the experiments
(Appendix B.4). Generative tasks show a gain of

‡https://aihub.or.kr/
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Figure 3: Compute-optimality analysis. Based on the
validation loss curves obtained from our pretraining ex-
periments (shown left), we plot the best model sizes per
compute level on the right. Using the limited optimality
data points, we are able to safely fit a log-log linear line
and extrapolate (red line). The regression indicates that
the optimal model size for our compute budget is 5.6B,
which is less than a binary order of difference with the
largest model size we attained.

up to 0.6 R1 score whereas the discriminative task
shows a gain of 0.7 F1 score.

5 Discussions

5.1 Compute-Optimality Analysis

To investigate whether the model configurations
we experimented with are optimal given our pre-
training compute budget and the pretraining tokens,
we conducted compute-optimality analyses, similar
to the work done by Hoffmann et al. (2022). The
loss curves of our pretraining experiments were
smoothed and interpolated as shown in Figure 3a.
Using the curves, we map out the optimal model
sizes for each given compute level. However, due
to the very small number of model-size samples,
we need to normalize the optimal model-size data
points by selecting the mid-point of each optimal-
ity segment§, as shown in Figure 3b. After fitting
the regression line (r2 = 0.988), we discover that
the size of our largest model lies very close to the
predicted optimal model size for our compute bud-
get. Moreover, the predicted optimal model size
(dashed line in the same figure) for the decoder-
only architecture is significantly smaller (at 448M),
but our benchmark results on NSMC (Table 3)
show that small-scale decoder LMs (i.e., Hyper-
CLOVA) falls behind in terms of performance, sup-
porting the notion that seq2seq architectures are

§The compute range, where the smallest and the largest
model sizes are chosen to be the optimal model, is omitted to
prevent skewness.

more economically viable for small and medium-
scale compute budgets¶.

5.2 Practical Advantages of Seq2Seq

Apart from the quantitative benefits in performance
and efficiency demonstrated throughout the paper,
Seq2Seq offers additional practical and real-world
benefits. First, the encoder-decoder framework pro-
duces a parameter-efficient text encoder as a by-
product, which can be utilized for extracting fea-
tures and encoding purposes (Ni et al., 2022; Liu
et al., 2021). Specifically, the encoder module ex-
tracted from seq2seq is capable of producing high-
quality text embeddings superior to ones produced
from encoders of similar sizes (Ni et al., 2022).

Second, the text-to-text architecture reduces the
software complexity and management costs for
large-scale deployment, as a result of (1) the uni-
fied nature of the input and output format, (2) the
separation of the input and output sequences in-
herently supported by the encoder-decoder archi-
tecture, and (3) better parameter-efficiency. This
translates to fewer engineering resources to support
the same level of deployment scalability. The uni-
fied text nature of the data format allows existing
deployment infrastructures to be easily expanded
to handle new tasks. Also, the inherent distinct two-
part architecture enables simpler and more stream-
lined serving infrastructure. Furthermore, due to
the steeper model-scaling curve exhibited by de-
coder architectures, text-to-text transformers incur
fewer operating costs to maintain the same quality
of services.

6 Conclusion

In this paper, we introduced HyperT5 and Di-
alogHT5 as state-of-the-art on Korean language
modeling. We also demonstrated the feasibility of
performing resource-aware strategization for lan-
guage models. Through the compute-optimality
analyses, we found that the seq2seq architecture
may be more cost-efficient than decoders below
a certain compute-budget threshold. For future
work, we wish to generalize the domain adapta-
tion approach and study the efficacy of multi-task
learning (Aribandi et al., 2022) from the indus-
trial perspective. Furthermore, we look forward
to conducting comprehensive investigations into
cross-architectural optimality.

¶Conversely, this means that decoder-only architectures
scale better with larger compute budgets (Figure 3b).
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Ethics Statement

The authors are aware that the language models
proposed in this paper, either pretrained from our
pretraining corpus or heavily fine-tuned using the
dialog corpus (Appendix B.1), are all subject to so-
cial and unethical biases depending on the way the
corpora were prepared. Internally, the authors and
the relevant members of the affiliated organization
are actively working to make sure that the deployed
language models do not generate ethically question-
able content that may cause harm or stress to the
end user. The specific set of actions that we take
include but are not limited to,

• Employing automated models to detect unethi-
cal content and perform automatic adversarial
attacks on the language model before deploy-
ing them into services and products.

• Under safe and strict ethical guidelines, con-
ducting human studies to identify prompts that
could potentially cause the language model to
generate unethical content. (red-teaming)

• Establishing strategies to mitigate or amend
ethical issues exhibited by the language mod-
els raised from automated and human surveys.
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A Supplementary Materials Regarding HyperT5 Pretraining

A.1 Experiments on Corpus Composition Re-sampling

Data Type Tokens Ratio

Web-Crawled 183.0B 61.0%
Books 61.2B 20.4%
News 55.8B 16.8%
Others 0.3B 0.1%

Korean 238.5B 79.5%
English 61.5B 20.5%

Table 5: Data composition of the experimental pretraining corpus by data type and language. This experimental
pretraining corpus of HyperT5 was designed to contain a relatively higher proportion of knowledge-intensive data
sources such as books and news. Moreover, a higher English proportion was employed to leverage high-resource
language and promote the emergence of cross-lingual knowledge transfer.

Model (corpus) NSMC YNAT KLUE-NLI KLUE-STS Abs. Summ. Avg.
Metrics Acc. F1 F1 F1 / Pearson R1 / R2 / RL

HyperT5BASE (original corpus) 91.52 87.72 85.25 84.95 / 93.27 52.70 / 24.81 / 49.53 71.22
HyperT5BASE (re-sampled corpus) 91.51 87.15 84.10 85.50 / 93.49 53.64 / 25.24 / 50.27 71.36

Table 6: Pretraining results on the experimental corpus re-sampled with an emphasis on knowledge-heavy data.
Note that the pretraining setup is slightly different from the one described in the main section of the paper, hence
the results of the base model may differ.

During pretraining, language models consume billions of weakly preprocessed tokens, which may
impact the model performance to varying degrees. For example, web-crawled data which take up a large
portion of the pretraining corpus is relatively noisy, thus prioritizing certain data sources that are thought
to be dense with information may help to improve training efficiency, i.e., the number of tokens needed to
converge towards a reasonable level of performance.

To investigate our hypothesis, we create an experimental pretraining corpus (Table 5) and made
sure that the proportions of data sources that provide “hard” knowledge (e.g., books and news) are
significantly higher by under-sampling other data types (Rae et al., 2021). Additionally, we augment the
experimental pretraining corpus with English data sources, leveraging knowledge embedded in the world’s
most resource-accessible language. We theorized that the availability of weak-parallel corpora such as
multi-lingual Wikipedia articles acts as mediums for cross-lingual knowledge transfer (Hu et al., 2020).
As shown in the results (Table 6), the base version of our model improved in reading comprehension
and abstract summarization tasks but slightly suffered in classification and NLI tasks, suggesting that
composition of knowledge-oriented data sources in the pretraining corpus may help the language model
in tasks related to language generation (answer generation and summary generation) at the risk of slight
underfitting in discriminatory power.

A.2 Benchmark Datasets

This section provides more details on the benchmark datasets.

• NSMC|| is a movie review dataset constructed from NAVER Movie, a Korean movie review website,
and consists of 150k training data and 50k test data samples, labeled with positive and negative
classes.

• YNAT is a news-topic classification dataset as a part of the Korean Language Understanding
Evaluation (KLUE) (Park et al., 2021) benchmark set. The dataset consists of titles for news articles

||https://github.com/e9t/nsmc

421



and the corresponding news topic labels. The dataset has 45.6k training data samples, 91k validation
data samples, and 91k test data samples.

• KLUE-NLI is a natural language inference dataset from the KLUE benchmark set. Similar to MNLI
(Williams et al., 2018), each sample in the dataset contains a pair of premise-hypothesis sentences,
and the goal is to label the pair with one of "entailment", "neutral", or "contradiction". It comprises
25k training data, 3k validation data, and 3k test data samples.

• KLUE-STS is designed to evaluate a model’s ability to capture the semantic similarity between two
sentences. Like YNAT and KLUE-NLI, KLUE-STS is also a part of the KLUE benchmark. The
dataset consists of 11.6k training data, 519 validation data, and 1k test data samples.

• KorQuAD is a Korean question Answering dataset for machine reading comprehension (Lim et al.,
2019), similar to SQuAD (Rajpurkar et al., 2016). The dataset consists of 60k question/answer pairs
for training, 5.8k for validation, and 3.9k for testing.

B Supplementary Materials Related to Dialog-Oriented Adaptation

This appendix section contains supplementary materials related to the dialog-oriented adaption of Hy-
perT5.

B.1 Dialog-oriented Adaptation Corpus

Here is the detailed list of data sources for constructing the dialog heavy-finetuning corpus presented
(Table 7). The data consist of both open-sourced (Modu, AI Hub) and proprietary dialog corpus. Modu
datasets are a collection of various dialog-oriented datasets collected by National Institute of Korean
Language (NIKL)**.

Source Dataset Dialog Type Domain # Dialogs # Turns

Modu TV Series, News Spoken Broadcast Contents 0.1M 2.2M
Open-ended dialogs Spoken General 51.1k 1M
SNS dialogs Written General 24.2k 0.5M
Online communications Written Online Communications 98k 1.7M
Korean parliamentary records Spoken Politics 0.3M 5.5M

AI Hub Customer service QAs Spoken Customer Service 6.7k 0.1M
Empathetic dialogs Spoken Empathetic dialog 45.5k 0.3M
Dialog summarization All General 0.3M 3.5M
Open-ended SNS dialogs Written Online Communications 1.8M 28.6M
Shopping, Public sector, Finance QA Spoken Customer Service 0.1M 1.9M

Proprietary TV Series, News Spoken Broadcast Contents 0.2M 3.3M
Shopping QAs Written Customer Service 0.2M 1M
Elderly care dialogs Written Empathetic dialog 40k 0.4M
Character chatbot dialogs Written Empathetic dialog 32.1k 0.3M

Total 3.3M 50.2M

Table 7: Full list of data sources and corresponding statistics for dialog-oriented heavy-fine-tuning.

B.2 AI Hub Benchmark Datasets

This section provides more details on the dialog-oriented benchmark datasets. Note that the benchmark
datasets are excluded from the dialog adaptation corpus.

• AI Hub ToD is a task-oriented dialog (ToD) dataset from AI Hub††, which covers 20 different
topics (restaurant booking, online shopping QA, etc.). We preprocess the corpus to build 38.5k of
training data and 3.9k of test data. We used the ToD dataset for dialog in-filling and dialog response

**https://corpus.korean.go.kr/
††https://bit.ly/3S9Wxi6
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generation. Each dialog session produces 3 or 4 training samples by random utterance selection.
For the dialog response generation task, the turns before the selected utterance are only used for the
dialog context, whereas both turns before and after the selected utterance are given as the context for
dialog infilling. We also benchmarked the dialog topic classification using the ToD dataset with topic
labels.

• AI Hub ODD is an open-domain dialog (ODD) dataset from AI Hub‡‡, over 20 different topics
(social issues, food, marriage, etc.). We built a dataset with 87.7k training data and 11.0k of test data
for the aforementioned tasks in AI Hub ToD. Similarly to AI Hub ToD, each dialog session results in
multiple training samples.

• AI Hub Script-Summ is a broadcasting media transcript summarization dataset from AI Hub. We
built a dataset with 84.4k training data and 10k test data for dialog summarization. Finally, we use
the ROUGE score for generation task evaluation and Macro F1-Score for classification.

B.3 Scarce Data Benchmark Results
Table 8 illustrates the scarce data benchmark results for our dialog-adapted models against HyperT5
models as baselines. We averaged the experimental results over five different random seeds. All the
experiments are under the early stopping option with a patience level of 5. For each experiment, the best
checkpoint is determined according to the evaluation metric. We set the learning rate to 5e-4 with linear
learning decay.

Note that DialogHT5 shows a huge performance leap in DI tasks. This can be explained by the fact that
dialog in-filling is essentially a single utterance masking (SUM), hence the MUM objective we used for
dialog adaptation is a more challenging version of dialog in-filling.

In the extreme data-scarce settings (i.e., the training sample number of 0.1k), both HyperT5 and
DialogHT5, regardless of the model size, tend to fail training without hyperparameter tuning on the
learning rate. In general, using 5e-4 instead of 5e-5 enables tuning to begin working.

B.4 Full Data Benchmark Results
We further conduct the full data benchmarks. Results show that DialogHT5 models achieve higher scores
compared to HyperT5 models in most cases (Table 9).

‡‡https://bit.ly/3kc75R5
https://bit.ly/3Izjmsv
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Model Params. # Samples DI DR DS DC
Dataset ToD ODD ToD ODD Script-Summ ToD

Metrics R1 R1 R1 R1 R1 F1

HyperT5SMALL 97M 100 13.69 8.58 13.38 8.82 27.03 30.13
500 19.68 13.83 16.15 10.52 35.35 51.86

1000 22.31 13.93 17.80 9.71 33.45 56.49
5000 27.71 15.06 21.82 12.32 35.54 66.85

HyperT5BASE 277M 100 22.26 16.24 12.72 10.72 28.86 -
500 27.42 17.10 16.35 9.99 36.92 43.67

1000 29.05 17.43 20.84 10.68 38.07 53.51
5000 31.78 18.71 24.33 12.80 41.75 63.47

HyperT5LARGE 822M 100 26.40 19.17 10.36 10.00 25.36 52.54
500 30.02 - 18.14 10.67 36.04 -

1000 31.28 - 17.79 13.05 37.79 -
5000 33.40 - 23.26 14.38 41.16 49.64

Data Adaptation

DialogHT5SMALL 97M 100 19.66 16.10 14.71 11.42 18.86 32.15
500 26.56 18.05 18.03 12.55 31.98 54.66

1000 28.22 18.25 19.92 12.82 33.10 53.65
5000 30.15 18.46 22.32 12.75 34.38 65.50

DialogHT5BASE 277M 100 28.45 20.69 15.02 11.15 - -
500 31.82 21.35 21.33 13.05 - 43.32

1000 32.38 21.51 23.14 14.23 - 56.25
5000 33.48 21.66 25.17 15.16 41.73 65.36

DialogHT5LARGE 822M 100 29.46 21.13 13.55 4.62 - -
500 32.56 18.67 22.55 14.07 - -

1000 33.31 - 23.17 11.13 37.84 -
5000 - - 25.49 15.20 41.28 64.31

Table 8: Scarce data benchmark results for dialog adaptation.

Model Params. DI DR DS DC
Dataset ToD ODD ToD ODD Script-Summ ToD

Metrics R1 R1 R1 R1 R1 F1

HyperT5SMALL 97M 37.0 21.3 26.9 15.8 42.9 70.2
HyperT5BASE 277M 38.8 23.1 29.7 16.2 44.6 70.4
HyperT5LARGE 822M 41.5 24.5 30.2 16.5 - 71.0

Data Adaptation

DialogHT5SMALL 97M 37.2 21.7 27.3 15.8 42.9 70.0
DialogHT5BASE 277M 40.1 23.6 29.8 16.4 44.7 71.7
DialogHT5LARGE 822M 41.8 25.1 30.5 16.8 - 68.6

Table 9: Full data benchmark results for dialog adaptation.
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Abstract

Ambiguity is a major obstacle to providing ser-
vices based on sentence classification. How-
ever, because of the structural limitations of
the service, there may not be sufficient contex-
tual information to resolve the ambiguity. In
this situation, we focus on ambiguity detection
so that service design considering ambiguity
is possible. We utilize similarity in a semantic
space to detect ambiguity in service scenarios1

and training data. In addition, we apply task-
specific embedding to improve performance.
Our results demonstrate that ambiguities and
resulting labeling errors in training data or sce-
narios can be detected. Additionally, we con-
firm that it can be used to debug services.

1 Introduction

The ability to accurately access the meanings of
sentences is a key component of voice recognition-
based agent services. This task is made difficult by
the inherent ambiguity of some sentences, which
can refer to different meanings in different contexts.
Adot( ) 2 is a voice recognition-based service
agent, akin to Amazon’s Alexa, for Korean users.
This paper describes how we dealt with ambiguity,
from a perspective of Adot’s developer.

For example, as illustrated in Figure 1, the Ko-
rean word "앞" has two different meanings depend-
ing on the context. As a result, when the media
content is being played, the command "앞으로
가봐" may have two completely opposite mean-
ings.("move forwards" vs. "move to previous"). In a
test conducted within our company, approximately
61.7 percent of respondents interpreted it as “move
forwards” and 38.3 percent as “move to previous”.

1A scenario refers to one expected input sentence and the
analysis result of it predefined for service design.

2Adot is a virtual assistant service developed by SK Tele-
com, a telecom company in South Korea. Though officially
denoted as A., we will refer to it as Adot in this study to avoid
misunderstanding.

Figure 1: The various meanings of Korean word "앞"
and the semantic ambiguity between user utterances.

Although there is no universally valid interpreta-
tion in this scenario, each respondent was certain
that their own interpretation was the correct one.
(Likert-scale score = 5.2/7). This semantic ambi-
guity leads to a labeling error of training data and
scenarios in specification3. From the perspective
of service providers who must provide specific ser-
vices in response to user input, we contend that this
is a challenging problem. In addition, ambiguity is
very important in terms of cost. Manual inspection
of the training data or specification is required for
ambiguity handling, which is expensive in terms of
cost and resources.

Recently, many researchers have attempted to
handle ambiguity with various approaches such as
semantic space (Rodd, 2020), entity linking (Yin
et al., 2019), and attribute attention (Liu et al.,
2019). In addition, the primary purpose of these
studies is to resolve ambiguity using context. In
spite of this, we do not have sufficient contextual
information to apply these disambiguation methods
because of the characteristics of a very short input
sentence (which has 6.97 Korean letters and 2.05
words on average) and a one-turn based service.

Although contextual information required for
disambiguation is not available within the scope

3We call the set of scenarios as the specification.
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of the sentence classifier, we can still exploit non-
linguistic traits, such as user habits and device in-
formation, which are accessible from the outside
classifier to determine service. Therefore, we chose
to approach this problem through detection rather
than disambiguation. Detecting the presence of am-
biguity in scenarios would allow for the consid-
eration of external contextual information when
providing the service.

This paper proposes a process of detecting ambi-
guity in scenarios or training data through similar-
ity. To improve ambiguity detection performance,
we apply task-specific embedding. We conduct an
experiment detecting ambiguity and labeling error
from ambiguity in Adot’s scenarios and training
data. Additionally, we investigate Pearson correla-
tion coefficients between similarity and the degree
to which users expect two sentences to belong to
the same class (this is referred to as user-aware
class relevance). This study’s findings affirm that
similarity provides a means to identify scenarios
and training data with potential ambiguity. In this
process, we confirm that user-aware class relevance
correlates with the similarity. Furthermore, it was
confirmed that the training data that resulted in the
misclassification could be specified.

2 Related Works

Ambiguity is a long-standing problem in natural
language processing (NLP) tasks such as word
sense disambiguation (Navigli, 2009), entity disam-
biguation (Barba et al., 2022), and database search
result disambiguation (Qian et al., 2021) in the task-
oriented dialogue systems. Ezzini et al. (2021) uti-
lized domain-specific data to address the structural
ambiguity of sentences. This ambiguity is largely
divided into four categories (Berry et al., 2003).

• Lexical ambiguity occurs when a word has
several meanings

• Syntactic ambiguity occurs when a given se-
quence of words can be given more than one
grammatical structure

• Semantic ambiguity occurs when a sentence
has more than one way of reading it

• Pragmatic ambiguity occurs when a sentence
has several meanings in the context in which
it is uttered.

These studies are focused on resolving the ambigu-
ity. However, we did not have contextual informa-
tion to apply to these disambiguation methods.

In NLP, the sentence similarity task, which eval-
uates the similarity between pairs of sentences us-
ing several techniques, has been investigated exten-
sively. Traditionally, edit distance has been used to
quantify superficial similarities (Levenshtein et al.,
1966). Despite being straightforward, it is notewor-
thy because of its similarity to manual identifica-
tion of training data that induce misclassification.
Recent studies have measured the similarity be-
tween pairs of sentences by projecting them into
a meaningful semantic space using various neu-
ral networks, such as Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), ELMo (Pe-
ters et al., 2018), and BERT (Devlin et al., 2018),
or using Siamese architectures, such as Sentence-
BERT (Reimers and Gurevych, 2019).

In this paper, inspired by (Ezzini et al., 2021),
We utilize a task-specific embedding, extracted
from a trained classification model, to identify se-
mantic ambiguities.

3 Task Design

3.1 Ambiguity Detection in Scenarios

When ambiguity exists in scenarios, the accurate
classification result is not aligned with the user’s
expectations. If the user expects a class (class-B)
other than the class (class-A) defined in the speci-
fication to be correct for an input a, it implies that
classification of the input under class-B is suffi-
ciently valid or that the user has experienced re-
ceiving a service corresponding to class-B for at
least one input a′ similar to a. Let’s suppose that the
command “앞으로가봐” we looked at in section1
is defined as “move forward” in the specification.
A significant proportion, 38.3%, interpret this com-
mand as “move to previous”, and the similar phrase
“앞으로 다시 가봐” is commonly used in Korea
with the meaning “move to previous”. (The inter-
jected word ‘다시’ usually means ‘again’.) From
the perspective of the user, we attempted to identify
the ambiguity of the scenarios.

First, pairs of sentences are collected, and the
correlation between similarity and user-aware class
relevance is evaluated. If this correlation is suffi-
ciently high, user-aware class relevance could be
estimated based on similarity. In a given scenario, if
specific training data y that has the highest similar-
ity with a particular scenario sentence x is placed
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in a different class than the class-X defined for sce-
nario sentence x, it implies that the user may not
anticipate class-X for sentence x and ambiguity
may exists in the scenario. Subsequently, ambigu-
ity or the mislabeled scenario is manually inspected
in the specified scenarios to validate this process.

3.2 Ambiguity Detection in Training Data

The method of 3.1 could not be applied as it is to
detect the ambiguity of the training data. In the
process of generating training data, several similar
data are generated all at once. Ambiguous training
data is rarely observed in isolation; furthermore,
the data demonstrate a marked degree of similarity
to one another. Finding similar data with different
classes for single data did not work well.

We noted that the ambiguity in training data man-
ifests as mislabeled data that do not conform to the
specification. Models trained using this mislabeled
data yield outputs that deviate significantly from
the designer’s expectation. In this paper, we begin
with misclassified inputs and attempt to find the
training data that caused the corresponding mis-
classification and mistraining.

Hence, input sentences misclassified by Adot
are collected. Among all training data with misclas-
sified labels, data exhibiting high similarity with
misclassified inputs are assumed to be training data
that induce misclassification. These include corre-
sponding data with ambiguity or those mislabeled
from ambiguity. We inspect the specified data man-
ually to confirm any ambiguity or labeling errors.
Additionally, the labels of the specified data are
modified to the labels of the expected classes, and
the model is retrained. It is verified whether the
classification results of the model are corrected as
expected. Via this, we confirm whether the speci-
fied data are the cause of the misclassification.

4 Methods - Task-Specific Embeddings

We note that each node of the trained classification
model stores weights adjusted for the task, and the
values output by each node in the inference process
contain fragmentary information useful for infer-
ence (Wang et al., 2020). We create task-specific
embedding vectors using the output values of each
node in the classification model. Via this process,
we expect to be able to create an embedding with
better expressive power for ambiguity detection, al-
beit biased, compared to off-the-shelf embeddings,
such as pre-trained LM or Word2Vec. Assuming a

classification model fθ with n layers on top of the
embedding layer, we create a vector vi representing
the i-th layer as follows: (v1 = embedding vector,
vn = model output vector.)

Whole Layer Vector (WLV) WLV consists of
output of all nodes from the model’s embedding
layer to the layer below the final output layer. WLV
contains the most amount of data and reflects all
information flows in the model.

WLV = concat(v1, v2, ..., vn−2, vn−1)

After Representation Layer Vector (ARLV)
WLV contains considerable information, but the
embedding layer accounts for most of it, which is
problematic (for instance, 25,640 nodes out of a
total of 40,424 nodes are included in the embed-
ding layer of Adot’s classification model). ARLV
is defined using nodes from the layer following the
embedding layer to the layer immediately preced-
ing the output layer to avoid undue influence of the
embedding layer.

ARLV = concat(v2, v3, ..., vn−2, vn−1)

Conclusion Layer Vector (CLV) Although
WLV and ARLV contain a significant amount of
data, they ignore discrete functions and conse-
quently struggle with the corresponding differences.
For example, when a layer uses an activation func-
tion such as RELU, the difference in the value input
to the function might be negligible. However, the re-
sultant value after processing the function might be
completely different. CLV is only defined using the
layer immediately preceding the output layer of the
entire model to account for these characteristics.
We anticipate that the overall model’s judgment
process is structured in this layer.

CLV = vn−1

5 Experiments

5.1 Datasets
5.1.1 Scenario Ambiguity Test Set
The following experiment utilizes the task de-
scribed in section 3.1 to detect scenario ambiguities
from the user’s perspective.

Correlation Test Dataset 913 pairs of sentences
are collected from domain classification validation
data for the Adot service (Domain information is
used as a label in this experiment). Domains, in
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the context of Adot, are defined service areas, and
include categories consisting of 30 categories such
as general, music, video, weather, and schedule.
Sentences are randomly selected from the data of
eight domains that frequently result in classification
failure. The classes of each pair may be identical
or different. We measure Pearson correlation be-
tween similarity and user-aware class relevance of
sentence pair.

Ambiguity Test Dataset To evaluate ambiguity
detection, 29,136 sentences with designer-defined
labels are collected. These sentences are scenarios
defined for the Adot service. For these scenarios of
specification, the scenarios with possible ambiguity
are detected using the process mentioned in sec-
tion 3.1. Lastly, any actual ambiguity or labeling
error corresponding to the specified scenarios is
manually inspected.

5.1.2 Training Data Ambiguity Test Set
The following experiment based on the task de-
signed in section 3.2 is performed to detect ambi-
guity in training data.

Ambiguity Test Set This test dataset consists
of 2,300 sentences incorrectly classified by Adot.
Based on the misclassified sentences, training data
exhibiting high similarity with these sentences are
assumed to be training data that caused the mis-
classification. We manually check for ambiguity or
labeling errors in those specific sentences.

Side-Effect Test Set Identification of data that
induces misclassification also requires that inputs
analyzed successfully before correction must must
remain so after correction. To confirm this, 20,000
sentences classified correctly by Adot are collected,
and their classification result is verified after the
specified data are modified and retrained.

5.2 Baseline - Similarity Methods
Edit Distance A method for measuring the su-
perficial similarity. It is very similar to the manual
debugging process.

Embedding Vector Similarity A method for
measuring the semantic similarity. Cosine simi-
larity of embedding vectors for sentences is mea-
sured. Two types of representative off-the-shelf
embeddings are prepared:Sent2Vec and KoGPT2.
Sent2vec, was trained on both Korean Wikipedia
and Adot’s training data. KoGPT2 is a pre-trained
language model developed by SKT-AI, based on

GPT-2. These embeddings are also used to com-
prise an embedding layer for the classification mod-
els discussed below. We describe the embedding
methods in detail in the Appendix A.

5.3 Classification models used in the
Experiments

We employed classification models to generate task-
specific embeddings and assess the detection perfor-
mance of training data that cause misclassification.

Adot Classifier This is the model used for do-
main classification in Adot’s service. It is formed
by concatenating a convolutional neural network
(CNN) that uses a part of speech-tagged morpheme
as a token with another CNN that uses character
and dictionary information as a token followed by
three fully connected layer on top.

KoGPT2 Classifier It is a classifier based on
pretrained-LM. As in the basic classifiers of pre-
LM packages, three fully connected layers are
added on top of KoGPT2.

These models are trained using training data for
domain classification of Adot’ service. The data
consists of 2.2 M sentences with 30 corresponding
classes. We set the batch size to be 256 and fine-
tune the model for 15 epochs using a learning rate
of (1e-5). On the development dataset, the Adot and
KoGPT classification models achieved accuracy
rates of 98.4% and 94.2%, respectively. Because
presenting a high-performance model is not within
the scope of this study, a detailed description of the
model is included in the Appendix A.2.

5.4 Human Evaluation
The task designed in section 3.1 includes the user
test. The evaluator rates the degree to which two
sentences belong to the same class on a scale of 1–7.
An example of the test set given to the evaluator is
included in the appendix B.2. For this experiment,
two groups of evaluators are recruited.

Ordinary Service User (User) This group con-
sists of six ordinary Adot users. Each user exhibits
above-average linguistic proficiency and possesses
a bachelor’s degree or higher academic qualifi-
cations. Through correlation with this group, we
checked whether user-aware class relevant could
be estimated with similarity.

Expert Evaluator (Expert) This group consists
of seven people with experience in generating train-
ing data or evaluating quality of service for Adot.
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Each participant exhibits five years of annotation
experience on average and demonstrates a thorough
understanding of class boundaries.

5.5 Evaluation Metrics
Experimental performance is evaluated in terms
of specific metrics. If the data requires correction
but is not ambiguous, it is considered to be a sim-
ple mislabeling error. In our experiment, the terms
commonly used to define the formulation for eval-
uation metrics are Nx, s, and d, where Nx, s, and
d denote the number of x ∈ {s, d}, scenario or
training data identified as having an ambiguity, and
input data, respectively.

Ambiguous Data Ratio (ADR) measures the ra-
tio of scenario or training data containing ambi-
guity in the identified scenarios or training data,
Nsa/Ns, where Nsa and Ns denote the number of
sa and the number of s, respectively. sa represents
the scenario or training data with actual ambigu-
ity among s. The existence of ambiguity was con-
firmed by a person directly checking if multiple
interpretations were possible.

Mislabeled Data from the ambiguity Ratio
(MDR) measures the ratio of scenario or data
containing ambiguity and labeling error in the iden-
tified scenario or data, Nsm/Ns. sm denotes sce-
nario or training data with actual ambiguity and
labeling error among s. Mislabeled Data (sm) was
verified by a person directly checking the need for
label correction.

Correction Ratio (CR) Measure the classifica-
tion success rate for retrained model on previously
misclassified sentences after modifying data and
retraining, Ndf /Ndfs

. df represents input data mis-
classified by Adot, while dfs denotes data cor-
rectly classified after correction and retraining from
within the df .

Accuracy preservation Ratio (APR) measures
the classification success rate for previously suc-
cessfully analyzed sentences after modifying the
data and retraining, Ndss/Nds . dss denotes input
data from the ds that was correctly classified after
correction and retraining, while ds represents data
successfully classified by Adot.

5.6 Results
Pearson Correlation Analysis As shown in Ta-
ble 1, we show the result of pearson correlation
analysis between user-aware class relevance and

the measured similarities. In general, various sim-
ilarity methods achieve significant positive corre-
lations 4, which suggests that similarity methods
can be used as a proxy estimator for user-aware
class relevance. This result is regarded as an ev-
idence of our hypothesis described in Section 3.
This result reinforces our hypothesis that present-
ing data with high similarities but differing labels
can aid in identifying ambiguous scenarios. More-
over, similarity methods more correlates with users
than experts who know the service criteria accu-
rately. Following (Pang et al., 2020), we also mea-
sure the mean inter-rater agreement. The study re-
sults indicate high agreement and yield two con-
clusions. Firstly, the methods utilized, particularly
Adot-CLV, demonstrate a correlation almost equiv-
alent to the average inter-rater correlation (0.589
vs. 0.633, respectively). Secondly, the manual eval-
uation explanation can be considered sufficient.

Similarity with ordinary users was significantly
higher than with experts. To ascertain the underly-
ing cause of this phenomenon, we computed the
concordance of each sentence pair at three distinct
points, namely the service area, entity properties,
and predicate. We investigated the correlation be-
tween manual evaluation and concordances. No-
tably, the expert group demonstrated a markedly
high correlation in the service area, whereas the
ordinary user group exhibited comparable correla-
tions across all three areas. Further elaboration on
this matter is presented in the appendix C, as it is
not directly pertinent to the primary focus of our
paper, namely ambiguity detection.

Specification Ambiguity Detection As shown
in Table 1, we presents the ambiguity and label-
ing errors resulting from ambiguity detected in
the scenarios. Since the specification is the gold
standard for services, it is mostly comprised of
scenarios that have a clear meaning. Nonetheless,
we can identify scenarios that contain ambiguity
or require label modification. Interestingly, the
number of data between containing actual ambi-
guity ((sa) = (Ns × ADR), KoGPT2+ARLV-
(sa) = 210, Adot+ARLV-(sa) = 152) or requiring
modification ((sm) = (Ns ×MDR), Sent2Vec-
(sm) = 40, Adot+ARLV-(sm) = 36) are not differ-
ent significantly considering the number of scenar-

4In the case of Edit Distance, which takes the value 0 when
completely identical and 1 when completely different, the sign
is the opposite of that of the other similarity measurement
methods.
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Task→ Correlation Ambiguity in specification Ambiguity in training data

Methods ↓ All ↑ Expert ↑ User ↑ Ns ADR ↑ MDR ↑ ADR↑ MDR↑ CR↑ APR↑
Edit Distance -0.243 -0.184 -0.286 755 0.170 0.033 0.660 0.373 0.559 0.990

Embedding

+ Sent2Vec 0.217 0.154 0.275 4448 0.037 0.005 0.612 0.315 0.496 0.992
+ KoGPT2 0.268 0.155 0.394 1531 0.223 0.024 0.611 0.318 0.490 0.990

Task-Specific

Adot+WLV 0.237 0.170 0.294 2968 0.056 0.007 0.610 0.316 0.474 0.992
Adot+ARLV 0.565 0.468 0.604 362 0.419 0.102 0.712 0.458 0.689 0.989
Adot+CLV 0.589 0.489 0.628 243 0.469 0.132 0.711 0.463 0.599 0.992
KoGPT2+WLV 0.336 0.227 0.440 1210 0.169 0.020 0.599 0.332 0.491 0.990
KoGPT2+ARLV 0.512 0.445 0.513 755 0.278 0.039 0.688 0.439 0.601 0.989
KoGPT2+CLV 0.512 0.445 0.513 507 0.391 0.047 0.694 0.448 0.600 0.990

Inter-Rater 0.633 0.752 0.520 - - - - - - -

Table 1: Correlation: Pearson’s correlation coefficient performance between similarity and user-aware class
relevance. Ambiguity in specification: Identical performance of ambiguous scenario detection. Ambiguity in
training data: Identical performance of ambiguous training data detection. The model with the best performance is
indicated in bold , while the second best is underlined.

ios (29,136).During the scenario ambiguity detec-
tion experiment, we found a noticeable contrast in
the number of identified scenarios, denoted by Ns.
Task-specific embedding tended to have a lower
Nsthan off-the-shelf embedding. Furthermore, the
upper layer-generated embedding displayed a lower
Ns. Ns determined the performance difference in
ADR and MDR.

Training Data Ambiguity Detection Table 1
shows the performance in training data ambiguity
detection. We verify that the ambiguity and label-
ing error is viewed as the cause of misclassification.
In practice, approximately 70% of the specified
data contain ambiguity, and approximately 45% re-
quire label correction. CR and APR represent the
performance of identifying training data that cause
misclassification. The results also demonstrate that
similarity can be used to identify training data that
cause misclassification. Moreover, it is confirmed
that ARLV and CLV of task-specific embeddings
are more suitable for the detection task.

Effect of Task-specific Embedding As reported
in Table 1, task-specific embeddings outperform
other methods in both ARLV and CLV, while WLV
does not achieve significant improvement. Possibly,
this is because off-the-shelf embeddings occupy
the majority of WLV, as discussed in the defini-
tion of ARLV (See in Section 4). To understand
why this phenomenon happens, we visualize the

representation of training data samples obtained
from each embedding method using T-SNE. As il-
lustrated in Figure 2, the task-specific embeddings
(i.e., ARLV and CLV) clearly represent the training
data samples compared to general embeddings.

The task-specific embeddings based on the Adot
model outperformed those based on KoGPT2. How-
ever, we do not consider the transformer-based
embedding to be unsuitable for the task. The ob-
served difference in performance appears to stem
from Adot’s specialization in classifying this data,
given that Adot has undergone extensive optimiza-
tion as part of its use in the corresponding service.
The differences in classification accuracy between
the Adot and KoGPT2 models, as mentioned in
the section 5.3, support this interpretation(98% vs.
94%). Observing Figure 2, one can discern a sub-
tle yet distinct data segregation demonstrated by
the Adot-based embeddings as compared to those
based on KoGPT2. This differential expressive ca-
pacity seems to manifest as a performance discrep-
ancy. In the case of general embeddings, KoGPT2
exhibits greater separation than Sent2Vec, which,
in practice, is reflected by the overall superior
performance of Embedding-KoGPT2 compared to
Embedding-Sent2Vec.

6 Discussions

Powerful Task-Specific Representation This
study demonstrates the feasibility of detecting am-
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Figure 2: Data representation in the semantic space corresponding to three domains (red: music, green: commerce,
blue: food_order.). We can observe that the boundaries of the represented data become clear depending on the
location where the vector is generated.

biguity through similarity and highlights the poten-
tial benefits of utilizing task-specific embedding
to enhance performance. The experimental results
show a positive correlation between model size and
detection performance according to the scaling law.
Future research efforts for ambiguity detection will
focus on generating task-specific embeddings using
larger models for superior results.

Multilingual Ambiguity Detection This study
was conducted for Korean-based services. Most
users of Adot are Korean, and the inputs contain
many Korean characteristics. And since the com-
mands input to the smart speaker were the data of
the study, fairly short and imperative sentences are
targeted. Experimentation is required to determine
if similar results can be obtained in other languages
and other types of sentences.

7 Conclusion

We introduce two processes to detect training data
and scenarios that induce ambiguity. Moreover,
task-specific embedding is adopted to improve de-
tection performance. Comprehensive analysis re-
veals that compared to off-the-shelf embeddings,
Sent2Vec and KoGPT2, task-specific embedding is
much more suitable for ambiguity detection. More-
over, the results demonstrate the viability of iden-
tifying training data that cause misclassification.
In the future work, we aim to compare the perfor-
mance of task-specific embedding using a wider
range of models and node selection methods.
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Adot KoGPT2 fine tuning

python Version 3.6.9 3.6.10
Tensorflow Ver. 1.15.2 -
Pytorch Ver. - 1.6.0a0+9907a3e
epoch 15 15
batch size 256 256
learning rate (1e-5) (1e-5)

Table 2: Development environments

A Implementation Details

A.1 Development Environment

We experimented on NVIDIA A100 (40GB). The
Adot model was implemented and trained within
the Keras and Tensorflow environments, while fine-
tuning of KoGPT was conducted in the PyTorch
framework.

A.2 Classification Models

The average Adot user only uses six Korean char-
acters in an utterance, and there are typically 5
million calls per day. Owing to these characteris-
tics, a lightweight and simple model capable of
stable CPU prediction was required. Convolutional
Neural network (CNN) based models are currently
used in Adot. This domain classification model was
created using Y. Kim’s CNN for sentence classifi-
cation (Kim, 2014). It has a model concatenated
with character-based CNN and CNN models based
on part-of-speech (POS) tagged morphemes reflect-
ing the Korean features. The character-based CNN
model uses the dictionary-based embedding layer
as a single channel to use the content domain’s
dictionary information. The configuration of the
fully connected layer on top of the convolutional
layer is also slightly different from the model in our
study. Figure 3 shows an outline of Adot’s domain
classification model.

A.3 Embeddings

We represented a sentence data in the semantic
space through two methods.

A.3.1 Sentence Representation Using Word
Embedding

Word embedding is a representative method of
expressing meaning in a semantic space. We de-
veloped two kinds of embeddings, character-level
embedding and POS tagged morpheme-level em-
bedding, to express sentences. A sentence is repre-

sented by concatenating it through two embeddings.
Our embedding developed with skip-gram and neg-
ative sampling based on McCormick (2016) tuto-
rial. Table 4 shows the detailed parameters of the
embeddings we used. These parameters were deter-
mined empirically to maximize the performance of
the Adot’s domain classifier.

These embeddings were trained from Korean
Wikipedia sentences. Korean Wikipedia is a set
of documents written by many people and reflects
the popular usage of the Korean language by Kore-
ans. However, sentences on the Wikipedia are long,
while the utterances coming into the Adot service
are relatively short, colloquial, and that there are
many content object names. To reflect this part, the
embedding trained from the wiki were tuned with
the training data of Adot.

A.3.2 Sentence Representation Using
KoGPT2

GPT-2 is a natural language processing model that
uses machine learning algorithms to generate input
sample text into text with syntactic, grammatical,
and informational consistency. KoGPT-2, an open
source-based GPT-2 model trained in Korean. Char-
acter Byte Pair Encoding (KBPE) was used as tok-
enizer. Korean Wikipedia, Modu Corpus, and the
Blue House National Petition and private data like
news were used as training data. When a sentence
passes through the KoGPT2, the output values from
the last layer were used as sentence representation.

A.4 Training Data

The training data of domain classifier of Adot’s
was used as the training data of this experiment.
Adot encompasses thirty service domains, includ-
ing ‘general’, ‘video’, ‘music’, ‘schedule’, and
‘weather’. A person directly constructed about 2.2
million training data according to the design of the
service. The data is primarily Korean sentences.
Some foreign language sentences are also included.
The table5 includes an extensive description of the
model and training data. The data used in this ex-
periment is from the December 2021 version, and
it’s important to note that its structure and content
differ from the current Adot service data.

B Testset Details

B.1 Designer-Annotator testset

To improve performance, we have collected utter-
ance logs from Adot users and used them for accu-
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Figure 3: Overview of Adot’s domain classification model

shape objective
intput 1 (None,25) POS-tagged morpheme
input 2 (None,40) Korean character
input 3 (None,40,107) Named Entity & Content Entity Dict. Info
output (None,30) domain classification result

Input & Output Information of Classification Model
Total params 16,016,544
Trainable params 16,016,330
Non-trainable params 214
Total layer Numbers 41

Parameter & Layer Information of Classification Model

Table 3: Adot’s Domain Classification Model Training Information

racy evaluation. A test set was constructed using
the utterances input in April 2022.

Consensus Error& Ambiguity testset Among
those utterances, utterances that were classified in-
correctly were targeted. To prevent data modifica-
tion that occurred in both directions of the classes,
only utterances with the correct class ‘‘general’’
were collected. The “general” class is for device
manipulation such as volume control in Adot. We
constructed 2,300 test cases. Because these data
are misclassification data collected from the Adot
classification model, only the Adot classification
model was applied to this experiment.

Side-effect test set This set is a test set to eval-
uate the side effects caused by label modification.
Through modification, even if it is possible to cor-
rectly classify misclassified utterances, the classi-
fication results of utterances that have been accu-
rately analyzed should not be changed. We col-
lected 20,000 utterances that the current classifier
accurately analyzes and expect the data to be ana-
lyzed accurately even after modification.

B.2 Scenario ambiguity testset

We built two test sets to detect consensus errors
between designers and users.
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character-level embedding morpheme-level embedding
tokken Character (Korean, English, numbers) POS tagged morpheme
Dictionary size 1638 9391
embedding space 256 256
skipgram window size 3 3
negative sampling rate 1 1

Table 4: Parameters of Two Kinds of Embeddings

Figure 4: Human evaluation test set example. The evaluation was conducted in Korean; a more detailed explanation
is attached.

training data size about 2.2M
domain number 30
average character size 16.77
average word size 4.50
average morpheme size 8.56
average named entity numbers 1.1
average domain entity numbers 1.9

Table 5: Training Data Information of Adot’s Domain
Classifier. Dec. 2021 version

Correlation testset First, sentence pairs were
collected to confirm the correlation between simi-
larity and the degree to which the user thinks the
classes are consistent. 913 pairs of sentences were
collected from validation data for the Adot service.
Among them, test sets were collected from eight
domains in which domain classification frequently
fails: ‘commerce,’ ‘food,’ ‘general,’ ‘news,’ ‘sched-
ule,’ ‘video,’ ‘music,’ and ‘radio.’ Like a domain
classifier, domain information was used as a label
for classification. Each sentence pair is randomly
collected within the verification data of 8 domains
and may have the same class or a different class.
Figure 4 and 5 shows example of testset.
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similarity scenario entity predicate

Expert 0.720 0.380 0.104
User 0.487 0.476 0.307
Adot-CLV 0.357 0.443 0.249

Table 6: Pearson correlation coefficients between man-
ual evaluation results and the three features

Ambiguity detection testset To test consensus
error detection between designers and users, 29,136
sentences in which designers defined labels were
collected. These sentences are specifications de-
fined for Adot service scenarios and defined by the
designer of Adot service. For this Spec, the sen-
tences in which Consensus error may occur were
indicated through the method mentioned in A. It
was confirmed whether there was an actual ambigu-
ity or consensus error for the specified sentences.

C Expert-ordinary user correlation
comparison

With ordinary users, similarity was significantly
higher than with experts. To determine the reason
behind this phenomenon, concordance is estimated
at three points for each sentence pair—service area,
entity properties, and predicate. In addition, the
correlation between manual evaluation and concor-
dances is estimated. The results are presented in
Table 6. Although the expert group exhibits a very
high correlation in the service area, the ordinary
user group exhibits similar correlations in all three
areas. Let us consider the pair, “Play Netflix” and
“Play Spotify” Ordinary users may believe that the
classes are similar because of the similarity of the
predicates. In contrast, experts believe that Netflix
and Spotify provide different services (video vs.
music)—so there is no agreement irrespective of
the predicate. The results confirm that the simi-
larity is more similar to the judgment of ordinary
users than that of experts. Consequently, similarity
is deemed to be useful in detecting in designer-user
consensus errors.
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Figure 5: Human evaluation test set example. The evaluation was conducted in Korean; a more detailed explanation
is attached.
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Abstract

Data drift is the change in model input data
that is one of the key factors leading to ma-
chine learning models performance degrada-
tion over time. Monitoring drift helps detect-
ing these issues and preventing their harm-
ful consequences. Meaningful drift interpreta-
tion is a fundamental step towards effective re-
training of the model. In this study we propose
an end-to-end framework for reliable model-
agnostic change-point detection and interpre-
tation in large task-oriented dialog systems,
proven effective in multiple customer deploy-
ments. We evaluate our approach and demon-
strate its benefits with a novel variant of intent
classification training dataset, simulating cus-
tomer requests to a dialog system. We make
the data publicly available.

1 Introduction

Contemporary data centers rely heavily on machine
learning services in their deployed systems. These
systems are vulnerable to the data drift problem:
the phenomenon where the statistical properties of
the underlying independent variable change over
time. As a concrete example, consider the case
where the distribution of data arriving to a super-
vised classifier gradually diverges from that the
model was trained on. Such a phenomenon intro-
duces one of the key challenges in maintaining
large models, where drift typically results in per-
formance degradation. Manual inspection of the
data is labor-intensive and error-prone, and actual
drift might remain unnoticed. Automatic monitor-
ing and detection of divergences in incoming data
streams facilitates early risk mitigation introduced
by drift.

Goal-oriented dialog systems1 have gained much
attention in both the academic and industrial com-
munities over the past decade. The core component

1Also referred to as "task-oriented" dialog systems, or
"virtual assistants" (VA).

of a task-oriented dialog system is the NLU mod-
ule: the user utterance is either transformed into a
modeled intent2 with an appropriate flow of sub-
sequent actions, or labeled as unrecognized and
stored in the unhandled pool of out-of-scope re-
quests. In practice, the NLU module makes use
of a supervised text classifier, where data drift is
triggered by "production" data (customer queries)
that changes away from the distribution the classi-
fier was trained on. Here we address the scenario
of data drift detection in the context of large de-
ployments of task-oriented dialog systems, where
emergence of novel topics or deviations in the way
customer introduce queries is not uncommon.

Existing approaches to data drift detection are
roughly categorized across two functional dimen-
sions: (1) model-dependent vs. model-agnostic
and (2) anomaly detection vs. change point de-
tection. In the context of first dimension, ‘model’
refers specifically to a predictive model (e.g., clas-
sifier) receiving the text stream as inputs. A model-
dependent method directly considers the underly-
ing model performance to detect drift, e.g., by track-
ing the posterior probability estimates of a classifier.
A model-agnostic method uses only the incoming
data itself for change detection, e.g., by measuring
changes in text representations, whether or not such
changes ultimately would affect the performance of
a classifier model trained on anchor data. Another
strength of the model-agnostic approach lies in its
direct access to data: once detected, the drift can
be explained and interpreted, thereby potentially
leading to actionable recommendations.

The second dimension distinguishes between
anomaly detection that identifies outliers at the sin-
gle chunk level, and change-point detection where
a window of recent samples is examined to de-

2An "intent" is the general topic label value under which
user utterances fall, and is identified by a pre-trained intent
classifier. For instance, utterances like "reset login" and "I lost
my password" fall under the intent label "account password".
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tect (with statistical guarantees) a point at time
where the underlying data distribution undergoes
a change; the latter models are robust to noise and
transient changes. We propose a pipeline for model-
agnostic change-point detection in task-oriented
dialog systems. Figure 1 illustrates the pipeline,
which is further described in detail in Section 4.

User requests towards a dialog system—natural
language utterances at the first point of interaction—
often contain personal and sensitive information,
and are subject to agreements that prevent providers
from sharing this data publicly. Extending a large,
diverse and publicly-available intent classification
dataset (Larson et al., 2019), we build a corpus that
closely resembles a dialog system request stream,
further using it for evaluation of the proposed drift
detection approach.3

The contribution of this work is, therefore, two-
fold. First, we propose and evaluate an end-to-end
pipeline for model-agnostic change-point detec-
tion in task-oriented dialog systems, that has been
proven effective in multiple large-scale customer
deployments. Second, we create and release a ex-
tension of an intent classification training dataset
that closely imitates the nature of streaming re-
quests towards a virtual assistant.

2 Related Work

The main approaches to drift detection in textual
streams are model-dependent: they rely on the per-
formance of the underlying classification model,
where decreasing classifier confidence (or increas-
ing error rate) are indicative of divergence in statis-
tical properties of the data the classifier was trained
on, and the newly arriving texts (Ryu et al., 2012;
Sethi and Kantardzic, 2017; Ackerman et al., 2021).
Model-agnostic (e.g., classifier-independent) ap-
proaches are commonly applied for novelty detec-
tion in textual streams that do not necessarily un-
dergo classification, like news or a tweet feed. As
an example, Spinosa et al. (2007) and Hayat and
Hashemi (2010) use concept-based clusters to rep-
resent data distributions of temporal textual chunks,
and then detect the hidden topic drifts in terms of
the difference between concept-based clusters in
two adjoining data chunks. A similar approach for
novelty detection in textual data was also applied
by Faria et al. (2013) and Li et al. (2017).

Both the model-aware and model-agnostic ap-

3The dataset is available at https://huggingface.co/
datasets/ibm/clinic150-sur.

proaches are commonly used to detect a point of
change, regardless of the subsequent trend of the in-
troduced novelty. As such, these methodologies are
best associated with "anomaly" or "outlier" detec-
tion, while in the case of a task-oriented dialog sys-
tem we are interested in detecting a systematic, con-
sistent drift trend – a potential trigger for intent clas-
sifier retraining. The only study addressing change
point detection in textual data that we are aware of
is Wang and Goutte (2018), who apply LDA (Blei
et al., 2003) for detecting change points in docu-
ment streams from twitter and news feed. While
LDA can be used effectively for modeling long
documents, it is practically inapplicable for short
(often 2–3 word) requests. Table 1 summarizes the
landscape of the prior art in the domain of drift
detection in textual streams. Our work bridges the
gap in the domain of model-agnostic, statistically-
robust change-point detection for streams of short
texts, while interpreting the detected drift.

study OD CPD M-AW M-AG
Ryu et al. (2012) 3 3

Sethi and Kantardzic (2017) 3 3

Ackerman et al. (2021) 3 3

Hayat and Hashemi (2010) 3 3

Faria et al. (2013) 3 3

Li et al. (2017) 3 3

Spinosa et al. (2007) 3 3

Wang and Goutte (2018) 3 3

our study (short texts) 3 3

Table 1: Representative landscape of prior art in the
domain of drift detection. "OD", "CPD", "M-AW"
and "M-AG" denote outlier detection, change-point de-
tection, model-aware and model-agnostic, respectively.
The LDA-based approach by Wang and Goutte (2018)
is only applicable to document-length texts.

3 Dataset

We study the phenomenon of data drift in the con-
text of (natural-language) user requests to a task-
oriented dialog system. Novel topics, or deviations
from existing topics can emerge as the result of
new services introduced by a company, failures in
existing service coverage, or external trends and
factors. Large or immature deployments face the
need to constantly monitor requests poorly-covered
by the existing service for identifying points where
the distribution of the input data has changed, for
effective and efficient model retraining.

Publicly-available datasets of real-word user
requests in customer deployments are extremely
scarce due to company agreements, confidentiality
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Figure 1: The end-to-end pipeline for drift detection and interpretation: (1) An autoencoder (AE) is trained on the
anchor dataset, reliably representing data distribution at the model training point; (2) each newly arriving batch
of requests is examined by the AE, yielding its overall similarity to the anchor dataset, while identifying a set of
outliers; (3) change-point detection module is applied on the growing list of similarity observations; and finally (4)
topical clustering is applied on a subset of the outlier pool, in case drift is detected.

and privacy considerations. While the proposed
pipeline has been evaluated on large customer de-
ployments, here we create a novel, carefully cu-
rated dataset that reliably imitates the character-
istics of user requests, and further conduct drift
detection evaluation on the collected data.

Intent classifier training examples are inherently
designed to reliably represent user requests a VA.
Naturalistic user requests, however, typically have
several characteristics in which they differ from
training examples: (1) the same request seman-
tics can be conveyed in many possible ways, while
training examples of the respective intent typically
cover the potential diversity only to a partial ex-
tent; (2) contrary to intent training examples that
only contain unique phrases, actual user requests
include many duplicates (multiple customers ask-
ing the same question); and (3) customer requests
in real-world systems are typically shorter (often
significantly so) than classifier training examples.

Using CLINC150 (Larson et al., 2019), a large
a diverse 150-intent classification dataset, we gen-
erate its extended version simulating the nature
of customer requests— CLINC150-SUR (simu-
lated user requests)—by addressing the mentioned
distinctions, as detailed below. A typical large
customer virtual assistant size varies between few
dozens to hundreds of intents, often spanning mul-
tiple domains. CLINC150 is multi-domain 150-
intent dataset, which makes it a suitable test-bed
for our drift detection experiments.

Data Augmentation for Diversity We achieve
higher request diversity by applying LAMBADA
(Anaby-Tavor et al., 2020), a tool for classifier
training set augmentation; LAMBADA generates
phrases sharing the same semantic charge as the

seed classification examples provided as input.
Next, we apply the Parrot paraphrasing framework,
generating up to five additional phrasing variants
for each data example. While the LAMBADA gen-
erates in-class semantic-preserving but lexically-
diverse examples, Parrot adheres to more conser-
vative choices by producing slight variations of
its input phrases. As an example, considering
the CLINC150 "insurance" intent training example
"can you tell me the name of my insurance plan?",
the request "can you tell me what insurance plan I
am signed up for?" was generated by LAMBADA,
and "can you tell me what insurance plan I have?"
was further added by Parrot.

Weighted Upsampling of Duplicates Figure 2
illustrates the differences in request length: the dis-
tribution of the relative ratio of user requests of
certain length (in tokens) observed in the intent
classification data (left) significantly differs from
that evident in a real-world large proprietary dataset
of streaming customer requests (right). In partic-
ular, over 66% of actual user utterances consist
of up to 5-token requests, while only 18% of the
CLINC150 data exhibit similar length. Short and
often non-informative requests challenge tools that
rely on textual semantic similarity, hence affecting
the process of drift detection. We therefore strive to
imitate the naturalistic length-based request distri-
bution in our dataset, by upsampling the augmented
data to preserve similar length-based distribution
as in Figure 2 (right). As a concrete example, short
requests like "insurance" and "my insurance" were
upsampled, mirroring their natural frequency in
a real-world VA, while only a single instance of
"I would like to know all of the covered benefits
that are given by my health care plan" remained in
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the final dataset. We report the CLINC150-SUR
statistics in Table 2. The final collection of ∼600K
requests is made publicly available.

Figure 2: Distribution of intent classification exam-
ples length from Larson et al. (2019) (left), and user
requests length in a large-scale customer deployment
(right). A bar’s height mirrors the relative ratio of utter-
ances with a certain number of words in the dataset.

dataset mean total
original (Larson et al. (2019)) 150.0 22.5K

+ generation (Rahamim et al. (2023)) 448.4 67.3K
+ rephrasing (Parrot) 1.65K 250K
+ upsampling 4K 600K

Table 2: Statistics of the created dataset CLINC150-
SUR. Mean number of requests per intent, and the total
amount of requests is reported per each expansion step.

4 Interpretable Drift Detection

We propose and evaluate a multi-step approach for
reliable and interpretable change point detection in
textual streams. The end-to-end pipeline of drift
detection and interpretation is illustrated in Figure
1; below we describe each step in more detail.

4.1 Drift Point Detection

Model Training The initial distribution of the
dataset was learned by training an autoencoder
(AE) on a seed dataset representing data distri-
bution at the beginning of monitoring window.4

An AE is a special type of neural network that is
trained to reproduce its input using the encoder-
decoder architecture. Given a dense text represen-
tation (embedding) e, an AE first encodes the text
into a lower-dimensional latent representation, then
decodes the latent representation back to the text
representation ê; it essentially learns to compress
the data while minimizing the reconstruction error
J (e, ê). The network’s "success" at reconstruct-
ing a new example at inference time reflects the
correlation of this instance to the nature of data

4We used the MLPRegressor implementation at sklearn
with three hidden layers of 600, 150 and 600. MLPRegressor
functions as an autoencoder when provided with identical
input and output representations.

the model was trained on. In the context of text
processing, autoencoders have been effectively ap-
plied to the task of anomaly and novelty detection
(Paula et al., 2016; Zhou and Paffenroth, 2017; Mei
et al., 2018).5 Operating at the individual instance
level, an autoencoder detects a pool of "outliers"
from within a given data. The Universal Sentence
Encoder (USE; Cer et al. 2018) was used for en-
coding requests into dense representations e, due
to its runtime efficiency.

Another intuitive approach to instance-level out-
lier detection employs the perplexity metric: the
extent of surprisal of a pretrained language model
by an unseen text. The approach has been studied
by Freeman et al. (2021) for detecting anomalies
in streams of short texts; we leave the investigation
of this alternative approach for future work.

Drift Candidates Detection Incoming request
data is split into fixed-sized batches (in terms of
the number of requests), and the model is ap-
plied on every new batch as it arrives, comput-
ing reconstruction similarity for each request in
the chunk. A request’s embedding e reconstruc-
tion similarity is computed as the cosine simi-
larity of its original representation to the repre-
sentation of its reconstructed counterpart ê, i.e.,
cosine(e, ê). Utterances poorly reconstructed by
the anchor model are considered outliers: requests
where cosine(e, ê)<γ, for a predefined γ, are
stored in the outlier pool O. For data chunk at the
time step ti, its similarity si to the anchor dataset
is calculated, producing a growing sequence of nu-
merical observations S={s1, s2, . . . , st−1, st}; at
each time step t, the sequence is passed to change-
point detection module.

Change-Point Detection Drift is indicated by a
change-point in the distributions of the observed
similarities S. That is, index ts < t is a change-
point, the true starting index of the change, if the
distributions of values {s1, . . . , sts−1} (before) and
{sts , . . . , st} (after) differ significantly. We apply
the change-point model (CPM; Ross and Adams
2012, implemented in R as cpm, Ross 2015) algo-
rithm repeatedly on the past {s1, . . . , st} at each
t. That is, at a given t, if the most significant can-
didate split point is significant enough (the CPM
p-value is a fixed< α, say 0.05), we say that td = t

5Our future work includes experimenting with variational
autoencoder (VAE), introducing a regularisation term into its
loss function for better generalization capabilities.
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is the detection index; moreover, the most signifi-
cant split index, tp —where tp < td — is t̂s, that
is, the best guess of the actual change point ts, if
it actually happened. The CPM is unique in that
it correctly maintains the false positive rate at α
(e.g., 0.05) even though it is applied repeatedly in
sequence, testing each potential change location
for each t. That is, if a detection is made at t,
the probability the detection was false (there was
no change point) is at most α. Furthermore, this
method makes no parametric assumptions about
the distributions. See Ackerman et al. (2020) for
further details and discussion.

4.2 Drift Interpretation

The predicted change point tp detected over a se-
quence of similarity observations S is further used
as an indicator for the start point of topical novel-
ties; all outlier utterances from the outlier pool O
that occurred after the predicted change point (with
time indices t ∈ [tp, td]) are utilized for semantic
grouping, or clustering. In our scenario, an effec-
tive clustering procedure should have several prop-
erties. First, the number of clusters is unknown, and
has to be discovered by the clustering algorithm.
Second, the nature of data typically implies several
large and coherent clusters, where users repeatedly
introduce very similar requests, and a very long tail
of unique (often noisy) requests that do not have
similar counterparts. We apply the RBC clustering
approach used by Rabinovich et al. (2022), that
was specifically tailored for the scenario of unhan-
dled requests in task-oriented dialog systems: the
procedure does not require a predefined number of
clusters, tolerating non-clusterable instances.

Figure 3 illustrates a typical outcome of the clus-
tering process; identified clusters—each represent-
ing likely instances of the same potentially novel
intent—are depicted in color, while non-clusterable
instances, constituting approximately half of the
instances, appear in grey.

5 Experimental Results

In this section we describe the experimental
setup and results for two major evaluation phases:
change-point detection and drift interpretation.

5.1 Drift Point Detection Results

5.1.1 Experimental Setup
Drift Scenarios Introducing drift into a VA re-
quest stream for thorough evaluation is a non-trivial

Figure 3: t-SNE projection of a sample of outlier user
requests in a production task-oriented dialog system.
Identified clusters are in color, instances that do not
firm up large enough clusters – in grey.

task. A realistic setup would entail simulating one
or more novel (unseen) topics that gradually com-
prise an increasing number of requests over time,
as in the case of a new feature introduced by a
service provider, being gradually adopted by cus-
tomers. Another plausible scenario is where novel
topics are introduced by service interrupt or unex-
pected failure; in that case, one may expect a steep
increase in atypical requests, followed by nearly
plateau distribution over time. We refer to these
scenarios as (a) and (b), respectively. Correctly
identifying scenarios where no drift was introduced
is of considerable importance as well, ensuring the
system is not prone to false positives. We cover
this scenario by two additional experimental se-
tups where (c) no drift is introduced, and (d) a
short-lived anomaly is introduced spanning a small
number of consecutive data batches. The various
drift scenarios, as reflected in data batch similari-
ties S={s1, s2, . . . , st−1, st} to the anchor model,
are depicted in Figure 4.

Figure 4: Illustration of data batch similarity signal to
the anchor model in various drift scenarios: (a) gradual,
(b) uniform, (c) no drift, (d) short-lived anomaly. Note
the slight signal decrease in (a) and (b); the dashed
green line denotes the actual drift point, the dashed red
line denotes the potential detection point.

Drift Detection Multiple setup decisions were
used for drift detection experiments in this study. A
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series of 32 temporally-ordered data batches of 5K
requests each was generated from shuffled request
dataset CLINC150-SUR, where ∼5% randomly se-
lected intents out of 150 were held out for drift
injection. Although drift detection is likely to be
more robust on large data chunks, we found con-
sistent behavior when working with batches con-
taining as few as a couple of hundreds of requests.6

The first two data chunks where used for training
the anchor AE model, and the remaining 30 for
simulating a temporal stream of requests.7 Drift
was introduced by adding requests from held-out
intents either gradually (a) or uniformly (b) starting
at the middle of the stream, i.e., at time step t=15.
The novel intents causing the drift, as well as the
subset of requests spanning the 32 data chunks,
were selected at random per every experiment.

A single parameter that was tuned for drift de-
tection is the outlier detection threshold γ (see Sec-
tion 4.1). While typically lying within the [0.75,
1] range, the optimal value of γ varies according
to the data nature. In multi-domain deployments,
higher γ would typically tolerate the inherent di-
versity of the incoming requests; in contrast, in
single-domain deployments, lower γ would impose
a stricter threshold for outliers detection. We tune
γ to optimize detection accuracy per deployment
using a held-out portion of data; for the CLINC150-
SUR used in this work, γ was set to 0.775.

5.1.2 Experimental Results
We compare the performance of the AE-based sim-
ilarity measurements to various dataset similarity
metrics suggested in literature. While computing
anchor-batch similarity, metrics operating at the
instance level (i.e., aggregating the similarity of in-
dividual requests to the anchor model) can be used
for seamless generation of the outlier pool, further
used for drift interpretation. Metrics that operate at
the batch level typically make use of measures of
central tendency and dispersion, comprising a less
natural (albeit adaptable) choice for our scenario.

Dataset Similarity Metrics A comprehensive
evaluation of various dataset semantic similarity
metrics has been conducted recently by Kour et al.
(2022). We evaluate our approach against several

6The precise definition of data chunk size varies between
deployments, and depends on a system traffic, the number of
intents and drift detection tolerance threshold, among others.

730 observations where found sufficient for effective de-
tection of drift in our experiments; consistent behavior was
observed when increasing the temporal stream length.

metrics from that work. IRPR (Zhao et al., 2017)
is a corpus distance metric based on information-
retrieval techniques focused on precision and recall.
Medoid (Kaufmann and Rousseeuw, 1987) applies
cosine similarity over the arithmetic mean of em-
beddings of two textual sets. MAUVE (Pillutla
et al., 2021) estimates the gap between two texts us-
ing KL-divergence over the area under the informa-
tion divergence frontiers. FID (Heusel et al., 2017)
calculates the 2-Wasserstein distance on fitted con-
tinuous multivariate Gaussian over two datasets.

Drift Detection Metrics In line with previous
work on drift detection (Wang and Goutte, 2018;
Ackerman et al., 2021) we report multiple results:
detection offset denotes the number of steps be-
tween the two points (ts, td): where the drift was in-
troduced (ts) and detected (td), i.e., |td−ts|; detec-
tion deviation measures the difference between the
actual drift injection point (ts), and the drift point
suggested by the CPM module (tp=t̂s), i.e., |t̂s−ts|;
finally, drift rate at detection denotes the relative
rate of drift requests within the entire amount of
requests in the batch corresponding to the detection
point td. We report these metrics for both grad-
ual (a) and uniform (b) drift scenarios in Figure 4.
An additional measurement of interest is the false
negative (FN) rate, the proportion of experiments
where drift was not detected over the series of 30
observations, despite drift that was injected.

We address the two no-drift scenarios—(c) and
(d)—in Figure 4, by reporting the rate of false
positives (FP): the proportion of experiments where
drift was erroneously detected by the CPM module
using each one of the similarity metrics.

Table 3 reports the results. Using AE for comput-
ing datasets similarity performs roughly on par with
IRPR, and outperforms other approaches, across
the board. Detection offset and deviation are higher
in the gradual drift scenario (7.08 and 2.03 vs. 5.82
and 1.07, respectively) reflecting the more challeng-
ing setup of a growing drift, compared to the stable
plateau drift spread starting a certain point. The
relatively low drift rate at detection (1.7%–2.2%)
implies that the procedure is sensitive to drift at
its early stage. On the other hand, the low rate
of false positive and negatives is indicative of the
robustness of the detection routine.

Finally, in the next paragraph, we show that
our approach outperforms the model-dependent
approach leveraging a classifier confidence scores.
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metric
instance

level
false

detection rate
drift type: gradual drift type: uniform

FP FN
detection

offset
detection
deviation

drift rate at
detection

detection
offset

detection
deviation

drift rate at
detection

AE (our approach) 3 0.04 0.04 7.08 2.03 0.017 5.82 1.07 0.022
IRPR (Zhao et al., 2017) 7 0.08 0.04 7.02 1.79 0.015 5.71 1.01 0.020
Medoid (Kaufmann and Rousseeuw, 1987) 7 0.10 0.21 9.17 5.08 0.017 7.23 1.25 0.020
MAUVE (Pillutla et al., 2021) 7 0.15 0.11 7.02 3.05 0.023 5.91 1.09 0.021
FID (Heusel et al., 2017) 7 0.09 0.13 8.22 4.16 0.026 6.28 1.01 0.024

Table 3: Drift detection evaluation results; the lower, the better. Mean results over 100 experiments are reported,
where false detection rate is averaged over the gradual and uniform scenarios. AE is the only approach that operates
at the instance-level out-of-the-box. FN are averaged over gradual and uniform scenarios.

Model-dependent Experiments Additional set
of experiments was conducted using intent classi-
fier posterior estimates as indicator for data drift.
Identical experimental setup was applied, where
95% of intent training set from CLINC150 (seed
data) was used for training SVM classifier with
training instances’ embeddings. Roughly 5% of
intents were randomly selected and held-out as
"novel" at each experiment. The pretrained classi-
fier was then used to classify batches of requests
from CLINC150-SUR corresponding to the seed
data (before injecting drift), and to the seed data ex-
tended with drift requests (starting the drift point).
Mean classifier confidence was computed for ev-
ery request batch yielding a series of observations,
which was further inut to the change-point detec-
tion module (see Section 4.1).

Drift was detected in less than 20% of the experi-
ments, compared the 96% with the model-agnostic
approach, highlighting the benefits of the direct
access to data for drift detection.

5.2 Drift Interpretation Results

Drift interpretation is a two-step process: first, out-
lier requests are grouped together based on their
semantics, thereby, firming up dense clusters con-
veying the same intent; second, identified clusters
are assigned with names for better consumability.

The subset of outlier requests O starting from
the predicted drift point t̂s is further used for iden-
tifying novel topics, indicated by dense clusters of
requests that share similar semantics. The pool of
outliers is not limited to novelties but also contains
requests pertaining to existing ("known") intents
that could not be successfully reconstructed by the
anchor model, and requests that pertain to topics
that were left out of the VA scope by design.

We apply the RBC clustering approach by Ra-
binovich et al. (2022) with defaults for surfacing
topical clusters, and focus on topical coverage (re-

call) in our evaluation. Each cluster—a group of
similar outlier utterances—is assigned an intent la-
bel based on the majority of its members, and the
coverage is computed as the ratio of detected in-
tents out of injected drift intents for each individual
experiment. The mean recall in 100 experiments
was 0.709, meaning that on average, 70% of the
injected drift intents were identified as such.

Inspecting names (automatically) assigned by
the algorithm to detected outlier clusters, we can
identify a significant degree of overlap between
those names and drift intent labels, which were
presumably created by human annotators. As an
example, the "exchange_rate" drift intent was iden-
tified as such and assigned the label "exchange
rate" by the clustering algorithm; requests from the
"order_status" drift intent were named as "order
tracking", and "redeem_rewards" was surfaced as
"redeem rewards points".

6 Conclusions

We propose and evaluate a pipeline for model-
agnostic change-point detection in the context of
drift detection in task-oriented dialog systems NLU
module. We demonstrate the benefits of the pro-
posed approach on an expanded version of an intent
classification training dataset, that closely imitates
the nature of streaming requests towards a task-
oriented dialog system – the dataset that we make
available to the research community. We demon-
strate that AE can be used for effective and efficient
change-point detection, performing on par with
state-of-the-art dataset similarity metrics, while op-
erating at the instance level.

Our future directions include experimenting with
the (baseline) metric of language model perplexity
as well as variational autoencoders for the task of
drift detection in streams of short texts. Extending
experimental setup to the multi-lingual setting is
another direction we plan to pursue.
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Abstract

Leveraging representations from pre-trained
transformer-based encoders achieves state-of-
the-art performance on numerous NLP tasks.
Larger encoders can improve accuracy for spo-
ken language understanding (SLU) but are chal-
lenging to use given the inference latency con-
straints of online systems (especially on CPU
machines). We evaluate using a larger 170M
parameter BERT encoder that shares represen-
tations across languages, domains and tasks for
SLU compared to using smaller 17M param-
eter BERT encoders with language-, domain-
and task-decoupled finetuning. Running infer-
ence with a larger shared encoder on GPU is
latency neutral and reduces infrastructure cost
compared to running inference for decoupled
smaller encoders on CPU machines. The larger
shared encoder reduces semantic error rates by
4.62% for test sets representing user requests
to voice-controlled devices and 5.79% on the
tail of the test sets on average across four lan-
guages.

1 Introduction

Spoken Language Understanding (SLU) plays an
essential role in voice-controlled devices such as
Amazon Alexa, Apple Siri and Google Assistant.
Two commonly studied SLU subtasks are intent
classification (IC) and slot filling (SF). While IC
classifies an utterance into a set of pre-defined in-
tents, SF aims to extract relevant slot information.
For example, given an utterance “play madonna”
IC should determine PlayMusic as the intent and
SF should detect “madonna” as Artist. The two
subtasks are often modeled jointly (Do et al., 2020;
Chen et al., 2019; Guo et al., 2014). In large-scale
SLU systems intents can be split into separate do-
mains allowing the same intents to exist in differ-
ent domains and for domain-specific teams to work
independently of each other. Consequently, multi-
domain SLU models have been developed that ad-

∗Corresponding author: hueserjh@amazon.de

ditionally address the task of domain classification
(DC). For example, relating back to the previous
example DC should detect Music as the domain.
In this paper, we focus on a multi-domain system
with domain-specific IC+SF models due to its ad-
vantages for large-scale SLU, such as the support
for independent development across domains and
the option of updating and deploying only certain
domain models instead of the whole system.

Neural network models for IC+SF and DC
tasks typically leverage language representations
from finetuned language modeling encoders as fea-
tures. Bidirectional Encoder Representations from
Transformers (BERT) pre-trained on large corpora
achieve state-of-the-art performance in SLU (De-
vlin et al., 2019; FitzGerald et al., 2022a; Chen
et al., 2019). Larger encoders can give better perfor-
mance on down-stream tasks after being finetuned
(Wang et al., 2020). However, increasing the num-
ber of encoder parameters for large-scale online
SLU systems is challenging due to increased infer-
ence latency and infrastructure cost constraints.

In this paper we present a method for bring-
ing the accuracy benefits of larger encoders to the
users of large-scale SLU systems. We propose to
share representations from a large frozen multi-
lingual encoder as features for all of the DC and
domain-decoupled IC+SF task heads across mul-
tiple languages. We compare a 170M parameter
(not counting embeddings) shared encoder for four
languages (German, Italian, Spanish, French) to
a set of language-, domain- and task-decoupled
17M parameter encoders. For reference, the com-
mon BERT-base and BERT-large models are 87M
and 306M parameters not counting the embed-
dings (110M and 340M parameters with embed-
dings). As a reference for infrastructure cost we
consider inference of the language-, domain- and
task-decoupled 17M parameter encoders on CPU
machines as GPU inference does not meet the in-
frastructure cost constraints of the specific industry
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SLU system that our baseline is based on. If the
170M parameter shared encoder inference is run
on GPU and representations are cached then the
inference latency is neutral compared to running
the 17M parameter encoder inference on CPU. The
infrastructure cost savings from not having to run a
17M parameter encoder inference for every domain
and language on CPU pay for the infrastructure
cost of the required GPU instances. In fact, the
shared encoder architecture obtains infrastructure
cost savings in practice.

To summarize, this paper contains the follow-
ing contributions. We present a novel shared en-
coder SLU architecture that enables the use of a
larger encoder to improve accuracy while staying
inference latency and infrastructure cost neutral.
We run large-scale experiments with both internal
data of an industry SLU system (23 domains in
four languages) and the public MASSIVE dataset
(18 domains in four languages) (FitzGerald et al.,
2022b). A 170M parameter shared encoder com-
pared to 17M parameter decoupled encoders re-
duces semantic error rates by 4.62% for test sets
representing user requests to voice-controlled de-
vices and 5.79% on the tail of the test sets on
average across four languages. We introduce a
light-weight encoder that is trained together with
the language- and domain-decoupled task heads to
learn representations for training data unseen by
the frozen shared encoder. We conduct empirical
analyses that study the shared encoder setup in the
context of feature expansion and distribution drift
across a real-world SLU system release cycle.

2 Related Work

Sharing language encoder representations across
tasks via multi-task learning has been a prominent
research thread in recent years that has resulted in a
vast literature. For example, Cer et al. (2018) evalu-
ate a transformer encoder (Vaswani et al., 2017) as
a universal sentence encoder trained across multi-
ple natural language processing tasks without prior
self-supervised pre-training. Liu et al. (2019) show
that multi-task learning can be leveraged on top
of self-supervised pre-training for BERT encoders
to improve performance across multiple natural
language understanding tasks. The multi-domain,
multi-task approach to joint domain classification,
intent classification and slot filling that we employ
in our shared encoder pre-finetuning was already
explored by Hakkani-Tür et al. (2016).

Using a "text-to-text" approach large language
models (LLMs) have been demonstrated to be
multi-task learners with cross-task generalization
(Wang et al., 2022; Chung et al., 2022; Sanh et al.,
2021) and frozen LLMs can also be adapted to dif-
ferent tasks via prompt tuning approaches (Lester
et al., 2021).

Multilingual encoder representations for spo-
ken language understanding are often motivated
by cross-lingual transfer (Do and Gaspers, 2019;
Xu et al., 2020). Zhang et al. (2021) evaluate a
multi-head decoding architecture with a multilin-
gual encoder and language-specific task heads for
intent classification and slot labeling that is similar
to our proposed shared encoder architecture.

The impact of scaling the parameter count in
large language models and pre-trained models in
general has been explored extensively by Kaplan
et al. (2020); Brown et al. (2020); Radford et al.;
Abnar et al. (2021). Distillation can be used to
close some of the performance gap between smaller
and larger language encoders while meeting infer-
ence latency constraints (Jiao et al., 2019; Wang
et al., 2020; Soltan et al., 2021). But for example
FitzGerald et al. (2022a) show that using larger dis-
tilled encoders reduces the semantic error rates for
spoken language understanding which motivates
our exploration of a shared encoder architecture to
enable encoder scaling.

3 Methodology

Our goal is to introduce a larger BERT encoder
to increase accuracy for an SLU system with lan-
guage, domain and task-decoupled IC+SF and DC
models without regressions in inference latency and
infrastructure cost. Section 3.1 provides context on
practical challenges that need to be addressed by
a real-world SLU system and that we consider for
our proposed model architecture. We then describe
how encoder representations are shared across lan-
guages, domains and tasks and explain our shared
encoder model architecture in Section 3.2. In Sec-
tion 3.3 we describe the impact on training, infer-
ence latency and infrastructure cost.

3.1 Challenges

In real-world SLU systems the data distribution
keeps changing and new features such as intents
or slots may be added over time. A common
approach for feature expansion is via synthetic
datasets which are then combined with the exist-

448



Language 2Language 1

Domain 1

Decoupled
Encoder

Decoupled
Encoder

SF
Head

IC
Head

DC
Head ... ...

Domain 2

Decoupled
Encoder

SF
Head

IC
Head

Decoupled
Encoder

DC
Head

Language 2Language 1

Domain 1

SF
Head

IC
Head

DC
Head ... ...

Domain 2

SF
Head

IC
Head

DC
Head

Shared Encoder

sharing_representations(4).drawio https://drawio.corp.amazon.com/

1 of 1 1/20/23, 2:53 PM

(a) Multiple different encoders for languages, domains and tasks
(decoupled baseline).

Language 2Language 1

Domain 1

Decoupled
Encoder

Decoupled
Encoder

SF
Head

IC
Head

DC
Head ... ...

Domain 2

Decoupled
Encoder

SF
Head

IC
Head

Decoupled
Encoder

DC
Head

Language 2Language 1

Domain 1

SF
Head

IC
Head

DC
Head ... ...

Domain 2

SF
Head

IC
Head

DC
Head

Shared Encoder

sharing_representations(4).drawio https://drawio.corp.amazon.com/

1 of 1 1/20/23, 2:53 PM

(b) Single shared encoder for languages, domains and tasks.

Figure 1: Sharing encoder representations in contrast to the decoupled baseline architecture.

ing training data and subsequently used for model
training. To support feature expansion and address
distribution drift over time it is critical that repre-
sentations available to the SLU task heads for DC
and IC+SF are distinct enough to be able to learn
the new data.

3.2 Model Architecture

Decoupled Baseline Our baseline is a multi-
domain system with per-language multi-class do-
main classifiers and per-domain joint IC+SF mod-
els. Figure 1a illustrates that decoupled encoders
are finetuned per-language, per-domain and per-
task. The decoupling of languages and domains
comes with the benefit of allowing teams to work
on features for different domains and languages in
parallel and we aim to keep this benefit. To meet la-
tency constraints for CPU inference the decoupled
baseline uses smaller BERT encoders with 17M pa-
rameters (not counting embeddings), 4 layers, 768
units, 1200 hidden units, and 12 attention heads
(Soltan et al., 2021). Before finetuning, the 17M
parameter BERT encoder is distilled from the 2.3B
parameter Stage2 Alexa teacher model BERT en-
coder using a generic language modeling objective
(FitzGerald et al., 2022a).

Shared Encoder As an alternative to smaller de-
coupled encoders we evaluate sharing encoder rep-
resentations of a larger encoder across languages,
domains and tasks while keeping the benefit of de-
coupled languages and domains for the task heads
(see Figure 1b). For the shared encoder we use a
larger BERT encoder with 170M parameters (not
counting embeddings), 16 layers, 1024 units, 3072
hidden units, and 16 attention heads.

To stay inference latency neutral compared to
the smaller decoupled encoders on CPU machines
we perform shared encoder inference on a separate
GPU machine. As illustrated in Figure 2 for the
example of IC+SF the shared encoder representa-
tions are communicated to CPU machines running

Embedding
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Figure 2: IC+SF model utilizing shared encoder repre-
sentations. The DC model is analogous to the IC+SF
model with only a classification head, i.e. the DC model
has its own light encoder.

decoupled task head inference.
To address distribution drift and the feature ex-

pansion, the decoupled components are extended
with a tiny one-layer BERT encoder that we call
light encoder. If training data for a new feature is
added for a feature release without training a new
shared encoder then the shared encoder will not
be familiar with the new feature and its representa-
tions may not be sufficient for task heads to learn
the new feature. The light encoder is trained from
scratch to learn useful representations for examples
that the shared encoder was not trained on. The
representation from the light encoder is concate-
nated to the representation from the shared encoder
before being passed to the task heads.

The SF head is a sequence labeling model that
consumes the token level representations. The IC
head is a classification model that consumes the se-
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quence level representation. We use max-pooling
to obtain the sequence level representation from
the token level representation sequence produced
by concatenating the shared and light encoder rep-
resentations. In Figure 2 the max denotes max-
pooling from the stack below that denotes the con-
catenated representation sequences.

3.3 Training and Inference

To finetune the shared encoder for SLU we intro-
duce an additional pre-finetuning step that uses
a multi-task DC+IC+SF objective on data from
all domains and languages combined. Before pre-
finetuning, the larger BERT encoder is distilled
from the 2.3B parameter Stage2 Alexa teacher
model BERT encoder using a generic language
modeling objective (FitzGerald et al., 2022a). Dur-
ing training of the task heads and light encoder the
shared encoder stays frozen to enable decoupling.
Caching the frozen encoder outputs for training
and validation examples can significantly reduce
training time (Liu et al., 2021). Training the task
heads and light encoder on top of a cached frozen
shared encoder is faster than finetuning the decou-
pled smaller encoders in the baseline. We provide
more details about reducing training time through
caching in Appendix A.3.

During online inference a cache for the encoder
representations can also be used to cover a large per-
centage of the user traffic distribution and reduce
inference latency at the corresponding percentile.
For the tail of the traffic distribution that is not
captured in the cached percentile GPU inference
is used for the shared encoder. In practice, co-
located GPU inference with a cache for the shared
encoder and CPU inference for the decoupled light
encoders and task heads reduces the infrastructure
cost compared to the decoupled baseline.

4 Results

4.1 Experimental Setup

Dataset We report results on both an internal
dataset that is representative of user requests to
voice-controlled devices and on the public MAS-
SIVE dataset (FitzGerald et al., 2022b). For the
internal dataset utterances were de-identified and
annotated with intent, slot and domain labels. The
data spans four languages and 23 domains per lan-
guage. The number of training, validation and test
utterances is on the order of several million, sev-
eral hundred thousand and at least several thousand,

respectively. The full test sets are representative
of the whole user requests distribution. The tail
test sets are representative of the tail of the user re-
quests distribution (low frequency utterances). The
tail test sets were generated from the full test sets
by filtering out utterances with a frequency greater
than one. Feature test sets are representative of
individual new features introduced in a release of
the SLU system where for simplicity each new fea-
ture introduces a new intent. The public MASSIVE
dataset contains 1M professionally labeled virtual
assistant utterances for 51 languages, 18 domains,
60 intents, and 55 slots out of which we report
overall and domain-wise results on four languages.

Metric For evaluation we report the relative Se-
mantic Error Reduction Percentage (SemERR%)
compared to the decoupled baseline model where
higher is better. Semantic error rate (SemER) mea-
sures intent classification and slot filling jointly and
is defined as

SemER =
#(slot+intent errors)
#slots in reference + 1

. (1)

If the domain prediction is incorrect then all slot
and intent predictions will be incorrect except
for cases where there is intent or slot overlap
between domains. SemERR% is computed as
SemERR% = 1− SemERsha/SemERdec where
SemERdec is the semantic error rate of the decou-
pled baseline model and SemERsha is the semantic
error rate of a shared encoder model.

4.2 Main Results

In Table 1 we report the performance of the shared
encoder architecture as described in Section 3.2
on the full and tail tests sets of the following four
languages: German (DE), Italian (IT), Spanish (ES)
and French (FR). The shared encoder architecture
delivers consistent semantic error rate reductions
across all languages. The error rate reductions on
the tail test sets are larger than those on the full
test sets which demonstrates the larger encoders
ability to better generalize to harder user requests.
In fact, SLU systems can often cover the head of the
utterance distribution through deterministic rules
making a performance improvement on the tail test
set more relevant for neural network models.

In Table 2 we report the absolute semantic er-
ror rate performance of the decoupled and shared
encoder architectures trained and evaluated on
the same four languages in the public MASSIVE
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Test set DE IT ES FR Avg.
full 4.75 3.38 5.77 4.59 4.62
tail 5.98 4.85 6.43 5.92 5.79

Table 1: SemERR% (↑) for the shared encoder archi-
tecture evaluated on the full and tail test sets of four
languages.

Language dec sha SemERR% (↑)
DE 22.85 18.00 21.24
IT 23.42 20.07 14.31
ES 27.57 21.34 22.61
FR 25.33 19.40 23.43

Table 2: SemER for the decoupled (dec) and
shared (sha) encoder architectures and corresponding
SemERR% (↑) evaluated on the MASSIVE dataset for
four languages.

dataset. The shared encoder architecture again
delivers consistent semantic error rate reductions
across all languages.

4.3 Analysis
In this section we conduct ablation studies to bet-
ter understand the role of the light encoder, task-
specific pre-finetuning and shared encoder size. We
also explore feature expansion and the impact of en-
coder age, i.e. the time difference between shared
encoder pre-finetuning and task head finetuning
which can cause distribution drift in the training
data. The experiments in this section use the Ger-
man training data for light encoder and task head
finetuning while the encoder pre-finetuning is al-
ways multi-lingual.

Ablations In Table 3 we report the performance
of the shared encoder with light encoder (w/
LE), without light encoder (w/o LE), without pre-
finetuning (w/o PFT) and using a 17M parameter
encoder (17M params) instead of the 170M param-
eter encoder on the German full and tail test sets.

Removing the light encoder only has a slight
impact on performance on the full and tail test sets.
For this evaluation the shared encoder has already
seen the same training data during pre-finetuning
that is used for the light encoder and task head
finetuning so we do not expect the light encoder
to produce independent representations. The light
encoder is motivated by the distribution drift and
feature expansion that we analyze later in this sec-
tion. Since the light encoder ablation does not con-
trol for model capacity the improved performance

Model full tail
w/ LE 4.75 5.98
w/o LE 4.14 5.43
w/o PFT -2.73 -2.66
17M params -2.12 -2.18

Table 3: SemERR% (↑) for shared encoder architecture
ablations on the German full and tail test sets.

from including the light encoder may simply be
due to an increased number of parameters in the
domain-decoupled model component.

Removing the pre-finetuning step means that the
encoder representations are not task-specific for
SLU which causes a performance regression on the
full and tail test sets. Without pre-finetuning, the
shared encoder is only pre-trained and distilled on
generic masked language modeling albeit on both
public data and SLU utterances (see FitzGerald
et al. (2022a) for details about Stage2 distillation).

Using a 17M parameter encoder instead of the
170M parameter encoder means that the encoder
does not have enough capacity to learn good rep-
resentations for all domains in all four languages
which causes a performance regression on the full
and tail test sets. The smaller 17M parameter en-
coder with pre-finetuning step only slightly outper-
forms the larger 170M parameter encoder without
pre-finetuning step. For the 170M parameter en-
coder without pre-finetuning the performance re-
gression on the tail test set is not as large as on
the full test set while for the 17M parameter en-
coder the opposite is the case. A possible reason
for this difference is that generic representations
from the larger encoder without pre-finetuning can
help generalization while the smaller encoder with
pre-finetuning has to specialize on the seen SLU
training data more and may not generalize as well.

Encoder Age To leverage caching and reduce
costs, a frozen shared encoder should ideally re-
main deployed for several months without any up-
dates. We pre-finetune encoders on training data
of different age relative to the training data used
for light encoder and task head finetuning to in-
vestigate the impact of keeping the same encoder
deployed for longer time periods. In Table 4 we
report the performance of the shared encoder pre-
finetuned on zero (0mo), three (3mo) and six (6mo)
months old training data (on the same zero months
old test data in all setting). We report results for
shared encoder architectures with (w/ LE) and with-
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Model Test set 0mo 3mo 6mo

w/ LE
full 4.75 4.44 4.34
tail 5.98 5.83 5.63

w/o LE
full 4.14 4.14 3.84
tail 5.43 5.63 5.23

Table 4: SemERR% (↑) for shared encoder pre-
finetuning with older training data evaluated on the Ger-
man full and tail test sets.

out (w/o LE) light encoder to see the whether the
light encoder mitigates the negative effect from
distributional mismatches.

With the light encoder there is a small but consis-
tent and monotone decline of performance improve-
ment with encoder age for both the full and tail test
sets. Without the light encoder the performance
decline with encoder age is not as consistent. For
example, the three months old encoder is on-par
with the zero months old encoder on the full and
even better on the tail test set. Such effects can be
caused by seasonal changes in the training data that
may not be represented in the test data. The light
encoder consistently improves the performance for
all encoder ages on both the full and tail test sets
and, hence, seems to be able to fill in some of the
gaps of the shared encoder.

Feature Expansion For our feature expansion
evaluation we consider the case of adding three
completely new intents. In Table 5 we report the
performance of the shared encoder for the feature
expansion on both a worst-case and a best-case
scenario in relation to feature data availability dur-
ing pre-finetuning. The reported scores are the
unweighted average SemERR% of three separate
feature test sets for the three new feature intents.
For the best-case scenario (PFT w/ feat) the encoder
pre-finetuning training data is the same as that for
the finetuning step and includes the three new fea-
ture intents. For the worst-case scenario (PFT w/o
feat) the encoder is pre-finetuned on training data
excluding all three new feature intents. The new
feature intents are added back into the training data
for the light encoder and task head finetuning step.
We report results for shared encoder architectures
with (w/ LE) and without (w/o LE) light encoder
to see whether the light encoder mitigates the neg-
ative effect of not having seen the new features
during encoder pre-finetuning. For the worst-case
scenario we also test upsampling (+ upsamp) one
of the features by doubling its training data dur-

Model PFT w/o feat PFT w/ feat
w/ LE -12.93 3.58
w/o LE -66.68 1.16
w/ LE + upsamp 5.18
w/o LE + upsamp -16.40

Table 5: SemERR% (↑) for shared encoder pre-
finetuning with and without feature data evaluated on
the German feature expansion test set.

ing the finetuning step in order to better enable the
light encoder to learn this feature. We upsample
data for the feature with the smallest amount of
training data for the shared encoder model but not
the baseline.

For the best-case scenario of a shared encoder
with all feature data during pre-finetuing there is a
performance improvement on the feature test sets
both with and without light encoder meaning a
larger shared encoder can help learn new features
better. However, without feature data during pre-
finetuning and without light encoder there is a large
regression on the feature test sets meaning that the
shared encoder representations are not conducive to
learning the new feature quickly in the worst-case
scenario. Both the light encoder and upsampling
the smallest feature individually help reduce the
regression but do not remove it completely. When
combining the light encoder with the upsampling
a performance improvement on the new features
is obtained even for the worst-case scenario of not
having seen the new features during shared encoder
pre-finetuning.

5 Conclusions

We present a novel shared encoder architecture
that enables the use of larger encoders in a real-
world SLU system while staying inference latency
and infrastructure cost neutral. By sharing repre-
sentations from a larger encoder across languages,
domains and tasks the semantic error rates of the
SLU system can be reduced consistently across
languages for test sets representing both the full
user request distribution and its tail. Our empiri-
cal analyses reveal that a light-weight encoder can
be used in combination with the shared encoder
architecture to avoid retraining the frozen shared
encoder for every new feature release.
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Limitations

In this paper we compare a shared encoder archi-
tecture for SLU to a baseline architecture that was
chosen based on the specific latency and cost con-
straints of an industry SLU system. Since encoder
model sizes were chosen based on specific con-
straints the results may not be directly comparable
to model sizes more commonly used in the litera-
ture such as BERT-large and BERT-base. We ex-
pect the general benefit and order of magnitude of
accuracy improvements shown in our evaluations
to transfer to comparable setups with different pa-
rameters.

The primary focus of this paper is on accuracy
improvements and addressing challenges of real-
world SLU systems such as distribution drift and
feature expansion. We do not elaborate on the
details of the computational cost and inference as-
pects. A detailed analysis of compute cost and
benchmarks of CPU and GPU inference would bet-
ter highlight the infrastructure cost benefits of a
shared encoder architecture for SLU.

Regarding the multi-lingual aspect of the en-
coder we only tested a single grouping of similar
European languages (German, French, Italian and
Spanish). A more extensive analysis of different
language groups would demonstrate that similar
trade-offs seen in other works on multi-lingual lan-
guage models also apply for the shared encoder
architecture.

Ethics Statement

The shared encoder architecture proposed in this
paper significantly reduces compute infrastructure
cost of large-scale SLU systems in practice. A
large absolute compute infrastructure cost reduc-
tion implies a positive environmental impact due
to less power consumption.
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A Appendix

A.1 Implementation Details

Model Architecture The light encoders are one-
layer BERT encoders with 320 units, 1200 hidden
unites, and 16 attention heads. The task heads
are one-layer feed-forward networks with hidden
dimension 256 and dropout 0.3 for DC, two-layer
feed-forward networks with hidden dimension 256
and dropout 0.5 for IC and two-layer feed-forward
networks with hidden dimension 256 and dropout
0.2 for SF, and the SF head uses a CRF layer.

Training The shared encoder pre-finetuning uses
a multi-task DC, IC and SF training loss with equal
weights. Pre-finetuning uses Adam with Noam
learning rate scheduler (Vaswani et al., 2017, Sec-
tion 5.3), a learning rate multiplier of 0.4 and a
mini-batch size of 128. During pre-finetuning the
task heads are a two-layer feed-forward network
with hidden dimension 256 with dropout 0.3 for
DC, 0.5 for IC and 0.2 for SF, and the SF head does
not use a CRF layer.

To mix the training data from different languages
during pre-finetuning we use a temperature-based
rebalancing approach with language weights as
given in Conneau and Lample (2019, Section 3.1)
with α = 0.5, i.e. with language weights qi =
pαi /

∑
j p

α
j with pi = ni/

∑
k nk where ni is the

number of utterances of language i.
The decoupled finetuning trains a single multi-

class DC model and uses a per-domain multi-task
IC and SF training loss with equal weights for the
domain-specific joint intent/slot labelling model.
Finetuning uses Adam with Noam learning rate
scheduler (Vaswani et al., 2017, Section 5.3), learn-
ing rate multiplier of 0.1 for DC, 0.5 for IC+SF
and a mini-batch size of 256 for the decoupled en-
coders. The shared encoder models use a learning
rate of 0.5 across tasks and a mini-batch size of 256
for the light encoder and task head training. The
baseline model with the decoupled encoder setup
uses frozen embeddings and gradual unfreezing to
a learning rate multiplier of 1.0 for the encoder
weights for DC and a learning rate multiplier of
0.01 for the embeddings and gradual unfreezing
to a learning rate multiplier of 0.1 for the encoder
weights for IC+SF. The encoder dropout is set to
0.1 for the decoupled baseline. The shared encoder
model is trained with frozen encoder and encoder
dropout is disabled.

A.2 Domain-wise Results
In Table 6 we report domain-wise absolute seman-
tic error rate performance of the decoupled and
shared encoder architectures trained and evaluated
on German (DE), Italian (IT), Spanish (ES) and
French (FR) in the public MASSIVE dataset. The
shared encoder architecture outperforms the decou-
pled baseline on 67 out of 72 domain/language
pairs.

A.3 Training Cost Reduction
Building an SLU model on top of a frozen shared
encoder gives the opportunity to optimize training
cost and latency. Given that the shared encoder is
frozen and not updated over the course of training
and neural network models are trained over a fixed
data set for multiple epochs, the shared encoder is
redundantly engaged during the forward pass of
each epoch. We eliminate latency overhead and
improve training time by caching the output of the
shared encoder prior to training downstream SLU
components like the light encoder and task heads.
By storing the encoder representations of the train-
ing and validation data sets, we are engaging the
shared encoder only once and subsequent training,
forward/backward pass and parameter update, is
limited to the light encoder and task heads.

Figure 3 on the right shows the steps of train-
ing SLU models with a shared encoder cache. In
the first step, we run inference on the shared en-
coder and store the encoder representations on disk.
In the following step, we train the language- and
domain-decoupled task heads with cached encoder
representations as inputs.
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Domain
DE IT ES FR

dec sha ∆ dec sha ∆ dec sha ∆ dec sha ∆

Alarm 18.99 11.73 38.23 18.89 12.78 32.35 23.6 15.73 33.35 16 17.14 -7.13
Audio 43.24 17.57 59.37 35.14 14.86 57.71 22.97 17.57 23.51 33.78 18.92 43.99
Calendar 23.08 21.57 6.54 27.94 25.71 7.98 26.84 24.62 8.27 26.79 24.87 7.17
Cooking 27.27 22.38 17.93 27.97 25.17 10.01 25.17 20.98 16.65 28.47 25.69 9.76
Datetime 18.09 17.59 2.76 22.73 18.69 17.77 24.37 14.72 39.6 20.6 13.57 34.13
Email 17.32 13.81 20.27 18.31 14.81 19.12 25.63 17.02 33.59 18.14 13.4 26.13
General 18.22 14.13 22.45 18.59 15.99 13.99 20.82 15.99 23.2 18.66 13.81 25.99
Iot 17.3 14.05 18.79 20.54 17.3 15.77 18.75 16.85 10.13 16.22 15.68 3.33
Lists 19.72 15.49 21.45 23 22.07 4.04 24.06 26.42 -9.81 19.91 18.01 9.54
Music 29.7 14.85 50 23.76 18.81 20.83 30.69 19.8 35.48 24.75 16.83 32
News 24.89 22.36 10.16 29.11 26.16 10.13 35.02 27.85 20.47 29.87 24.68 17.38
Play 34.55 32.66 5.47 34.91 29.51 15.47 40 38.34 4.15 35.63 35.34 0.81
QA 19.07 13.18 30.89 21.3 16.02 24.79 20.12 16.02 20.38 20.45 18.18 11.1
Recomm. 32.82 28.21 14.05 33.33 31.28 6.15 46.88 29.69 36.67 47.18 30.26 35.86
Social 17.62 11.89 32.52 11.45 11.89 -3.84 18.06 13.22 26.8 17.62 11.01 37.51
Takeaway 32.8 31.2 4.88 28.57 29.37 -2.8 28.57 30.95 -8.33 26.98 25.4 5.86
Transport 18.3 15.36 16.07 21.24 16.99 20.01 21.85 17.55 19.68 18.95 14.71 22.37
Weather 15.54 14.41 7.27 18.93 15.54 17.91 22.82 15.21 33.35 19.89 18.75 5.73

Overall 22.85 18 21.24 23.42 20.07 14.31 27.57 21.34 22.61 25.33 19.4 23.43

Table 6: SemER for the decoupled (dec) and shared (sha) encoder architectures and corresponding SemERR% (↑)
denoted by ∆ evaluated on the MASSIVE dataset for four languages.
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Abstract

In this work, we present a natural language pro-
cessing (NLP) pipeline for the identification,
extraction and linking of Research Infrastruc-
ture (RI) used in scientific publications. Links
between scientific equipment and publications
where the equipment was used can support mul-
tiple use cases, such as evaluating the impact
of RI investment, and supporting Open Science
and research reproducibility. These links can
also be used to establish a profile of the RI
portfolio of each institution and associate each
equipment with scientific output. The system
we are describing here is already in production,
and has been used to address real business use
cases, some of which we discuss in this paper.
The computational pipeline at the heart of the
system comprises both supervised and unsuper-
vised modules to detect the usage of research
equipment by processing the full text of the
articles. Additionally, we have created a knowl-
edge graph of RI, which is utilized to annotate
the articles with metadata. Finally, examples of
the business value of the insights made possible
by this NLP pipeline are illustrated.

1 Introduction

According to the definition adopted by the Euro-
pean Commission (European Commission et al.,
2012), Research Infrastructure (RI) refers to "facil-
ities, resources and related services that are used
by the scientific community to conduct top-level
research in their respective fields and foster innova-
tion". A similar concept, which is more commonly
used in the United States, is "Research Core" (Bai
and Schonfeld, 2021).1 RI plays a crucial role
in conducting high-quality research, with signif-
icant financial resources invested every year; for
example, European countries have invested over 10
billion EUR every year in the period 2014− 2020
(European Commission et al., 2019), while UK

1We will use "RI" throughout the text to refer to both
concepts.

Research and Innovation (UKRI), the main public
research funding agency in the United Kingdom,
has announced in its Corporate Plan for the years
2022− 2025 to increase the RI investments by at
least £200 million every year, to reach over £1.1
billion in 2024 to 2025 (UKRI, 2022). It is, there-
fore, extremely important for all stakeholders in
the research landscape to assess the impact of such
investments. Various frameworks for impact evalu-
ation have been proposed in the past (OECD, 2019;
Griniece et al., 2020) and they all include scientific
outputs, particularly publications in peer-reviewed
journals, as an important facet of impact.

There are several challenges in tracking research
outputs enabled by RI, such as the lack of a stan-
dard approach to recognize contributions of facility
managers and staff scientists (Bai and Schonfeld,
2021), or the fact that sometimes it is not even con-
sidered appropriate to include them as co-authors
(Hockberger et al., 2018). Another important is-
sue is that the contribution of RI to the research
project is mostly found in the full text of publica-
tions, usually in sections named "Materials and
Methods", "Experimental Setup", or similar. This
means that abstract and indexing databases such as
PubMed, Scopus or Web of Science, which don’t
index the full text of records, are of limited help in
this scenario. Other approaches, such as assigning
persistent identifiers to scientific instruments and
reference them in the manuscript (Stocker et al.,
2020), while in principle effective for new publica-
tions, require widespread adoption among publish-
ers, as well as time and effort to create a database
of equipment records. For all these reasons, the
identification of links between publications and
RI remains largely a manual and inefficient task
(Strubczewski, 2019).

In this work we present a solution to the problem
of identifying and linking RI in the text of scien-
tific publications, introducing a pipeline designed
to connect scientific publications with RI utilized
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Figure 1: Visual representation of the proposed system. The diagram illustrates the workflow of the pipeline, with
each module explained in its respective subsection. Input specifications can be found in section (3.1), and the output
of the system is described in (3.2). The various modules include Sentence Splitter (4.1), Sentence Classifier (4.2),
Named Entity Recognition (NER) (4.3), Clustering of Annotations (4.4), Knowledge Graph Enrichment (4.5), and
RI Annotation (4.6).

in the respective works. To the best of our knowl-
edge, this is the first comprehensive solution to
tackle this challenge end-end, and to be brought
in a production environment. The pipeline of the
solution utilizes state-of-the-art few shot learning
algorithms to train our machine learning models
using a limited labeled dataset. By employing these
cutting-edge techniques, we were able to achieve
very insightful results for research stakeholders,
despite the constraints of a small training set.

The remaining of the paper is organized as fol-
lows; the key user problems that this solution is
addressing are discussed in Section 2. Section 3
provides an overview of the solution’s architecture,
followed by a detailed description of each module
in Section 4. Section 5 presents evaluation results
and analysis. Section 6 highlights concrete busi-
ness impact of the proposed system and in Section
7 we conclude and provide pointers to future work.

2 Description of User Problems

Working with academic institutions and funding
agencies with a specific interest in RI, we have iden-
tified several use cases where being able to link RI
(as an input to research) with research outputs (in
particular scientific publications) can provide valu-
able insights to a broad range of stakeholders such
as policy makers, academic leaders, researchers
and technical staff, as well as the general public.
Here are some representative use cases: (1) Sup-
porting decision making processes and investment

planning about RI with a quantitative, evidence-
based approach that complements qualitative in-
sights based on expert opinion; (2) Showcasing RI
to attract top talents. Institutions can promote them-
selves as a destination for the best researchers in
various fields by showcasing state-of-the-art instru-
ments available at their research facilities; (3) Pro-
moting collaboration at local, national and regional
level, as well as across disciplines and sectors (for
example academic-corporate collaborations); (4)
Supporting Open Science and Big Science, by pro-
moting transparency and accountability, particu-
larly for large RIs; (5) Improving the reproducibil-
ity of research, by providing useful information
about the equipment used in research works.

3 Overview of the Proposed Solution

This section provides an overview of the proposed
solution, including the input requirements and de-
sired output of the pipeline. We also discuss the
dataset collected for training the NLP components.
An overview of the solution’s pipeline is illustrated
in Figure 1. The first part of the pipeline (unsuper-
vised provess) is composed of fully automated mod-
ules, while the latter (supervised process) requires
supervision by a Subject Matter Expert (SME) to
guarantee high-quality results.

3.1 Input Specification
The system requires two inputs: (i) the text of aca-
demic publications, to identify mentions of RIs,
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and, (ii) a knowledge graph of RIs, which is a list of
equipment with specified attributes. This list can be
customized to a specific research center/university
by using their research information management
system (e.g., PURE2) or equipment/lab manage-
ment systems (e.g., ClusterMarket3).

3.1.1 Full text of publications
The system can handle input text several formats,
namely plain-text, XML, and PDF. The section
tags of the XML files, when available, can be also
utilized for selecting specific sections to process.
To transform PDF files into plain-text, the TIKA
Python library was employed (Apache Software
Foundation, 2021).

3.1.2 RI Knowledge Graph
A Research Infrastructure Knowledge Graph (KG)
is also required, to formalize the representation of
participating research institutions, their facilities,
equipment vendors and equipments. The equip-
ments facet is organized in broad categories such as
Measuring equipment, hosting a poly-hierarchy of
equipment types, such as Spectrophotometer, with
equipment models as leaf nodes e.g., NanoDrop
ND-1000. Each equipment model is linked to: their
equipment type(s), the facility and research institu-
tions they are located in, their vendor, the original
research institution’s local identifier, and, their re-
lated method (e.g., Spectrophotometry in our previ-
ous example).

The KG has been built iteratively and is updated
frequently based on customers’ needs. After an ini-
tialization based on generic lists of equipment types
used in the first participating universities from a
pilot that was conducted, each customer gives us
their actual list of equipment models and types and
we place them accordingly in the KG: for each cus-
tomer, we expand the equipment types hierarchy,
using sub-string matching and transformer based
clustering methods (using BERT) to identify where
to automatically place the new RI instances.

3.2 Output Specification

The final output of the pipeline is a table connect-
ing RIs to relevant publications (e.g., DOIs). It’s
important to note that the relationship between RIs
and publications is many-to-many, meaning that a
single RI can appear in multiple studies and mul-
tiple RIs can be used in one study. The resulting

2https://www.elsevier.com/solutions/pure
3https://clustermarket.com/

table can serve as the foundation for different dash-
boards, analyses and decision support systems.

3.3 Datasets

The lack of widely available training data for the
NLP modules of the pipeline, and the cost of com-
piling large new data sets for the task has lead us to
assemble a small dataset to use in a few shot learn-
ing fashion. We used 103 research publications,
with 78 being held for training and 25 for model
evaluation. To train and test the sentence classifier,
all sentences in these publications containing at
least one RI were labeled as positive and the rest as
negative. However, this resulted in a heavily biased
dataset, with less than 3% of the sentences being
labeled as positive. The final dataset comprises
more than 14K sentences, two-thirds of which were
utilized for training the models, while the remain-
ing third was reserved for evaluation purposes. To
train the Named Entity Recognition component,
we used 354 sentences with annotations provided
at the word level. This dataset includes 494 RIs.
Using the tokenization process described in sub-
section 4.1, each word-token was matched to its
corresponding label in BIO format (Ramshaw and
Marcus, 1999).

4 Modules of proposed solution

This section provides the details of each of the
components in the pipeline illustrated as blue boxes
in Figure 1.

4.1 Sentence Splitter

The initial step in identifying mentions of RIs is
to split the full text of a publication into sentences.
We use the Stanza Python library (Qi et al., 2020)
for sentence splitting, as it has very high reported
accuracy, but slow processing time. This choice
is crucial for correctly identifying RI mentions,
as RI names often contain punctuation that could
lead to incorrect results with regular expression
methods. Additionally, Stanza considers not only
punctuation, but also contextual meaning, making
it more precise, which comes at the cost of slower
processing speed compared to other approaches.

4.2 Sentence classifier

The next step is to identify sentences that discuss
the usage of RIs using the trained sentence classi-
fier. This step is crucial as not all references to RIs
are related to their usage in the current research;
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for example, authors may compare their work with
others’.

For the sentence classification objective a BERT
for sequence classification, namely SciBERT-base-
uncased (Beltagy et al., 2019) pretrained model
(Devlin et al., 2018; Wolf et al., 2019) was used un-
der a contrastive loss (CL) objective (Gunel et al.,
2020). The sentence classifer attempts to differen-
tiate between samples that not only contain an RI,
but also express usage of an RI as context. This
improves the overall precision of the model as well
as providing valid predictions for the NER module.
For the loss, it is known that cross entropy by itself
is a weak measurement of loss in a few-shot set-up
where labeled data is limited (Dodge et al., 2020;
Zhang et al., 2020), thus, we used a normalized
summation of the Cross Entropy loss and Super-
vised Contrastive loss. Contrastive loss is a tech-
nique used in few-shot learning to train models by
maximizing similarity between the representations
of samples from the same class and minimizing
similarity between the representations of samples
from different classes. The model was trained for
20 epochs with a batch size of 64, on a 70 : 30 split.
Learning rate was 1e− 5. Input tokenized vector
size per sentence was of maximum length 128. The
contrastive loss setting temperature was set to 0.3
and the λ parameter to 0.9.

4.3 NER

Once the sentences discussing the usage of RIs in
the research have been identified, a NER compo-
nent is employed to extract of the RI entities within
these sentences. For the entity detection objective
a BERT for token classification, namely bert-base-
uncased pretrained model with a similar contrastive
loss objective per above, was used. In this case, the
contrast is introduced on the word-token level of
the sentence. While the data are scientific publica-
tions, parts of the name of an RI can also be found
in the common language and there is no base rule
for referencing it. It is important to identify, based
on the context, which token belongs to an RI and
group them together. The larger and more diverse
training corpus of BERT-base makes it more sen-
sitive to a broader range of linguistic pattern and
contexts over SciBERT which is exclusively trained
on computer science and biomedical publications.
Empirically, BERT-base was a better candidate for
fine-tuning on the downstream NER task due to the
representation capturing general language knowl-

edge, despite SciBERT outperforming it in various
benchmarks.

As for the word level tokens, the B token in
this case not only assists in not confusing the indi-
vidual RIs that were found but also visualizes the
model’s behaviour on the boundaries it identifies
between tokens surrounding the RI, which is done
with the assistance of contrastive loss. This model
was trained for 28 epochs with a batch size of 8. In-
put tokenized vector size per sentence was of max-
imum length 128. Learning rate was 5e − 5.The
contrastive loss setting temperature was set to 0.5
and the λ parameter to 0.8.

4.4 Clustering of Annotations
The application of the sentence classifier and NER
modules on the input documents results in a large
number of mentions of RIs. Due to the variety by
which authors cite or quote the equipment used,
some of these mentions may match the official
names of RIs in a provided supplied equipment
list, while others may not. To accurately match
these alternative names to a specific RI, we apply
a clustering algorithm to group them together. A
three-step divide and conquer strategy has been
developed to guarantee the correctness of the clus-
tering process. By doing this, we can make sure
that references of RIs with different vendor names
or model numbers do not fall into the same cluster.
This approach is as follows:

1. Group all mentions based on the vendor name
mentioned in them. There is also a separate
group for mentions without a vendor name.

2. Group the items within each group from step
1 based on the longest word token that con-
tains at least one digit. This substring usually
represents the equipment’s model number.

3. Each group from step 2 is clustered using K-
means clustering on the TF-IDF representa-
tion of the mentions. To find the optimal num-
ber of clusters in each group, the Silhouette
score is maximized.

An example of resulted clusters is presented in
table 1

4.5 Knowledge Graph Enrichment
The equipment list from a given university, mapped
to our KG’s unique identifiers, is used to identify
mentions of these pieces of equipment in research
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mentions of RI
transmission electron microscope (TEM, JEOL
JEM-2010)
JEM-2010 microscope (JEOL, Japan)
JEOL JEM-2010 electron
JEOL JEM-2010 electron microscope
High-resolution transmission electron microscopy
(HR-TEM) system (JEOL, JEM-2010)
JEOL JEM-2010
Selected area electron diffraction (SAED, JEOL.
JEM-2010, 200.0 KV)
JEOL JEM-2010 transmission electron microscope

Table 1: An example cluster of mentions of RI.

Accuracy Precision Recall F1
0.99227 0.86734 0.7798 0.82125

Table 2: Performance of the Sentence classifier model.

articles. These mentions are clustered as described
in 4.4. Each cluster is carefully reviewed by a Sub-
ject Matter Expert and possibly edited before being
added to the KG as synonyms for the equipment
data point it is mapped to. Our latest KG version
contains over 1, 500 pieces of equipment (types
and models) and over 2, 500 vendors.

4.6 Annotation
For extracting the list of RI mentions in a given doc-
ument set we combine three sources of equipment
names into a single vocabulary for text matching:
(i) reference vocabulary, cf. 3.1.2; (ii) terms found
in the input texts, cf. 4.4; (iii) user-submitted list
of equipment of interest. Research institutions or
funders have an interest in tracking the usage of
equipment that they own or manage and will submit
a list of RI that reflects that interest. This list will be
matched against the enriched vocabulary, resulting
in a final reference list of RI, containing many name
variants, and formatted in a way suitable for use
in the annotation tool; we employ the annotation
tool FPS (Fingerprint Services) that is described
by Kohlhof et al. (2014). Applying the RI anno-
tation as a final stage to the process accomplishes
several things: (1) it integrates the knowledge accu-
mulated in previous stages; (2) drawing on the FPS
capabilities, it allows us to influence recall and pre-
cision; (3) it results in a list of consumer-relevant
data linked to the right identifiers; (4) applying to
specified parts of the full-text documents we can
evaluate the quality of the annotation tool for dif-

Tag Precision Recall F1
O 0.88 0.88 0.88
B-EQ 0.93 0.94 0.93
I-EQ 0.98 0.97 0.98
Macro average 0.93 0.93 0.93
EQ (phrase level) 0.76 0.77 0.77

Table 3: Performance of NER model at tag level and
phrase level.

ferent scenarios, i.e., when applied to "positive"
sentences only, when applied to specific text sec-
tions only (as explained in 3.1.1 having the input
publication in XML format enables us to focus on
specific sections, like Material and Methods), or
when applied to whole text for maximum recall.

5 Performance Evaluation

5.1 Inference Time

Tested in a sample of 120k full text scientific pub-
lications, the total inference time for the complete
pipeline, by means of aggregating the inference
times for the sub-modules of sentence splitting,
sentence classification, NER and clustering of an-
notations, results to 35.5 hours in a g4dn.2xlarge
Amazon EC2 instance. The majority of the infer-
ence, amounting to 83% is taken up by the first two
modules, while NER needed 30 minutes (1.4%) of
total elapsed time to complete the processing of all
documents.

5.2 Precision and Recall of Modules

5.2.1 Sentence classifier
The combination of a scientific BERT model with
the contrastive loss assists the sentence classifica-
tion model to capture the context of RIs utilization.
In production state this model parses millions of
sentences averaging similar metrics. In Table 2 we
present the overall performance of model, as this
was measured on our hold-out test set.

5.2.2 NER
Despite the low number of training samples, the
NER model with its contrastive nature is able to
generalize with very satisfactory performance. The
performance in the tags of interest is high enough
so that the full extraction of a RIs can be done with
a simple post processing of the NER’s output. The
performance of the NER module in our hold-out
test set is shown in Table 3.
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(a) (b)

Figure 2: (a) Citation impact of publications from the entire institution, compared to that of publications with
associated RI and publications enabled by RI in a specific facility; (b) Average number of patent citations to scientific
publications for every 1000 publications, for the entire institution and for publications involving a specific facility.

5.2.3 Discussion on the Overall performance

The performance of the individual models has still
room for improvement. In the two previous sec-
tions we presented the performance of two of the
key components, which is the sentence classifier
and the NER. The majority of the issues we ob-
served in a manual error analysis results from the
poor generalization of the models in capturing all
possible ways of how a RI is reported and discussed
in a scientific paper. The sentence classifier com-
ponent’s nature is to lighten the processing load on
the NER component. i.e., instead of processing all
sentences of a scientific publication for RI entities,
to only focus on the ones that the sentence clas-
sifier believes they discuss the usage of RI. This
additional step also introduces some errors; how-
ever, even with an imperfect sentence classifier the
NER is still able to distinguish the proper mentions
of RI as seen by the high scores in Table 3. Tak-
ing into account the phrase level score, it should
be highlighted that the NER task is more difficult
compared to the conventional NER tasks with com-
mon entities like PER/ORG/LOC. In an industrial
setting, we have found that the aforedescribed per-
formance is already sufficient to address business
use cases and generate very meaningful insights for
the RI stakeholders, examples of which we share
in the next section.

6 Business Impact

We have completed several projects with institu-
tions active in the Science, Technology, Engineer-
ing and Mathematics (STEM) domains. We fo-
cused primarily on the first use case of those listed
in section 2: we helped institutions evaluate the
impact of their RI investments by providing quanti-
tative evidence based on a scientometric analysis
of publications enabled by institutional RI. Those
insights include: (1) the contribution of RI to the
scientific output in a certain topic; (2) the scientific
impact of publications enabled by RI, compared to
the institutional average; (3) the scientific impact
of a specific facility or lab inside the institution;
(4) the impact on innovation that is enabled by a
certain technology available at the institution, and,
(5) the role of institutional RI on collaborations
with corporate entities. Charts in Fig. 2, which are
taken from a report that was done for one of the
pilot institutions, illustrate how these insights can
be derived using our system.

The evaluation of scientific impact is routinely
done by analysing citation networks, and several
metrics have been developed for this purpose (Walt-
man, 2016). The chart in Fig. 2a compares for
a specific facility the citation impact of publica-
tions from the entire institution, with the subset
of publications linked to RI and with a subset of
publications linked to equipment. The X axis mea-
sures the citation impact of the journals hosting the
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publications; the Y axis reports the direct citation
impact of the publications. Both metrics are size-
independent and normalized. Figure 2b shows that
RI is a net contributor to the scientific impact of the
institution, as captured by both metrics, as well as
how research enabled by equipment from a specific
facility has a much higher ratio of patent citations
than the institutional average.

7 Conclusions and Future Work

In this paper we have presented a novel system that
can detect, extract and link the Research Infrastruc-
ture (RI) used and mentioned in scientific publi-
cations. The system comprises several advanced
NLP components that can annotate and classify sen-
tences, as well as detect RI entities and link them
to a knowledge graph (KG) that has been created
for the purpose of this business application. We
have discussed the performance of the key individ-
ual components of our system, the use cases that
the proposed solution can address, and we have
demonstrated the insights and knowledge that any
research facility or institution can obtain around the
impact and Return of Investment of their equipment
in research conducted by its personnel. Our future
work will focus on expanding and releasing the KG
in public, as well as optimizing the paralelization
and scaling of the existing pipeline.
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Abstract

In search engines, query expansion (QE) is
a crucial technique to improve search expe-
rience. Previous studies often rely on long-
term search log mining, which leads to slow
updates and is sub-optimal for time-sensitive
news searches. In this work, we present Event-
Centric Query Expansion (EQE), a novel QE
system that addresses these issues by mining
the best expansion from a significant amount
of potential events rapidly and accurately. This
system consists of four stages, i.e., event col-
lection, event reformulation, semantic retrieval
and online ranking. Specifically, we first col-
lect and filter news headlines from websites.
Then we propose a generation model that incor-
porates contrastive learning and prompt-tuning
techniques to reformulate these headlines to
concise candidates. Additionally, we fine-tune
a dual-tower semantic model to function as
an encoder for event retrieval and explore a
two-stage contrastive training approach to en-
hance the accuracy of event retrieval. Finally,
we rank the retrieved events and select the op-
timal one as QE, which is then used to im-
prove the retrieval of event-related documents.
Through offline analysis and online A/B test-
ing, we observe that the EQE system signif-
icantly improves many metrics compared to
the baseline. The system has been deployed
in Tencent QQ Browser Search and served
hundreds of millions of users. The dataset
and baseline codes are available at https:
//open-event-hub.github.io/eqe.

1 Introduction

People are always eager to obtain details and
updates on current hot events through search
engines. To efficiently return dozens of rele-
vant documents from billions of candidates, most
search engines use a “retrieval-rank-rerank-mixed
rank”architecture, as illustrated in Figure 1.
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Figure 1: Overview of the query expansion process and
search system in Tencent QQ Browser Search.

Queries, particularly those relying on key-
words, present a tough challenge for query in-
tent understanding due to their brevity, absence
of world knowledge, and lack of grammatical struc-
ture (Broder et al., 2007). When a significant event
takes place, the search intent of users subsequently
can rapidly and drastically shift. For example, dur-
ing the Green-Poole conflict, a user searching for
“green” may be seeking information about the color,
while many others desire news about NBA player
Draymond Green. While methods based on search
log mining (Jansen et al., 2007; Zamora et al., 2014;
Caruccio et al., 2015) are still commonly used for
query intent understanding, they are limited by
their reliance on the accumulation of posterior data
and struggle with timely and accurately processing
the intent for recent events, making it difficult to
retrieve and rank event-related documents. Recent
approaches (Zhang et al., 2020a; Nogueira et al.,
2019; Sun et al., 2022) suggest using additional
context from query-associate documents or entities
to improve the performance of query understand-
ing. However, they still face challenges in real-time
search scenarios.

To tackle this challenge, we present EQE, a
real-time query expansion system specifically de-
signed to efficiently capture query intent for ongo-
ing events. As depicted in Figure 1, EQE extends
the original query with the most fulfilling event,
selected from a large pool of candidate events. By
performing the same retrieval step with both the
original and expanded queries, more results related
to the event will be returned. This bypass architec-
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Figure 2: Architecture of the proposed EQE system.

ture effectively ensures system flexibility. When
there are sufficient machine resources, the number
of bypasses can be increased, and multiple query
expansions can be used to improve the performance
of document retrieval.

Our EQE system employs a four-stage struc-
ture, as illustrated in Figure 2, consisting of event
collection, event reformulation, semantic retrieval,
and online ranking. Events are collected from
news headlines as they are typically more con-
cise and event-centric, compared to body texts
which are lengthier and contain extraneous infor-
mation. To guarantee the accuracy of the collected
events, we employ a combination of rule-based
coarse filtering and language model-based fine fil-
tering (§ 2.1). The collected headlines, as described
in Appendix A, may contain noise, irregular gram-
mar, and lack of world knowledge, making them un-
suitable for query expansions. To solve these prob-
lems in such scenarios, we reformulate them using
a generation model, which is more effective than
extractive models (§ 2.2). Our method employs
keyword-based prompt learning to make generated
content more controllable and applies contrastive
learning on the encoder to counteract embedding
degradation (Gao et al., 2019). After this step, we
obtain a high-quality candidate set of event-centric
QE. For a given query, to further narrow down the
QE candidate set, we utilize a supervised SimCSE
model (Gao et al., 2021) to retrieve relevant QEs.
SimCSE effectively improves the accuracy of re-
trieval by addressing the issue of representation
space degradation. Moreover, inspired by (Gillick
et al., 2019), we employ a two-stage training ap-
proach that incorporates informative hard negative
samples for each query, resulting in a further im-
provement in representation quality (§ 2.3). Finally,
we design an online ranking module to select the
best QE. Features of query-side, event-side, and
interactive are considered comprehensively (§ 2.4).

As far as we know, EQE is the first query ex-
pansion solution developed explicitly for real-time

event intent. The efficiency of EQE is verified
through offline analysis and online A/B testing.
The main contributions of this work are summa-
rized as follows:

• We propose a real-time and efficient query
expansion system for timely search scenar-
ios. The system comprises four stages: event
collection, event reformulation, semantic re-
trieval, and online ranking.

• In the event reformulation stage, we introduce
an effective generation model that leverages
prompt learning and contrastive learning tech-
niques to produce a high-quality candidate set
of QE.

• In the semantic retrieval stage, we employ
a two-stage contrastive learning approach to
improve the accuracy of semantic retrieval.

• Offline analysis and online A/B testing on Ten-
cent QQ Browser Search demonstrate the ef-
fectiveness of our proposed EQE framework.

2 Method

In this section, we describe our proposed frame-
work of EQE shown in Figure 2. We first introduce
the scheme for event collection in industrial sce-
narios. We then elaborate on event reformulation
and semantic retrieval, describing how we use con-
trastive learning and prompt learning to improve
model performance. Finally, we discuss online
ranking, revealing how to select the optimal expan-
sion.

2.1 Event Collection

The essential phase in the “Event Collection” pro-
cess is to identify events from the vast amount
of newly uploaded content on the Internet. We
filter events from the headlines using a two-step
method that includes a rule-based coarse filter and
a semantically-driven fine filter.
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Coarse Filter. After using basic feature filters such
as publication time, page type, site type, etc., we
gather approximately 50 million news article head-
lines over the duration of recent six months. As
described in Appendix E, the headlines generated
by these heuristic rules include irregular syntax,
missing event components, numerous events, etc.,
posing a barrier to subsequent event reformulation.
So further we use the LTP toolkit (Che et al., 2021)
to extract event triggers from headlines and drop
headlines missing event elements or with multiple
events (the number of triggers more than 2).

Fine Filter. The rule-based coarse filter is based
on pre-defined patterns and has limited recognition
abilities. To address these issues and further im-
prove the accuracy of event collection, we train
an event detection model based on RoBERTa (Liu
et al., 2019). We employ six experts to annotate
around 200,000 samples, which are utilized to train
the model. Subsequently, we use this model to
infer event probabilities for the coarsely filtered
headlines and filter them using a predefined thresh-
old, achieving a 95% accuracy rate in detecting
event-related headlines.

2.2 Event Reformulation

This step aims to make events qualified for query
expansion by reformulating them using a gener-
ation model, addressing issues such as noise, ir-
regular grammar, and low-frequency words. As
illustrated in Figure 3, we introduce two significant
improvements to the encoder-decoder architecture-
based model. Firstly, we enhance the controllabil-
ity of the generation process using prompt learning.
Secondly, we optimize the representation quality of
headlines using contrastive learning. By simultane-
ously optimizing these two tasks, we can effectively
refine events for query expansion.

Prompt Guidance. To ensure important infor-
mation is not overlooked, we leverage prompt
learning technology when training a generation
model. Unlike prior work, we propose adaptive
keyword templates to provide guidance during sen-
tence generation. Firstly, we use the KeyBERT
model (Grootendorst, 2020) to extract the most es-
sential nouns from the sentence. We then insert
the extracted keyword into a fixed template to form
a keyword template, denoted as T . Finally, we
concatenate the headline H , the keyword template
T , and the target qualified event E with special

Encoder

headline

headline

headline

In-batch
Negative Postive

Augmentation

Decoder

Prompt Guidance

Keyword
Extractor

Contrastive Loss

Golden Summary

Generated Summary

Cross-entropy Loss

+

Final Loss

Postive Negative

Pull Together Push Apart

Figure 3: Structure of event reformulation model.

tokens as “[CLS]H [SEP][CLS]TE[SEP]”1.
In this setup, the front segment “[CLS]H[SEP]”
and the latter segment “[CLS]TE[SEP]” serve
as the inputs for the encoder and decoder, respec-
tively. It is worth noting that E is omitted during
the inference phase.
Contrastive Learning. Previous studies show that
natural language generation tasks suffer from rep-
resentation space degradation problems, which can
be alleviated by contrastive learning (Gao et al.,
2019). In our model, the embedding corresponding
to the [CLS] token of the encoder is regarded as
the headline representation and contrastive learn-
ing is performed based on it. Specifically, for
each headline, we perform a position swap of its
two terms to obtain a positive example headline
and then use contrastive learning to pull the rep-
resentations of positive headline pairs closer and
push away the representations of negative headline
pairs (i.e., in-batch negative samples).

The following is a description of the contrastive
learning loss calculation process within a batch.

(a) In a batch of size 2N, the training data
consists of 2N pairs denoted by {(H1, E1),
(H+

1 , E1), · · · , (HN , EN ), (H+
N , EN )},

where < Hi, H
+
i > denote a pair of similar

headlines, both of which can be paired with
the event phrase Ei. Contrastive learning
aims to pull semantically close neighbors (i.e.
(Hi, H

+
i )) together and pushing apart non-

neighbors (i.e. (Hi, H
+
j ), i, j ∈ {0, 1, ..., N}

1For the BART model, the start token ID for the decoder
is [CLS], while for the mT5 model, it is [PAD].
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and j ̸= i).

(b) The above 2N samples are passed through
the encoder to obtain 2N embeddings that are
denoted as (e1, e2, .., eN ; e+1 , e

+
2 , ..., e

+
N ).

(c) The 2N embeddings are used to compute the
contrastive learning loss, which is included
as part of the loss for this mini-batch. Let τ
denote the temperature hyper-parameter and
sim(e1, e2) denote the cosine similarity. Then
the contrastive learning loss, denoted as Lcl

is:

Lcl = −
N∑

i=1

log
esim(ei,e

+
i )/τ

∑N
j=1 e

sim(ei,e
+
j )/τ

The training data for the Event Reformulation
stage consists of pairs <headline, event> that are
sampled from user-click logs. Specifically, we em-
ploy two methods to construct the target event: re-
garding the user query as the target event and ex-
tracting the event from the headline using the LTP
toolkit. To ensure that the constructed events are
qualified as the target for the generation model, we
further filter out pairs that do not meet our stan-
dards for loyalty, integrity, and cleanness through
expert annotation.

2.3 Semantic Retrieval

In this step, we use a dual-tower semantic model
based on contrastive learning to retrieve highly sat-
isfying events for a given query. The work of Xiong
et al. (2021) points out that the dominance of un-
informative negative samples leads to a bottleneck
in the recall system, therefore, we employ a novel
two-stage training paradigm.

For a given query, the positive samples are events
obtained from the reformulated events of its clicked
headlines. Then we use features, such as Jaccard
Distance (Jaccard, 1901), BERTScore (Zhang et al.,
2020b), etc., to only keep relevant pairs as training
samples. In the first stage, we use these positive
samples with shuffled negative ones to finetune a
naive dual-tower retrieval model and obtain the en-
coder. The weights of the model are initialized
using the parameters of RoBERTa. After finetun-
ing, we build an event vector library with more than
4 million entries using this encoder. For a given
query vector, based on Faiss (Johnson et al., 2019),
the top-K events are recalled according to the co-
sine similarity. Events located at the upper and

lower thresholds of the threshold are regarded as
hard neg samples, where the bounds are pre-defined
by distribution statistics. In the second stage, we
replace the randomly shuffled negative events with
hard negative events and retrain the model initial-
ized with the encoder obtained from the first stage.
This results in the final retrieval model.

2.4 Online Ranking

Actually, selecting the optimal expansion re-
quires considering multiple factors, such as rel-
evance, event popularity, and timeliness. There-
fore, we use the classic light-weight sorting model
GBDT (Friedman, 2001), which is compatible with
the interpretation of online features. We incorpo-
rate three types of features to build the model:
query-side, event-side, and interaction. Query-
side features encompass query domain classifica-
tion, entity recognition, word segmentation, and
word weighting, among others, generated by exist-
ing online operators. Event-side features involve
event found time and event popularity (the size
of the cluster to which an event belongs). The
interaction features include semantic similarity,
BM25 (Robertson and Zaragoza, 2009), and en-
tity matching between the query and event.

We describe the method of collecting training
samples. For each query, we input the events
obtained from the previous stage into the online
search engine to obtain the search results pages.
Then, we select the page that best satisfies the event
intent of the query through expert annotation, and
its corresponding event is labeled as a positive sam-
ple for the query, while the other events are labeled
as negative samples. We obtain 50,000 samples,
which are used to train the GBDT model for infer-
ring the best query expansion.

3 System Architecture

In this section, we describe our baseline and EQE
architecture in detail.

3.1 Baseline Approach

We first take a glance at our QE baseline, which
is a query graph analysis framework. We devise a
Query-Document click graph G based on the click
propagation algorithm (Jiang et al., 2016). In or-
der to prioritize time-sensitive queries, we limit
our analysis to click-pairs from news websites that
occurred within a 3-day window. To mitigate the
risk of irrelevant results, we integrate BM25 score
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to the adjacency matrix of the graph, denoted as
C where each entry Ci,j is the weight of the edge
between query qi and document dj , specifically
formulated as:

Ci,j =

{
α · BM25(qi, dj) + 1, with edge
0, no edge

(1)

where α (set to 0.2) is a smoothing coefficient.
Representations of queries and documents are

iteratively updated according to Eq. (2) and Eq. (3),
respectively.

Q
(n)
i =

1∥∥∥
∑|Doc|

j Ci,j ·D(n−1)
j

∥∥∥
2

|Doc|∑

j=1

Ci,j ·D(n−1)
j (2)

D
(n)
j =

1∥∥∥
∑|Query|

i=1 Ci,j ·Q(n)
i

∥∥∥
2

|Query|∑

i=1

Ci,j ·Q(n)
i (3)

where Q
(n)
i and D

(n)
i are the representations of

qi and di at the n-th iteration respectively. After
the n-th iteration, we perform clustering on Q

(n)
i

to obtain the query clusters. For each cluster, we
select the most frequent query as the expansion of
other queries.

3.2 EQE System
Figure 2 illustrates the EQE system, which can be
divided into two parts: offline and online. The
offline system sequentially processes streaming
data from the internet, performing event collec-
tion, event reformulation, and Faiss indexing for
fast response. These steps can be processed in par-
allel. In the online part, when a query arrives, a
GBDT ranking model selects the top-1 candidate
as the query expansion based on rich features.

Furthermore, a rapidly updated caching system
stores pairs of <query, top-1 expansion> to in-
tercept requests to meet the time-consuming de-
mands. Upon receiving a new query request, the
system first seeks a pre-prepared QE in the cache.
If not found, the system initiates further retrieval
and ranking modules to obtain the QE. This QE is
then returned to the main search system, while the
<query, expansion> pair is written into the cache
for any subsequent identical query requests. On the
other hand, if a match is found, the cached result
is immediately returned to the main search sys-
tem. Concurrently, the caching system undergoes
an asynchronous update in preparation for future
requests. The implementation of an asynchronous
execution pipeline does not boost the response de-
lay of the mainstream search process. Therefore,
the response time of the popular query is mainly

Methods Recall@100 Recall@150 Recall@200

Baseline 0.41 0.47 0.58
EQE 0.58 0.65 0.74
Improve + 41.46% + 38.29% + 27.58%

Table 1: Offline performance comparison.

consumed by querying the caching system. Only
the stages of retrieval and ranking executed for in-
frequent queries lead to an increase in the response
time of the search engine.

Finally, EQE covers nearly 50% of online traf-
fic, while the other half, such as those requiring
explicit knowledge, has already been addressed by
other intent understanding modules, is therefore
not considered within this scope. Online data in-
dicates that the query expansion system elevates
search latency by only 10 ms, evincing the efficacy
of the proposed module.

4 Experiments

We conduct a series of comprehensive evaluations,
both in offline and online environments, incorpo-
rating quantitative and qualitative aspects, to prove
the advantages of EQE.

4.1 End-to-end evaluation

Firstly, we present the results of the implementation
of the EQE system online, taking into account both
offline and online metrics.
Offline Evaluation. We measure the offline perfor-
mance of EQE using Recall@K metric. As illus-
trated in Eq. (4), given a query Q, the clicked doc-
uments by users are denoted as T = {t1, . . . , tN},
which are regarded as as the target. The top-K doc-
uments set recalled by the QE module is denoted
as I = {i1, . . . , ik}. Recall@K is defined as:

Recall@K =

∑K
i=1 ii ∈ T

N
(4)

We first collect user click-log over a certain period
of time, where documents are retrieved by original
queries without the influence of QE. Specifically,
in our scenario, we collect news, videos, and user-
generated content (UGC). Meanwhile, we record
documents retrieved by both expansions produced
by EQE and the baseline approach. After 7 days
of accumulation, a total of 850,000 valid online
requests are collected. As shown in Table 1, after
evaluating Recall@K at different thresholds, it
can be seen that EQE significantly surpasses the
online baseline.
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∆GSB CTR PCTR UCTR

EQE +12.5% +6.64% +6.23% +5.03%

Table 2: Online A/B test of EQE implemented.

Online Evaluation. We construct a 30-day A/B
experiment with 1% of online traffic to gather feed-
back from millions of users and study the online
performance of the EQE compared to the strong
baseline described in Section 3.1. QEs derived
from both frameworks are utilized in downstream
tasks (document retrieval and sorting). For on-
line evaluation, we are mainly concerned about
the business metrics that impact user experience,
such as ∆GSB (Zou et al., 2021), CTR (Rangadu-
rai et al., 2022), PCTR and UCTR (Qin et al., 2022).
As shown in Table 2, EQE outperforms the base-
line and gains improvements of 6.44%, 6.23% and
5.03% on CTR, PCTR and UCTR, respectively,
indicating its SOTA performance.

4.2 Performance of Event Collection

We choose the intersection of “Hot Search List”
from various platforms as our evaluation set. This
decision serves two purposes: firstly, it can elim-
inate unfair comparisons due to platform-specific
content biases; secondly, these events are highly
representative in the search domain, as users con-
sistently demonstrate in them and desire to retrieve
relevant information swiftly. We employ two an-
notation experts to assist in the evaluation process,
which involved: 1) Collecting these events from
different platforms (such as Baidu and Weibo) to
find the earliest time they appeared respectively.
Admittedly, since we cannot accurately determine
the initial creation time of these events on other
platforms, we resort to the first appearance time
on the “Hot Search List” as an approximation; 2)
Identifying the time when the first publish emerged
on the Internet; 3) Recording events discovery cov-
erage rate at several time points.

Figure 4 illustrates the average coverage of
Baidu, Weibo, and EQE at different time points
after “Hot Search List” events occurred. The cov-
erage of each system is recorded at time points
of 1, 2, 5, 10, 15, and 20 minutes. As shown, at
the 5-minute time point, EQE discovers more than
10% of the events in advance compared to the other
systems.

Figure 4: The x-axis represents the time points (in min-
utes) after the earliest occurrence of events on the in-
ternet, while the y-axis represents the coverage rate of
events discovery for each system.

Models Rouge-L BLEU BERTScore

BART (vanilla) 0.8391 0.7692 0.9266
BART + CL 0.8406 0.7724 0.9278
BART + PG 0.8458 0.7777 0.9294
BART + CL + PG 0.8480 0.7822 0.9312

mT5 (vanilla) 0.8453 0.7781 0.9297
mT5 + CL 0.8489 0.7833 0.9315
mT5 + PG 0.8511 0.7857 0.9322
mT5 + CL + PG 0.8533 0.7897 0.9336

Table 3: Automated evaluation of ablation experiments.
CL and PG are abbreviations for contrastive learning
and prompt guidance, respectively.

4.3 Performance of Event Reformulation

We evaluate the performance of the proposed gen-
eration model by computing automated metrics.
We disclose an annotated test dataset, which is
called Title2EventPhrase. Production procedures
and analysis of Title2EventPhrase are introduced
in Appendix B and C. We conduct ablation exper-
iments to measure the effect of the prompt and
contrastive learning modules. Furthermore, to ver-
ify the universality of these two modules, we uti-
lize BART (Lewis et al., 2020) and mT5 (Xue
et al., 2021) as the backbone networks, respec-
tively. 2 Experiments are measured with the
ROUGE (Lin, 2004), BLEU (Papineni et al., 2002)
and BERTScore metrics. As shown in Table 3, our
proposed components significantly improved the
generation performance.

4.4 Performance of Semantic Retrieval

In this section, we evaluate the effectiveness of
our proposed semantic retrieval model against the

2We use a popular version of the Chinese BART model
available at https://huggingface.co/fnlp/bart-large-chinese,
and the base version of mT5 available at https://huggingface.
co/google/mt5-base. It is worth noting that the number of
transformer layers in both models is consistent.
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Models Recall@10 MRR@10 AUC

RoBERTa (vanilla) 0.74 0.43 0.80
RoBERTa + CL 0.75 0.45 0.82
RoBERTa + CL + 2T 0.80 0.51 0.87

Table 4: Evaluation of semantic models. CL and 2T
are abbreviations for contrastive learning and two-stage
training with hard neg samples, respectively.

baseline by employing three definitive performance
metrics: standard Recall@K (Jegou et al., 2010),
MRR@K (Craswell, 2009) and AUC (Fawcett,
2006).

We construct a testing dataset with a similar
method to obtain <query, event> pairs as the train-
ing dataset mentioned in Section 2.3, with rele-
vance labels annotated by experts. We sample
them at different time periods to ensure training
and testing datasets have the same distribution but
are non-overlapping. Table 4 shows the advan-
tages of our training scheme over other baseline
models. In addition, we also visualize the results
of a two-dimensional t-SNE (Van der Maaten and
Hinton, 2008) graph on the embedding of 100,000
queries, further demonstrating the effectiveness of
our proposed method in addressing the problem
of representation degradation. For more details,
please refer to Appendix D and Figure 7.

5 Related Work

Query understanding (QU) is a fundamental
task of information retrieval (IR), which aims
to help reformulate query, predict query intent,
and ultimately improve the document relevance
modeling (Zhang et al., 2020a). As an essential
method for QU, query expansion (QE) involves the
addition of relevant terms or specific information
to a query to clarify intention and enhance retrieval
performance (Rosin et al., 2021). In recent
years, most QE methods have been based on word
embedding techniques (Srinivasan et al., 2022;
Padaki et al., 2020; Azad and Deepak, 2019; Kuzi
et al., 2016; Zamani and Croft, 2016), which select
semantically related terms as expansions. Usually,
word embeddings are learned in two ways, one is
based on the semantic vector of terms and the other
is based on retrieval relevance (Diaz et al., 2016;
Zamani and Croft, 2017). Meanwhile, external data
sources, such as Wikipedia and WordNet, have also
been utilized for QE (Azad and Deepak, 2019).

However, these conventional QE methods
mainly rely on mining search logs or pre-built ex-

pansion libraries, which leads to slow update rates
in time-sensitive scenarios. On the other hand, new
occurring events in real time can meet the timeli-
ness requirements well, and mining QE from them
is a promising research direction. Recently Deng
et al. (2022) construct a large-scale dataset aiming
at extracting event arguments, like subject, pred-
icate and object, from news headlines. However,
structured outputs from extractive models (Lu et al.,
2022; Gao et al., 2022) might not be fully utilized
by the retrieval and ranking modules. We thus
turn to generative models for event reformation.
Normalized events serve as crucial signals for time-
sensitive query expansion, which makes the largest
contribution to our work.

6 Conclusion

This paper presents our solution for large-scale
event-centric query expansion, called EQE, which
is able to efficiently capture query intent for ongo-
ing events and help our search engine to retrieve
more event-related results. Advanced techniques
are involved in each stage of EQE to improve per-
formance. Offline experiments and online A/B
tests verify the effectiveness of EQE. We have de-
ployed the system in Tencent QQ Browser Search
to serve hundreds of millions of users. Meanwhile,
we share the design and deployment scheme.
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A Characteristics of News Headlines

News headlines, designed to catch the reader’s at-
tention and highlight the editor’s perspective, may
contain redundant information beyond the event
itself. In addition, they often use irregular grammar
for the sake of memorability, and some words re-
quire extensive knowledge to comprehend. We pro-
vided several examples in Figure 5, which clearly
demonstrate the necessity of using generation mod-
els to reformulate them before using them as query
expansion.

B Title2EventPhrase Construction

Data Collection. We collect a broad range of Chi-
nese web pages from January to March 2022, using
web crawler logs from Tencent QQ Browser Search,
and choose a reliable business tool to identify web
pages that mention events (primarily from news
websites). Following this, we extract the titles of
the chosen web pages and automatically label them
with our predefined topics. Any titles that contain
toxic content are removed. To ensure a diverse
range of events, we conduct data sampling every
ten days during the crawling period. This reduces
the frequency of events that belong to the most
commonly occurring topics, resulting in a more
balanced distribution of topics. In total, we col-
lected over 100,000 instances.
Annotation Standard. We summarize some es-
sential parts of our annotation criteria. Our goal is
to obtain clear and concise event descriptions from
the titles and to extract the most chief (core) events
from titles that contain multiple events. To achieve
this, we have outlined some important specifica-
tions below:

1) Our definition of an event is a real-world be-
havior or change in state. It is worth noting that
statements like policy notices or subjective opin-
ions are not considered events. Furthermore, if
a title is unclear or contains multiple unrelated
events (e.g. news roundup), it should be flagged as
“invalid” by annotators.

2) We have specified some rules to clarify
the labeling of event phrases: a) definite (non-
interrogative), fluent (good readability) description
of the event in the title; b) consistent with the fact
described in the title; c) if there is a progressive
relationship between multiple events in the title,
they need to be included to ensure the integrity of
the information; d) quantifiers, gerunds, and com-
plements need to be removed if they do not affect

the understanding of the event, otherwise should
be retained.
Crowdsourced Annotation. We cooperate with
crowdsourcing companies to hire human annota-
tors. After multi-rounds of training in three weeks,
27 annotators are selected. We pay them ￥0.3
per instance. Meanwhile, four experts participated
in two rounds of annotation checking for quality
control. For each instance, a human annotator is
asked to write the core event phase independently.
To reduce the annotation difficulty, we provide a
reference output along with the raw title. In the
beginning, the reference output is mined from the
query in click-log. After 10,000 labeled instances
are collected, we train a better BART model for
the rest of the annotation process. Also, we allow
the annotators to refer to search engines to acquire
domain knowledge. The crowd-sourced annotation
is conducted in batches with two rounds of quality
checking before being integrated into the final ver-
sion of our dataset.
Two rounds Checking. Each time the crowd-
sourced annotation of a batch is completed, it is
sent to four experts to check whether they meet
the requirements of our annotation standard. In-
stances that do not pass the quality check will be
sent back for revision, attached with the specific
reasons for rejection. This process repeats until
the acceptance rate reaches 90%. Then, the current
batch is sent to the authors for dual-check. The
authors will randomly check 30% of the instances
and send unqualified instances back to the experts
along with the reasons for rejection. Slight adjust-
ments on annotation standards also take place in
this phase. This process repeats until the accep-
tance rate reaches 95%.

C Title2EventPhrase Analysis

Overview. Table 5 shows the overview of the Ti-
tle2EventPhrase dataset, including data size, topic
numbers, and the average length of titles and
events.

Attribute Value

Data Size 41351
Number of Topics 25
Avg. Len. of Title 25.85
Avg. Len. of Event 16.68

Table 5: The overall statistics of Title2EventPhrase.
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Challenges Examples Description

Noise

冰雪之上的新活力!长春冰雪新天地跨年演唱会拉开
帷幕
(New vitality above ice and snow! Changchun Ice and Snow
Xintiandi New Year's Eve Concert kicks off.)

The first sentence provides a commentary on the event, aimed at
capturing the reader's interest, but it does not directly convey the
essential details of the event.

Irregular Grammar

对标宏光 MINI EV!售价2.99万起，奇瑞QQ冰淇淋
正式上市
(Benchmarking Against Wuling Hongguang Mini EV! Priced
From ￥29,900, Chery QQ Icecream Officially Launched.)

The subject of the predicate "对标 (Benchmarking Against)" ,
is omitted since it appears at the next sentence.

Lack of word knowledge 保尔特17号洞冲刺打鸟赶完赛
(Poulter Rushes to Score Birdie, Finishing the Match on 17.)

"打鸟(Score Birdie)" is a term in golf but can be literally
interpreted as “hit bird” in Chinese. Domain knowledge is needed
to properly identify the predicate.

Figure 5: Challenges and examples of news headlines.

Filter Type Examples Description

Non-event Headline iphone13为啥好，请看介绍
 (Why is iPhone 13 good? Please see the introduction.)

This sentence does not contain event-related information.

Missing Event
Components

最新消息，已全部删除
(Latest news, all deleted.)

This sentence lacks the subject of the event.

Numerous Events

早报|起亚高管怒斥比亚迪；居民存款破纪
录；驾校教练撞脸杨洋走红...
(Early News: Kia Exec Heavily Criticizes BYD; Record-
breaking Bank Savings from Residents; Driving School
Coach Goes Viral After Resembling Yang Yang...)

This sentence contains three different events, all of which
pose a great challenge to downstream tasks.

Irregular Syntax 黎明觉醒突然
(Dawn awakens suddenly)

This sentence is incomplete, lacking a verb and an object.

Interrogative Sentence
孩子近视危害大，如何才能有效预防？
(Near-sightedness in children is a major hazard. How can it
be effectively prevented?)

The sentence is a question and does not contain any
objective.

Figure 6: Filter rules in coarse filter stage.

Topic Distribution. Table 6 lists 25 topics with
their respective numbers and proportions. The dis-
tribution of topics in the dataset is obviously long-
tailed. The largest number of topics is Society,
whose proportion exceeds 31%, while 11 topics
account for less than 1%.
Challenge Distribution. In this section, We an-
alyze the scale of observed challenges described
in Figure 5. We randomly select 1,000 headlines
and manually annotate which challenge type it be-
longs to. The annotation result shows that 27%
of sampled headlines have redundant expressions,
12% of them suffer from irregular grammar issues,
and 11% of them require domain knowledge for
sentence understanding.

D Event Representation Analysis

As mentioned in Section 2.3, our baseline model
suffers from the issue of representation space degra-
dation, leading to poor generation and retrieval per-
formance.

In Figure 7, we present 2-dimensional t-SNE vi-

Figure 7: The t-SNE visualization of event representa-
tions from encoders without and with contrastive learn-
ing.

sualizations of the representation space obtained
from queries without and with contrastive learning.
As demonstrated in the left part of the figure, with-
out contrastive learning, the model encodes queries
into a smaller space with more collapses. As a
comparison, the addition of contrastive learning ex-
pands the embedding space with better alignment
and uniformity.
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Topic Count Proportion

社会 (Society) 12985 31.40%
财经 (Finance) 5877 14.21%
体育 (Sports) 4504 10.89%
时事 (Current Events) 4078 9.86%
科技 (Technology) 2698 6.52%
娱乐 (Entertainment) 1903 4.60%
教育 (Education) 1415 3.42%
天气 (Weather) 1307 3.16%
汽车 (Cars) 1255 3.03%
军事 (Military) 738 1.78%
房产 (Real Estate) 614 1.48%
旅游 (Travel) 597 1.44%
三农 (Agriculture) 546 1.32%
文化 (Culture) 435 1.05%
游戏 (Games) 365 0.88%
综艺 (Variety Shows) 363 0.88%
电影 (Movies) 324 0.78%
健康 (Health) 314 0.76%
电视剧 (TV Series) 210 0.51%
历史 (History) 202 0.49%
科学 (Science) 150 0.36%
音乐 (Music) 150 0.36%
生活 (Life) 116 0.28%
美食 (Food) 103 0.25%
情感 (Sentiment) 102 0.25%

Total 41351 100%

Table 6: The topics in Title2EventPhrase with their
numbers and proportions of instances.

E Event Filter Rules

In this stage, we introduce the filtering criteria for
headlines in the coarse filter phase. Five types
of headlines will be excluded, namely: non-event
headlines, missing important components related
to the event, containing multiple events, irregular
syntax, and interrogative sentences. We provide
examples of each of these five types in Figure 6.
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Abstract

As e-commerce platforms develop different
business lines, a special but challenging prod-
uct categorization scenario emerges, where
there are multiple domain-specific category
taxonomies and each of them evolves dynam-
ically over time. In order to unify the cate-
gorization process and ensure efficiency, we
propose a two-stage taxonomy-agnostic frame-
work that relies solely on calculating the se-
mantic relatedness between product titles and
category names in the vector space. To further
enhance domain transferability and better ex-
ploit cross-domain data, we design two plug-
in modules: a heuristic mapping scorer and a
pretrained contrastive ranking module with the
help of “meta concepts”, which represent key-
word knowledge shared across domains. Com-
prehensive offline experiments show that our
method outperforms strong baselines on three
dynamic multi-domain product categorization
(DMPC) tasks, and online experiments recon-
firm its efficacy with a 5% increase on sea-
sonal purchase revenue. Related datasets are
released1.

1 Introduction

Product categorization (Ding et al., 2002) is a spe-
cialized text classification task that classifies prod-
uct titles or descriptions into a pre-defined taxon-
omy of categories. As businesses expand, major
e-commerce platforms (e.g., Amazon and Alibaba)
are encountering increasingly complex scenarios,
where there are multiple domain-specific category
taxonomies and each of them evolves dynamically

∗ Equal contribution.
†† Corresponding author.

1Datasets associated with this paper are released at https:
//github.com/ze-lin/TaLR.

over time. We define it as Dynamic Multi-Domain
Product Categorization (DMPC), which simul-
taneously considers the following multi-domain
taxonomies and taxonomy evolving challenges.

In real-world businesses, e-commerce platforms
usually maintain multiple business lines with rel-
atively independent taxonomies. These business
lines are catering for different customer demands
or specific domain applications, for example, one
provides express delivery while another specializes
in low-price bargains. Multiple business domains
correspond to different category taxonomy struc-
tures, with various depths and distinct literal expres-
sions of category names. Conventional industry ap-
proaches train separate classifiers on each domain,
which under-utilize the cross-domain data and their
shared knowledge while raising the expenses of
maintenance. Meanwhile, with the expansion and
reorganization of businesses, each category taxon-
omy keeps evolving as well, where old categories
might be deleted or integrated and new categories
are possibly added. Conventional multi-class clas-
sifiers need to be re-trained every time taxonomy
changes, which disrupts the operation and further
diminishes the maintenance efficiency.

To mitigate taxonomy evolving issues, intu-
itively, we reformulate the canonical text classifica-
tion problem as a text relevance matching problem.
Moreover, to ensure both accuracy and online effi-
ciency, we propose a two-stage Taxonomy-agnostic
Label Retrieval (TaLR) framework (see Figure 1)
capturing semantic similarity between a product
title and its corresponding category names in the
vector space, where candidate categories are first
retrieved and then reranked for the final predic-
tion. This reformulation is especially beneficial for
evolving and newly added (zero-shot) categories as

476

https://github.com/ze-lin/TaLR
https://github.com/ze-lin/TaLR


textual semantics are incorporated.
To leverage cross-domain data in multi-domain

taxonomies challenge, we devise two plug-in mod-
ules in both stages to enhance TaLR’s domain
transferability. These modules are centralized with
“meta concepts” that appear in the product titles,
which represent fine-grained keyword knowledge
shared across domains (Appendix B). As is shown
in Figure 1, in the retrieval stage, besides the dense
retrieval based on vector similarity (dense scorer),
the statistical co-occurrence probability between
meta concepts and category labels are exploited
as well (mapping scorer) . In the reranking stage,
meta concepts are incorporated with category la-
bels as supervision signals for the contrastive pre-
training of the scoring model (matching scorer).
While the mapping scorer complements the super-
ficial semantic dense retrieval with cross-domain
commonsense knowledge, contrastive pretraining
directly optimizes the vector space improving inter-
domain alignment and uniformity. Details are given
in Section 2.2 and Section 2.4.

In summary, our contributions are: (1) For the
first time, we address the DMPC problem and
release the corresponding multi-domain datasets in
Chinese. (2) We propose a unified TaLR framework
equipped with two well-designed plug-in modules
empowered with meta concepts, which is robust
and efficient against the two challenges in DMPC
problem. (3) Offline experiments on our annotated
real-world DMPC datasets show TaLR’s ability
to effectively transfer knowledge across domains
and generalize to new domains. The unified TaLR
outperforms three separately-trained SOTA classi-
fiers by 1.65% on overall accuracy and maintains
satisfactory accuracy in taxonomy evolving condi-
tions. Online experiments reaffirm its efficacy with
a 5% increase in seasonal purchase revenue.

2 Proposed Framework

∀i ∈ [1, n] domains, given a taxonomy Gi with
depth of di and m leaf nodes, the path from root
to leaf node forms the text which is regarded as
hierarchical category label y(j)i (j ∈ [1,m]). For an
input product title Xi along with its meta concept
labels {λk}, our task is to output the correct cat-
egory label it belongs to. Note that only one leaf
category will be the correct answer. Detailed task
formulation refers to Appendix A.

Our TaLR framework is structured into two
stages: Retrieval and Reranking, as illustrated in

Figure 1. We will zoom into each component of
this framework.

2.1 Dense Scorer
We first train a dual-encoder to represent both cate-
gories and product titles in the vector space.

Negative sampling In the original text classifica-
tion problem, each product title Xi has exactly one
positive category label yi. However in our reformu-
lation, text relevance matching models need nega-
tive category labels during training, otherwise they
would not succesfully converge. For each (Xi, yi)
pair, we prepare to construct the training examples
S from multiple taxonomies by sampling (N − 1)
negative categories. Instead of randomly chosen,
“hard” negative examples are more informative for
better convergence. Inspired by teacher-student
paradigm (Hinton et al., 2015), we adopt a teacher
classifier-based sampling strategy to sample strong
negative categories for dual-encoder learning.

For each training dataset Si of taxonomy Gi, we
split it in k-fold manner, then take turns to train
k BERT classifiers on every k−1

k data , with the
remain 1

k data as the development set. The m-class
classifiers are optimized with the typical m-class
cross-entropy loss. The k classifiers would infer-
ence (N−1) most possible but not correct category
labels concurrently in their corresponding develop-
ment sets, and their results with ground truth pos-
itive labels constitutes the point-wise training set
for the following dual-encoder training.

Dual-encoder training We adopt a siamese net-
work architecture (Reimers and Gurevych, 2019)
where the encoder respectively extracts the fixed-
sized embeddings of product titles Xi and category
names ŷi which are denoted as ux and vy . To
better align the embedding of ux and vy, we use
Circle Loss (Sun et al., 2020) which allows each
similarity score to optimize at its own pace. We
simplify it as:

L = log

(
1 +

∑

S

eα(cos(u
+
x ,v+

y )−cos(u−
x ,v−

y ))

)
,

(1)
where α is the hyper-parameter, and +,− denotes
the positive and negative samples in S respectively.
We also compare this loss function with other alter-
natives in Appendix D.1.

Candidates retrieval We can quickly derive rele-
vant category label embeddings given an incoming
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Figure 1: An overview of TaLR framework, containing Retrieval and Reranking stages. We show an example from
our released dataset, in which the input is a product title with its meta concepts, and the output is its corresponding
hierarchical category. In Retrieval stage, two lists of category candidates are sampled from mapping scorer and
dense scorer. In the Reranking stage, merged category candidates are ranked by a matching scorer with contrastive
information. Dark dashes refer to plug-in modules.

product title embedding, with one-vs-all similarity
measurement like cosine-similarity implemented
by Approximate Nearest Neighbor (ANN) tech-
niques targeting time efficiency. Based on this, we
can readily collect top-k candidate list Cvec.

2.2 Mapping Scorer
Dense scorer usually prioritizes semantic related-
ness of literal expressions, neglecting the common-
sense co-occurrence probability that lies within
cross-domain training data. For example, “Sunrise
Roses 500g” is often recognized as [Flower] by
semantic matching algorithms, however, it is actu-
ally a variety of [Grape]. Therefore we introduce a
mapping scorer in Retrieval stage capturing such
commonsense knowledge to complement the above
dense-retrieved candidates.

Mapping algorithm The shared meta concept
setM is constructed by hybrid NER-related tech-
niques. Details are in Appendix B. We can re-
gard “meta concept” as a kind of keyword knowl-
edge because they usually contain very concrete
and accurate information. In our released datasets,
one product title X is tagged with one or more
meta concepts Λ = {λ1, λ2, ...λk} fromM. For
example, “Haagen-Dazs Red Wine Flavor Ice
Cream” is tagged with ⟨RedWine⟩, ⟨Icecream⟩,
⟨HaagenDazs⟩ as meta concepts.

Given product title X and a category label ŷ,
our heuristic strategy establishes X → ŷ mapping
as conditional co-occurrence probability P (ŷ|X).
First, we model this conditional probability for
each category ŷ as:

P (ŷ|X) = P (ŷ|λ1, λ2, ...λk)

= max
1≤i≤k

P (ŷ|λi).
(2)

Here we aggregate P (ŷ|λ1, λ2, ...λk) with the max-

imum value among multiple λi referring to the
same ŷ. Each P (ŷ|λi) is collected from training
data distributions:

P (ŷ|λi) =
P (ŷ, λi)

P (λi)
=

ν(ŷ, λi)

ν(λi)
, (3)

where ν denotes the frequency in training data.
Then, we collect candidate list Crule by empirically
setting a threshold of P (ŷ|X) > 0.5 to ensure both
retrieval quantity and quality.

Candidates merging When retrieved candidates
from the dense scorer and mapping scorer are pre-
pared, we need to combine the two lists of candi-
dates. Our concept-first strategy prioritizes candi-
dates from Crule. It puts at most 10 top candidates
(usually less than 10) from Crule into Cunion, then
keeps filling it with top candidates from Cvec until
its size reaches 10.

2.3 Matching Scorer

To further measure the relatedness of product titles
and category names with mutual interactions, we
train a matching scorer in Reranking stage. During
training, given a product title X and its retrieved
candidates Cunion = {c1, c2, ...cl}, we concate-
nate tokenized sequences of X and each of these
ci ∈ Cunion with a [SEP] token as the input to
BERT-based model. The ground truth label is 1 if ci
is the correct candidate otherwise 0. Optimization
is followed with binary cross-entropy loss. Dur-
ing inference, the model gives similarity scores for
each (X , ci) pair, and the candidate with the highest
similarity score would be our predicted category.

2.4 Contrastive Pretraining

For multi-domain taxonomies, category classes
vary from one taxonomy to another. Despite the
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assorted expressions of category classes among
different domain taxonomies, we find their fine-
grained concepts of products seldom shift. While
previous retrieval stage pursues the recall of candi-
dates and focuses less on class discrimination, the
cross-encoder in Reranking stage possibly suffers
from indistinguishable categories. Inspired by the
supervised derivative of contrastive learning (Wang
et al., 2021), we restrict the formation of positive
pairs ensuring they not only share the same cate-
gory class with X but also have at least one meta
concept in common with X , otherwise they would
be considered negative. This setting is tailored for
the multi-domain taxonomies challenge pursu-
ing cross-domain alignment and uniformity, where
inter-concept semantics are tied closer and intra-
concept ones are further distinguished.

Given a product title X with label y and tagged
meta concept set Λ, we encode X as vector u and
group encoded product titles as positive vector sam-
ples {vy,Λ1

1 ,vy,Λ2
2 , ...,vy,ΛD

D }, which are labeled
with the same y and share an overlapped concept
set Λd with Λ. We use BERT as the encoder back-
bone and tune its parameters with group contrast
loss:

LGC = − 1

D

D∑

d=1

log
exp(u · vy,Λd

d /τ)

Pos+Neg
.

Pos =
D∑

d=1

exp(u · vy,Λd
d /τ),

Neg =
D∑

y′,Λ′
exp(u · vy′,Λ′

/τ),

(4)

where y′,Λ′ denotes samples with either different
label y′ with y or non-overlapping meta concept
set Λ′ with Λ. The BERT model after contrastive
pretraining can be used in matching scorer during
Reranking stage in Section 2.3.

3 Dynamic Multi-Domain Datasets

3.1 Static Multi-domain Datasets
We select 3 business lines from our e-commerce
platform: QuickDelivery (QD, targeting fast de-
livery), BargainHunters (BH, targeting low price),
FreshGrocery (FG, targeting fresh vegetables).
These data instances are collected from the real-
world business, where the product titles are mostly
assigned by sellers from the platform and the cat-
egory labels stem from three pre-defined business
taxonomies. We recruit experienced annotators to

manually classify the products Xi into assorted cat-
egories yi, with 1% sampling to guarantee annota-
tion accuracy. Data groups with over 95% accuracy
in quality checking are used in our final datasets.
Meanwhile, Xi is tagged with concepts {λk} fol-
lowing the Appendix B.

Table 1: Statistics for multi-domain datasets

Dataset # training # test # classes depth

QD 99k 11k 1987 3
BH 31k 5k 2632 4
FG 28k 3k 1065 4

1 # classes: the total distinct leaf nodes.
2 depth: the depth of categorical taxonomy tree.

Statistics of three datasets are listed in Table 1.
Each sample in the three datasets has exactly one
ground truth category. Varied class numbers and hi-
erarchy depths of different taxonomies pose bigger
challenges for multi-domain knowledge sharing.

3.2 Dynamic Test Set

To verify the generalizability of TaLR on zero-
shot scenarios, we further construct two taxon-
omy evolving derivatives of the QD test set. (ii)
QD-integrate: During a production business ad-
justment, 127 classes in the original taxonomy are
integrated or replaced by similar categories, which
affects 1371 samples in the original test set to form
this subset. (i) QD-divide: 22 category nodes from
the original QD taxonomy are divided into two or
more nodes. 495 samples in the original test set
suffer from this evolution.

3.3 Meta Concept Set

Beyond the category labels, each product title is
associated with a list of meta concepts from a set
M including over 30k entities covering the most
fine-grained concepts in product titles. The tagging
step X → {λ1, λ2, ...λk} is accomplished by an
industrial Label Tagging System that exploits het-
erogeneous approaches. Details are in Appendix B.

4 Experiments

In this section, we discuss experimental results un-
der static multi-domain settings and dynamic (tax-
onomy evolving & new taxonomy) conditions. A
brief comparison of time efficiency between TaLR
and simple Reranking is also included.
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4.1 Baselines

We implement several baseline methods based on
single-domain, multi-domain, and dynamic scenar-
ios. To ensure fair comparisons, we also experiment
concatenating product titles with meta concept text
as input for some competitive baselines. Note that
all the strong baselines are practicable in our online
production environment, and those with unbear-
able space or time complexity are not considered.
Works holding different assumptions (e.g. neces-
sitate multi-label or not support Chinese) with us
are not considered either. Finally, we deploy and
benchmark the following common baselines:

Flat Classifier TF-IDF&LR represents product
titles with TF-IDF weighted dense vectors, and
executes classification with Logistic Regression.
FastText (Bojanowski et al., 2017) is a common
baseline adopted in online product categorization
challenges. BERT classifier is used as the strong
baseline in both single-domain and multi-domain
(trained with multi-task learning) settings.

Hierarchical Classifier HMCN (Wehrmann
et al., 2018) and HiMatch (Chen et al., 2021)
leverage hierarchical information from taxonomy
to guide the classification process, and we use
BERT as a text encoder in both approaches. XR-
Linear and XR-Transformer are two derivatives
of PECOS (Yu et al., 2022) framework for ex-
treme classification, which achieve competitive
performance in most open product categorization
datasets.

4.2 Experimental Setup

We mix up training data from three datasets to train
the unified TaLR. We use accuracy score as the
evaluation metric to meet real-world business de-
mands. Accuracy mathematically equals to Micro-
F1 score in a single-label multi-class classification
problem. More details can be found in Appendix C.

4.3 Overall Results

The overall accuracy score is shown in Table 2.
Since traditional single-domain approaches cannot
tackle multi-domain taxonomies, we train sepa-
rate models on each business respectively. Among
methods targeting one static taxonomy, hierarchi-
cal classifiers generally perform better than flat
classifiers with the aid of taxonomy structure in-
formation. However, because these methods can
only handle one static taxonomy, they not only suf-
fer from efforts to maintain different models for

Table 2: The accuracy of baselines and our TaLR frame-
work with variants on static multi-domain datasets. The
best results are bolded, and the best baseline results
are starred. Overall accuracy is the weighted average
w.r.t respective test set size. MS: mapping scorer, CL:
contrastive learning.

Methods Overall QD BH FG

Separate models

TF-IDF&LR 69.51 69.93 68.23 69.95
FastText 74.62 74.01 71.68 80.82
BERT 83.49 84.82 79.93∗ 84.23
BERT+♠ 83.01 86.45 79.02 75.32
HMCN-F-BERT 82.14 83.72 77.09 84.25
HiMatch-BERT 84.08 86.12 77.38 84.19
HiMatch-BERT+♠ 83.75 87.26∗ 77.26 78.53
XR-Linear 76.57 75.27 77.91 78.95
XR-Transformer 84.58∗ 79.74 79.23 84.58∗

XR-Transformer+♠ 81.45 85.34 74.59 78.53

(a): TaLR 85.90 87.88 81.92 85.09

Unified model

BERT Multi-task 68.00 80.27 50.28 44.29
BERT Multi-task+♠ 67.79 81.37 49.77 39.83
(b): TaLR 86.23 88.16 82.48 85.25

TaLR ablation test

(c): (b) (-) CL 85.26 86.83 81.75 85.13
(d): (b) (-) MS 84.63 86.59 80.13 84.71
(e): (b) (-) CL&MS 82.82 83.85 79.15 84.71
(f): (b) (-) CL&MS +♠ 84.38 87.43 80.64 79.77

♠ concatenate concept text after product title
(-) ablate cretain modules

each domain but also fail to leverage multi-domain
data. While the multi-task BERT is able to train
and infer on three domains within one model, it
performs even worse than TF-IDF&LR on BH and
FG. One possible reason is that the multi-task ap-
proach relies heavily on the weighting of losses,
and if the task-specific training data distribution
varies significantly, one task might dominate the
joint distribution and constrain the optimization of
other tasks. Simply concatenating meta concepts
to titles does not always take effect, and this is
expected since concatenated tokens implicitly con-
tribute to the joint representation of one sentence
(e.g. self-attention in transformer), which proves
to be inferior to our explicit usage of statistical
mapping and contrastive grouping.

For our proposed framework TaLR, variant (a)
already outperforms other baselines in separate
model training paradigm, while TaLR (b) further
achieves even higher accuracy when jointly trained
on the mixed multi-domain data where the multi-
task BERT fails, verifying TaLR’s efficacy on
multi-domain taxonomies. We assume that the
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measurement of semantic relatedness is transfer-
able on either business domain, and their shared
knowledge could be integrated via contrastive pre-
training as well. Therefore, the unified training
helps improving the performance on each respec-
tive domain instead of conflicting each other as
BERT multi-task does.

From the ablation tests, we can observe the ef-
fectiveness of the two plug-in modules in our TaLR
framework from row (c) and (d), and the contribu-
tion of these two modules are orthogonal. Remov-
ing the mapping scorer in (d) drops the overall accu-
racy most, while removing contrastive pretraining
in (c) results in its inferior performance than (a) as
well. This indicates both modules are indispensable
for the enhancement of exploiting multi-domain
data. From (e)→(f), concatenating meta concepts
somehow improves the overall performance, but (f)
still loses to (b). This reaffirms our above assump-
tion that our usage of meta concepts is superior to
simple concatenation. To further analyze the effects
of the two plug-in modules, we conduct Case Study
in Appendix D.2.

4.4 Time Consumption

To meet online deployment requirement, the infer-
ence time consumption (seconds cost for each in-
stance) needs to be considered. We compare TaLR
with the vanilla model (single BERT cross-encoder)
on the three datasets in Figure 2. On the one hand,
the inference speed of TaLR is much faster (4 times
faster for FG and 10 times faster for BH) than
vanilla model owing to the Retrieval stage. On the
other hand, the time consumption per item of TaLR
increases almost linearly along with the number
of classes, while for vanilla model the overhead
grows more sharply, revealing the time efficiency
of TaLR when the class number scales up.
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Figure 2: Accuracy results and inference time consump-
tion when the number of classes grows.

4.5 Dynamic Test Set Experiment

In order to evaluate the ability of our framework
on taxonomy evolving challenge, we use TaLR
trained on the original multi-domain datasets to
directly infer on two dynamic test sets. The vanilla
BERT without any finetuning is a naive baseline
BERT-matching. The BERT fine-tuned with few-
shot new data (1%) is a strong baseline BERT-
few-shot. Here “before” denotes the subset from
the original test set and “after” denotes the subset
with the same product titles but evolved categories.
From the listed accuracy “before” and “after” tax-
onomy evolving in Table 3, we can conclude that
TaLR sustains satisfactory accuracy compared with
its strong counterpart trained with 1% extra data.

Table 3: The accuracy on two dynamic test sets. ∆ is
the change of accuracy after evolving. The best “after”
scores and least drop ∆ are bolded.

Methods QD−divide QD−integrate
Before After ∆ Before After ∆

BERT-matching 6.66 11.95 +5.29 13.39 2.23 -11.16
BERT-few-shot 90.51 43.54 -46.96 86.79 50.16 -36.53

TaLR 90.11 69.71 -20.40 85.20 81.48 -3.72

4.6 Extrapolating Results on New Taxonomy

Consider an extreme taxonomy evolving condition
when a new business line emerges, a robust model
is supposed to categorize incoming products based
on the brand-new taxonomy.

Table 4: The accuracy of TaLR on the new taxonomy.

Methods QD BH FG

BERT-matching 9.00 11.23 4.03
BERT-few-shot 43.29 35.19 29.80

TaLR 60.57 65.45 62.69
(-) contrastive 56.71 64.99 60.79
(-) mapping scorer 56.25 64.65 59.29

We deploy our experiments in a zero-shot man-
ner, where we take turns to train TaLR on either
two business data and test its performance on the
remaining business. TaLR still outperforms BERT-
few-shot. This shows TaLR’s preeminent transfer-
ability with the reformulation of textual semantic
matching, which helps improving user experience
in this cold-start scenario. Each component in the
ablation test verifies its effectiveness as well.
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4.7 Online Experiment

We conduct online experiments on one downstream
task where TaLR’s domain-independent category
recognition ability helps transfer user preferences
from other domains and contributes to a more accu-
rate recommendation. When TaLR is incorporated
in the recommendation system, customer seasonal
purchase revenue increases significantly over 5%.

5 Conclusion

To tackle DMPC problem, we propose a uni-
fied TaLR framework with two plug-in modules
empowered with cross-domain meta concepts.
With comprehensive experiments on real-world
DMPC datasets, results under both multi-domain
and taxonomy evolving conditions exhibit the trans-
ferability and maintenance efficiency of TaLR.
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A Dynamic Multi-Domain Problem

We clarify the DMPC problem as follows. Given
a set G of n relatively independent label taxonomies
at initial time t0

{G1, G2, G3, ..., Gn},

each of which correlates with a domain-specific
product categorization task. The taxonomy of prod-
uct categories Gi is tree-structured with depth di,
and it contains mi category leaf nodes:

{y(1)i , y
(2)
i , y

(3)
i , ..., y

(mi)
i } ⊆ Gi.

Part of the nodes is enrolling in a dynamic trending.
As time goes t>0, the category node y

(a)
i of a cer-

tain product might be divided into two categories
y
(a1)
i and y

(a2)
i or integrated with another cate-

gory y
(b)
i to form y

(ab)
i . The emergence of a new

category node y
(m+1)
i with corresponding product

titles is also possible. In addition, an emerging tax-
onomy Gn+1 may sprout when a new business is
cultivated.

A single product categorization task on taxon-
omy Gi (i = 1) is a traditional classification task,
in which the training data and test data are orga-
nized in tuples

S = {(X(1)
i , y

(1)
i ), ..., (X

(mi)
i , y

(mi)
i ), ...}.

Each Xi in S represents the title of one product and
yi is the corresponding class node in the categorical
taxonomy tree.

In DMPC problem, when i ≥ 2, to unify the
training data and the inference procedure cross Gi,
we reformulate classification as the matching be-
tween Xi and yi. While traditional classifiers re-
gard yi as meaningless label ordinals, we instead
treat them along the path of top-bottom taxonomy
nodes equivalently with the product title as free
text. In this reformulated text semantic similarity
matching task, the data samples are:

Si = {(X(1)
i , y

(1)
i , Y

(1)
1

), ...,

(X
(mi)
i , y

(mi)
i , Y

(mi)
1

), ...},

S = {S1,S2, ...,Si},

where Y1 ∈ {0, 1} is an indicator denoting whether
the text pair Xi and yi is matched (Y1 = 1) or not
(Y1 = 0).
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B Details of Meta Concept Set
Construction and Tagging

Meta concepts are fine-grained tags that have been
widely used in industrial knowledge graphs (e.g.
Amazon (Dong et al., 2020), Walmart (Xu et al.,
2020), Alibaba (Luo et al., 2020)). Details of meta
concept construction and tagging are listed below.
We will use “concept" instead of “meta concept”
for brevity.

B.1 Concept Set Construction
Concept set construction is conducted in a semi-
supervised manner. First, we use a domain-specific
named entity recognition (NER) model to mine
fine-grained entities from product titles. These en-
tities are complemented with queries from search
engine and cumulated knowledge from experts to
form the initial pool of concepts. Based on that, we
use a naive classifier to pick-up high-quality con-
cepts with high search frequency or broad product
coverage. Then, manual annotation is performed on
the remaining 20k entities, achieving 95% accuracy
in quality checking. Finally, we collect over 30k
concepts covering the most fine-grained knowledge
in product titles.

B.2 Concept Tagging
Concept tagging is comprised of two stages.

The first stage is concept recall. In order to find
candidate concepts for each product, we adopt three
approaches: NER, knowledge reduction and se-
mantic recall. First, seed candidates are found by
NER on product titles. Second, we extend seed
candidates with their neighbors in commonsense
knowledge graphs, such as synonyms and brand-
concept relations (some brands sell specific prod-
ucts). Third, for those products without seed candi-
dates, we use Sentence-BERT to retrieve concepts
by textual semantics. The low-quality concepts re-
called will be filtered in the next stage, i.e. concept
classification.

The second stage is concept classification. Based
on the candidates collected in the previos stage, we
train a binary classifier to filter out concepts which
attain low relevance score with product titles. The
classifier is fine-tuned with knowledge integration
which will be introduced in our successive work.

C Implementation Details

For fair comparisons, all the “BERT” abbreviations
mentioned in this work are Google BERT-base pre-

trained on Chinese corpus. For TF-IDF and Fast-
Text baselines, We use jieba 2 toolkit to generate
Chinese word segments and tune hyper-parameters
on each dataset respectively. BERT-related models
are initialized from the pretrained Google BERT-
base (Chinese) and tuned with 2e-5 learning rate,
512 batch size, 32 sequence length, except that
the cross-encoder BERT in Reranking stage ex-
tends the sequence length to 64. All BERT related
appoaches are trained 40 epochs while multi-task
baseline trained at most 120 epochs.

Table 5: Examples from the three Datasets

Product title Taxonomy path

QD

Towel gourd 1 pcs
& soy bean 150g

Vegetable→Mixed Product
→ Vegetables mixture

Concepts:{⟨soy bean⟩, ⟨towel gourd⟩}
BH

Fresh bamboo shoots
(dig from mountains)

Vegetable/Fruit→ Vegetable
→ Tubers→ Bamboo

Concepts:{⟨bamboo shoot⟩, ⟨native product⟩}
FG

Butter leaf lettuce 100g Fresh→ Vegetable→
Leaf→ Lettuce

Concepts:{⟨lettuce⟩, ⟨butter lettuce⟩}

D Experiment Analysis

D.1 Details of Dense Scorer

In Retrieval stage, it is encouraged to exploit the
potential candidates as accurately as possible, oth-
erwise the latter Reranking stage would never make
right predictions if the true label is not covered by
the retrieved candidates. Hence we use HR@k to
measure the retrieval performance.

We compare several alternatives of the loss func-
tion for Dense Scorer, specifically, different ap-
proaches for (ux,vy) similarity measurement. The
loss used in Eq. (1) is termed as Cosent loss3. Be-
sides this, one straightforward method is to com-
pute the cosine similarity between vector ux and
vy and optimize the model using vanilla binary
cross entropy loss.

δ = cos(ux,vy) =
< ux,vy >

||ux|| ||vy||
, (5)

2https://github.com/fxsjy/jieba
3This name is after https://kexue.fm/archives/8847
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Figure 3: The retrieval results of the vector-based unit
over different loss functions.

Lbce = −
∑

S

Y1 log(δ)+(1−Y1) log(1−δ), (6)

where Y1 is the binary class. For the sake of the
alignment between embedding ux and vy, we also
refer to the classification objective function in
SBERT (Reimers and Gurevych, 2019).

o = softmax(Wo(ux,vy, |ux − vy|)), (7)

where Wo ∈ R3l×2 is the weighting parameter to
project the concatenation of ux, vy and the element-
wise difference |ux − vy| to binary classes. l is the
dimension of embeddings. The second element in
vector o can be regarded as the probability whether
ux and vy are matched or not, hence we can adopt
the same binary cross entropy loss function in Eq.
(6) to optimize the model.

In Figure 3, as k goes on, the HR score increases,
and the model trained with Cosent loss is consis-
tently better than others, while the model trained
with SBERT loss performs unstably, sometimes
worse than Cosine loss. One explanation is that
comparing with Cosine loss and SBERT loss, the
Cosent loss focuses on the positive-versus-negative
pairwise optimization, which means the model only
cares for the relative order of the prediction results
instead of the specific value. And this setting brings
consistent recall of candidates.

D.2 Case Study
For product “New Farmer® walnut flavored
sunflower seed 160g” which should be catego-
rized into [Sunflower Seed], TaLR without con-
trastive learning wrongly assign it to [Walnuts];
When concept “sunflower seed” is incorporated
in contrastive pretraining, TaLR is capable of
distinguishing the right answer. For product

“CELSIUS® cola flavored 300ml” which should be-
long to [Sports Drink], TaLR without mapping
scorer wrongly label it as [Cola]; When concept
“CELSIUS®” is engaged in retrieval, TaLR could
finally sort out the answer.

E Related Work

E.1 Large-Scale Taxonomy Classification
Text classification with a large hierarchy of classes
attracts attention and has been studied with the
evolving of LSHTC (Partalas et al., 2015) Chal-
lenge, which includes over 12000 categories. DiS-
MEC (Babbar and Schölkopf, 2017) devises one-
vs-all linear classifiers with explicit control of
model size. HMCN (Wehrmann et al., 2018) dis-
covers hierarchical information by jointly optimiz-
ing local and global loss functions. HiMatch (Chen
et al., 2021) encodes the complex structure of the
label hierarchy as well as the input text, to capture
the text-label semantics relationship. PECOS (Yu
et al., 2022) ranks output classes with hierarchi-
cal clustering, and the semantics of categories are
incorporated as well. These methods assume that
label taxonomies are stable, neglecting that taxon-
omy evolves gradually.

E.2 Product Categorization
Product categorization is a hierarchical text clas-
sification task assigning categories to product in-
stances.

Approaches in early times are centralized with
text features and basic machine learning algorithms.
(Ding et al., 2002) introduces KNN and Naive
Bayes to the field of product categorization, while
(Yu et al., 2012) conducts experiments using TF-
IDF with an SVM classifier. Restricted by the bag-
of-words paradigm, these methods lack the ability
to represent text with contextual semantics.

Neural network based methods prevail since
2013. (Ha et al., 2016) proposes an end-to-end
deep learning model composed of multiple RNNs
and fully-connected layers, which exhibits a sig-
nificant advantage over traditional bag-of-words
approaches. (Das et al., 2016) conducts a compar-
ison between linear, CNN, and gradient boosting
models. Multi-CNN and multi-LSTM are applied
in (Krishnan and Amarthaluri, 2019) combining
structured and unstructured attributes of products.
(Chen et al., 2019) utilizes several convolutional ap-
proaches for a better representation of words, and
they further adopt literal matching between product
content and category label texts to deal with new
categories. However, they do not consider the more
complicated category divide situation.

Recent studies follow the pretrain-finetune
paradigm since the great success of BERT (Devlin
et al., 2019). (Lee et al., 2020) uses the Camem-
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BERT pretrained on French corpus as text encoder
in SIGIR 2020 Challenge. (Yang et al., 2020) ex-
ploits BERT with a dynamic masking strategy and
achieves first place on the 2020 Semantic Web
Challenge.

Apart from end-to-end classification approaches,
(Hasson et al., 2021; Li et al., 2018) adopts hierar-
chical Seq2seq models for product categorization.
Nonetheless, their models need to be re-trained
whenever category taxonomy vocabulary changes.

E.3 Incremental Learning
Class incremental learning resolves the problem
that the classes increase progressively in a stream,
and the classifier should continuously learn the in-
coming classes while sustaining accuracy on the
seen classes as well. iCaRL (Rebuffi et al., 2017)
is proposed to circumvent the catastrophic forget-
ting problem by storing the information of previous
classes. (Xu et al., 2019) extends incremental learn-
ing as an open-world learning problem, where a
model rejects unseen classes instead of assigning
them into the seen class vocabulary. However, in
their open-world learning setting, other taxonomy
evolving situations (like split and merge) and multi-
domain taxonomies are not taken into considera-
tion.
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Abstract

Space agencies execute complex satellite oper-
ations that need to be supported by the tech-
nical knowledge contained in their extensive
information systems. Knowledge bases (KB)
are an effective way of storing and access-
ing such information at scale. In this work
we present a system, developed for the Euro-
pean Space Agency (ESA), that can answer
complex natural language queries, to support
engineers in accessing the information con-
tained in a KB that models the orbital space
debris environment. Our system is based on
a pipeline which first generates a sequence
of basic database operations, called a sketch,
from a natural language question, then special-
izes the sketch into a concrete query program
with mentions of entities, attributes and rela-
tions, and finally executes the program against
the database. This pipeline decomposition ap-
proach enables us to train the system by lever-
aging out-of-domain data and semi-synthetic
data generated by GPT-3, thus reducing over-
fitting and shortcut learning even with lim-
ited amount of in-domain training data. Our
code can be found at https://github.com/
PaulDrm/DISCOSQA.

1 Introduction

Space debris are uncontrolled artificial objects in
space that are left in orbit during either normal
operations or due to malfunctions. Collisions in-
volving space debris can generate secondary de-
bris which can cause more collisions, potentially
leading to a runaway effect known as Kessler Syn-
drome (Kessler and Cour-Palais, 1978; Kessler
et al., 2010), which in the worst-case scenario
could make large ranges of orbits unusable for
space operations for multiple generations.

Therefore, space agencies have established de-
partments responsible for cataloging the space de-
bris environment, which can be used for space
traffic management, collision avoidance, re-entry

Question: What is the inclination of the orbit of Hubble?

Sketch: Find Relate QueryAttr

Arguments: Hubble Orbit inclination

Question: How many rocket debris objects have re-entered
Earth’s atmosphere before 2019?

Sketch: FindAll Filter
Year

Filter
Concept Count

Arguments:
Reentry,
2019,<

Rocket
Debris
Objects

Figure 1: Two representative queries for DISCOS and
their decomposition according to the Program Induc-
tion method.

analysis, and raising public awareness of the prob-
lem.1

The European Space Agency (ESA) has cata-
logued over 40,000 trackable and unidentified ob-
jects in its DISCOS (Database and Information
System Characterizing Objects in Space) Knowl-
edge Base (KB) (Klinkrad, 1991; Flohrer et al.,
2013). Accessing this information efficiently of-
ten requires technical expertise in query languages
and familiarity with the specific schema of DIS-
COS, which may fall outside the skillset of the en-
gineers searching for relevant information in the
database. In this project, we developed a question
answering system for the DISCOS KB. This de-
ployed prototype enables ESA engineers to query
the database with complex natural language (En-
glish) questions, improving their ability to make
informed decisions regarding space debris.

Recent breakthroughs in open question answer-
ing have been achieved using large language mod-
els that have been fine-tuned as dialog assistants,
such as ChatGPT.2 These models, however, are

1https://tinyurl.com/44tc24d4
2https://chat.openai.com
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black boxes that store knowledge implicitly in
their parameters which makes it hard to guaran-
tee that their answers are supported by explicit evi-
dence, understand their failures and update them
when the supporting facts change. In contrast,
parsing a question into a query program and then
executing it on an explicit KB is guaranteed to pro-
vide a factual correct answer provided the KB and
query program are correct. Our approach is partic-
ularly useful for applications such as satellite oper-
ations where accuracy and reliability are critical.

The main challenge for this project was that no
training set or example questions were available
for the DISCOS KB. This issue, combined with
the large amount of unique and diverse objects
in the database, precluded a straightforward appli-
cation of common supervised learning techniques.
Although possible strategies for solving this task,
such as direct semantic parsing of the query with
seq2seq models, were identified in the literature,
they suffer from problems with compositional gen-
eralization (Herzig et al., 2021; Furrer et al., 2020).
Furthermore, very little work has been done on
generalizing to KB element components that were
never seen during training (Cao et al., 2022b; Das
et al., 2021a; Huang et al., 2021).

To overcome these challenges, we apply and
adapt a methodology from the literature called Pro-
gram Transfer (Cao et al., 2022b) to significantly
reduce the required dataset for adequate general-
ization over the complete DISCOS KB. This is
a two-step approach. For each user query first a
program sketch is predicted, consisting of a se-
quence of query functions where the arguments
are either variables or placeholders, then the rep-
resentation of the query is compared to the rep-
resentations of the KB entities, in order to fill
out the placeholders with arguments relevant to
the query text. The underlying query language
of this approach is called Knowledge-oriented-
Programming-Language (KoPL) for which two
representative example questions are shown to-
gether with their decomposition into sketch and
arguments in Figure 1.

We also conduct a data collection study with
domain experts, and we apply a data augmenta-
tion pipeline leveraging the underlying ontology
of the KB and prompting a Large Language Model
(LLM) to generate automatically more training ex-
amples. The architecture was retrained with dif-
ferent domain-specific LMs and baselines to deter-

mine the benefits of using a domain-specific pre-
trained encoder.

The main contributions of this paper are:

• Applying and adapting a methodology de-
scribed in the literature for complex knowledge
base question answering (CKBQA) on a novel
industry-relevant database, with a large and dy-
namic set of unique entities;

• Collecting a new dataset on this database from
domain-experts and leveraging the in-context
learning capability of LLMs for data augmen-
tation on it;

• Evaluating the use of domain-specific LMs as
different encoders on our curated dataset;

• Demonstrating the effectiveness of the approach
by achieving comparable results to general-
purpose LLMs

2 Related Work

Low-resource CKBQA Pre-trained language
models have demonstrated state-of-the-art perfor-
mance in semantic parsing for complex question
answering on KBs where the same logic com-
pounds are contained in both the training and val-
idation sets (Furrer et al., 2020). However, they
struggle with compositional generalization, where
the “compounds” (combinations) of components
are diverse between training and validation, even
if all components (entity, relation, program fil-
ters) have been seen during training (Herzig et al.,
2021). Das et al. (2021b) explored retrieval-based
methods to pick the top n similar examples from
the training set and use them as additional input
for the prediction. In theory, this would make
it possible to reason over changes on the KB by
only adding new examples to the training set with-
out the need of retraining the whole model. An-
other approach is adapting the architecture of lan-
guage models to incorporate the structure of a KB
directly for the prediction. For example, Huang
et al. (2021) ranked FreeBase KB entities by us-
ing an EleasticSearch search API to identify these
entities. When generating the query program, in-
stead of entities a special token is predicted, which
in the post-processing step get replaced by the
top ranked entity identified by ElasticSearch. Al-
though, achieving good results, it is unclear how
this would translate to queries with multiple enti-
ties and also has the typical limitations of Elastic-
Search. Another method is the Program Induction
and Program Transfer method, where a sequence
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of functions, or a sketch, is generated from the
input query. A single function here stands for a
basic logic operation on the KB. The premise is
that the sketch is mostly dependent on the formu-
lation of the input query and less dependent on the
KB, therefore the training on a source domain can
transfer to inference on a target domain. In a sec-
ond step, the particular inputs that each function
in the sketch receives are identified from the ele-
ments of the KB through comparing their repre-
sentations with the one of the model at the specific
function. During training, the goal is to create so-
phisticated representations for the components of
the KB as well as for the query that can generalize
to components which were not seen during train-
ing (Cao et al., 2022b).

Domain-specific Language Models Using self-
supervised pre-trained language models is the de-
facto standard approach in modern natural lan-
guage processing (NLP). These models are trained
on large volumes of text, learning representations
that can generalize over natural language varia-
tions and capture long-term dependencies between
the input tokens. During fine-tuning, these learned
features and representations commonly lead to im-
proved results on the downstream task. While
the interplay between the amount of in-domain
data, model capacity and training regime is com-
plex (Zhao et al., 2022), as a general rule, train-
ing these models on in-domain task-related text
improves the performance of this task (Mahesh-
wari et al., 2021; Berquand et al., 2021; Arnold
et al., 2022; Joshi et al., 2023). An alternative
approach involves modifying the pre-training ob-
jective according to the domain. In the context
of question-answering with tabular data, it was ex-
plored how a language model could function dur-
ing pre-training as a SQL-query excecutor, pre-
dicting the results of an automated created SQL
query on the corresponding concatenated table, to
elicit an understanding of the underlining depen-
dencies in tables. This approach resulted in im-
proved performance on related downstream tasks
(Liu et al., 2022). For KBs, together with the stan-
dard Masked-Language-Modelling loss an archi-
tecture called Kepler was tested that also min-
imizes a contrastive loss on related KB triples,
where both the correct triples and randomly per-
turbed incorrect triples are scored, and the loss pe-
nalizes scoring the perturbed triples higher than
the correct ones (Wang et al., 2021a).

3 Dataset Collection and Use

We used two sources of data for the study. The first
one is the original dataset which first introduced
the KoPL-format for general-domain knowledge-
base question answering (described in §3.1). The
second one is for our particular domain with in-
formation about objects in space (§3.2). We also
describe in §3.3 how we further collected training
data for fine-tuning a language model, and how we
augmented this dataset with new question-answer
pairs (§3.4).

3.1 The KQA Pro Dataset

The KQA pro dataset (Cao et al., 2022a) is a
large scale dataset for complex question answering
over a knowledge base. It contains over 120,000
diverse questions for an subset of entities from
the Freebase KB and their associated relations,
attributes and concepts. The reasoning process
to arrive at a solution is provided in the form
of a Knowledge-oriented-Programming-Language
(KoPL), which was designed specifically for this
dataset. The question-program pairs were auto-
matically generated by randomly sampling the ex-
tracted KB and using novel compositional tem-
plates to create a canonical form of the question
and associated answer. To increase ambiguity
these questions were then paraphrased and con-
trolled by Amazon Mechanical Turk workers (Cao
et al., 2022a).

3.2 The DISCOS Database

The ESA Database and Information System Char-
acterising Objects in Space (DISCOS)3 is a
regularly updated source for information about
launches, launch vehicles, objects, spacecraft reg-
istration numbers, mission-specific information
(mass, mission objective, operator), and most im-
portantly orbital and fragmentation data histories
for all trackable as well as unclassified objects.
With currently over 40,000 objects being tracked,
this tracking provides rich information for ESA of-
fices monitoring and managing space debris, colli-
sion avoidance, re-entry analyses, and contingency
support. Other actors, such as research institutes,
government organisations, or industrial companies
from ESA Member states can apply for an account
to access the information provided by DISCOS
free of charge. A comparison between the the DIS-

3https://discosweb.esoc.esa.int/
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COS KB and the KB used for the KQA Pro dataset
can be seen in Table 1

Dataset #Entities #Relations #Concepts
KQA Pro 16,960 363 794
DISCOS 73,354 32 39

Table 1: Entity, relation, and concept counts for the
KQA Pro and DISCOS KBs

3.3 Data Collection

As there was no question-program-answer training
set available on the DISCOS KB, potential queries
had to be collected from domain-experts via a sim-
ple user interface. The interface allowed domain
experts to input queries of interest, along with their
username and feedback, see Appendix E. Based on
the domain experts’ feedback, a manually labeled
baseline dataset of around 102 question-KoPL pro-
gram pairs was created.

3.4 Data Augmentation

To extend the limited baseline dataset and increase
diversity of potential queries, we augmented the
dataset by creating paraphrases of the questions,
shown to add robustness to question answering
systems (Fader et al., 2013; Narayan et al., 2016).
For each unique program sketch, the schema of the
ontology was used to alter the arguments of the sin-
gle functions in that sketch. For example, for the
program Find(‘Saturn V’) → QueryAttr(‘mass’),
the concept of the Find function argument (Saturn
V) was identified as LaunchVehicle. Subsequently,
the ontology was queried for other entities of the
same concepts and also for associated attributes to
substitute the argument for the QueryAttr function.

In order to generate appropriate questions for
each “augmented” program, we used the few-
shot and in-context learning capabilities of GPT-3
(Brown et al., 2020). A prompt was curated, con-
sisting of question-program pairs from the manu-
ally labeled dataset, so that GPT-3 could generate
a question for an unlabelled augmented program.
The sampling included all programs from the man-
ual dataset with the same sketch as the augmented
one, as well as using examples with the same re-
lation type, which showed great abilities to gen-
erate a correct question. Additionally, an instruc-
tion section was added to the prompt, consisting
mainly of a list of expansions for acronyms com-
monly used in the KB’s ontology. This ensured

that acronyms were expanded correctly and re-
duced the likelihood of hallucinations by the LLM
for these acronyms. Examples of generated ques-
tions with their corresponding programs can be
found in Appendix D. The prompt schema can be
found in Appendix A.

The benefits of an automatically generated
dataset include cost-effective data sample genera-
tion, while also ensuring a balanced distribution
of complex and simple queries as well as common
(ex: Saturn V, Hubble Space Telescope) and un-
common arguments (ex: L-186, PSLV-Q). With
the use of LLMs, the generated questions also
have already slightly different semantics and syn-
tactic structure as the generation process is inher-
ently statistical and can be adjusted with param-
eters such as the temperature. LLMs can also
leverage their stored world knowledge, e.g. we
observed the entity name "

  

天舟四号 " to be auto-
matically translated into the english "Tianzhou 4"
designation. More examples can be seen in Ap-
pendix D. However, it is important to note that the
question generation is not foolproof and could be
further optimized e.g. through additional prompt
engineering or a subsequent data cleaning proce-
dure.

4 Methodology and Model Architecture

We describe in §4.1 the problem that our model
aims to solve. In §4.2, we describe what modifi-
cation we applied to the methodology from (Cao
et al., 2022b).

4.1 Problem Definition
The task is defined in the following way, given a
natural language question Q we want to predict
a program y that traverses the knowledge base K
and produces an answer A for Q. This means:

A = y(Q,K), K = {E,R,C,A},

where E,R,C,A represent respectively the mutu-
ally disjoint sets of entities, relations, concepts and
attributes in K. More specifically for a set entities
in the training set Et, the task is to be able to gen-
eralise to the set of Ev, which were unseen during
training, with E = Et ∪ Ev, Et ∩ Ev = ∅. There-
fore, we apply a program induction and transfer
methodology, predicting for Q a program, a tuple
of actions,

y(Q,K) = (o1(arg1), . . . , ot(argt)),
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oi ∈ O, ∀i = 1, . . . , t; argt ∈ E ∪R ∪ C ∪A,

where O is a set predefined basic functions ex-
ecutable on the KB, with each of them taking
one disjoint set as inputs from the pool of argu-
ments from the KB. In the first step, the sketch
[o1, . . . , ot] ∈ Ot is generated by encoding the
question Q with a pre-trained language model and
using its representation as the starting point for
a GRU-based decoder with attention mechanism
(Bahdanau et al., 2015; Cao et al., 2022b).

The input arguments for each function,
o1, . . . , ot, are chosen in a second step by cal-
culating the probability between the encoded
representations of the i-th candidate Rt

i in the
KB at position t in the sequence, and the repre-
sentation of the decoder at position t, ht. The
probability is computed as:

p(argt|Rt
i, h

t) = softmax(Rt
i, h

t),

and is followed by choosing the most likely candi-
date as the input argument for the function.

We refer the reader to Cao et al. (2022b) for the
details. In addition to the standard BERT model
we also train RoBERTA-based (Liu et al., 2019)
domain-specific encoders (see Appendix B).

4.2 Enhancements to Program Transfer
At the beginning, the prediction for entities, re-
lations, and operations ({<,>,=}) had to be re-
implemented as it was not available in the associ-
ated source code.4

The standard methodology of comparing the
representations to all inputs during training posed
another challenge for entities, as during the train-
ing step the gradients for all them would need to be
stored, which were exceeding the available virtual
random access memory on the system.

As a result, instead of comparing the representa-
tion at each sequence position to all entities in the
KB, only the subset of entities in the current batch
are compared with each other.5 In addition, ran-
dom samples from the complete entity set where
selected and added to the batch to also give signals
to entities not occurring in the training set.

More formally, let X(j) be the jth batch from
the training set, E be the overall set of entities, and
X

(j)
E be the set of entities of the training batch. At

each training batch j, we use the set of entities e(j)

4https://github.com/thu-keg/programtransfer
5Note that these entities are part of the training set entities,

hence are all known apriori.

to compare the probability of their representations
against the candidate input argument in batch j, as
defined by:

e(j) = X
(j)
E ∪ f (j), (1)

where f (j) = {e1, e2, . . . , en} are n randomly
sampled entities from E without replacement. Fur-
thermore, for extracting time values from queries
we use the SUTime library (Chang and Manning,
2012), whereas for extracting numerical patterns
we use a simple regex schema. In addition, for
parsing the predicted inputs into a form than can
be read by the KoPL engine a parser function had
to be written as well as a method for assigning the
dependencies between the single basic functions.
Other small adaptation of the original approach
included the addition of a normalization layer be-
tween the linear layers for the prediction of the sin-
gle arguments as well as masking-out padding to-
kens from the loss calculation of the function gen-
eration component. A schematic overview of the
pipeline can be seen in Appendix C.

5 Experiments

We next describe our dataset (§5.1), the way we
trained our models (§5.2) and our results (§5.3).

5.1 The DISCOS-Questions-Programs
Dataset

The creation of the training and validation datasets
involved the following steps: First, all the unique
sequences of functions were extracted from the
manually labeled dataset. Then, ten augmented
programs were generated for each unique program
in the manually labeled dataset by substituting the
inputs and generating questions as described in the
data augmentation methodology. It is noteworthy
that the entities included in the manually labeled
dataset were not considered as candidates for the
data augmentation. The questions for the aug-
mented examples were generated using the large
language model code-davinci-002.6 Through trial
and error, a temperature of 0.75 was used for gen-
eration as it produced diverse examples while still
capturing the meaning of the associated KoPL-
program. Finally, the augmented dataset was split
into training and validation datasets, where the
original manually labeled dataset and 0.05% of
randomly sampled examples from the augmented

6https://platform.openai.com/playground
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dataset were used as the validation set and the rest
of the augmented dataset was used for training. In
a subsequent filtering step, programs that appeared
in the validation set were filtered from the train-
ing dataset. The resulting DISCOS-Questions-
Programs (DQP) dataset consists of 905 samples
for training and 151 samples for validation.

5.2 Model Training
The preliminary results indicated that training di-
rectly on the DQP dataset did not lead to conver-
gence in entity prediction. We then proceeded to
first train on the out-of-domain original KQA Pro
dataset and then further train on the DQP dataset.
The hyperparameters for pretraining on the KQA
pro dataset were adopted from the original paper.
For training the DQP dataset, the hyperparame-
ters were left unchanged, except for an adapted
learning rate for the decoder, which was set to
10−4 instead of 10−3. For the experiments, differ-
ent domain-adapted models were used as the en-
coder and then compared to each other as well as
baseline models. For more information about the
domain-adapted models see Appendix B.

5.3 Results
The analysis of different models was challenging
as multiple components (functions, entities, rela-
tions, etc.) need to be predicted to arrive at the full
program that can be run against the KB. Therefore,
the analysis was divided into two parts. Firstly, the
accuracy at the lowest validation loss for each com-
ponent was compared separately between all the
different trained models, providing an overview
of each model’s best predictive performance for
each component. The results can be seen in Table
2. Although no model consistently outperformed
the others on all components, CosmicRoBERTa
(Berquand et al., 2021) achieved the highest per-
formance on four out of six accuracies.

The validation loss curves showed that during
training, the validation accuracy can drop for one
component while it rises for another. The valida-
tion loss curves can be found in Appendix F.

For deployment of a single model, it is neces-
sary to identify a checkpoint where the model pre-
dicts accurately across all components. To obtain a
more holistic view of the performance, the models
were also compared by summing up the normal-
ized validation losses for each component.

The results of summing up the normalized vali-
dation losses with equal weights are shown in Ta-

Accuracy BERT Kepler RoBERTa CR
Function 0.797 0.812 0.796 0.826
Entity 0.874 0.887 0.907 0.927
Attribute 0.955 0.948 0.948 0.948
Relation 0.938 0.983 0.983 1
Concept 0.872 0.896 0.92 0.89
Operations 1 1 1 1

Table 2: Accuracy at lowest validation loss for each re-
spective component. CR stands for CosmicRoBERTa.
The best score for each component is highlighted in
bold, second best in italics.

ble 3. On average, the RoBERTa-base model has
the lowest validation loss, followed by the Kepler
model. However, no model consistently outper-
forms the others in terms of prediction accuracy.
From an application perspective, the most impor-
tant metrics are the accuracy in predicting func-
tions and entities. To obtain the correct answer, the
most crucial step is to predict the correct sequence
of functions, and for multi-hop queries, it is essen-
tial to identify the correct starting entity. In addi-
tion, the number of unique entities is magnitudes
higher than the number of unique attributes or rela-
tions in the KB, which makes identifying the right
entity more difficult. Among the models consid-
ered, CosmicRoBERTa stands out as the model
that performs well both in predicting functions and
entities. Unfortunately, the Kepler model only spo-
radically showed improvements over RoBERTa-
base. The reason for this could be the very limited
pre-training corpus, which as a result was signifi-
cantly smaller than the one from CosmicRoBERTa
As a result, for the purpose of deploying a single
model, the decision was made to choose Cosmi-
cRoBERTa.

Accuracy BERT Kepler RoBERTa CR
Min. sum valid loss 0.21 0.171 0.11 0.252
Function 0.79 0.734 0.775 0.789
Entity 0.874 0.887 0.894 0.927
Attribute 0.935 0.948 0.941 0.915
Relation 0.978 0.95 0.969 0.969
Concept 0.853 0.8841 0.908 0.927
Operations 1 0.97 1 0.94

Table 3: Accuracy at the lowest validation loss summed
over all compoennts. The best score for each compo-
nent is highlighted in bold, second best in italics. CR
stands for CosmicRoBERTa.

The results of the prediction are overall very im-
pressive, with high accuracy scores over all com-
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ponents. It is especially worth highlighting that
from over 40,000 entities in the database, only
400 appear in the training and validation set and
only 1 of 71 entities in the validation set also ap-
pear in the training set. Despite this, some models
achieve an accuracy of over 90% in predicting en-
tities, demonstrating their strong ability to general-
ize to entities not seen during training, which was
a critical user requirement for our system.

In addition, we benchmarked our method to
recently released general purpose models such
as ChatGPT7 and GPT-4 (OpenAI, 2023). For
each model, training set examples were randomly
added to the prompt until the respective model’s
context limit is reached. Then the models were
prompted to generate the right program for a ques-
tion from the validation set. Our methodology has
an overall accuracy of predicting the right program
completely of 48%, which is higher than the per-
formance of around 25% of ChatGPT and com-
parable with the performance of GPT-4 of around
50%. A detailed comparison can be found in Table
4. This further demonstrates the efficiency of our
methodology as it can be run at a fraction of the
necessary compute as well as locally on consumer-
grade hardware.

CosmicRoBERTa GPT-4 ChatGPT-3.5
Functions 0.79 0.79 0.516
Entities 0.93 0.86 0.41
Relations 0.97 0.87 0.32
Concepts 0.93 0.82 0.61
Attributes 0.92 0.84 0.72
Overall 0.48 0.5 0.25

Table 4: Accuracy of deployed model (Cosmi-
cRoBERTa) versus general purpose models ChatGPT-
3.5 and GPT-4. The best score for each component is
highlighted in bold.

6 Conclusion

We developed a system for ESA to address the
challenge of answering complex natural language
questions on their DISCOS KB. The main obsta-
cles included a lack of training data, the diversity
and regular updates of the database entries, and the
need for an economically feasible solution. The
program transfer for complex KBQA methodol-
ogy was selected for its potential to reduce the
amount of required training samples through trans-
fer learning and its capability to potentially gener-

7https://openai.com/blog/chatgpt

alize for examples which were never seen during
training. A data collection study was conducted
with domain experts, which was then used to aug-
ment the data through leveraging the underlying
ontology of the KB and prompting a large lan-
guage model to generate fitting questions. The
architecture was retrained with different domain-
specific models and baselines to determine the
benefits of using a domain-specific pre-trained en-
coder. Although the results were mixed, the best
performance was achieved by CosmicRoBERTa, a
pre-trained model on a space domain corpus. With
an accuracy of over 90% of predicting the right en-
tity on the validation set over the vast pool of can-
didate entities, the method demonstrates its strong
ability to predict the correct input arguments for
unseen examples. This is further demonstrated in
the comparison with general-purpose models such
as ChatGPT or GPT-4, where our method achieved
competitive results. Therefore, this approach has
the potential to be extended to other databases and
query languages in the future, especially in scenar-
ios where there are few to no training examples.

Limitations

The study has several clear limitations. Firstly, the
training and validation datasets used in this study
are still relatively small. A larger dataset would
give more robust results for comparing different
encoders. Additionally, the experiments were only
conducted on the ability to generalize to unseen
entities and not on the ability to generalize to un-
seen sketch types, which is also of key importance
when addressing low resource CKBQA.

Moreover, the methodology used in this study
relies on annotated question-program pairs, which
are expensive to collect. Learning only from
question-answer pairs or even a question with an
indicated difficulty based on whether the model
was able to answer the question, could be more
easier to collect. While the models achieve high
accuracy on most of the knowledge base compo-
nents, overfitting can occur at different stages dur-
ing training, leading to high accuracy for one com-
ponent at one training step but poor accuracy for
another component at another step. In the future,
revising the training procedure or the model setup
may help address this issue.
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Ethics Statement

In any safety-critical context like spacecraft opera-
tions, there is an inherent risk associated with the
use of automatic methods supporting human oper-
ators. The transparency of the predicted programs
could mitigate this issue as it allows even for an
engineer with limited knowledge about the under-
lying query method to interpret the program to
some degree. In any case, the developed systems
might support human analysis and decision mak-
ing by decreasing workload, but cannot replace it.
As mentioned before the DISCOS KB can be ac-
cessed after creating a user account. We plan on
publishing the created question-program paris and
trained models online in accordance with ESA’s
guidelines.
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A Instructions for Generating Questions

"Here is a list of knowledge graph query
programs in JSON format, each with
its corresponding question in English.
Acronyms are expanded with the following
dictionary: ["GEO": "Geostationary
Orbit", "IGO":"Inclined Geosynchronous
Orbit", "EGO":"Extended Geostationary
Orbit", "NSO":"Navigation Satellites
Orbit", "GTO":"GEO Transfer Or-
bit", "MEO":"Medium Earth Orbit",
"GHO":"GEO-superGEO Crossing
Orbits", "LEO":"Low Earth Orbit",
"HAO":"High Altitude Earth Orbit",
"MGO":"MEO-GEO Crossing Orbits",
"HEO":"Highly Eccentric Earth Orbit",
"LMO":"LEO-MEO Crossing Orbits",
"UFO":"Undefined Orbit","ESO":"Escape
Orbits"] Program: {program} Question:
{question} (Repeated until maximum
prompt limit is reached)

B Domain-specific Language Models

CosmicRoBERTa A domain-specific language
model from the SpaceTransformer family trained
with basic masked-language-modelling on a cor-
pus consisting of 75M words (Berquand et al.,
2021).8

Kepler We trained our own domain-specific lan-
guage model by appending the KB pre-training ob-
jective as described by Wang et al. (2021b). The
in-domain text data for the Knowledge-augmented
LM was specifically mined to be closely related
to the topic of DISCOS. To achieve this, we col-
lected scientific papers about space debris and doc-
uments from ESA about their internal mission op-
eration procedures. Additionally, we added the on-
line available dataset from SpaceTransformers9 to
the training data.

The complete dataset comprises approximately
17.6 million words, with around 70% used for
training and the remainder for validation. To pre-
dict triples, we converted our database into a set of
(head, relation, tail) triples, where head and tail
are entities represented by their English name or

8https://huggingface.co/icelab/cosmicroberta
9https://pureportal.strath.ac.uk/en/datasets/

dataset-of-space-systems-corpora-thesis-data

description, and relation is a relation represented
by a unique token for the relation type.

The KG triplet datasets consist of approx-
imately 640,000 triples, which are split into
636,000 for training, 2,000 for validation, and
2,000 for testing. These triples represent approx-
imately 59,000 entities and 32 relations. We
trained our model using the available Kepler im-
plementation.10

C Pipeline Components
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Figure 2: Overview over components in query process-
ing pipeline.

10https://github.com/THU-KEG/KEPLER
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D Example Augmented Programs and Generated Questions

[{"function":"FindAll", "inputs":[], "dependencies":[]},
{"function":"FilterConcept", "inputs":["LMO"], "dependencies":[0]} ,
{"function":"Relate", "inputs":["orbit"], "dependencies":[1]} ,
{"function":"FilterNum", "inputs":["depth", "0.3", "="], "dependencies":[2]},
{"function":"FilterConcept", "inputs":["UnknownObjClass"], "dependencies":[3]},
{"function":"Count", "inputs":[], "dependencies":[4]}]

Question: How many objects are there that are currently in the LEO-MEO crossing orbits and are
classified as unknown and have a depth of 0.3 m?

{"function":"Find", "inputs":["State Remote Sensing Center"], "dependencies":[]},
{"function":"Relate", "inputs":["host_country"], "dependencies":[0]},
{"function":"FilterConcept", "inputs":["Entity"], "dependencies":[1]},
{"function":"What", "inputs":[], "dependencies":[2]}]

Question: "Which operators are based in the host country of the State Remote Sensing Center?"

{"function":"FindAll", "inputs":[], "dependencies":[]},
{"function":"FilterDate", "inputs":["epoch", "2022 -04 -08", "="], "dependencies":[0]},
{"function": "FilterConcept", "inputs":["Launch"], "dependencies":[1]},
{"function": "Count", "inputs":[], "dependencies":[2]}]

Question: "How many launches are planned for 8th of April 2022?"a

aInterestingly the generated question implies that 8th of April 2022 lies in the future, which is in accordance with Ope-
nAI’s training set cut-off in September 2021
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E Interface for Data Collection and Access to System

For implementing a simple user interface, the popular Python library Streamlit was used. Besides provid-
ing the input query the user can also provide feedback, which potentially could be used to improve the
model by identifying right or wrong answers and adding them to the training set. Another button allows
the user to generate an answer for a question from the validation dataset to get a better feeling of what
questions could be answered.
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F Validation Loss Curves
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Figure 3: Validation loss and Accuracy over number of training batches for each component and each tested model.
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Abstract

Early exiting can reduce the average latency
of pre-trained language models (PLMs) via its
adaptive inference mechanism and work with
other inference speed-up methods like model
pruning, thus drawing much attention from the
industry. In this work, we propose a novel
framework, BADGE, which consists of two off-
the-shelf methods for improving PLMs’ early
exiting. We first address the issues of training a
multi-exit PLM, the backbone model for early
exiting. We propose the novel architecture of
block-wise bypasses, which can alleviate the
conflicts in jointly training multiple intermedi-
ate classifiers and thus improve the overall per-
formances of multi-exit PLM while introducing
negligible additional flops to the model. Sec-
ond, we propose a novel divergence-based early
exiting (DGE) mechanism, which obtains early
exiting signals by comparing the predicted dis-
tributions among the current layer and the pre-
vious layers’ exits. Extensive experiments
on three proprietary datasets and three GLUE
benchmark tasks demonstrate that our method
can obtain a better speedup-performance trade-
off than the existing baseline methods.

1 Introduction

Since BERT (Devlin et al., 2019), the pre-trained
language models (PLMs) have become the de-
fault state-of-the-art (SOTA) models for natural
language processing (NLP). Recent years have wit-
nessed the rise of many PLMs, such as GPT (Rad-
ford et al., 2019), XLNet (Yang et al., 2019), and
ALBERT (Lan et al., 2020), and so forth. These
BERT-style models achieved considerable improve-
ments in many Natural Language Processing (NLP)
tasks by pre-training on the unlabeled corpus and
fine-tuning on labeled tasks, such as text classifica-
tion, natural language inference (NLI), and named
entity recognition (NER). Despite their outstanding
performances, their industrial usage is still limited

∗Corresponding author: xlwang@cs.ecnu.edu.cn.

by the high latency during inference (Tambe et al.,
2020; Zhu, 2021). In addition, a special feature
of consumer queries is that there are time inter-
vals when the number of queries is exceptionally
high. For example, food search engines will be
used more often during dinner hours than usual.
Thus, deployed pre-trained models need to adjust
their latency dynamically.

A branch of literature focuses on making PLMs’
inference more efficient via adaptive inference
(Zhou et al., 2020; Xin et al., 2020; Liu et al.,
2020). The idea of adaptive inference is to pro-
cess simple examples with only shallow layers of
BERT and more difficult queries with deeper lay-
ers, thus significantly speeding up the inference
time on average while maintaining high accuracy.
Early exiting is one of the essential adaptive infer-
ence methods (Bolukbasi et al., 2017). As depicted
in Figure 1, it implements adaptive inference by
installing an early exit, i.e., an intermediate predic-
tion layer, at each layer of PLM (multi-exit PLM)
and early exiting "easy" samples to speed up in-
ference. All the exits are jointly optimized at the
training stage with BERT’s parameters. At the in-
ference stage, an early exiting strategy is designed
to decide whether to exit at each layer given the
currently obtained predictions (from previous and
current layers) (Teerapittayanon et al., 2016; Kaya
et al., 2019; Xin et al., 2020; Zhou et al., 2020). In
this mode, different samples can exit at different
depths. The average speedup ratio can be easily
controlled with certain hyper-parameters without
redeploying the model services or maintaining a
group of models.

In this work, we propose a novel framework,
BADGE, to improve the early exiting performances
of PLMs. BADGE consists of two modifications
to the current early exiting literature. First, we
propose to add a block-wise bypass to each trans-
former block so that two different representations
can be produced, one for the current layer’s exit
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Figure 1: The overview of our BADGE framework.

and the other passed to the next transformer block.
With this mechanism, an intermediate transformer
block will not be distracted by the conflicting
tasks in multi-exit BERT training, thus providing
high-quality representations for the subsequent lay-
ers. As a result, the overall performance of the
multi-exit BERT will improve. Second, we pro-
pose a novel divergence-based early exiting method
(DGE), which is effective in mining early exiting
signals by comparing the predicted probability dis-
tributions of the current and previous layers.

Extensive experiments and ablation studies are
conducted on the GLUE benchmark datasets. The
experimental results show that: (a) training multi-
exit PLM with block-wise bypasses consistently
performs better than the previous SOTA multi-
exit model training methods, thus providing a bet-
ter backbone for early exiting. (b) we show that,
with the same multi-exit PLM backbone, our DGE
method can provide better efficiency-performance
trade-offs than the previous SOTA early exiting
methods. Thus, with our framework, BADGE, a
PLM can achieve significantly better early exiting
performances.

The main contributions of our BADGE frame-
work are two-fold:

(a) We propose a novel method, block-wise
bypass, to improve the training of multi-exit PLMs.

(b) We propose a novel divergence-based early
exiting method, DGE, which outperforms the pre-
vious SOTA early exiting methods.

2 Related Work

Due to the length limit, readers are referred to
Appendix A for more related works on more infer-
ence speedup methods and dynamic early exiting
mechanisms.

2.1 Early exiting

Early exiting requires a multi-exit network, a neural
network backbone with an intermediate classifier
(or exit) installed on each layer. Early exiting lit-
erature mainly focuses on the design of the early
exiting strategies (Teerapittayanon et al., 2016; Xin
et al., 2020; Kaya et al., 2019; Xin et al., 2021;
Sun et al., 2022; Zhou et al., 2020; Schuster et al.,
2021). However, the literature address less atten-
tion to the training of the multi-exit neural network.
There are three types of training methods for train-
ing the multi-exit neural network: (a) joint train-
ing (JT) (Teerapittayanon et al., 2016; Zhou et al.,
2020), that is, all the exits are jointed optimized to-
gether with the fine-tuning of BERT. (b) two-stage
training method (2ST) (Liu et al., 2020; Xin et al.,
2020), which first fine-tunes the backbone BERT
and the last layer’s exit till convergence and trains
only the intermediate exits by distilling knowledge
from the last exit. (c) BERxiT (Xin et al., 2021)
propose an alternating training (ALT) method, com-
bining 2ST and JT.

Our work complements the literature on early
exiting by proposing the BADGE framework to
improve early exiting performance via the novel
design of block-wise bypasses and a novel early
exiting mechanism.

501



3 Methodology

3.1 Block-wise bypasses

We now present the core of our novel BADGE
framework: the block-wise bypasses (depicted in
Figure 1). Denote the representations of the input
sentence from the previous transformer block as
Hm−1. Initially, Hm−1 will go through the cur-
rent transformer block, first the multi-head self-
attention (MHSA) module with the residue to be-
come Hm,MHA, then the positional feed-forward
(FFN) module with residue, to become Hm,F , and
finally a LayerNorm operation to output Hm.

We would like to employ an efficient bypass
Bm to adjust the current layer’s representations to
fit the task better. Bm is simple in architecture
(On the right side of Figure 1). Upon receiving
the input Hm−1, Bm down-projects it to H

(1)
m,B ,

from dimension d to dimension r (where r << d)
using a down-projection matrix Wdown ∈ Rd×r.
The H

(1)
m,B will go through a non-linear activation

function g1, and become H
(2)
m,B . H

(2)
m,B will then

be up-projected to H
(3)
m,B with dimension d, by an

up-projection matrix Wup ∈ Rr×d. We refer to r
as the bottleneck dimension. Formally, Bm can be
expressed as:

H
(3)
m,B ← g1(Hm−1Wdown)Wup. (1)

Finally, the current transformer block will output
two representations, Hm, which is the original in-
termediate representation, and H

′
m, which is modi-

fied by the bypass, via:

H
′
m = LayerNorm(H

(3)
m,B +Hm,F ),

Hm = LayerNorm(Hm,F ). (2)

Hm will be passed to the following transformer
block as input, and H

′
m is the modified representa-

tion which will be the input of the current layer’s
exit. We rely on the bypass Bm to extract task-
specific representations to facilitate the learning of
the exit. Note that the introduction of Bm will not
bring little computational overhead since (a) the
two representations Hm and H

′
m can be calculated

in a single forward pass; (b) the bottleneck dimen-
sion r can be very small, like 16, so that the added
parameters or flops are negligible compared to the
pre-trained backbone.

Our work is inspired by the recent work in pa-
rameter efficient tuning (He et al., 2021). However,

our work is different in the following three aspects:
(a) our work deals with the training of multi-exit
BERT, not the parameter-efficient tuning settings.
(b) Our work introduces the block-wise bypasses,
while He et al. (2021) only considers the bypasses
around the feed-forward layer or the self-attention
layer of a transformer block. We will show in
our experiments that block-wise bypasses perform
better under our settings. (c) We add encoding op-
erations inside the bypasses, which proves to be
beneficial.

3.2 Divergence-based Early Exiting

We now introduce our divergence-based early
exiting method, DGE. The inference procedure is
illustrated in Figure 1. Assume the forward pass
has reached layer m. Denote the divergence score
between the prediction results of layer m and layer
m

′
(m > m

′
) as sm,m′ = S(pm, pm′ ) ∈ R, where

S(·, ·) is a divergence measure of two probability
distributions. The smaller the value of sm,m′ , the
predicted distributions pm and pm′ are more con-
sistent with each other. Denote cntm as the number
of previous layers that have a predicted distribution
that is consistent with pm. At layer m, cntm is
calculated as:

cntm =

m−1∑

i=1

1(sm,i < τ), (3)

where τ > 0 is a pre-defined threshold, and 1(·)
is the indicator function. 1(x) is equal to 1 if x is
true, and equal to 0 if x is not true. If cntm reaches
the pre-defined patience value t, the model stops in-
ference and exits early. Otherwise, the model goes
to the next layer. If the model does not exit early at
intermediate layers, the model uses the final classi-
fier fM for prediction. Unless stated otherwise, we
will mainly use the knowledge distillation objective
(Hinton et al., 2015) as the divergence measures:1

S(pi, pj) = LKD(pi, pj) = −
K∑

k=1

pi(k) log(pj(k)).

(4)
Note that the above-described framework is

flexible and general, wrapping the patience-based
method (Zhou et al., 2020) as a particular case. In
Zhou et al. (2020), the value of si,i−1 is 0 only

1In our initial experiments, we find that different diver-
gence measures like Kullback–Leibler divergence and Jensen-
Shannon divergence perform comparably. Thus we adopt the
one with the most simple form.
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when the labels predicted by two layers are identi-
cal; otherwise, it is set to 1. However, compared to
PABEE, our method has the following advantages:
(a) even if the the current and previous layers give
the same label, their output distributions might dif-
fer. Thus, PABEE might exit early even when the
layers have not reached a consensus in the predic-
tions. Thus, PABEE’s early exiting performances
with low patience parameters may not be reliable.
Our method compares the intermediate layers in
the distribution level, providing more reliable exit-
ing signals. (b) PABEE can not adjust the speedup
ratio flexibly, while our method can achieve differ-
ent speedup ratios by setting patience and threshold
parameters.

4 Experiments

4.1 Datasets

We evaluate our proposed approach to the clas-
sification tasks on three tasks from GLUE bench-
mark (Wang et al., 2018) (RTE, MRPC, MNLI) and
three proprietary natural language understanding
tasks (QID, DoS, QDR) we collected for devel-
oping and testing question-answering or dialogue
systems. The detailed introductions of the datasets
are put in Appendix B.

4.2 Baseline methods

For multi-exiting BERT training, we compare
our BADGE framework with the following base-
lines: (a) joint training (JT) (Zhou et al., 2020;
Teerapittayanon et al., 2016); (b) two-stage train-
ing (2ST) (Liu et al., 2020; Xin et al., 2020); (c)
alternating training (ALT) (Xin et al., 2021); (d)
Gradient equilibrium (GradEquil) (Li et al., 2019),
which incorporates JT with gradient adjustments;
(e) fine-tuning ALBERT with a single exit of dif-
ferent depths separately (Single-exits); (f) Global
Past-Future, which develops a series of techniques
to enhance the performances of lower layers by
mimicking the deeper layers. We also implement
JT with a multi-head attention exit (Liu et al., 2020)
(JT+MHA-exit).

We compare the early exiting performances of
our DGE method with the following early exit-
ing methods: (a) Entropy-based method (Entropy)
originated from (Teerapittayanon et al., 2016);
(b) Maximum probability-based method (Max-
prob) (Schwartz et al., 2020); (c) Patience-based
method (Patience) (Zhou et al., 2020); (d) learning-
to-exit based method (LTE) proposed by Xin et al.

(2021), which incorporates a meta layer to evaluate
the confidence of the current exit.

4.3 Exprimental settings

For the GLUE tasks, we use the open-sourced
ALBERT-base (Lan et al., 2020) as the backbone.
And for the three proprietary tasks, we use a pre-
trained Chinese ALBERT-base2. In the ablation
studies, we also consider BERT-base (Devlin et al.,
2019) (in English and in Chinese). Our BADGE
model with block-wise bypasses is optimized fol-
lowing the JT method with simple linear exits.
Since we are training multi-exit models in which
each layer’s exit has a performance score, we
mainly focus on improving S-avg, which denotes
the cross-layer average score for a given metric S.
We also report S-best, the best score among all the
layers for the given metric S.

Following prior work on input-adaptive infer-
ence (Teerapittayanon et al., 2016; Kaya et al.,
2019), inference is on a per-instance basis, i.e.,
the batch size for inference is set to 1.3 The av-
erage speedup ratio on the test set of each task
will be reported, which is defined as Speedup =

1−
∑Ntest

1 ti∑Ntest
1 Ti

, where Ntest is the number of sam-

ples on the test set, ti is the inference time under
early exiting, and Ti is the inference time without
early exiting.

We implement our BADGE and all the base-
lines on the base of Hugging Face’s Transformers
(Wolf et al., 2020). Experiments are conducted
on four Nvidia RTX 3090 GPUs. We report the
median performance over five runs with different
random seeds. More detailed settings regarding
hyper-parameters can be found in Appendix C.

4.4 Overall comparison

We first compare our BADGE method with
the previous best-performing training methods of
multi-exit PLMs. Table 1 reports the results. The
following takeaways can be made.
BADGE outperforms the baselines With the
help of block-wise bypasses, our BADGE frame-

2This model is pre-trained by us, and this model
is distilled from an open-sourced ALBERT-large
model (available at https://huggingface.co/uer/
albert-large-chinese-cluecorpussmall ) on our corpus
following the pretraining distillation pipeline of TinyBERT
(Jiao et al., 2019)

3This setting is consistent with the common scenario in
the industry where individual requests from different users
(Schwartz et al., 2020) come at different time points.
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RTE MRPC MNLI QID DoS QDR
ALBERT-base fine-tuning

acc acc-f1 acc acc mf1 f1
ALBERT 77.6 89.1 83.7 91.9 88.0 87.3

Multi-exit ALBERT fine-tuning
acc-avg acc-best acc-f1-avg acc-f1-best acc-avg acc-best acc-avg acc-best mf1-avg mf1-best f1-avg f1-best

Single exits 67.5 77.6 85.4 89.1 76.4 83.7 89.5 92.3 82.9 88.0 83.3 87.3
2ST 68.9 77.6 83.0 89.1 76.2 83.7 89.3 91.9 82.5 88.0 81.9 87.3

JT 66.8 72.5 84.4 87.9 76.0 83.8 89.2 91.1 81.6 87.3 82.2 87.2
JT+MHA exit 67.5 75.9 84.8 87.9 76.8 83.2 89.3 91.5 81.7 87.6 82.3 87.1

GradEquil 67.3 77.4 84.2 88.4 76.5 83.6 89.2 91.8 82.4 88.0 82.4 87.0
ALT 68.5 77.8 84.6 88.3 76.6 82.9 88.6 90.6 82.3 87.8 81.5 86.8

Global Past-Future 68.1 78.4 84.3 88.1 75.9 82.9 89.1 92.3 82.4 87.9 82.4 87.1
BADGE 70.2 77.9 86.0 89.6 77.8 83.8 90.0 92.4 83.2 88.1 84.3 87.2

Table 1: Experimental results of models with ALBERT backbone (English and Chinese) on the GLUE benchmark
datasets and our three proprietary datasets.

work consistently outperforms the baseline meth-
ods in terms of the average performances across
all the intermediate layers and the cross-layer best
scores. The experimental results are foreseeable:
introducing the block-wise bypasses can help the in-
termediate transformer layer to concentrate on pro-
viding hidden representations, while the bypasses
can provide features more suitable for the current
layer’s exit. In this way, both the cross-layer best
and cross-layer average scores can improve.
Demonstrating that BADGE does not achieve
improvements by merely adding more param-
eters It is natural to question whether the per-
formance gains of BADGE are from additional
parameters. With the bottleneck dimension r = 16,
our bypass architecture introduces 26k parameters
per layer. A multi-head attention exit (Liu et al.,
2020) with a bottleneck dimension r = 32 intro-
duces 98k parameters per layer. As shown in Table
1, JT with MHA exits performs better than JT (with
simple linear exits). However, our BADGE method
successfully outperforms JT with MHA exits with
fewer parameters. The results demonstrate that
BADGE’s advantages come from designing our
bypass mechanisms.

4.5 Dynamic early exiting performances

We compare our DGE method with the previ-
ous best-performing early exiting methods. For the
patience-based method (Zhou et al., 2020), early
exiting is run on different patience parameters. For
the other methods, we run early exiting under differ-
ent confidence thresholds or patience parameters so
that the speedup-performance curves consist of at
least 20 points evenly distributed across the interval
(0, 1) of speedup ratios. The speedup-performance
curves for the MRPC, QID, and QDR tasks are
plotted in Figure 2.

The following takeaways can also be made from
Figure 2: (a) With the same backbone model
trained with our BADGE framework, our DGE
method achieves better speedup-performance trade-
offs than the previous SOTA early exiting meth-
ods, especially when the speedup ratio is large. (b)
The comparison between Patience (with the model
trained with BADGE) and JT+Patience (with the
model trained with the JT method) demonstrates
that our BADGE can provide superior backbones
for early exiting and consistently result in su-
perior performances under different speedup re-
quirements. (c) Note that the pre-trained Chi-
nese ALBERT-base model we use is a compressed
model from a larger one. Our method can further
speed up its inference, proving that it can work well
with other model inference speedup methods like
Jiao et al. (2019).

4.6 Ablation studies

Ablation on the placement of bypasses Since
we want to provide separate hidden states in a sin-
gle forward pass on the BERT backbone, our by-
passes must be added to the end of the transformer
layer. To show that the design of our block-wise
bypasses is essential, we now consider another
two placements of bypasses: (a) placed around
the multi-head self-attention module, denoted as
MHSA bypasses; (b) placed around the positional
feed-forward module (FFN bypasses). Note that
MHSA bypasses can not provide two different hid-
den states at the end of the transformer block within
a single forward pass, thus slowing down inference
speed. The results on RTE and QID tasks are re-
ported in Table 2. We can see that: (a) FFN by-
passes perform comparably with the block-wise
bypasses; (b) MHSA bypasses perform worse than
the block-wise bypasses since, in this setting, the
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(a) MRPC (b) QID (c) QDR

Figure 2: The speedup-score curves on the MRPC, QID and QDR datasets.

RTE QID
acc-avg acc-best acc-avg acc-best

block-wise bypasses 70.2 77.9 90.0 92.4
MHSA bypasses 68.4 77.3 89.4 91.7

FFN bypasses 69.6 77.8 89.7 92.1

Table 2: Experimental results for different placement
settings for the bypasses.

RTE QID
acc-avg acc-best acc-avg acc-best

r = 64 70.2 77.8 89.9 92.1
r = 32 70.1 77.6 90.0 92.2
r = 16 70.2 77.9 90.0 92.4
r = 8 70.0 78.0 89.8 92.3
r = 4 69.9 77.8 89.7 92.0

Table 3: Experimental results for comparing different
bottleneck dimensions. The acc-avg and acc-best scores
are reported.

FFN module in a transformer block still has to con-
duct multi-task learning.
Different bottleneck dimensions r We set the
bottleneck dimension r to be 16 for the main part
of the experiments (as in Table 1). We now con-
duct experiments for r on the RTE and QID tasks,
and Table 3 reports the results. From Table 3, we
can see that: (a) smaller bottleneck dimensions
do not result in significant performance drops. (b)
bottleneck dimensions do not provide performance
improvements, demonstrating that the superior per-
formances of our BADGE indeed come from our
block-wise bypass mechanism instead of the addi-
tional parameters.
Ablation on different PLMs To show that our
BADGE framework is off-the-shelf and can work
well with other pre-trained models, we now switch
the backbone model to BERT-base (Devlin et al.,
2019), or ElasticBERT (Liu et al., 2022). Due to
limited length, the results are reported in Table 6 of
Appendix D. The results demonstrate that BADGE
outperforms the JT and ALT methods under differ-

ent backbones by clear margins.
Also, note that the cross-layer average scores of

BERT-base and ElasticBERT are lower than that
of ALBERT-base, showing that ALBERT is more
suitable for early exiting. We hypothesize that the
ALBERT model employs a cross-layer parameter-
sharing strategy. Thus, the representations given by
intermediate blocks are more similar to one another,
and the performances of its intermediate layers will
be closer.

5 Conclusion

In this work, we propose a novel framework,
BADGE, to improve the early exiting of pre-trained
language models. First, we propose to add block-
wise bypasses to facilitate the joint training of the
intermediate exits, thus improving the overall per-
formance of multi-exit PLMs. Second, we propose
a novel divergence-based early exiting method,
DGE, which can effectively mine the exiting sig-
nals by comparing the predicted distributions of
the current and previous intermediate layers. DGE
achieves better efficiency-performance trade-offs
than the previous SOTA early exiting methods un-
der the same multi-exit backbone. Our BADGE is
off-the-shelf and can effectively speed up the infer-
ences of PLMs with less performance degradation.
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Limitations

Although our BADGE framework is shown to be
effective in improving the multi-exit model train-
ing and early exiting, it still has certain limitations
that need to be addressed in the future: (a) block-
wise bypasses indeed introduce new parameters
and additional flops. We would like to explore more
parameter-efficient methods to improve multi-exit
model training in future works. (b) In this work,
we demonstrate our framework’s performance on
sentence classification or pair classification tasks.
In future works, we would like to extend our work
to broader tasks such as sequence labeling, relation
extraction, and text generation. We would like to
explore this aspect in future work.

Ethics Statement

Our BADGE framework is designated to im-
prove the training of multi-exit BERT and dynamic
early exiting performances. Our work can facili-
tate the deployment and applications of pre-trained
models on devices with less powerful computation
capabilities, making the state-of-the-art models ac-
cessible for everyone. In addition, we hope this
technology can help reduce the carbon footprints of
NLP-based applications. Furthermore, the GLUE
datasets we experiment with are widely used in
previous work. Thus, to our knowledge, our work
does not introduce new ethical concerns.
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A Appendix: Related work

A.1 Inference acceleration methods

Since the rise of BERT, there are quite large
numbers of literature devoting themselves to speed-
ing up the inference of BERT. Standard method
include direct network pruning (Zhu and Gupta,
2017; Xu et al., 2020; Fan et al., 2019; Gordon
et al., 2020), distillation (Sun et al., 2019; Sanh
et al., 2019; Jiao et al., 2020), Weight quantiza-
tion (Zhang et al., 2020b; Bai et al., 2020; Kim
et al., 2021) and Adaptive inference (Zhou et al.,
2020; Xin et al., 2020; Liu et al., 2020). Among
them, adaptive inference has drawn much atten-
tion. Adaptive inference aims to deal with simple
examples with only shallow layers of PLMs, thus
speeding up inference time on average.
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A.2 Early exiting mechanisms

Early exiting requires a multi-exit BERT, a
BERT backbone with an intermediate classifier (or
exit) installed on each layer. Early exiting literature
mainly focuses on the design of the early exiting
strategies, that is, determining when an intermedi-
ate exit’s prediction is suitable as the final model
prediction. Score based strategies (Teerapittayanon
et al., 2016; Xin et al., 2020; Kaya et al., 2019;
Xin et al., 2021), prior based strategies (Sun et al.,
2022) and patience based strategies (Zhou et al.,
2020) have been proposed. Teerapittayanon et al.
(2016) uses the entropy of an intermediate layer’s
predicted distribution to measure the in-confidence
level and decide whether to exit early. PABEE de-
termines whether to exit by comparing the current
layer’s prediction with the previous layers.

A.3 Introductions to more multi-exit BERT
training methods

A.3.1 Two-stage training method
The two-stage (2ST) (Xin et al., 2020; Liu et al.,

2020) training strategy divides the training proce-
dure into two stages. The first stage is identical to
the vanilla BERT fine-tuning, updating the back-
bone model and only the final exit. In the second
stage, we freeze all parameters updated in the first
stage and fine-tune the remaining exits separately:

Stage1 : Lstage1 = LCE
M (yi, fM (xi; θM )) (5)

Stage2 : Lstage2 = LCE
m ,m = 1, ...,M − 1. (6)

where LCE
m = LCE

m (yi, fm(xi; θm)) denotes the
cross-entropy loss of m-th exit.

A.3.2 Alternating training
This method alternates between joint training

and two-stage training across different optimization
steps, and it was proposed by BERxiT (Xin et al.,
2021):

Odd : Lstage1 = LCE
M (yi, fM (xi; θM )) (7)

Even : Ljoint =
M∑

m=1

LCE
m (8)

B Appendix for datasets and evaluation
metrics

B.1 Introduction to our proprietary tasks

In this work, we experiment with three propri-
etary datasets collected by our teams. The samples

in these datasets are collected from users of a real-
world production environment and are manually
annotated by an data annotation team.
Query intent classification in dialogues (denoted
as QID) This task asks a model predict the intent
of an utterance from a user in a dialogue. The dia-
logue history are also provided as a part of the input
text sequence. The samples of this task is collected
from the dialogues between customers and clerks
in grocery stores, hotels, pharmaceutical stores and
gyms. All the participants of the dialogues have
signed the data collection agreements. We assign a
single label to each user utterance, and the number
of intent labels are 78. The evaluation metric is
accuracy (acc).
Query-doc ranking task (denoted as QDR) In
this task, for a given search query in the scientific
domain (including topics like bio-medicine, drug
development and artificial intellegence), a pool of
documents are given. The documents are either
blog posts from our institution or abstracts of aca-
demic journal papers from Medline4. The pool size
is between 12 to 128. The relevant documents are
labeled as 1, and the other are labeled as 0. The
annotation is based on whether the content of a doc-
ument can provide sufficient answers to the query.
In this task, a model is expected to predict the rel-
evancy label for each query-document pair with
high accuracy. The evaluation metric for this task
is F1 of query-document relevancy labels (f1).
Document classification (denoted as DoS) In this
task, a pre-defined label is assign to each document,
to help guide the users to find articles of interests.
The collection of documents have the same sources
with QDR. The number of labels are 109. In this
task, a classification model reads the text contents
and predicts the label of a document. We develop
this dataset in the hope that the model can help us
automatically organize the documents, or at least fa-
cilitate the human workers to do so to reduce costs.
The evaluation metric for this task is macro F1,
since this task has in-balanced label distributions
(macro-f1).

B.2 Evaluation metrics of GLUE tasks

For RTE, the metric is accuracy (acc). For
MRPC task, the metric the average of the accu-
racy and F1 score (acc-f1). For MNLI, the metric
is the average of the accuracy score on the matched
and mis-matched test subsets (denoted as acc).

4https://www.medline.com/

508

https://www.medline.com/


Category Datasets |train| |dev| |test| |Y| Type Labels

Single-sentence
QID 125365 15670 15670 78 intent classification 0, 1, ..., 77
DoS 1083278 135410 135410 109 document classification 0, 1, ..., 108

Sentence-pair
MNLI 390702 2000 19647 3 NLI entailment, neutral, contradiction
RTE 2490 138 139 2 NLI entailment, not entailment

MRPC 3668 204 204 2 paraphrase equivalent, not equivalent
QDR 3568930 446116 446116 2 text matching 0, 1

Table 4: The statistics of datasets evaluated in this work. For MNLI task, the number of samples in the test set is
summed by matched and mismatched samples. |Y| is the number of classes for a dataset.

B.3 Dataset splits

For the QID, QDR and DoS tasks, we ran-
domly split the annotation samples train/dev/test
splits with 8:1:1 ratio. Since the original test sets
of GLUE are not publicly available, we follow
Zhang et al. (2020a) and Mahabadi et al. (2021)
to construct the train/dev/test splits as follows: (a)
for datasets with fewer than 10k samples (RTE,
MRPC), we divide the original validation set in
half, using one half for validation and the other for
testing. (b) for larger datasets (MNLI), we split 2k
samples from the training set as the development
set, and use the original development set as the test
set. The detailed dataset statistics are presented in
Table 4.

C Appendix for experimental settings

We add a classification layer after each interme-
diate layer of the PLM as the exits. The exit is a
simple linear layer by default, but we also consider
the MHA exit suggested by Liu et al. (2020). We
fine-tune the multi-exit BERT with one of the four
bypasses architectures (in Section 3.1) or without
bypasses, and the bottleneck dimension r is set
as 16. The bottleneck dimension for multi-head
attentional exit is set to be 32.

We fine-tune models for at most 25 epochs with
an Adam optimizer and warm-up. The warm-up
steps are set to be 10% of the optimization steps.
Early stopping with patience eight is performed,
and the best checkpoint is selected based on the dev
set performances. Since we are training multi-exit
models in which each layer’s exit have a perfor-
mance score, we mainly focus on improving S-avg,
which denotes the cross-layer average score for a
given metric S. We also report S-best, the best
score among all the layers for the given metric S.

We perform grid search for the following hyper-
parameter search space: the {GELU, ReLU,
SWISH, Tanh, Identity} for the activation func-
tions in the bypasses; {16, 32, 64, 128, 512, 1024}

batch size lr g1
RTE 16 1e-5 GELU

MRPC 16 2e-5 Tanh
MNLI 1024 5e-5 GELU
QID 128 1e-5 GELU
DoS 128 2e-5 ReLU
QDR 1024 3e-5 LeakyReLU

Table 5: Hyper-prameters adopted by our best BADGE
models on each GLUE tasks.

RTE QID
acc-avg acc-best acc-avg acc-best

ElasticBERT as backbone
JT 62.3 70.7 88.6 92.0

ALT 63.1 70.9 88.4 91.6
BADGE 64.5 72.3 89.3 92.1

BERT-base as backbone
JT 61.5 68.9 87.5 91.3

ALT 61.9 69.3 87.7 91.2
BADGE 62.7 70.5 88.9 92.5

Table 6: Experimental results of different PLM back-
bones.

for the batch size; {1e-5, 2e-5, 3e-5, 5e-5} for
the learning rate. We implement our BADGE and
all the baselines on the base of Hugging Face’s
Transformers (Wolf et al., 2020). Experiments are
conducted on four Nvidia RTX 3090 GPUs.

Table 5 presents the detailed hyper-parameters
for the best performing BADGE model. The hyper-
parameters we present are: (a) training batch size
(bsz); (b) learning rate (lr); (c) activation functions
g in the bypasses. From Table 5, many tasks favor
the GELU activation function.

D Ablation studies on different PLMs

In the experiments of the main content, the PLM
backbone is the ALBERT-base. In Table 6, we re-
port the results using BERT-base and ElasticBERT
as backbones. The results show that our BADGE
works well with different pre-trained models.
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Abstract

Maritime security requires full-time monitor-
ing of the situation, mainly based on technical
data such as radar or Automatic Identification
System (AIS) but also from Open Source In-
telligence like inputs (e.g., newspapers). Some
threats to the operational reliability of this mar-
itime surveillance, such as malicious actors,
introduce discrepancies between hard and soft
data (sensors & texts), either by tweaking their
AIS emitters or by emitting false information
on pseudo-newspapers.

Many techniques exist to identify these pieces
of false information, including using knowl-
edge base population techniques to build a
structured view of the information. This paper
presents a use case for suspect data identifica-
tion in a maritime setting. The proposed system
UMBAR ingests data from sensors and texts, pro-
cessing them through an information extraction
step, in order to feed a Knowledge Base (KB)
and finally perform coherence checks between
the extracted facts.

1 Introduction

One of the main challenges in the maritime domain
is to ensure safety and security of ships: in and
around harbors but also when they are offshore
for several days. The security aspect has benefited
from a renewed interest recently, due to piracy and
trafficking. Most harbor administrations rely to-
day on AI-powered investigation tools to perform
a number of checks on each entering vessel: com-
paring the declared status of the ship, aggregating
sensor data, and even searching the Web for news.

Among the organizations that collect and dis-
seminate information about maritime events, the
Maritime Information Cooperation and Awareness
Center (MICA) collects and relays useful informa-
tion to all actors in the field of maritime industry.
Its purpose is to process maritime security data

worldwide. The 2022 annual report1 summarizes
the reports regularly sent to the maritime industry
and analyses the trends observed as well as the
evolution of modes of action.

The sensor data mainly consists of radar and AIS
signals. Every ship must emit its identity, speed,
position and course at short time intervals. This
information is received by all other vessels in reach
as well as dedicated receiving stations, on the coast
and in space.

Based on sensor data, alerts related to the behav-
ior of vessels are raised automatically: abnormal
position, sudden change of direction, etc. This
ensures a quick and efficient reaction of the po-
lice/security agents.

Relevant information about ships and maritime
events also occurs in a non-technical way, through
the news (so-called “soft data"). Accidents, illegal
events, presence of a vessel in blockade-regulated
areas and even modifications in the financial struc-
ture of the proprietary company are highly suscep-
tible to increase the risk of a ship entering a harbor.

Malicious actors may use a large variety of tech-
niques in order to perform covert operations, in-
cluding trafficking, illegal fishing, piracy and smug-
gling. AIS are easy to tamper with, as ships may
-illegally- decide to modify their identity, declare a
false destination or even cease to emit.

Another case of concern occurs when civil ves-
sels are the main object of a crisis between interna-
tional powers, such as the Stena Impero near Iran
in 2019 or the wheat vessels in the Black Sea in
2022: different newspapers may diffuse contradic-
tory information about the same ships, which may
in turn be inconsistent with technical data. In these
cases, we believe that smart tools are needed in
order to refine information and help the analysts
build a clear picture of the situation.

To tackle these security challenges, we propose

1https://www.mica-center.org/en/home/download/
2395/?tmstv=1673337653
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UMBAR, a system to automatically collect, analyze
and compare information from a variety of sources
of data, resulting in a risk assessment that is practi-
cal for a security operator in the maritime domain.
Such a system relies heavily on Natural Language
Processing on the textual modality as well as on
reasoning modules on the extracted knowledge.

More precisely, the contributions of this article
are the following:

• a technical description of UMBAR, a complete
operable system ranging from data collection
to knowledge management,

• evaluation elements at a statistical and
methodological level for the constituting sub-
systems,

• key points of attention towards a large-scale
deployment of such a system.

The article is structured as follows: section 2
provides a review of the literature on the topic of
AI-assisted maritime surveillance, with a special
focus on knowledge based approaches; section 3
presents our system UMBAR and each of its subsys-
tems from Information Extraction to Alert Raising;
performance evaluation elements are provided at a
subsystem level in section 4. A prospective discus-
sion is exposed in section 5 to explicit the remain-
ing challenges of the system deployment. Finally,
section 6 concludes this paper.

2 Related Works

We structure our review of the literature along three
streams: first, the identification of lies or manipu-
lation on structured data. Detecting fake news has
recently received a lot of attention, combining facts
and language (Seddari et al., 2022); here we focus
on the identification of dissimilarity between facts
such as stored in knowledge bases (attributes, prop-
erties, relations). For media analysis purposes, this
falls under the topic of “automatic fact-checking”
(Guo et al., 2022).

In the maritime use case, expert systems for alert
raising are common to detect a change of destina-
tion for a commercial vessel, or even a change of
shipowner or flag can usually be observed (Alaed-
dine and Ray, 2022). AIS systems can also be
hacked to disseminate false information manufac-
tured. The objective of these false messages (e.g.
distress signals, false vessel locations, etc.) is to

attract attention and trap the targeted vessels (Bal-
duzzi et al., 2014). These operations of disinfor-
mation and deception are very dangerous: it is
essential to identify them.

Second, we focus our research on reasoning on
facts in Knowledge Bases (KB), extracting the
information using Knowledge base POPulation
(K-POP), to automatically compute dissimilarity
between text-extracted small Knowledge Graphs
(KG) and to enable relation prediction; these appli-
cations are considered relevant for maritime secu-
rity (Everwyn et al., 2019).

Zhang et al. (2019) focus on the link predic-
tion task with complex linked datasets. Their ap-
proach successfully captures crossover interactions
between entities and relations when modeling KGs.
d’Amato et al. (2022) propose an approach based
on semantic similarity for generating explanations
to link prediction problems on Knowledge Graphs.
Bhowmik and de Melo (2020) propose a model
based on a Graph Transformer that learns entity
embeddings by iteratively aggregating information
from neighboring nodes to tackle the problem in
the case of graphs that evolve over time.

Finally, our goal is to detect changes which occur
over time and to evaluate information that evolves
over time. Thus, this technique will identify a large
number of alerts linked to a normal evolution of the
characteristics of an entity. Dealing with temporal
KB is still nothing trivial and mainly dealt with for
Question-Answering where the relevant answers
is dependent on time(Chen et al., 2022). Reason-
ing on such facts with intelligent systems is pretty
much novel (Zhang et al., 2022), and still mainly
dealt with by expert rules in operational systems.

3 System breakdown

In this section, we first sketch a view of UMBAR,
then detail its two pillars: K-POP to extract the
information, and coherence checks to perform the
verification.

3.1 System Overview

The strength of our system, illustrated in the fig-
ure 1, lies in its ability to efficiently handle the end-
to-end extraction and verification of valuable infor-
mation from heterogeneous sources. The informa-
tion contained in filtered sources is first extracted
through the K-POP pipeline using transformer-
based (Vaswani et al., 2017) language models. Ex-
tracted entities are compared to the existing ones
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Figure 1: Overview of the UMBAR system: in green the information extraction pipeline from texts; in blue the
processing of AIS messages; on the right a KB is fed as an output of the coherence check module.

in the KB to instantly detect and flag any inconsis-
tencies. The end user is immediately aware of any
potential alert and can then track down the cause
from the relevant sources.

3.2 Information Extraction

Relevant information such as named entities (lo-
cations, organizations, persons and equipment),
events and relations between these entities are ex-
tracted using a pipeline of Natural Language Pro-
cessing (NLP) modules (Prieur. et al., 2023).

Named Entity Recognition (NER): The first
component of this pipeline recognizes entities of
interest in the text while assigning them a type with
the help of the document. This block is instanti-
ated by a fine-tuned RoBERTa (Liu et al., 2019)
language model.

Co-reference resolution: It is then necessary to
group the mentions referring to the same textual
entities. In this case, the pre-trained World-level co-
reference resolution model (Dobrovolskii, 2021) is
used to find groups of words referring to the same
concept. These results are combined with those of
the first block to obtain clusters with the same type.

Relation extraction: For this step we fine-tune
the ATLOP model (Zhou et al., 2021) that produces
an embedding of each entity at document scale
before predicting the potential links (those with
a predicted score greater than the null relation)
between each couple.

Entity Resolution: The previously extracted in-
formation constitutes a support for the entity resolu-
tion step. Each entity in the text is associated with

an entity in the database, if possible. This allows
to add new knowledge by completing the profile of
the known entities or by creating new ones. In this
pipeline, the entity resolution is solved by perform-
ing a search by mention and a selection by popular-
ity. To each entity in the text, a list of KB entities
is associated, that share the same type and at least
one mention. In case the mentions do not return
any results, an extended search is performed with
the acronyms of these mentions. If no element is
returned, the textual entity is added to the database.
If several entities of the database match mentions
of the textual cluster, a selection by popularity is
applied, similarly to (Al-Badrashiny et al., 2017).
The entity with the most occurrences, considering
all mentions, is selected.

3.3 Coherence checks
The process described in the figure 2 concerns mar-
itime events.

When a new event occurs, entities involved in
maritime events are extracted from either the text
or the AIS message: equipment, locations and
organizations in our case. The KB is browsed,
and a search is launched to check three conditions:
whether there is an event of the same nature2, in-
volving the same ship(s) and occurring at the same
date.

(i) If these three conditions are met, a similarity
score Simwd(Ei, Ej) is computed, using weights
wx for each attribute x. These weights take into
account the relations and attributes that are likely
to embed misinformation or false information: if

2Ten natures of events are identified: seizure/arrest, colli-
sion, damage, sink, attack, aground, entrance (a harbor),leave
(a harbor), transshipment and traffic.
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No
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Figure 2: New event verification process

the location and/or the unit involved in the two
events -to be compared- are different, there is a
higher probability that one of these events contains
misinformation. Attributes in the KB are compared
one by one using the Jaro-Winkler distance (Jaro,
1989; Winkler, 1990). This score ranges between
-1 and 1.

Simwd(Ei, Ej) =
∑

∀x∈S
wx.djw(Ei, Ej) (1)

where

• S ∈ [Org, Loc, Equipment, Pers]

• wx corresponds to the weight attributed to
each entity.

• djw(Ei, Ej) corresponds to Jaro-Winkler dis-
tance between event Ei and event Ej .

A threshold is fixed to 0.25: if the similarity score
is less than 0.25, the event is considered to hold
disinformation. If the similarity score is higher
than the threshold, that means that both events are
considered coherent and the information brought
by the new event corresponds to the information
already in the KB.

(ii) If the three conditions are not satisfied, and
an event involving the same ship on a different date
already exists in the KB, additional information is
considered by applying evolution models. Once
evolution models are applied, the similarity score
is computed again, and according to it, either the

two events match or an incoherence between the
two events is spotted.

In the case where there are no events involving
the same ship on a different date in the KB, there is
a lack of information and the system cannot decide
about coherence until more information is received.

Evolution models
Matching time-distant facts requires to consider
a wider spectrum of evolution (e.g. for position)
during the time difference. A simple similarity
between the two facts would not be effective. Three
evolving models for real-world application on ships
have been identified and patented (Vasnier et al.,
2022).

Each attribute in the KB (such as the name of
the ship, its speed, location, etc.) is related to one
of three types of evolution models, depending on
the nature of attributes:

• constant model: constant attributes such as
IMO (International Maritime Organisation)
which is a unique identification number for
ships are related to this type of model,

• predictable model: attributes that evolve over
time such as the position, the direction or
the speed of a ship are related to this type
of model. The evolution of this kind of at-
tributes is predictable with mathematical tools.
Knowing the position of a ship and its heading
direction, the geographical area in which the
ship will be in a near future is predictable.
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• circumstantial model: this type of model is the
most complex to represent and to predict. It is
related to events having attributes or relations
which may change on rare occasions. The
attributes related to the circumstantial model
are subject to change with a specific and un-
predictable event. In a maritime use case, the
event could be the change of the captain, or
further the purchase of a ship by another com-
pany.

The similarity score is computed as follows:
∀p ∈ (Ei ∪ Ej),

Simevol(Ei, Ej) =

∑
(dist(pEi , pEj ).γp)∑

(γp)
(2)

where γp denotes the confidence weight for each
property p of an event. γp is the product of (a) the
reliability of the sensor that collects information on
p and (b) the evolution uncertainty model of p. γp
is between 0 and 1. A weight of 1 is considered as
a very reliable property and a weight of 0 means
that we cannot trust this very uncertain property.

4 Performance analysis

4.1 K-pop Pipeline performance
Setup: To evaluate the information extraction
pipeline, we focused on the proportion of informa-
tion correctly extracted and aggregated from texts
into a KB. In further detail, we computed a similar-
ity score between a base populated by the evaluated
system and the ground truth KB that we should ob-
tain from a finite set of texts. For this purpose,
we tested two scenarios, a Warm-start scenario
which consists in populating an existing base and a
Cold-start scenario in which we build a KB from
scratch. To this end, we used the DWIE (Zaporo-
jets et al., 2021) dataset. This dataset consists of
800 press articles in English, written and published
by Deutsche-Welle. The textual level annotations
of entities, their relations, their types and a unique
identifier per entity at the inter-textual level allowed
us to evaluate and compare our pipeline with the
model proposed by (Zaporojets et al., 2021). The
pipeline has been adapted to the ontology associ-
ated with the dataset and trained on the first 700
texts that constitute the train set. To measure a sim-
ilarity score, we first align entities between the two
KBs using the proportion of elements in common.
The Hungarian algorithm (Kuhn, 1955) is then used
to optimize this alignment, thus maximizing the av-
erage F1-score. Since the model introduced by

DWIE does not solve the entity resolution task, we
use the same solution as the one in our pipeline.

Results The results in the table 1 illustrate the bet-
ter performances compared with the DWIE model.
Our K-POP pipeline shows up to a 2% improve-
ment over the DWIE model in the Warm-start sce-
nario. This shows that additional information ex-
tracted by our system contributes to a better linking
with the existing content. The difference in results
between the two types of scenarios shows the dif-
ficulty of populating an KB. However, our model
shows a better resilience due to the linking by con-
text approach.

F1
Model Cold-start Warm-start

KBP 76.1 72.1
DWIE 75.6 69.9

Table 1: F1 scores on the DWIE dataset.

Although there is still room for improvement,
even more so in the case of the Warm-start scenario
which shows the difficulty of populating an existing
base, our IE (Information Extraction) solution can
be considered for semi-automatic population.

4.2 Event consistency check
The aim is to ensure that the information extracted
from the new event are coherent with those in the
KB. If there is a contradiction with stored infor-
mation in the KB, then an alert is raised. Figure 3
shows two events about the Stena Impero seizure
in 2019. These events are extracted from two dif-

Figure 3: Example of two incoherent events.

ferent newspapers and they contain non-matching
(incoherent) information. They are represented in
the intelligent Knowledge Base as in figure 4.

The two events are compared based on the simi-
larity score described in section 3.3.

Weights and threshold used for the determination
of the similarity score are application-dependent;
they rely on the sensibility of the end-user, since
the results may vary depending on optimistic or
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Figure 4: Representation of relation graphs of the event in the KB and the new event to evaluate

pessimistic assessment choices. They are currently
defined based on end users application needs but
can be further extended to allow for automated
learning of these parameters. Note that the con-
stitution of a training dataset for such a specific,
unbalanced, high-risk problem is highly non-trivial.
In this case, the new event holds disinformation
since similarity score is -0.6 between these two
events.

4.3 Evolution models in the real world

As an example, a newspaper may relate the follow-
ing event, which UMBAR will need to compare with
the existing events in the KB: “On Saturday Stena
Impero tanker had collided with a fishing boat, the
Konarak, on its route."

Extracted information from this event are in the
table 2. We notice that there is a date -19 July

Event Stena Impero tanker had col-
lided with a fishing boat, the
Konarak, on its route.

Equipment Stena Impero
Konarak

Unit -
Loc. Bandar Abbas
Nature of event: Collision
Date: 19 july 2019

Table 2: Event and extracted information

2019- deduced from the publication date of the
article containing the event.

This event conflicts with an event already present
in the KB, indicating that The konarak is moored
in Turkey on the 13th of July. Considering that this
last event is correct, evolution models are used to
perform the coherence check.

Figure 5: Reachable area from Turkey in five days

According to predictable models, a reachable
area in five days (from 13 to 19 July) from Turkey
is computed. The ship cannot be at the port of
Bandar Abbas in Iran such a short time.

While these elements of evaluation are not pro-
vided as statistical measures, the specificity of the
domain (high security risk along a low number of
positive samples) makes it appropriate to evaluate
the evolution models with an operational perspec-
tive.

5 Expert opinion and maritime security

Qualitative analyses on maritime security use cases
are still on progress. For production-grade real
word applications, the extracted information from
AIS messages as presented in the figure 1 will be
processed so as to check the coherence of informa-
tion over time and to raise alerts in case suspect
information is spotted.

Once combined, the aforementioned methods
present features allowing to deal with actual
data and information coming from heterogeneous
sources, on a massive scale. It encompasses tech-
niques to better correlate and assess information
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with different timings, from both texts and sensor
data domains, so that trusted KBs can be populated
with a user-defined reliability.

Obviously, human intervention cannot be elimi-
nated, but adding this process to ensure maritime
security will help a lot, and will increase the perfor-
mance of detecting false information or attempts to
manipulate information.

6 Conclusion

This paper allowed us to present our semi-
automatic end-to-end processing chain for infor-
mation extraction and misinformation detection
applied to a maritime surveillance use case. Mar-
itime security being a central sector susceptible
to false information leading to disastrous conse-
quences. Although there is still room for improve-
ment, our information extraction system and incon-
sistency detection provide support and alleviate the
task of the operational staff in charge of monitor-
ing. Future work will focus on improving the KBP
pipeline to move towards fully automatic extrac-
tion, conducting an evaluation and further study on
the detection of erroneous information.

The use of UMBAR in a representative setting is
planned in order to evaluate the system and qualify
it for its future operational deployment.

Limitations

Building this system was nothing trivial. In our
understanding the main challenges where to ob-
tain data access, to chain very specialised artificial
intelligence models, and to handle the iterations
between the (machine) knowledge model, the cus-
tomer expertise and the algorithms. We detail each
of these challenges herein.

Access to annotated data

Piracy and AIS spoofing are still too frequent, even
though not frequent enough so as to result in the
availability of datasets to train and evaluate an au-
tomatic system. The proposed approach mainly
relies on subtask evaluation (notably on the infor-
mation extraction steps). The Coherence Check is
fully parameterizable in order to choose a sensi-
bility to all possible variations. A stream of work
concerning the automatic/statistic evaluation of the
full pipeline is still going-on.

Hyper-specialized AIs

Most of the substasks here are instantiated by
trained modules, which inherently contain an adher-
ence to the ontology used for labelling the training
dataset. Information extraction from texts were
fine-tuned for short pieces of news, and limited to
English. This cuts off numerous relevant sources
of information, typically from local newspapers
anywhere on Earth.

Handling business, ontology and algorithms
together

The trend to fully automatize screening processes
seems intuitive for many data scientists, but is actu-
ally not desirable for a security point of view: first,
because the targeted elements are “black swans”
which occur far too little in the training datasets,
and more often than not, do not appear twice. More-
over, having too much confidence in the machine
is clearly identified as a security risk, among other
AI-system biases(Rastogi et al., 2020). Instead, the
desired system should help the operator to handle
more data about more incoming ships, and enabling
them to focus on what is determining.

Ethics Statement

Developing AI for security purposes always come
with its ethical considerations. In this case, the
system performs law enforcement and fight against
piracy, which are commonly assessed as noble, eth-
ical deeds. As the application specifically targets
maritime trafficking, the risk of misuse is reduced
(i.e. it cannot be used to target individuals).

This system relies on third party sources of data.
As a consequence, the data processing roles are
clearly and contractually established between the
providers and the customer of this system, decreas-
ing privacy risks. No personal data is required by
the system; personal public data may be handled
from the press and from the AIS information (typi-
cally, the name of the captain).

The final result of the system is to gather and
aggregate a complete picture of the risk level of a
ship, to help an operator. The system may be used
to prioritize the effort to review the documents and
cargo of a ship, but cannot be used to authorize or
forbid a ship’s entry – this remains the decision of
the operator.
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Abstract

The ever-increasing size of language models
curtails their widespread availability to the com-
munity, thereby galvanizing many companies
into offering access to large language models
through APIs. One particular type, suitable for
dense retrieval, is a semantic embedding ser-
vice that builds vector representations of input
text. With a growing number of publicly avail-
able APIs, our goal in this paper is to analyze
existing offerings in realistic retrieval scenarios,
to assist practitioners and researchers in find-
ing suitable services according to their needs.
Specifically, we investigate the capabilities of
existing semantic embedding APIs on domain
generalization and multilingual retrieval. For
this purpose, we evaluate these services on two
standard benchmarks, BEIR and MIRACL. We
find that re-ranking BM25 results using the
APIs is a budget-friendly approach and is most
effective in English, in contrast to the standard
practice of employing them as first-stage re-
trievers. For non-English retrieval, re-ranking
still improves the results, but a hybrid model
with BM25 works best, albeit at a higher cost.
We hope our work lays the groundwork for
evaluating semantic embedding APIs that are
critical in search and more broadly, for infor-
mation access.

1 Introduction

Language models (LMs), pre-trained on a massive
amount of text, power dense retrieval models in ad
hoc retrieval (Lin et al., 2021b). Dense retrievers
(Lee et al. 2019; Karpukhin et al. 2020; Xiong et al.
2021; Khattab and Zaharia 2020; Hofstätter et al.
2021; Izacard et al. 2022; inter alia) essentially
measure relevance via similarity between the repre-
sentations of documents and queries. As LMs are
rapidly scaling up to gigantic models (Radford et al.
2019; Brown et al. 2020; Lieber et al. 2021; Chowd-
hery et al. 2022; Smith et al. 2022, inter alia), their
use as the backbone of dense retrieval models has
become limited primarily because large language

models (LLMs) are computationally expensive and
deploying them on commodity hardware is cum-
bersome and often impractical.

To alleviate this problem, many companies, e.g.,
OpenAI, and Cohere, set out to offer access to their
proprietary LLMs through a family of APIs. For
dense retrieval, semantic embedding APIs are de-
signed to provide LLM representations for queries
as well as documents. These APIs are especially
appealing in the IR ecosystem because they afford
practitioners and researchers the benefit of scale
and allow for wider outreach of LLMs in IR. How-
ever, although nowadays, the surge of companies
offering such APIs with various model sizes has
given us more options, a lack of thorough analysis
of these APIs has made it more difficult to deter-
mine one’s best option for a particular use-case.
Besides, LLM-based APIs are often expensive and
experimenting with all of them to determine the
most suitable is prohibitively costly.

In this paper, we analyze embedding APIs for
various realistic scenarios in ad hoc retrieval. To
this end, we select three embedding APIs available
on the market, i.e., OpenAI, Cohere, and Aleph-
Alpha, and assess their usability and effectiveness
on two crucial directions that stand at the core of
most IR applications.

First, we study domain generalization where re-
trieval is conducted over collections drawn from a
broad range of domains. Understanding for which
domains embedding APIs work well or poorly elu-
cidates their limitations while setting the stage for
their wide adoption in their successful domains.
We leverage the widely adopted BEIR benchmark
(Thakur et al., 2021) for this purpose. On BEIR,
we use the APIs as re-rankers on top of BM25
retrieved documents because the large size of doc-
ument collections in BEIR makes full-ranking (i.e.,
first-stage retrieval) via the APIs impractical. Our
results show that embedding APIs are reasonably
effective re-rankers in most domains, suggesting
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that re-ranking is not only budget-friendly, but also
is effective. However, we find that on datasets
collected via lexical matching, they struggle. In
particular, BM25 outperforms the full-fledged em-
bedding APIs on BioASQ (bio-medical retrieval)
and Signal1M (tweet retrieval).

We also explore the capabilities of embedding
APIs in multilingual retrieval where they are tested
in several non-English languages, ranging from
low-resource to high-resource languages. More
precisely, we use MIRACL (Zhang et al., 2022), a
large-scale multilingual retrieval benchmark that
spans 18 diverse languages. The manageable size
of the corpora allow us to evaluate the APIs as
full-rankers as well as re-rankers. We find that
the winning recipe for non-English retrieval is not
re-ranking, unlike retrieval on English documents.
Instead, building hybrid models with BM25 yields
the best results. Our experiments also indicate that
the APIs are powerful for low-resource languages,
whereas on high-resource languages, open-source
models work better.

Overall, our findings offer insights on using em-
bedding APIs in real-world scenarios through two
crucial aspects of IR systems. In summary, our key
contributions are:

• We extensively review the usability of commer-
cial embedding APIs for realistic IR applications
involving domain generalization and multilingual
retrieval.

• We provide insights on how to effectively use
these APIs in practice.

We hope our work lays the groundwork for thor-
oughly evaluating APIs that are critical in search
and more broadly, for information access.

2 Related Work

Sentence Embeddings. Numerous studies have
attempted to build universal representations of sen-
tences using supervision via convolutional neural
networks (Kalchbrenner et al., 2014), recurrent
neural networks (Conneau et al., 2017), or Trans-
formers (Cer et al., 2018). Other approaches learn
sentence embeddings in a self-supervised fashion
(Kiros et al., 2015) or in an unsupervised manner
(Zhang et al., 2020; Li et al., 2020). Recent tech-
niques frame the task as a contrastive learning prob-
lem (Reimers and Gurevych, 2019; Li et al., 2020;
Gao et al., 2021; Kim et al., 2021; Ni et al., 2022).

Embedding APIs largely follow a similar strategy
to generate sentence representations (Neelakantan
et al., 2022).

Dense Retrieval. While the paradigm has been
around for a long time (Yih et al., 2011), the emer-
gence of pre-trained LMs brought dense retrieval
(Lee et al., 2019; Karpukhin et al., 2020) to the
mainstream in IR. Recent dense retrieval models
adopt a bi-encoder architecture and generally use
contrastive learning to distinguish relevant docu-
ments from non-relevant ones (Lin et al., 2021b),
similar to sentence embedding models. LMs are
shown to be an effective source to extract represen-
tations (Karpukhin et al., 2020; Xiong et al., 2021;
Hofstätter et al., 2021; Khattab and Zaharia, 2020;
Izacard and Grave, 2021; Izacard et al., 2022). This
essentially means that with LMs as the backbones
and analogous objectives, dense retrievers and sen-
tence embedding models have become indistin-
guishable in practice.

3 APIs

Semantic embedding APIs are generally based
on the so-called bi-encoder architecture, where
queries and documents are fed to a fine-tuned LM
in parallel (Seo et al., 2018; Karpukhin et al., 2020;
Reimers and Gurevych, 2019). The key ingredient
of bi-encoders is contrastive learning, whose ob-
jective is to enable models to distinguish relevant
documents from non-relevant ones. In our experi-
ments, we adopt the following semantic embedding
APIs, presented alphabetically:1

Aleph-Alpha: This company has trained a family
of multilingual LMs, named luminous,2 with three
flavours in size, base (13B), extended (30B), and
supreme (70B). The luminous models support five
high-resource languages: English, French, German,
Italian, and Spanish. However, no information is
available about the data on which these LMs are
trained. We used luminousbase that projects text
into 5120-dimension embedding vectors.

Cohere: This company offers LMs for pro-
ducing semantic representations in two sizes:
small (410M) and large (6B), generating 1024-
dimension and 4096-dimension embedding vectors,

1Information about the number of parameters is ob-
tained from https://crfm.stanford.edu/helm/latest/,
accessed on May 15, 2023.

2https://docs.aleph-alpha.com/docs/introduction/
luminous/
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respectively. Models are accompanied by model
cards (Mitchell et al., 2019).3 Cohere also provides
a multilingual model, multilingual-22-12,4 that
is trained on a large multilingual collection com-
prising 100+ languages. The data consists of
1.4 billion question/answer pairs mined from the
web. The multilingual model maps text into 768-
dimension embedding vectors.

OpenAI: The company behind the GPT mod-
els (Radford et al., 2019; Brown et al., 2020;
Ouyang et al., 2022) also offers an embedding ser-
vice. We use the recommended second-generation
model, text-embedding-ada-002 (Neelakantan
et al., 2022) that embeds text into a vector of 1536
dimensions. The model, initialized from a pre-
trained GPT model, is fine-tuned on naturally oc-
curring paired data with no explicit labels, mainly
scraped from the web, using contrastive learning
with in-batch negatives.

All the APIs described above use Transformer-
based language models (Vaswani et al., 2017), but
differ from each other in various ways:

• Model architecture: The companies built their
models in different sizes, with differences in the
number of hidden layers, number of attention
heads, the dimension of output layers, etc. Other
subtle differences in the Transformer architecture
are also likely, e.g., where to apply layer nor-
malization in a Transformer layer (Xiong et al.,
2020). Additional differences lie in the vocabu-
lary because of different tokenization methods
in the pre-trained LM that was used to initialize
these embedding models for fine-tuning.

• Training: While contrastive learning is at the
core of these models, they may vary substantially
in details, e.g., the contrastive learning objec-
tive and negative sampling strategies. Also, the
choice of hyper-parameters such as the number
of training steps, learning rate, and optimizer is
another key difference.

• Data: Chief among the differences is the data
on which the embedding models are trained. As
OpenAI and Cohere state in their documenta-
tion, the data is mostly mined from the web, but
the details of the data curation process remain
largely unknown. In addition, considering that

3https://docs.cohere.ai/docs/representation-card
4https://txt.cohere.ai/multilingual/

each company has its own models, differences
in pre-training corpora form yet another impor-
tant variable in the complex process of building
embedding APIs.

These distinctions may potentially lead to substan-
tial differences in the overall effectiveness of the
embedding APIs. Nevertheless, due to the non-
disclosure of several details by the API providers,
it remains challenging to identify the specific fac-
tors that contribute to the strengths and weaknesses
of embedding models. Yet, as the number of such
APIs continues to grow, we believe that high-level
comparisons on standard benchmarks can provide
valuable insights into how well these models op-
erate under various practical scenarios. For practi-
tioners building systems on top of these APIs, this
comparative analysis is useful as they are primar-
ily interested in the end-to-end effectiveness and
performance of these APIs and are not typically
concerned with their minutiae.

3.1 Usability
One of the critical advantages of using embedding
APIs is their ease-of-use. For IR applications, even
running an LLM to encode large document collec-
tions requires hefty resources, let alone training re-
trieval models. Thus, the emergence of such APIs
makes LLMs more accessible to the community
and paves the way for faster development of IR
systems—this is most definitely a positive devel-
opment. However, these advantages rest on the
usability of the APIs. In this section, we briefly
overview some factors that affect the usability of
embedding APIs.

Setup. Basic information on how users can set
up the proper environment to use the embedding
APIs is the first step. All three companies provide
detailed introductory documentation for this pur-
pose. The procedure is nearly identical for all three
at a high level: users need to create an account
and generate an API key for authentication. The
companies also furnish web interfaces that enable
users to monitor their usage history and available
credit, in addition to configuring limits to prevent
unintended charges.

Client libraries. All three companies have devel-
oped open-source client libraries to facilitate access
to the APIs. OpenAI provides libraries for Python
and Node.js; there are also unofficial community
libraries for other programming languages. Cohere
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offers development toolkits in Python, Node.js, and
Go. Aleph-Alpha provides a library in Python.

All libraries are structured in a similar way. One
difference we notice is that Cohere has a text trun-
cation feature when the input text exceeds the API’s
input length limit. OpenAI and Aleph-Alpha raise
an error in this case, meaning that API users need
to implement additional checks to avoid such ex-
ceptions. On the other hand, Cohere’s API can
truncate text from the left or the right, and can also
provide an average embedding for long texts up to
4096 tokens by averaging over 512-token spans.

Documentation. All three companies provide
a technical API reference, explaining inputs, re-
sponses, and errors of their APIs. Additionally, all
companies provide tutorials and blog posts with
examples on how to use their client libraries.

Latency. The APIs are all offered with a lib-
eral rate limit, i.e., OpenAI at 3K requests per
minute, and Cohere at 10K requests per minute.5

We find that API calls are mostly reliable and re-
quest service errors are scattershot. Each API call
takes up to roughly 400ms, consistent across all
three companies (at least at the time of our experi-
ments). However, latency presumably depends on
the server workload and other factors because we
observe variability at different points in time.

We also find that latency depends on the input
length, as computing embeddings for queries is
generally faster than computing embeddings for
documents (as expected). Finally, we appreciate
that Cohere’s and OpenAI’s APIs support bulk calls
of up to 96 and 2048 texts per call, respectively,
whereas for Aleph-Alpha, only one text can be
passed in each API call. This bulk call feature
considerably speeds up encoding document collec-
tions.

Cost. Our analysis is based on information re-
ported as of Feb 1, 2023. OpenAI and Aleph-Alpha
charge based on the number of tokens and model
size: ada2 and luminousbase cost $0.0004 USD
and e0.078 ≈ $0.0866 per 1,000 tokens. On the
other hand, Cohere follows a simpler cost structure,
charging based only on the number of API calls,
i.e., $1.00 USD per 1,000 calls. Our re-ranking
experiments on BEIR cost around $170 USD on
OpenAI, whereas it would cost roughly $2,500
USD on Cohere based on their quoted prices. The
5We were not able to find the rate limits for Aleph-Alpha.
6e1.00 ∼ $1.10 as of Feb 1, 2023

cost of our re-ranking experiments on MIRACL
for three languages (German, Spanish, and French)
hovers around e116 ≈ $128 using Aleph-Alpha
and Cohere. Cohere offers a free-tier access with a
restricted API call rate limit of 100 calls per minute,
which we opted for, albeit sacrificing speed.

4 Experiments

In this section, our main goal is to evaluate embed-
ding APIs in two real-world scenarios that often
arise in IR applications: domain generalization and
multilingual retrieval.

4.1 BEIR

We first evaluate the generalization capabilities of
embedding APIs across a variety of domains. To
this end, we measure their effectiveness on BEIR
(Thakur et al., 2021), a heterogeneous evaluation
benchmark intended to gauge the domain general-
ization of retrieval models. BEIR consists of 18
retrieval datasets across 9 domains and Thakur et al.
(2021) showed that BM25 is a strong baseline, sur-
passing most dense retrieval models.

We adopt the embedding API as a re-ranking
component on top of BM25 retrieved results. Re-
ranking is a more realistic scenario, compared to
full ranking, because the number of documents
to encode in re-ranking is commensurate with the
number of test queries, which is orders of magni-
tude smaller than the collection size, usually com-
prising millions of documents. Thus, re-ranking is
more efficient and cheaper than full ranking.

For the BM25 retrieval, we use Anserini (Yang
et al., 2018) to index the corpora in BEIR and re-
trieve top-100 passages for each dataset. Then, the
queries and the retrieved passages are encoded us-
ing the embedding APIs. We reorder the retrieval
output based on the similarity between query em-
beddings and those of the passages.

In addition to BM25, our baselines include the
following dense retrieval models:

• TASB (Hofstätter et al., 2021), a prominent dense
retrieval model that leverages topic-aware sam-
pling of queries during training to construct more
informative and more balanced contrastive ex-
amples in terms of sample difficulty. TASB is
built on DistilBERT (Sanh et al., 2019) and is
fine-tuned on MS MARCO (Bajaj et al., 2018).

• cpt (Neelakantan et al., 2022), an earlier version
of OpenAI’s embedding service.
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Task Domain Full-ranking BM25 Top-100 Re-rank
BM25 TASB cpt-S TASB Coherelarge Coheresmall OpenAIada2

TREC-COVID Bio-Medical 0.595 0.319 0.679 0.728 0.801 0.776 0.813
BioASQ Bio-Medical 0.523 0.481 - 0.467 0.419 0.423 0.491
NFCorpus Bio-Medical 0.322 0.360 0.332 0.334 0.347 0.324 0.358
NQ Wikipedia 0.306 0.463 - 0.452 0.491 0.453 0.482
HotpotQA Wikipedia 0.633 0.584 0.594 0.628 0.580 0.523 0.654
FiQA-2018 Finance 0.236 0.300 0.384 0.308 0.411 0.374 0.411
Signal-1M Twitter 0.330 0.288 - 0.329 0.306 0.295 0.329
TREC-NEWS News 0.395 0.377 - 0.436 0.461 0.447 0.495
Robust04 News 0.407 0.428 - 0.399 0.489 0.467 0.509
ArguAna Misc. 0.397 0.427 0.470 0.436 0.467 0.438 0.567
Tóuche-2020 Misc. 0.442 0.163 0.285 0.292 0.276 0.275 0.280
CQADupStack StackEx. 0.302 0.314 - 0.324 0.411 0.384 0.391
Quora Quora 0.789 0.835 0.706 0.841 0.886 0.866 0.876
DBPedia Wikipedia 0.318 0.384 0.362 0.389 0.372 0.344 0.402
SCIDOCS Scientific 0.149 0.149 - 0.156 0.194 0.182 0.186
FEVER Wikipedia 0.651 0.700 0.721 0.728 0.674 0.617 0.773
Climate-FEVER Wikipedia 0.165 0.228 0.185 0.243 0.259 0.246 0.237
SciFact Scientific 0.679 0.643 0.672 0.661 0.721 0.670 0.736

Avg. nDCG@10 0.424 0.414 - 0.453 0.476 0.450 0.500

Table 1: Results (nDCG@10) on the BEIR benchmark for full-ranking and BM25 re-ranking experiments. cpt-S is
the predecessor of ada2 with the same number of parameters; results are copied from Neelakantan et al. (2022).

The results are presented in Table 1.7 TASB re-
ranking results show a +4% increase over TASB
full-ranking on average, showing that re-ranking
via bi-encoder models is indeed a viable method.
We observe that OpenAI’s ada2 is the most ef-
fective model, surpassing TASB and Coherelarge
by +4.7% and +2.4% on average, respectively.
However, Coherelarge outperforms ada2 on 5
tasks. Specifically, Coherelarge achieves the high-
est nDCG@10 on NQ (question answering), SCI-
DOCS (citation prediction), Climate-FEVER (fact
verification), and both duplicate question retrieval
tasks, i.e., CQADupStack, and Quora. Also, we ob-
serve that Coheresmall trails Coherelarge by 2.6%
on average and is nearly on par with TASB.

Finally, an interesting observation is that BM25
leads all other models on 3 tasks: BioASQ, Signal-
1M, and Tóuche-2020. These are datasets collected
based on lexical matching, suggesting that embed-
ding APIs struggle in finding lexical overlaps.

4.2 Multilingual Retrieval: MIRACL
We further assess the embedding APIs in the multi-
lingual retrieval setting, where the aim is to build
retrieval models that can operate in several lan-
guages while maintaining their retrieval effective-
ness across languages. For this purpose, we use
MIRACL (Zhang et al., 2022), a large-scale mul-
7We did not test Aleph-Alpha’s luminous on BEIR due to
budget constraints.

tilingual retrieval benchmark that spans 18 lan-
guages with more than 725K relevance judgments
collected from native speakers.

We test Cohere’s multilingual model as well as
Aleph-Alpha’s luminous on MIRACL. OpenAI
does not recommend using their embeddings ser-
vice for non-English documents and thus their API
was omitted from this experiment. Analogous to
the previous experiment, we adopt a re-ranking
strategy on top-100 passages retrieved by BM25.
For Cohere, we carry out full-ranking retrieval to
draw a comparison with first-stage retrieval models.
We also construct a hybrid model combining BM25
and Cohere by interpolating their normalized re-
trieval scores, following Zhang et al. (2022). The
baselines are also taken from that paper: BM25,
mDPR, and the hybrid model mDPR+BM25. We
reuse the indexes provided in Pyserini (Lin et al.,
2021a) to generate the baseline runs. For all mod-
els, we measure nDCG@10 and Recall@100.

The results on the MIRACL dev set are reported
in Table 2. Re-ranking BM25 via Cohere yields bet-
ter overall results (0.542), compared to full-ranking
(0.512), which is consistent with our observation
on BEIR. However, while the two re-ranking mod-
els, luminous and Cohere, surpass BM25 on all
languages, they lag behind the full-ranking hybrid
models. The results show that the winning recipe
here is to build a hybrid model, i.e., first perform
retrieval on the entire corpus and then combine the
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Full-ranking BM25 Top-100 Re-rank
Language # Q BM25 mDPR mDPR+BM25 Cohere Cohere+BM25 Cohere luminousbase
Arabic 2,896 0.481 0.499 0.673 0.617 0.686 0.667 -
Bengali 411 0.508 0.443 0.654 0.594 0.676 0.634 -
German 305 0.226 0.490 0.565 0.436 0.468 0.414 0.396
Spanish 648 0.319 0.478 0.641 0.233 0.349 0.507 0.482
Persian 632 0.333 0.480 0.594 0.471 0.520 0.484 -
Finnish 1,271 0.551 0.472 0.672 0.634 0.716 0.675 -
French 343 0.183 0.435 0.523 0.462 0.434 0.443 0.415
Hindi 350 0.458 0.383 0.616 0.493 0.623 0.573 -
Indonesian 960 0.449 0.272 0.443 0.446 0.565 0.505 -
Japanese 860 0.369 0.439 0.576 0.460 0.557 0.516 -
Korean 213 0.419 0.419 0.609 0.496 0.597 0.546 -
Russian 1,252 0.334 0.407 0.532 0.469 0.528 0.447 -
Swahili 482 0.383 0.299 0.446 0.611 0.608 0.543 -
Telugu 828 0.494 0.356 0.602 0.613 0.686 0.638 -
Thai 733 0.484 0.358 0.599 0.546 0.678 0.606 -
Yoruba 119 0.019 0.396 0.374 0.762 0.735 0.629 -
Chinese 393 0.180 0.512 0.526 0.365 0.416 0.389 -

Avg. nDCG@10 0.364 0.420 0.567 0.512 0.579 0.542 -

Table 2: Results (nDCG@10) on the MIRACL dev set across 17 languages for the full-ranking and re-ranking
experiments. # Q indicates the number of queries in the dev set. Luminous only supports German, Spanish, and
French.

low-resource medium-resource high-resource0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

nD
C

G
@

10

BM25 mDPR+BM25 Cohere Cohere+BM25

low-resource medium-resource high-resource0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l@

10
0

BM25 mDPR+BM25 Cohere Cohere+BM25

Figure 1: Average nDCG@10 (left) and Average Recall@100 (right) of full-ranking models on the MIRACL dev
set for different categories of languages in terms of their available resources: low (Bengali, Hindi, Swahili, Telugu,
Thai, and Yoruba), medium (Finnish, Indonesian, and Korean), and high (Arabic, German, Spanish, Persian, French,
Japanese, Russian, and Chinese). The error bars show the standard deviation of nDCG@10 and Recall@100.

results with BM25. In particular, Cohere+BM25
achieves the highest average nDCG@10, outper-
forming the other models on 7 languages. The sec-
ond best model overall is the other hybrid model,
mDPR+BM25, trailing Cohere+BM25 by −1.2%.

We further investigate how the models perform
on low-, medium-, and high-resource languages.
To this end, following the categorization of Wu
and Dredze (2020), we group languages into three
categories based on the number of articles they con-
tain in Wikipedia, reported in Zhang et al. (2022):
low-resource (<200K), medium-resource (>200K
but <600K), and high-resource (>600K). We mea-
sure the average nDCG@10 and Recall@100 for

each language category. The results are visual-
ized in Figure 1. The effectiveness of BM25 on
low-resource languages is nearly on par with its
effectiveness on high-resource languages. Interest-
ingly, mDPR+BM25 consistently performs well
across the three language categories. On the other
hand, Cohere’s hybrid and standalone models ex-
cel on low-resource languages and are competi-
tive with mDPR+BM25 on medium-resource lan-
guages. However, on high-resource languages,
mDPR+BM25 outperforms Cohere’s hybrid model
due in part to the prevalence of text in these
languages during mBERT pre-training (Wu and
Dredze, 2020) in mDPR.
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5 Conclusion

The incredible capabilities of Transformer-based
language models at scale have attracted a hand-
ful of companies to offer access to their propri-
etary LLMs via APIs. In this paper, we aim to
qualitatively and quantitatively examine semantic
embedding APIs that can be used for information
retrieval. Our primary focus is to assess existing
APIs for domain generalization and multilingual re-
trieval. Our findings suggest that re-ranking BM25
results is a suitable and cost-effective option for
English; on the BEIR benchmark, OpenAIada2 per-
forms the best on average. In multilingual settings,
while re-ranking remains a viable technique, a hy-
brid approach produces the most favorable results.
We hope that our insights aid practitioners and re-
searchers in selecting appropriate APIs based on
their needs in this rapidly growing market.

Limitations

Similar to other commercial products, embedding
APIs are subject to changes that could potentially
impact their effectiveness, pricing, and usability.
Thus, it is important to note that our findings are
specific to the APIs accessed during January and
February 2023. Nevertheless, we believe our eval-
uation framework can serve to thoroughly assess
future releases of these APIs.

Moreover, we limit our focus to the effective-
ness and robustness of semantic embedding APIs.
Nonetheless, safe deployment of retrieval systems
for real-world applications necessitates the evalua-
tion of their fairness as well as additional consider-
ations. Despite their scale, language models have
been found to learn, and sometimes perpetuate so-
cietal biases and harmful stereotypes ingrained in
the training corpus (Bender et al., 2021). Conse-
quently, it is crucial to assess potential biases in
the embedding APIs with respect to protected and
marginalized groups. This paper does not delve
into this aspect of API evaluation and further re-
search is required to examine these and other issues
in real-world applications.
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Abstract

Production deployments in complex systems
require ML architectures to be highly efficient
and usable against multiple tasks. Particularly
demanding are classification problems in which
data arrives in a streaming fashion and each
class is presented separately. Recent meth-
ods with stochastic gradient learning have been
shown to struggle in such setups or have limita-
tions like memory buffers, and being restricted
to specific domains that disable its usage in real-
world scenarios. For this reason, we present a
fully differentiable architecture based on the
Mixture of Experts model, that enables the
training of high-performance classifiers when
examples from each class are presented sepa-
rately. We conducted exhaustive experiments
that proved its applicability in various domains
and ability to learn online in production envi-
ronments. The proposed technique achieves
SOTA results without a memory buffer and
clearly outperforms the reference methods.

1 Introduction

Solutions based on deep neural networks have al-
ready found their applications in almost every do-
main that can be automated. An essential part
of them is NLP, the development of which has
gained particular momentum with the beginning
of the era of transformers (Vaswani et al., 2017).
Complex and powerful models made it possible
to solve problems such as text classification with
a previously unattainable accuracy. However, ex-
ploiting the capabilities of such architectures in
real-world systems requires online learning after
deployment. This is especially difficult in dynami-
cally changing environments that require the mod-
els to be frequently retrained due to domain or class
setup shifts. An example of such environment is
Alphamoon Workspace1 where the presented archi-
tecture will be deployed as a model for document

1https://alphamoon.ai/

Figure 1: Continual learning in document processing
platform. Classification models need to learn incremen-
tally and handle domain shifts after deployment.

classification since we noticed the emerging need
for online learning. We observed that the users’
data in document classification process is changing
frequently and such shifts often decrease the model
accuracy. As a result, we have to retrain the models
manually ensuing a time-consuming process. Our
goal was to design an effective approach to incre-
mental learning that will be used in a continual
learning module of our system (Figure 1).

Recently, neural architectures have become ef-
fective and widely used in classification problems
(Devlin et al., 2018; Rawat and Wang, 2017). The
parameter optimization process based on gradi-
ent descent works well when the data set is suf-
ficiently large and fully available during the train-
ing process. Otherwise, the catastrophic forgetting
(French, 1999) may occur, which makes neural
networks unable to be trained incrementally. Con-
tinual learning aims to develop methods that enable
accumulating new knowledge without forgetting
previously learnt one.

In this paper, we present a domain-agnostic ar-
chitecture for online class incremental continual
learning called DE&E (Deep Encoders and Ensem-
bles). Inspired by the E&E method (Shanahan et al.,
2021), we proposed a method that increases its ac-
curacy, provides full differentiability, and, most
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importantly, can effectively solve real-world classi-
fication problems in production environments. Our
contribution is as follows: 1) we introduced a differ-
entiable KNN layer (Xie et al., 2020) into the model
architecture, 2) we proposed a novel approach to
aggregate classifier predictions in the ensemble, 3)
we performed exhaustive experiments showing the
ability to learn incrementally and real-world us-
ability, 4) we demonstrate the effectiveness of the
proposed architecture by achieving SOTA results
on various data sets without a memory buffer.

2 Related work

2.1 Continual Learning

2.1.1 Methods

Currently, methods with a memory buffer such as
GEM (Lopez-Paz and Ranzato, 2017), A-GEM
(Chaudhry et al., 2019a) or DER (Buzzega et al.,
2020) usually achieve the highest performance in
all continual learning scenarios (Mai et al., 2022).
Such methods store part of the data in the mem-
ory and this data is successively replayed during
training on new, unseen examples. However, the
requirement to store data in memory disqualifies
these methods in many practical applications due
to privacy policies or data size (Salem et al., 2018).
This forces attention toward other approaches, such
as parameter regularization. The most popular
methods in this group include EWC (Kirkpatrick
et al., 2016) and LWF (Li and Hoiem, 2017). When
receiving a new dose of knowledge, these meth-
ods attempt to influence the model parameter up-
dating procedure to be minimally invasive. As
research shows (Van de Ven and Tolias, 2019),
regularization-based methods fail in class incre-
mental scenarios making them ineffective in many
real-world cases.

2.1.2 Approaches for NLP

Almost all prior works focus on the development of
continual learning methods in the computer vision
domain (Delange et al., 2021). Research on contin-
ual learning for NLP is limited and, as Biesial-
ska et al. (2020) observed, the majority of cur-
rent NLP methods are task-specific. Moreover,
these methods often use a memory buffer (de Mas-
son D’Autume et al., 2019) or relate to the language
model itself (Ke et al., 2021). To address this niche,
domain-agnostic approaches have to become much
more prevalent in the near future.

2.2 Ensemble methods

Ensemble methods are widespread in the world of
machine learning (Zhang and Ma, 2012). By using
predictions of multiple weak learners, it is possi-
ble to get a model that performs surprisingly well
overall. Broad adoption of methods (Cao et al.,
2020; Li and Pan, 2022; Yang et al., 2021) demon-
strates the effectiveness of ensemble techniques in
a wide variety of tasks. Ensembles have also been
used successfully in the field of continual learning,
as evidenced by the BatchEnsemble (Wen et al.,
2020) or CN-DPM (Lee et al., 2020). Other con-
tributions present in literature (Doan et al., 2022)
tend to focus strongly on improving model perfor-
mance rather than increasing model efficiency. Fur-
thermore, ensemble approaches can also be used
indirectly through dropout (Srivastava et al., 2014)
or weights aggregation (Wortsman et al., 2022).

2.3 Mixture of Experts

Mixture of Experts (ME) (Jacobs et al., 1991)
is a technique based on the divide and conquer
paradigm. It assumes dividing the problem space
between several specialized models (experts). Ex-
perts are supervised by the gating network that
selects them based on the defined strategy. The
difference between the ensembles is that ME meth-
ods focus on selecting a few experts rather than
combining predictions of all available models. ME
techniques have found many applications in various
domains (Masoudnia and Ebrahimpour, 2014), in-
cluding continual learning (Shanahan et al., 2021),
and even nowadays such approaches are widely
used in NLP (Gao et al., 2022; Ravaut et al., 2022).

2.4 Real-world NLP systems

Over the last few years, the amount of real-world
NLP applications has grown rapidly (Sarker, 2022).
Despite major successes in the real-world appli-
cation of language technologies such as Google
Translate, Amazon Alexa, and ChatGPT, produc-
tion deployment and maintenance of such models
still remain a challenge. Researchers have shown
(Nowakowski et al., 2022; Karakanta et al., 2021),
that there are several issues related to maintaining
NLP models, including technical limitations, la-
tency, and performance evaluation. However, the
crucial problem is the shift of data domain that
forces models to be retrained and deployed again
over time (Hu et al., 2020). It is a major limitation
in dynamically changing environments where users
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Figure 2: Architecture of the proposed model. An input is processed by the feature extractor. Obtained embeddings
are used to find the most relevant classifiers according to assigned keys. The soft KNN layer approximates the soft
KNN scores. Predictions are weighted in the voting layer by both cosine similarity and soft KNN scores. Final
output is the class with the highest voting score.

expect models to quickly adapt to them. Currently,
this problem has been tackled in several systems
(Afzal et al., 2019; Hancock et al., 2019), but many
of the solutions preclude maintaining model ac-
curacy when training incrementally making them
insufficient.

3 Our approach

3.1 Problem formulation

Class incremental continual learning involves
training a classification model f(·) : X 7−→
Y on a sequence of T tasks. The model is
trained on each task separately (one task at a
time). Each task Dt contains data points Dt =
{(x1t , y1t ), . . . , (xNt

t , yNt
t )}, where Nt is length of

Dt, x
(i)
t ∈ RD, and y

(i)
t ∈ Yt. Yt is a label set

for task t and Yt ∩ Yt′ = ∅ for t ̸= t′. We want
the model to keep performing well on all previous
tasks after each update, and we assume to be work-
ing in the most challenging setup (Van de Ven and
Tolias, 2019), where one task consists of data from
one class.

3.2 Method

We present a flexible and effective domain-agnostic
architecture that can be used to solve various clas-
sification problems. The architecture is presented
in Figure 2.

Feature extractor. The first component of the
proposed architecture is a multi-layer feature ex-

tractor that transforms input data into the embed-
ding space. It can be described by the following
mapping z = F (x), where x ∈ RD is an input
example and z ∈ RM is a M -dimensional embed-
ding. The approach we follow assumes the use of a
pre-trained model with frozen parameters. Such a
procedure makes it possible to completely prevent
the extractor from forgetting knowledge by isolat-
ing feature space learning from the classification
process.

Keys and classifiers. We use an ensemble of N
classifiers fn(·), where each of them maps the
embedding into a K-dimensional output vector
ŷn = fn(z). With each classifier, there is an asso-
ciated key vector kn ∈ RM with the same dimen-
sionality as the embedding. The keys help to select
the most suitable models for specialization with
respect to the currently processed input example.
They are initialized randomly from normal distribu-
tion. We use simple single-layer neural networks
as classifiers, with fan-in variance scaling as the
weight initialization strategy. The network output
is activated by a hyperbolic tangent function (tanh).

Soft κ-nearest neighbors layer. The standard
KNN algorithm is often implemented using ordi-
nary sorting operations that make it impossible to
determine the partial derivatives with respect to the
input. It removes the ability to use KNN as part
of end-to-end neural models. However, it is pos-
sible to obtain a differentiable approximation of
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the KNN model by solving the Optimal Transport
Problem (Peyré et al., 2019). Based on this concept,
we add a differentiable layer to the model architec-
ture. We call this layer soft κ-nearest neighbors
(soft KNN). In order to determine the KNN approx-
imation, we first compute a cosine distance vector
c ∈ RN between the embedding and the keys:

cn = 1− cos(z,kn), (1)

where cos(·, ·) denotes the cosine similarity. Next,
we follow the idea of a soft top-κ operator pre-
sented in (Xie et al., 2020), where κ denotes the
number of nearest neighbors. Let E ∈ RN×2 be
the Euclidean distance matrix with the following
elements:

en,0 = (cn)
2, en,1 = (cn − 1)2. (2)

And let G ∈ RN×2 denote the similarity matrix
obtained by applying the Gaussian kernel to E:

G = exp(−E/σ), (3)

where σ denotes the kernel width. The exp opera-
tors are applied elementwise to the matrix E.

We then use the Bregman method, an algorithm
designed to solve convex constraint optimization
problems, to compute L iterations of Bregman pro-
jections in order to approximate their stationary
points:

p(l+1) =
µ

Gq(l)
, q(l+1) =

ν

G⊤p(l+1)
, (4)

where l = 0, . . . , L − 1,µ = 1N/N , ν =
[κ/N, (N − κ)/N ]⊤, q(0) = 12/2, and 1i denotes
the i-element all-ones vector. Finally, let Γ denotes
the optimal transport plan matrix and is given by:

Γ = diag(p(L)) ·G · diag(q(L)) (5)

As the final result γ ∈ RN of the soft κ-nearest
neighbor operator, we take the second column of
Γ multiplied by N i.e. γ = NΓ:,2. γ is a soft
approximation of a zero-one vector that indicates
which κ out of N instances are the nearest neigh-
bors. Introducing the soft KNN enables to train
parts of the model that were frozen until now.

Voting layer. We use both cn and γ to weight the
predictions by giving the higher impact for classi-
fiers with keys similar to extracted features. The
obtained approximation γ has two main functional-
ities. It eliminates the predictions from classifiers

Table 1: Data sets setup for experiments.

Domain Data set Classes Train Test Avg. words

Text
BBC News 5 1,668 557 380
Newsgroups 10 11314 7532 315
Complaints 10 16,000 4,000 228

Audio Speech Commands 10 18,538 2,567 —

Image
MNIST 10 60,000 10,000 —
CIFAR-10 10 50,000 10,000 —

outside κ nearest neighbors and weights the result.
Since the Bregman method does not always com-
pletely converge, the vector κ contains continuous
values that are close to 1 for the most relevant clas-
sifiers. We make use of this property during the
ensemble voting procedure. The higher the κ value
for a single classifier, the higher its contribution
toward the final ensemble decision. The final pre-
diction is obtained as follows:

ŷ =

∑N
n=1 γncnŷn∑N

n=1 cn
(6)

Training To effectively optimize the model pa-
rameters, we follow the training procedure pre-
sented in (Shanahan et al., 2021). It assumes the
use of a specific loss function that is the inner prod-
uct between the ensemble prediction and the one-
hot coded label:

L(y, ŷ) = −y⊤ŷ (7)

Optimizing this criterion yields an advantage of
using a tanh activation function, significantly reduc-
ing catastrophic forgetting (Shanahan et al., 2021).
Following the reference method, we also use an op-
timizer that discards the value of the gradient and
uses only its sign to determine the update direction.
As a result, the parameters are being changed by a
fixed step during the training.

4 Experiments

4.1 Setup
In order to ensure experiment’s reproductivity, we
evaluated our method on the popular and publicly
available data sets.

Data sets We use three common text classifica-
tion data sets with different characteristics - News-
groups (Lang, 2008), BBC News (Greene and
Cunningham, 2006), and Consumer Finance Com-
plaints2. The goal of the experiments was to eval-
uate our method on tasks with with different dif-

2Source: https://huggingface.co/datasets/
consumer-finance-complaints
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Table 2: Accuracy (%) and standard deviation for methods evaluated on various data sets. Speech Commands
data set was evaluated with 64 classifiers in ME, the remaining models have 128 classifiers. Regularization-based
methods completely failed on the difficult data sets due to the recency bias phenomenon (Mai et al., 2022).

Text Image Audio
Model Mem. NG BBC Compl. MNIST CIFAR-10 Sp. Comm.
Naive × 5.25±0.03 21.65±2.56 9.56±0.33 11.29±3.05 10.00±0.01 21.54±3.78

LwF × 5.20±0.05 18.60±2.03 10.04±0.20 11.47±2.75 10.00±0.01 20.61±3.88

EWC × 5.13±0.13 21.97±2.14 10.16±0.31 11.19±2.70 10.00±0.01 32.93±4.92

SI × 5.27±0.01 19.43±2.96 10.00±0.62 14.90±6.52 10.00±0.01 9.99±0.27

CWR* × 4.63±0.60 22.98±1.20 10.13±0.33 10.40±0.54 10.00±0.01 10.32±0.26

GEM ✓ 35.89±3.80 70.99±7.68 33.74±2.50 52.27±5.20 23.40±2.71 21.01±2.06

A-GEM ✓ 9.44±7.14 59.10±17.52 9.20±0.01 65.37±4.53 26.43±5.27 17.45±6.90

Replay ✓ 22.45±3.09 59.61±3.17 16.46±4.62 69.02±4.90 32.93±4.56 12.23±1.28

E&E × 46.07±2.91 75.87±3.88 44.80±1.62 87.10±0.21 53.97±1.31 79.15±0.60

Ours × 47.27±3.63 78.49±3.92 44.97±0.86 87.62±0.14 56.27±1.21 80.11±1.30

ficulty levels. We also conducted experiments for
audio classification using Speech Commands (War-
den, 2018) data set. For the evaluation purposes, we
selected the 10 most representative classes from the
Newsgroups, Complaints and Speech Commands.
Finally, we also conducted experiments on the pop-
ular MNIST and CIFAR-10 data sets as image do-
main representatives. The data set summary is
presented in Table 1. In all experiments we used
a train set to train model incrementally, and after-
ward we performed a standard evaluation using a
test set.

Feature extractors For all text data sets, we used
a Distilbert (Sanh et al., 2019), a light but still
very effective alternative for large language models.
Next, for Speech Commands, we utilized Pyannote
(Bredin et al., 2020), a pretrained model for produc-
ing meaningful audio features. For image data sets,
we used different extractors. MNIST features were
produced by the pretrained VAE and CIFAR-10
has a dedicated BYOL model (see A.4 for more
details).

4.2 Results

The results of the evaluation are presented in Ta-
ble 2. For all setups evaluated, our model per-
formed best improving results of the main reference
method (E&E) by up to 3 percent points (pp.). The
improvement scale varies across the data sets. We
also observed a significant difference in achieved
accuracy between the DE&E and the standard con-
tinual learning methods. Simple regularization-
based methods completely fail in the class incre-
mental scenario. It shows how demanding training

Figure 3: Number of parameters in DE&E architecture
(64, 128, 1024 classifiers) and achieved accuracy (%).
We calculated the number of parameters as the sum of
the parameters for all classifiers in the ME. Each mark
is the test accuracy averaged across 5 runs.

the model incrementally is when a set of classes
is not fixed, which often takes place in real-world
scenarios. Furthermore, our method achieved these
results without replaying training examples seen
in the past, making it more practical relative to the
SOTA memory-based methods (GEM, A-GEM, Re-
play) that store samples from every class. For the
ensemble of 128 classifiers and Speech Commands
data set, our architecture achieved an accuracy of
more than 59 pp. higher than the best method with
a memory buffer.

One of the most important hyperparameters of
the model is the number of classifiers (experts).
To investigate how it affects accuracy, we evalu-
ated our architecture in three variants: small - 64,
normal - 128, and large - 1024 classifiers. The
evaluation results are presented in Figure 3. We
observed that increasing the ensemble size trans-
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Table 3: Accuracy (%) and standard deviation of DE&E
evaluated on Class Incremental and Domain Incremental
scenarios. We used the same setup as shown in Table 2.

Data set Class Incremental Domain incremental
BBC News 78.49±3.92 79.71±3.14

Newsgroups 47.27±3.63 44.55±1.40

Complaints 44.97±0.86 39.23±3.03

Speech Commands 81.46±0.85 79.31±0.49

MNIST 87.62±0.14 85.04±0.39

CIFAR-10 56.27±1.21 55.66±1.32

lates to higher accuracy, and gain depends on the
setup and data characteristics. The most significant
improvement was observed on BBC and CIFAR-
10 where the large model achieved an accuracy of
about 20pp. better than the small one. For the re-
maining data sets and the analogous setup, the gain
was up to 5pp. We explain this phenomenon as the
effect of insufficient specialization level achieved
by smaller ensembles. If experts are forced to solve
tasks that are too complicated they make mistakes
often. Increasing the number of experts allows
for dividing feature space into simpler sub-tasks.
However, such a procedure has natural limitations
related to the feature extractor. If features have low
quality, increasing the number of experts will be
ineffective. To select the optimal ensemble size we
suggest using the elbow rule which prevents the
model from being overparameterized and ensures
reasonable accuracy. However, in general, we rec-
ommend choosing larger ensembles that are better
suited for handling real-world cases.

Since real-world environments require deployed
models to quickly adapt to domain shifts, we tested
our method in a domain incremental scenario. In
such setup, each data batch can provide examples
from multiple classes that can be either known or
new (Van de Ven and Tolias, 2019). This way, the
model needs to learn incrementally, being prone to
frequent domain shifts. As shown in Table 3, the
proposed method handles both scenarios with com-
parable accuracy. We observed improved accuracy
for BBC News, but reduced for the remaining data
sets. Such property can be beneficial when there
is limited prior knowledge about the data or the
stream is imbalanced (Aguiar et al., 2022).

We have also investigated the importance of the
presented expert selection method. We trained the
DE&E method and for each training example, we
allowed it to choose random experts (rather than
the most relevant ones) with fixed probability p.
As shown in Figure 4, the selection method has a

strong influence on the model performance. Accu-
racy decreases proportionally to the p over all data
sets studied. The proper expert selection technique
is crucial for the presented method. It is worth not-
ing that relatively easier data sets suffer less from
loss of accuracy than hard ones because even ran-
domly selected experts can still classify the data
by learning simple general patterns. In more dif-
ficult cases like Newsgroups and Complaints data
sets, model performance is comparable to random
guessing when p > 0.5.

Figure 4: Influence of random classifier selection on
DE&E accuracy (%). All models consist of 128 classi-
fiers. Each mark is the accuracy for an independent run.

5 Conclusions

In this paper, we proposed a domain-agnostic archi-
tecture for continual learning with a training proce-
dure specialized in challenging class incremental
problems. The presented architecture is based on
the Mixture of Experts technique and handles many
practical issues related to the deployment of text
classification models in non-trivial real-world sys-
tems. As our main contribution, we introduced a
fully differentiable soft KNN layer and a novel pre-
diction weighting strategy. By conducting exhaus-
tive experiments, we showed improvement in accu-
racy for all the cases studied and achieved SOTA re-
sults without using a memory buffer. This enables
an effective and secure training, especially when
working with sensitive textual data. The presented
architecture is highly flexible, can effectively solve
classification problems in many domains, and can
be applied to real-world machine learning systems
requiring continuous improvement. Such work en-
ables researchers to make further steps toward over-
running many of the current challenges related to
language technology applications.
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Limitations

The main limitations of the proposed architecture
are related to the presence of the frozen feature
extractor. The accuracy of the classification mod-
ule is proportional to the quality of features. Since
the ensemble weak learners are single-layer neu-
ral networks, the entire feature extraction process
relies on a pre-trained model that strongly limits
the upper bound of classification accuracy. Such
approach reduces the method complexity, but also
makes it prone to errors when embeddings have low
quality. Achieving accuracy at a satisfactory level,
which is crucial in real world systems, requires the
use of high quality feature extractors. Currently,
plenty of pretrained SOTA models are available for
free in domains such as text or image classification,
but if such extractor is not available, does not pro-
duce reasonable features or is too expensive to use,
our architecture may not be the best choice.

Another issue is relatively long training time
comparing to the reference methods (see A.3). The
introduction of a differentiable soft KNN layer
resulted in additional computational effort that
clearly impacted the model complexity. This lim-
its the use in low latency systems with machine
learning models trained online.
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A Appendix

A.1 Code
Code is currently available as a Github repository
https://github.com/mateusz-wojcik-97/
domain-agnostic-architecture.

A.2 Computing resources
The machine we used had 128 GB RAM, an Intel
Core i9-11900 CPU, and an NVIDIA GeForce RTX
3060 GPU with 12GB VRAM. Every experiment
was performed using the GPU.

A.3 Time complexity

Table 4: Time (seconds) of training the ensemble models
with 128 classifiers on one task.

Dataset E&E Ours
Newsgroups 7.43 31.20
BBC News 14.96 151.79
Complaints 20.33 93.63
Sp. Commands 30.80 108.90
MNIST 28.01 270.30
CIFAR-10 104.25 355.82

The comparison in training time between E&E
and DE&E models is shown in Table 4. For all eval-
uated data sets, the training time of our model was
higher than the time to train the reference method.
The results vary between data sets. The introduc-
tion of a differentiable soft KNN layer resulted
in additional computational effort that clearly im-
pacted the time complexity of the model.

A.4 Implementation details
We use PyTorch to both reproduce the E&E results
and implement the DE&E method. For text classifi-
cation we used pretrained Distilbert 3 model and for
audio classification we used pretrained Pyannote 4

model, both from the Huggingface repository. We
used a pre-trained ResNet-50 model as the feature
extractor for the CIFAR-10 data set. The model
is available in the following GitHub repository,

3https://huggingface.co/distilbert-base-uncased
4https://huggingface.co/pyannote/embedding
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https://github.com/yaox12/BYOL-PyTorch,
and is used under MIT Licence. For MNIST, we
trained a variational autoencoder on the Omniglot
data set and utilized encoder part as our feature
extractor. We based our implementation of the soft
KNN layer on the code provided with https://
proceedings.neurips.cc/paper/2020/hash/
ec24a54d62ce57ba93a531b460fa8d18-Abstract.
html. All data sets used are public.

Table 5: Architecture of neural networks used as back-
bones for baseline models depends on experimental
setup. Each network has a similar number of total pa-
rameters as in the ensemble.

Dataset Network layers
Newsgroups [1536, 1700, 768, 10]
Complaints [1536, 955, 512, 10]
BBC News [1536, 640, 5]
Sp. Commands [512, 1256, 10]
MNIST [512, 1256, 10]
CIFAR-10 [2048, 1274, 10]

Baselines We use Naive, LwF (Li and Hoiem,
2017), EWC (Kirkpatrick et al., 2016), SI (Zenke
et al., 2017), CWR* (Lomonaco and Maltoni,
2017), GEM (Lopez-Paz and Ranzato, 2017),
A-GEM (Chaudhry et al., 2019a) and Replay
(Chaudhry et al., 2019b) approaches as baselines
to compare with our method. We utilize the imple-
mentation from Avalanche (https://avalanche.
continualai.org/), a library designed for con-
tinual learning tasks. The main purpose of this
comparison was to determine how the proposed
method performs against classical approaches and,
in particular, against the methods with memory
buffer, which gives a significant advantage in class
incremental problems. The recommended hyper-
parameters for each baseline method vary across
usages in literature, so we chose them based on
our own internal experiments. For a clarity, we
keep hyperparameter naming nomenclature from
the Avalnache library. For EWC we use lambda
= 10000. The LwF model was trained with alpha
= 0.15 and temperature = 1.5. For SI strategy,
we use lambda = 5e7 and eps = 1e − 7. The
hyperparameters of the memory based approach
GEM were set as follows: memory_strength =
0.5, patterns_per_exp = 5, which implies that
with every task, 5 examples will be accumulated.
This has a particular importance when the number
of classes is large. With this setup and 10 classes

in data set, memory contains 50 examples after
training on all tasks. Having a large memory buffer
makes achieving high accuracy much easier. For
the A-GEM method, use the same number of ex-
amples in memory and sample_size = 20. All
models were trained using Adam optimizer with
a learning_rate of 0.0005 and batch_size of 60.
We chose cross entropy as a loss function and per-
formed one training epoch for each experience. To
fairly compare baseline methods with ensembles,
as a backbone we use neural network with a similar
number of parameters (as in ensemble). Network
architectures for each experimental setup are shown
in Table 5. All baseline models were trained by pro-
viding embeddings produced by feature extractor
as an input.

Ensembles. We used E&E (Shanahan et al.,
2021) as the main reference method. It uses an
architecture similar to that of a classifier ensem-
ble, however the nearest neighbor selection mech-
anism itself is not a differentiable component and
the weighting strategy is different. In order to re-
liably compare the performance, the experimental
results of the reference method were fully repro-
duced. Both the reference method and the proposed
method used exactly the same feature extractors.
Thus, we ensured that the final performance is not
affected by the varying quality of the extractor, but
only depends on the solutions used in the model
architecture and learning method.

Both E&E and our DE&E were trained with the
same set of hyperparameters (excluding hyperpa-
rameters in the soft KNN layer for the DE&E). We
use ensembles of sizes 64, 128 and 1024. Based on
the data set, we used different hyperparameter sets
for the ensembles (Table 6).

The keys for classifiers in ensembles were ran-
domly chosen from the standard normal distribu-
tion and normalized using the L2 norm. The same
normalization was applied to encoded inputs during
lookup for matching keys.

Soft KNN. We use the Sinkhorn algorithm to
perform the forward inference in soft KNN. The
Sinkhorn algorithm is useful in entropy-regularized
optimal transport problems thanks to its computa-
tional effort reduction. The soft KNN has O(n)
complexity, making it scalable and allows us to
safely apply it to more computationally expensive
problems.

The values of soft KNN hyperparameters were
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Table 6: Hyperparameters used for DE&E and E&E methods.

Dataset Classifiers Neighbors Batch size Learning rate Weight Decay

Newsgroups
64 16

8 0.0001

0.0001

128 32
1024 64

BBC News
64 8

1 0.01128 16
1024 32

Complaints
64 16

8 0.0001128 32
1024 64

Sp. Commands
64 16

8 0.001128 32
1024 64

MNIST 128 16 60 0.0001
CIFAR-10 128 16 60 0.0001

σ = 0.0005 and L = 400. We utilize the contin-
uous character of an output vector to weight the
ensemble predictions. It is worth noting that we ad-
ditionally set the threshold of the minimum allowed
soft KNN score to 0.3. It means every element in
γ lower than 0.3 is reduced to 0. We reject such
elements because they are mostly the result of non-
converged optimization and do not carry important
information. In this way, we additionally secure
the optimization result to be as representative as
possible.
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Abstract

In real-world systems, an important require-
ment for model updates is to avoid regressions
in user experience caused by flips of previously
correct classifications to incorrect ones. Multi-
ple techniques for that have been proposed in
the recent literature. In this paper, we apply
one such technique, focal distillation, to model
updates in a goal-oriented dialog system and
assess its usefulness in practice. In particular,
we evaluate its effectiveness for key language
understanding tasks, including sentence classi-
fication and sequence labeling tasks, we further
assess its effect when applied to repeated model
updates over time, and test its compatibility
with mislabeled data. Our experiments on a
public benchmark and data from a deployed di-
alog system demonstrate that focal distillation
can substantially reduce regressions, at only mi-
nor drops in accuracy, and that it further outper-
forms naive supervised training in challenging
mislabeled data and label expansion settings.

1 Introduction

Machine learning models that are deployed in real-
world applications typically require regular updates
to accommodate data distribution shifts or changes
to the output label space. The retraining process,
even if it leads to stable or improved overall ac-
curacy, can result in different sample-level predic-
tions due to its stochastic nature. In an application
setting, that in turn can change (or even break) spe-
cific functionalities. A key requirement for model
updates in real-world applications is therefore to
minimize regressions in user experience.

For classification models, Yan et al. (2021) for-
malized this requirement as minimizing the number
of negative flips of a model, defined as the number
of previously correct classifications that turn incor-
rect for a new model. Previous work proposed sev-
eral methods towards that goal (Shen et al., 2020;
Yan et al., 2021; Zhao et al., 2022; Träuble et al.,

2021) that rely on knowledge distillation, model
ensembling or Bayesian learning.

In this work, we focus on model update-caused
regressions in goal-oriented dialog systems, and
in particular on updates of spoken language under-
standing models. In real-world dialog systems, a
negative flip would mean that a request that was
previously correctly understood is now interpreted
as a different intent (or with different slots) and
therefore leads to a regression in user experience.

While previous work explored the reduction of
negative flips on various tasks, spoken language
understanding remains unexplored (see section 2).
We therefore apply focal distillation (Yan et al.,
2021), the most applicable existing technique, to
this use case. Moreover, the use in a real-world
goal-oriented dialog system raises additional ques-
tions that we address. Specifically, we study the
following:

Effectiveness for DC and IC: We test focal dis-
tillation on domain classification (DC) and intent
classification (IC), two key tasks in spoken lan-
guage understanding, using public data as well as
internal datasets from a real-world dialog system.

Applicability to SL: We further test the effec-
tiveness for slot labeling (SL), a sequence labeling
task that requires an extension of focal distillation
to handle tasks with token-level supervision.

Repeated Model Updates: We simulate mul-
tiple iterations of retraining with focal distillation
to study its long-term effect, in particular, whether
the coupling of new and old model via distillation
restricts the model’s ability to learn new features.

Noisy Labels: Finally, we also study the effect
of mislabeled data. In the presence of annotation er-
rors, focal distillation bears the risk that it enforces
prediction consistency on samples that have sup-
posedly correct classifications in the old model, but
are actually mislabeled, preventing the new model
to predict the true correct label.

We run extensive experiments for DC, IC and
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SL tasks on SLURP (Bastianelli et al., 2020), a
public benchmark, and internal datasets from our
real-world goal-oriented dialog system. We find
that focal distillation is effective for DC and IC
and reduces negative flips by up to 30% relative
at no or only marginal decreases in accuracy. For
SL, a naive application as a token-level loss is ef-
fective as well and brings 8% relative reduction
on average. When simulating repeated retraining
over time, focal distillation can restrict the model’s
ability to learn new labels, but this can be reme-
died by warm-starting the model with the previous
model’s weights. Finally, we also show that focal
distillation is beneficial even under annotation er-
rors, and can be made even more robust by adding
noise-awareness to the loss.

2 Related Work

Enabling regression-free model updates is a rela-
tively recent line of research. Shen et al. (2020)
first studied it for computer vision problems with
the goal of learning backwards-compatible im-
age representations. Yan et al. (2021) intro-
duced the notion of negative flips for classifica-
tion tasks and coined the minimization of them
as positive-congruent training. They proposed fo-
cal knowledge distillation, a variant of traditional
teacher-student distillation (Hinton et al., 2015),
and model ensembling as techniques to achieve
positive-congruent training. Zhao et al. (2022) con-
tinued this line of work by extending and combin-
ing the distillation and ensembling ideas into a sin-
gle method called ELODI. With a slightly different
focus, namely accepting or rejecting the predictions
of a new model rather than training it, Träuble et al.
(2021) proposed a Bayesian approach to reduce
negative flips. In our work, we focus on Yan et al.’s
(2021) focal distillation method as it is most appli-
cable to our real-world use case where we cannot
afford the use of model ensembles because of their
computation, storage and latency overhead.

Xie et al. (2021) first applied the methods to
NLP tasks. They found that negative flips are also
prevalent during model updates for NLP tasks and
demonstrated mitigations with distillation and en-
sembling methods in line with the earlier work.
Concurrent to our work, Cai et al. (2022) extended
positive-congruent training ideas to structured pre-
diction tasks like parsing, which require exten-
sions such as sequence distillation (Kim and Rush,
2016) or reranking. Also concurrent to our work,

Schumann et al. (2023) introduced an importance-
weighted interpolation method that they find to
outperform focal distillation on intent classification
benchmarks. We plan to incorporate their findings
in our future work.

Continual learning (also known as incremental
learning, sequential learning or lifelong learning) is
closely related to our work (McCloskey and Cohen,
1989; Silver and Mercer, 2002; Biesialska et al.,
2020). While we focus specifically on avoiding
negative flips, continual learning is more general
and studies continuous training of models on evolv-
ing data and tasks, with a particular focus on avoid-
ing catastrophic forgetting. The latter is a challenge
if data for previously learned features is no longer
available; it is however less relevant for our appli-
cation scenario, a real-world goal-oriented dialog
system, with ongoing user interactions covering all
features.

3 Methods

Application Scenario Spoken language under-
standing models are a core component in many
goal-oriented dialog systems. They map a natural
language request to a machine-readable meaning
representation that the system can act upon to ful-
fill the request. In our experiment setup, this is
modelled as a combination of domain classification
(DC), intent classification (IC) and slot labeling
(SL). Consider the example Play Michael Jack-
son. DC recognizes this request as a Music request,
IC detects a PlayMusic intent and SL identifies
Michael Jackson as Artist slot, whereas Play does
not represent a slot in this case.

Negative Flips Let x ∈ X be a model input (e.g.
an utterance), y ∈ Y its ground truth label (e.g.
an intent label) and p(y|x) a model that can be
used to predict ŷi = argmaxy p(y|xi). A negative
flip occurs if a new model incorrectly predicts a
sample that the previous model predicted correctly,
i.e. if ŷnewi ̸= yi and ŷoldi = yi. The negative flip
rate (NFR) measures the fraction of samples where
a correct prediction turns incorrect between two
models in a dataset with size N . Yan et al. (2021)
define it as

NFR =
1

N

N∑

i=1

1(ŷnewi ̸= yi ∧ ŷoldi = yi) (1)

Focal Distillation (FD) Focal distillation, as in-
troduced by Yan et al. (2021) and illustrated in Fig-
ure 1, aims to reduce negative flips by minimizing
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Figure 1: Illustration of focal distillation (FD): When training model t, a cross-entropy (CE) loss against ground
truth labels is combined with a mean-squared error (MSE) loss against logits of model t− 1, weighted by t− 1’s
sample-level accuracy to focus the distillation. This is applied iteratively, when training model t+1, model t acts as
the reference model for distillation (indicated in gray).

the loss

LCE(ŷ
new, y) + λLFD(p

new(y|x), pold(y|x))
(2)

whereLCE denotes the standard cross entropy (CE)
loss between new model and ground truth and LFD

is the additional focal distillation (FD) loss term
that discourages negative flips, with a trade-off pa-
rameter λ. This loss term is formally defined as

LFD = −F(x, y) · D(pnew, pold)
F(x, y) = α+ β · 1(ŷold = y),

(3)

where D is a distance between the output distribu-
tions of the new and old model, and F(x, y) is a
“filtering” function. It applies a weight α to all sam-
ples in the training set and an additional weight β
to the samples correctly predicted by the old model.
When α = 1 and β = 0, focal distillation reduces
to ordinary distillation. When α = 0 and β > 0,
we are only applying the distillation objective to
the training samples predicted correctly by the old
model.

In their work, Yan et al. (2021) experiment
with two choices for D: Kullback-Leibler (KL)
divergence between temperature-scaled p(y|x) and
mean-squared error (MSE) between pre-softmax
logits. Since the latter performed better in their
experiments, we adopt it. Hence, D is defined as

D(pnew, pold) = 1

K

K∑

j=1

(znewj (x)−zoldj (x))2 (4)

where zj(x) is element j of the K-dimensional
pre-softmax logit vector for x.

FD for Slot Labeling In slot labeling, a sequence
of labels has to be predicted instead of just a sin-
gle label as in DC or IC. Naturally, there are two
options to apply distillation in that case: either ap-
ply the loss independently to each token or use
the reference model’s sequence-level decision for
supervision. For the latter, Wang et al. (2020) pro-
posed multiple techniques. In this work, we resort
to the simpler token-level distillation for now and
leave sequence-level distillation for future work.

We compute the FD loss for each token j in the
sequence i with length M as

LFD
Tok = −

M∑

j=1

F(xj , yj)D
Ä
pnewj , poldj

ä
(5)

Notice that this formulation works both if the mod-
els perform token-level decisions, and if they per-
form sequence-level decisions. In the latter case,
when training the new model, the token-level FD
loss is summed to the sequence-level loss.

FD with Noisy Labels FD biases the new model
towards the old model’s predictions when those pre-
dictions are correct. To discern correct predictions
we rely on accurate labels. However, real-world
data is often noisy. Therefore we investigate the
combination of FD with label noise detection. We
experiment with Area Under the Margin (AUM),
a method suggested by Pleiss et al. (2020). The
method leverages the observation that mislabeled
data hurts generalization, and thus monitors the
training dynamics to define the margin of a sample.
The margin M at epoch t of sample (x, y) mea-
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sures how much larger the assigned logit is than
the largest other logit. Let zt(x) ∈ Rc be the logit
vector of sample (x, y) at epoch t. Then M at t is

M (t)(x, y) = z(t)y (x)−maxk ̸=y z
(t)
k (x) (6)

where logit z(t)k corresponds to class k. The first
term corresponds to the assigned logit, while the
second is the largest other logit. If a sample is mis-
labelled, the assigned logit tends to receive weaker
gradient updates due to the tension between gen-
eralization from similar, correctly labeled samples
and memorization of the sample itself. For instance,
an utterance that is semantically similar to others
labelled as PlayMusic, but is incorrectly labelled
as GetWeather, results in the model predicting the
true class with more confidence (higher logit) and
assigning lower logit (confidence) to the incorrect
label. As a consequence, a correctly labeled sample
will have a larger margin than a mislabeled sample
in expectation. Each sample’s margin is measured
during training and averaged over all epochs T :

AUM(x, y) =
1

T

T∑

t=1

M t(x, y) (7)

We then use this measure as an additional term
in the FD objective to re-weight the FD loss contri-
butions of mislabeled samples:

LFD
AUM = − g(AUM(x, y))︸ ︷︷ ︸

noise-aware weight

F(x, y)D(pnew, pold)︸ ︷︷ ︸
standard FD loss

(8)
where g(·) simply rescales AUM into [0, 1].

4 Experimental Setup

We run experiments on both public and internal
data. For our experiments on public data, we
use SLURP (Bastianelli et al., 2020), an English
multi-domain dataset for NLU spanning across
18 domains, 60 intents and 55 slot types (ca.
16,000 utterances). In addition, we present results
on our internal datasets for English and German.
These datasets comprise live traffic utterances, de-
identified and anonymized for privacy reasons, then
annotated to enable supervised training. For the in-
ternal datasets, the number of slot types is domain-
specific. In the experiments for SL we employ three
domain-specifc internal datasets, referred to as INT-
G, INT-M and INT-S, that have 88, 101 and 35 slot
types, respectively. Results on public data are aver-
aged across 5 seeds, while we only train once on

Task Method
Accuracy ↑ NFR ↓
abs. rel. abs. rel.

DC
Baseline 91.36±0.35 – 2.17±0.16 –
FD 90.67±0.59 -0.75 1.57±0.59 -27.64

IC
Baseline 88.63±0.45 – 2.47±0.41 –
FD 88.24±0.51 -0.44 1.63±0.53 -33.79

Table 1: Test results for applying FD to DC and IC on
SLURP under data update.

Task Dataset Accuracy ↑ NFR ↓

DC English +0.12 -54.94
German -0.07 -9.31

IC English Cross-Domain 0.39 -35.59
German INT-M -0.02 -3.31

Table 2: Test results (rel. change to baseline) for apply-
ing FD to DC and IC on internal data under data update.

internal data. In our experiments we examine two
settings: (i) A data update scenario, in which we
only update the training data leaving the model ar-
chitecture unchanged. In this scenario, 50% of the
samples are left out when training the old model,
while the complete dataset is used when training
the new model, either with the baseline approach
or FD. (ii) A label introduction scenario, in which
we gradually introduce a new label in the dataset,
training n models in sequence on datasets in which
we uniformly increase the support for that label.
For implementation details, we refer the reader to
Appendix C. Across all experiments, we compare
FD with the baseline approach of simply retrain-
ing the model on the whole training data, without
any additional signal from the previous model. All
models employ a BERT-based (Devlin et al., 2018)
architecture: a pre-trained encoder extracts con-
textualized semantic word embeddings, then fed
either to a Multi-Layer Perceptron (MLP) in case
of DC and IC, or to a Conditional Random Field
(CRF) (Lafferty et al., 2001; Lample et al., 2016)
in case of SL, to obtain either sequence-level or
word-level predictions. We experiment also with
the introduction of warm start for the new model,
i.e. the model’s weights are initialized with those
of the previous model. See Appendix A for more
details.

5 Experimental Results

We present results for each of the research ques-
tions raised in the introduction.
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Figure 2: Metrics for repeated application of FD versus baseline for training DC models. Bottom row includes warm
start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on the new label. D, H: NFR on the new label.
Graphs for the new label, and those for NFR, skip the first iteration(s) as there is no previous model to compare to.

Task Method Accuracy ↑ NFR ↓
abs. rel. abs. rel.

SL Baseline 92.9±0.2 - 1.6±0.1 -
FD 92.4±0.1 -0.46 1.5±0.1 -7.93

Table 3: Test results for applying FD to slot labeling on
SLURP under data update.

Task Dataset Accuracy ↑ NFR ↓

SL
English INT-G +0.09 -15.94
English INT-M -0.01 -3.66
English INT-S -0.01 -2.86

Table 4: Test results (rel. change to baseline) for apply-
ing FD to slot labeling on internal data.

Is FD effective for DC and IC? Results on pub-
lic data are displayed in Table 1. FD reduces
NFR for both DC and IC in similar magnitude,
by 27.64% for DC and by 33.79% for IC, while
only decreasing accuracy slightly by 0.75% for
DC and 0.44% for IC. Results on internal data are
shown in Table 2. On internal data, we can only
disclose relative changes to baseline, no absolute
metrics. For experiments on German data we use
the full dataset and the production model. While
we consider all domains for DC, we only consider
intents within a single domain for IC since training
is expensive and time-consuming. For English we
only use 10% of the full training set and a surrogate
model from Huggingface to speed up the experi-
ments (see Appendix A). Also on internal data, FD
reduces NFR for both DC and IC. Again accuracy
is only slightly reduced, for DC on English data we
even see a slight increase in accuracy. NFR reduces
less significantly on German data, which can be ex-
plained by the fact that the training set for the old

and the new model are the same and negative flips
only stem from randomness in training. For the
English dataset, we simulate an increase in training
data, as explained in Section 4.

Can FD be used for token-level SL? As men-
tioned above, we employ models with a CRF layer
for SL, able to make structured predictions. How-
ever, we experiment with token-level FD (see Equa-
tion (5)) that takes as input the token logits directly,
instead of the top-scoring label path from the CRF.
Therefore, the CRF layer of the student model is
not affected by the additional distillation objective.
Results on public data are shown in Table 3. With
only a slight decrease in accuracy of -0.46%, NFR
can be reduced by 7.93%. Results on internal data
are reported in Table 4. Here we see an even larger
reduction of 15.94% in NFR on the INT-G dataset,
while a less significant reduction is observed on
the other datasets: -3.66% on INT-M and -2.86%
on INT-S. For all datasets, changes in accuracy are
negligible. We conclude that FD on token-level SL
reduces NFR without harming accuracy.

Does repeated FD restrict learning? Figure 2
reports the comparison of the baseline approach
with FD in the label introduction scenario (span-
ning 5 iterations). We can observe how FD does
not seem to negatively influence the overall accu-
racy over time of the model; on the contrary, the
additional loss term seems to be moderately benefi-
cial in helping the model learn the task compared to
the baseline. The approach also behaves well in re-
ducing the overall NFR of the new model. Interest-
ingly, standard CE is slightly superior in absolute
terms with respect to FD in learning the new label
distribution. However, the gap remains fixed over
time, therefore FD is not hindering the ability of
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Task Approach
Original 20% Noise 40% Noise 60% Noise

Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓

DC
Baseline – – – – – – – –
FD 0.34% -53.02% 0.46% -43.07% 0.10% -32.84% 0.75% -47.81%
FD+AUM 0.11% -24.01% 0.46% -43.46% -0.21% 6.13% 0.72% -31.53%

IC
Baseline – – – – – – – –
FD 0.09% -30.05% -0.04% 30.56% 0.05% -37.49% 0.12% -35.68%
FD+AUM 0.20% -34.33% 0.09% -8.37%. 0.02% -18% 0.12% -32.88%

Table 5: Test results (rel. change to baseline) for applying FD with AUM both on original internal dataset and on
internal dataset with artificially added noise.

Task Approach
Original 20% Noise 40% Noise 60% Noise

Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓

DC
Baseline 0.90742 2.2416 0.7215 2.5331 0.505 5.9067 0.3692 3.5194
FD -0.06% -52.50% -0.08% -21.24% 6.91% -77.42% 3.79% -63.38%
FD+AUM 0.03% -52.50% 0.29% -29.65% 6.24% -63.19% 2.65% -42.36%

IC
Baseline 0.8807 2.5106 0.6518 4.2319 0.4913 4.1913 0.2887 4.1034
FD -0.01% -25.89% -6.15% 4% -3.26% 22.97% -3.05% 31.91%
FD+AUM -0.28% -12.59% -1.58% 2.06% 0.98% -14.15% -6.44% 12.48%

Table 6: Test results (rel. change to baseline) for applying FD with AUM both on SLURP original dataset and on
SLURP with artificially added noise.

the model to learn, but only introducing an initial
delay. Remarkably, FD is able to reduce regression
on the newly introduced label already with a hand-
ful of samples, and consistently remains lower than
the baseline on the NFR metric. Interestingly but
not surprisingly, warm start helps both approaches
in both metrics, with respect to the non-warm start
alternative. This suggests that, in general, warm
start is a useful strategy for retaining model per-
formance during an update. However, it is clear
from the results how FD benefits more from warm-
start than the baseline, in terms of both accuracy
improvement and NFR reduction. Further results
for this setting (and the specular one of gradual
removal of a label) are reported in Appendix E.

Can FD cope with noisy labels? In order to ver-
ify the extent to which FD coupled with AUM is
capable of dealing with increasing level of noise
we experiment both on the public SLURP dataset
as well as on the internal English dataset, and we
also test the approach on specific versions of those
datasets manipulated to artificially introduce vary-
ing levels of noise: 20%, 40%, 60%. The algorithm
used to generate noise, together with a study of how
AUM is able to detect it, is reported in Appendix D.
Results on the internal dataset and SLURP are re-
ported in tables 5 and 6, respectively. Overall we
observe that integrating AUM into FD does not lead
to significant improvement over vanilla FD. We be-

lieve the reason behind the lack of improvement is
twofold: first, there might be a more effective way
to integrate the AUM signal into the FD objective;
secondly, the models trained with the baseline, es-
pecially on internal data, already exhibit low NFR,
therefore there is little margin for improvement. On
the other hand, FD with AUM is not detrimental,
neither on original nor the noisy datasets: when the
level of label noise is significant, AUM helps FD
recovering its performance; when the label noise if
less present (if at all), AUM does not significantly
decrease FD performance.

6 Conclusions

In this paper, we presented an extensive set of ex-
periments to evaluate the effectiveness of focal dis-
tillation to reduce negative flips in a real-world
goal-oriented dialog system. We found the tech-
nique to be effective in DC, IC and SL with only
minor accuracy drops. When used repeatedly over
multiple updates, the effect remains while still al-
lowing the model to learn new labels. In addition,
the method is also robust to labeling errors in the
training data. As future work, we plan to extend
our experiments to alternative techniques for neg-
ative flip reduction, in particular those proposed
concurrent to our work, and to experiment with po-
tentially more powerful sequence-level distillation
for slot labeling.

543



Limitations

A first limitation of our contribution stems from
the fact that to compute the focal distillation term
in the loss, predictions from the old model are re-
quired. This additional stream of information will
therefore cause a slight increase in the required
computational power.
In this work, we only experimented with FD based
on mean-squared error between pre-softmax log-
its as that approach yielded best results in the pa-
per our experiments are based on, leaving experi-
ments using FD with Kullback-Leibler divergence
between temperature-scaled softmax outputs for
future research. Due to inference time limitations
in a production setting, we did not investigate the
reduction of negative flips with ensembles either.
Finally, we have not tested more principled ap-
proaches for NER distillation and focused on token-
level distillation leaving sequence-level distillation
for future work.
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A Experiment Details

The experiments have been run on p3.16xlarge
EC2 instances1, equipped with eight NVIDIA Tesla
V100 GPUs2. As optimization framework, Py-
Torch (Paszke et al., 2019) (version 1.10.0) has
been used, along with PyTorch Lightning (Falcon,
2019) (version 1.8.6) for easier development and
faster experimental iterations.

Across all the experiments on English corpora,
the encoder is based on pre-trained BERT (Devlin
et al., 2018) models from HuggingFace (Wolf et al.,
2019), with their weights unfrozen during train-
ing, hence allowing their fine-tuning. For DC and
IC experiments on German corpora, a custom pre-
trained tiny-bert (Jiao et al., 2020) is used. All
models feature a two-layer, fully-connected MLP
mapping word or sentence embeddings into label-
space. Additionally, the model for SL employs a
CRF layer to make structured predictions about
the label sequence, taking estimated label-label
transition probabilities into account. For the SL
experiments, we obtain subword token-level em-
beddings on the English corpora by summing the
hidden states of the last 3 layers of the encoder. On
the German corpora, the model considers the last
hidden states. In the latter, word-level embeddings
(aligned with slot labels) are obtained performing
an average subword pooling, i.e. for each input
text token we take the average embedding of all its
corresponding subword tokens. In the former, the
last subword token embedding is considered.

For models trained with Focal Distillation, we
follow the authors’ suggestion in Yan et al. (2021)
and set α = 1, β = 5 and λ = 1 for all experiments.
Table 7 reports the hyperparameters used to train
the models across all the experiments.

All models are trained to convergence using
early stopping, monitoring model performance on
a held-out validation set as convergence condition.

B Data Update Scenario

Over time, the data available to train a predictive
model can change for various reasons. In a super-
vised learning setting, one simple reason may be
the acquisition of more labeled data: human an-
notators review existing unlabeled instances and
assign labels to them, enlarging the training corpus.

1https://aws.amazon.com/ec2/instance-types/
p3/

2https://www.nvidia.com/en-us/data-center/
v100/

Parameter Value

Learning Rate 5e-5
Optimizer Adam
Max epochs 20
Embedding size 768
Hidden size 256
Dropout 0.1
Activation ReLU
Validation split 0.1
Early stopping metric Validation F1 score
Early stopping delta 1e-3
Early stopping patience 5 epochs
Focal Distillation α 1
Focal Distillation β 5
FD trade-off λ 1

Table 7: Hyperparameter values for models used in the
experiments.

In this work, we refer to this event as a data up-
date, and study the impact of applying FD in this
scenario.

The results presented in section 5 examine in par-
ticular a scenario in which the amount of available
training data is doubled for the new model. This is
realized by simply training the old model on 50%
of the overall training dataset, then training the new
model (with either the baseline or FD) on 100% of
the training samples.

C New Label Scenario

Another possible reason for a change in the training
data is the addition of data supporting new classes.
New classes appearing in the training dataset of
an already deployed model may be the result of
the definition of a new downstream feature that the
model has to support. In this work, we refer to this
event as a label introduction, and study the impact
of applying FD in this scenario.

Usually, data supporting a new feature is not
readily available, but rather comes in batches as
human annotators work to provide new labeled
data based on the feature definition. For this rea-
son, in this work we study the impact of FD on a
gradual introduction of a new label. In particular,
the scenario is implemented as follows: (i) a label
is chosen for scenario simulation and completely
removed from the dataset, i.e. all the samples be-
longing to that class are removed; (ii) a schedule
for introducing the label in the following n “re-
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leases” of the dataset is stated. For simplicity, we
assume the rate at which newly labelled data be-
comes available is constant over time, and therefore
the schedule simply dictates that a fixed amount
of labelled data is reintroduced at each iteration.
To do so, data pertaining to the removed labels is
evenly partitioned in n batches, and the i-th dataset
is simply the union of the previous dataset in the
sequence and the i-th batch.

In this work we set the number of releases to n =
5. We run experiments on the SLURP dataset for
Domain Classification using the qa domain and for
Intent Classification using the news_query intent.
This choice reflects two competing needs: on one
hand, we want to reflect the observed reality of new
features not becoming the predominant classes in
the dataset in terms of data, even after a long time;
on the other hand, to report statistically significant
results we need more than a handful of samples to
be removed. As a result, we choose labels that are
neither the prevalent classes nor the scarcest, but
are averagely represented.

When a label is introduced for the first time, we
set the MSE loss in FD to zero for samples with
the new label as the previous model cannot provide
useful information for those. That means we zero
out the logits for the new label coming from the
old model by concatenating a zero tensor to the
logits coming from the old model. As a result, the
contribution to the MSE loss in FD is zero for the
new label, falling back to only Cross Entropy loss
for samples with the new label.

D Area Under the Margin and Noise
Generation Procedure

Pleiss et al. (2020) introduce the concept of Area
Under the Margin (AUM), and demonstrate its abil-
ity to identify mislabelled samples in synthetically-
mislabeled versions of popular Computer Vision
datasets, such as CIFAR10. Their approach makes
no assumption about the specific task under consid-
eration, but only draws on the insight that a neural
network’s training dynamics contain salient signals
about noisy data and generalization. In this work,
however, before testing the interaction of AUM
with FD in a noisy data setting we test the ability
of AUM of spotting noise in our Natural Language
Understanding (NLU) setting to begin with. To do
so, we repeat the synthetically-mislabeled experi-
ment on our datasets.

Algorithm 1 Label noise generation

Input: true labels Y , noise level nl ∈ [0, 1]
Output: assigned labels Ỹ

1: N ← | Y |
2: L← {y | y ∈ Y }
3: Nflip ← ⌈nl ·N⌉
4: for i = 0→ Nflip do
5: yi ← sample an item uniformly at random

from Y without replacement
6: L̃← {y | y ∈ L ∧ y ̸= yi}
7: ỹi ← sample a label uniformly at random

from L̃
8: change yi into ỹi in Y
9: end for

Table 8 reports the noise levels estimated in
the synthetically-mislabeled datasets. Pleiss et al.
(2020) introduce threshold samples, purposefully
mislabeled samples belonging to an extra class, to
identify a AUM upper bound that isolates misla-
beled data (see algorithm 2). In particular, they
establish that the 99th percentile of threshold AUM
values separates correctly- and mislabeled data. No-
tice that this mechanism would introduce additional
complexity for coupling the AUM approach with
FD, since we do not wish for the extra class to be
present in the output distribution of the new model
trained with FD. Therefore, beside testing vanilla
AUM in the NLU setting, we test whether simply
observing the sign of the AUM values is a satisfy-
ing proxy metric of the true AUM metric. Synthetic
noise is injected using algorithm 2 for the former,
and algorithm 1 for the latter.

We can see how standard AUM is able to esti-
mate the noise level quite accurately, with an av-
erage (absolute) estimation error of 1.71%. The
simpler variant is less competitive in estimating
noise levels, reporting an average estimation error
of 3.70%. Interestingly, the variant consistently
overestimates noise levels for the SLURP dataset
in the IC setting, exhibiting a sensitivity to the ratio
between label space dimension and dataset size.
Indeed, moving from the DC task to the IC task,
the number of samples remains constant but the
label space nearly triples in dimension. While the
same holds roughly true also for the INT-G dataset,
its size is considerably larger than SLURP. We hy-
pothesize this is due to the approach having to rely
on fewer samples to observe training dynamics,
leading to a less informative metric computation.
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Algorithm 2 Label noise generation when using
threshold samples

Input: true labels Y , noise level nl ∈ [0, 1]
Output: assigned labels Ỹ , threshold samples Ī

1: N ← | Y |
2: L← {y | y ∈ Y }
3: Nflip ← ⌈nl ·N⌉
4: Nthreshold ← ⌈N · (| L |+ 1)⌉
5: ȳ ← (| L |+ 1) ▷ new class for threshold

samples
6: Ī ← { }
7: for i = 0→ Nflip do
8: yi ← sample an item uniformly at random

from Y without replacement
9: L̃← {y | y ∈ L ∧ y ̸= yi}

10: ỹi ← sample a label uniformly at random
from L̃

11: change yi into ỹi in Y
12: end for
13: for i = 0→ Nthreshold do
14: yi ← sample an item uniformly at random

from Y without replacement
15: change yi into ȳi in Y
16: Ī ← Ī ∪ {i}
17: end for

E Additional Results

Figure 3 reports results for repeated application
of FD to the IC task, in contrast with the DC task
reported in fig. 2.

Figures 4 and 5 present instead results for a
specular setting to the “label introduction” one,
in which we gradually remove data supporting a
label.

In figs. 6 to 9 we investigate the influence of
model size on repeatedly applying FD. In particular,
a tiny-bert encoder is used. Results suggest that
FD becomes detrimental when the older model
does not have sufficient “capacity” to accurately
provide a distillation signal for the new model
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Task Dataset
20% Noise 40% Noise 60% Noise

AUM < 99p AUM < 0 AUM < 99p AUM < 0 AUM < 99p AUM < 0

DC SLURP 23.80 % 26.42 % 39.53 % 42.14 % 58.36 % 61.89 %
English INT-G 23.32 % 25.02 % 40.25 % 40.59 % 57.24 % 58.60 %

IC SLURP 21.84 % 32.08 % 36.87 % 47.56 % 57.22 % 67.32 %
English INT-G 21.27 % 21.81 % 40.10 % 39.77 % 60.17 % 61.23 %

Table 8: Datasets noise estimation on synthetically-mislabelled dataset. In the first column, we consider standard
AUM, in which we estimate that a sample is noisy when its AUM value is lower than than the 99-th percentile of the
AUM values of the threshold samples. In the second column we consider the simpler variant, in which we estimate
that a sample is noisy when its AUM value is negative.
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Figure 3: Metrics for repeated application of FD versus baseline for training IC models. Bottom row includes warm
start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on the new label. D, H: NFR on the new label.
Graphs for the new label, and those for NFR, skip the first iteration(s) as there is no previous model to compare to.
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Figure 4: Metrics for repeated application of FD versus baseline for training DC models when gradually removing
data for a label. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on
the label being removed. D, H: NFR on the label being removed. Graphs for the new label, and those for NFR, skip
the first iteration(s) as there is no previous model to compare to.

Task Approach
Original 20% Noise 40% Noise 60% Noise

Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓

DC
Baseline 0.9074 2.2416 0.7215 2.5331 0.505 5.9067 0.3692 3.5194
FD 0.9069 1.0647 0.7209 1.9951 0.5399 1.3338 0.3832 1.2889
FD+AUM 0.9077 1.0647 0.7236 1.7821 0.5365 2.1744 0.379 2.0287

IC
Baseline 0.8807 2.5106 0.6518 4.2319 0.4913 4.1913 0.2887 4.1034
FD 0.8806 1.8605 0.6117 4.4013 0.4753 5.154 0.2799 5.4127
FD+AUM 0.8782 2.1968 0.6415 4.3192 0.4961 3.5982 0.2701 4.6157

Table 9: Absolute results for the experiment on applying FD with AUM on the noisy labels setting on SLURP.
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Figure 5: Metrics for repeated application of FD versus baseline for training IC models when gradually removing
data for a label. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on
the new label. D, H: NFR on the new label. Graphs for the new label, and those for NFR, skip the first iteration(s)
as there is no previous model to compare to.
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Figure 6: Metrics for repeated application of FD versus baseline for training DC models when using a smaller BERT
model. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on the new
label. D, H: NFR on the new label. Graphs for the new label, and those for NFR, skip the first iteration(s) as there is
no previous model to compare to.
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Figure 7: Metrics for repeated application of FD versus baseline for training IC models when using a smaller BERT
model. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on the new
label. D, H: NFR on the new label. Graphs for the new label, and those for NFR, skip the first iteration(s) as there is
no previous model to compare to.
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Figure 8: Metrics for repeated application of FD versus baseline for training DC models when using a smaller BERT
model and gradually removing a label. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR.
C, G: Accuracy on the label being removed. D, H: NFR on the label being removed. Graphs for the new label, and
those for NFR, skip the first iteration(s) as there is no previous model to compare to.
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Figure 9: Metrics for repeated application of FD versus baseline for training IC models when using a smaller BERT
model and gradually removing a label. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR.
C, G: Accuracy on the new label. D, H: NFR on the new label. Graphs for the new label, and those for NFR, skip
the first iteration(s) as there is no previous model to compare to.
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Abstract
Bias in machine learning models can be an is-
sue when the models are trained on particu-
lar types of data that do not generalize well,
causing under performance in certain groups
of users. In this work, we focus on reducing
the bias related to new customers in a digital
voice assistant system. It is observed that natu-
ral language understanding models often have
lower performance when dealing with requests
coming from new users rather than experienced
users. To mitigate this problem, we propose
a framework that consists of two phases (1) a
fixing phase with four active learning strate-
gies used to identify important samples coming
from new users, and (2) a self training phase
where a teacher model trained from the first
phase is used to annotate semi-supervised sam-
ples to expand the training data with relevant
cohort utterances. We explain practical strate-
gies that involve an identification of representa-
tive cohort-based samples through density clus-
tering as well as employing implicit customer
feedbacks to improve new customers’ experi-
ence. We demonstrate the effectiveness of our
approach in a real world large scale voice as-
sistant system for two languages, German and
French through a number of experiments.

1 Introduction

Deep machine learning models tend to inherit
the bias existing in the datasets used for training
(Manzini et al., 2019) (Zhao et al., 2017). For
example, GPT-3 a state of the art in contextual
language model, showed bias regarding religion,
race and gender (Brown et al., 2020). Even though
deep learning models are trained on large amounts
of data, it is hard to capture all the variations of
the language that different users can use. Even
within the same language people talk differently,
depending on the age group, part of the country,
background, etc (Kern et al., 2016) (Eisenstein
et al., 2010) (Hovy and Søgaard, 2015). If the train-
ing data is skewed towards a certain demographic

group, this can cause models to pick up on patterns
that do not generalize and underperform on certain
user groups. Bias on predictive models is an is-
sue that has been studied for some time. Most of
the related literature is focused on social bias, spe-
cially gender and race (Zhao et al., 2017) (Manzini
et al., 2019) and centered on measuring an specific
type of bias and providing contra measures for it,
which usually do not generalize to other types of
bias (Zhao et al., 2018) (Goldfarb-Tarrant et al.,
2020) (Garrido-Muñoz et al., 2021) (Dixon et al.,
2018) (Shah et al., 2020). For example, on digital
assistants, we identify other types of group bias,
like customer tenure. Everyday, new customers
join services like Amazon Alexa, Siri or Google
Home. These new customers experience digital
assistants for the first time and interact with it dif-
ferently than mature cohort. New customers tend
to try out more different functionalities, while ma-
ture customers often use utterances that work for
them and settle down in daily-related domains. The
experience of new customers is a closer reflection
of how natural communication looks like as they
are not yet “taught” how to communicate with the
devices. Learning from new customers therefore
might be one of the best ways to learn natural in-
teractions with digital assistants. Contrary to most
studies that focus on using semi-supervised learn-
ing for general accuracy (Chapelle et al., 2009a)
(Clark et al., 2018) (Ding et al., 2018) (Hinton et al.,
2015), we focus on improving the accuracy of the
new customer (early cohort) natural language un-
derstanding task (McClosky et al., 2006) and show
that our framework could target a strategic cus-
tomer cohort to improve their experiences, thus
improve the overall accuracy in all customers in an
industry scale experiment. Even so, our approach
can be easily applied to any customer cohort to mit-
igate other types of bias. Our proposal consists in
a method to identify important utterances coming
from the early cohort that need to be fixed, then em-
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ploy self training techniques to mitigate them. The
main idea is to automatically expand the training
data to increase the representativeness of utterances
that characterize early cohort customers.

2 Related work

Detecting and mitigating bias in model predictions
have attracted a lot of studies recently. For ex-
ample, (Zhao and Chang, 2020) proposed a bias
detection technique based on clustering. Their ap-
proach focuses in local bias detection, which refers
to bias exhibited in a neighborhood of instances
rather than on the entire data. (Garrido-Muñoz
et al., 2021) did a survey on bias in deep NLP,
where they present a review of the state-of-the-art
in bias detection, evaluation and correction, where
they used vector space manipulation (Bolukbasi
et al., 2016), data augmentation, data manipula-
tion or attribute protection for dealing with the
bias. (Shah et al., 2020) proposed a predictive bias
framework for NLP and identified four potential
origins of biases: label bias, selection bias, model
over-amplification, and semantic bias. To mitigate
model bias, common methods such as adversarial
learning (Li et al., 2018; Le et al., 2022b), data
augmentation with synthetic data generation using
back translation (Sennrich et al., 2016), pretrained
language model (Sahu et al., 2022; Wang et al.,
2021; Kobayashi, 2018; Kumar et al., 2019; Le
et al., 2022a) and semi-supervised learning (Cho
et al., 2019; Zhu, 2005; Zhu and Goldberg, 2009;
Chapelle et al., 2009b) have shown to be effec-
tive, especially when there is a lack of labeled data.
While most of these studies focus on general bi-
ases in training models, we specifically aim at new
customer cohort in a real world large scale voice
assistant system. We employ both active and semi-
supervised learning approaches that take customer
feedback into consideration to improve the model
prediction on this specific cohort.

3 Natural language understanding task in
early cohort

Early cohort is defined as a group of new cus-
tomers who have started to use the voice assistant
device within the last 7 days. In contrast, mature
cohort refers to the group of customers that have
used the device for at least more than 30 days.
Typically, a voice assistant consists of different
components, starting from WakeWord detection,
to Automatic Speech Recognition (ASR) that con-

verts voice signals to texts, which will be used by
the Natural Language Understand (NLU) compo-
nent. In this work, we focus on how improving
the NLU part could help to improve the end to end
experience of new customers. In this study, we
use devices’ response results and weak signals as a
way to improve the system over time. In particular,
friction is defined as commands from customers
that the system failed to provide an answer to (e.g.,
when the system gives responses such that “sorry
I do not understand”). We also consider negative
feedback from customers as a signal that the sys-
tem did not response well to their previous requests.
Finally, in order to measure the impact of our ap-
proach, we carried out offline NLU experiments
(testing on annotated data). The only change is the
implemented early cohort self training scheme.

4 Our approach

We propose an end to end framework (Figure 1)
to identify cohort representativeness and effective
data selection and augmentation to improve the
model performance on a specific cohort without de-
grading the overall performance. It is composed of
two phases, with the first phase looks for utterances
from early cohort that need to be fixed using ac-
tive learning using different strategies. After these
utterances are annotated with human annotators,
they are included in the training data to train a new
NLU teacher model. We then employ a self learn-
ing phase to further extend similar utterances using
semi-supervised learning to have more representa-
tives of samples coming from early cohort.

4.1 Active Learning strategies

We define phase I with active learning strategies to
fix important utterances from early cohort that the
model might struggle with. The aim is to select all
utterances with the highest values to be annotated
to improve the performance of the NLU system
with a given budget of ζ annotated utterances.

Let L = {(xi, yi)}|L|i=1 be a set of labeled train-
ing data that is currently used for the NLU model
F with xi ∈ XL, a set of all labeled utterances
including customer and/or synthesis utterances.
We have U = {(xi, y′i)}

|U |
i=1 as a set of unlabelled

data, which contains xi ∈ XU , a set of all unla-
belled utterances. yi denotes labels from human
annotators while y′i denotes the annotation coming
from NLU model F . y′i contains the first hypothesis
from F model and additional information about the
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Figure 1: Our framework combines active and semi-supervised learning (self learning phase) to minimize labeling
cost while improving the accuracy of early cohort: (1) selecting cohort-based data to be sent to human annotation,
(2) adding the annotated data to training data, (3) retraining the NLU model based on the added dataset, (4) self
learning scheme, extending the annotated cohort-based data with semi-supervised learning (SSL), (5) using the
trained NLU teacher model to get labels for the SSL data.

corresponding utterance such as whether it belongs
to the early cohort EARLY (i.e., utterances that oc-
cur during the 30 first days of the customers), the
frictional group FRICTION or the LOW bin (i.e.,
utterances that have low confidence scores during
NLU prediction).
To select utterances that are relevant and impor-
tant for new customers, we employ four differ-
ent sampling strategies with a set of acquisition
functions a = ⟨a(1), a(2), a(3), a(4)⟩ to select a
set of T utterances to be annotated with T =
{(xi, yi)|xi ∈ X}|ζ|i=1. The goal is to find the set
of all X = {xi|xi ∈ U} that provides the best
model’s performance P (F ′) of model F ′ that is
trained on L′ = L ∪ T .

We cover (1) difficult utterances (uncertainty
sampling), (2) wide coverage (diversity sampling)
as well as (3) utterances that are representative
of new customers (cohort-representativeness sam-
pling) and finally (4) using customer feedbacks as
an additional signal to trace back problematic ut-
terances. The selection function gives us a set of
classified utterances focusing on early cohort. The
final set is the union of all four strategies (Algo-
rithm 1).

4.1.1 Uncertainty and diversity sampling
As a common approach in active learning, the first
sampling strategy is to query for utterances that
have low NLU confidence scores and utterances
where texts are similar, but NLU hypotheses are
different. Those are utterances that the model are
unsure about its predictions. For diversity sam-
pling, we select representative frictional utterances
using k-means clustering, extracting the centroid
of each cluster to get a set of representative broken
utterances from early cohort.

4.1.2 Identification of cohort
representativeness

To get a visualization on a target cohort friction
data, we propose the following approach that takes
into account contextual information embedded in
BERT representations together with hidden topic
modeling (Blei et al., 2003). While BERT embed-
ding provides contextual information about how
words are interacting and accompanying each other,
topics project utterances to a hidden topical space
that is easy for interpretation. We then compare the
density area for each cohort with topic guidance to
identify the areas that are representative of friction
utterances from early cohort. The process is com-
posed of two main steps (1) Step 1: inspired from
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BERT topic combination (Bianchi et al., 2021),
we perform parameter estimation and data fitting,
where the LDA (Latent Dirichlet Allocation) (Blei
et al., 2003) topic estimation, Auto Encoder (Liou
et al., 2014) and Uniform Manifold Approximation
and Projection (UMAP) (McInnes et al., 2018) are
learned from generic frictional data. Note that this
training phase is completely unsupervised, only the
first NLU hypothesis domain labels are integrated
into the training data for a better domain focus
representation. (2) Step 2: Topic inference with
BERT representation and transforming friction data
from different cohorts (e.g. early and mature co-
hort) separately through Autoencoder and UMAP,
we use density clustering with topic guidance to
identify the areas that are representative of friction
utterances from the early cohort.

Training with the original data gave rather poor
results since the friction data is very unbalanced
with main focus on the bigger domains (e.g Mu-
sic and Knowledge). LDA is not able to capture
correctly other domains and classes when training
on original data, but gave a much better results
after upsampling minority classes. Furthermore,
integrating NLU domain label hypotheses gives
another dimension of information, hence improve
domain focus and give a better labelling for inter-
preting topics. In the inference phase (Figure 2),
friction data is included in its original distribution
(e.g., no resampling is used). Early and mature co-
hort friction data are fed separately into the models.
Before doing UMAP transformation, we employ
density clustering with topic guidance to extract
utterances that most characterize early cohort (i.e.,
are often asked by the early cohort and gave them
frictions in compared to mature cohort). The visu-
alization of early and mature cohort give insights
into which topics are mostly asked, identifying do-
mains that are usually confused to each other, top
words that are used in each domain/topic that lead
to friction. This helps to understand which types of
requests from new customers need to be fixed.

4.1.3 Using customer feedback inputs
In this sampling approach, we look at utterances
from new customers that might contain negative
feedbacks (NF). To this end, we employ a binary
classifier that predicts whether an utterance con-
tains a negative feedback (e.g., “this is not what I
meant”, “you did not understand it”). If it is likely
that an utterance contains a negative feedback, we
trace back to the previous de-identified utterance

that might have led to the negative feedback. This
is the fourth sampling strategy used for querying
utterances for active learning.

4.2 Data augmentation with self-training
scheme

Since the budget of ζ annotated utterances is lim-
ited, we want to combine SSL together with data
augmentation as the second step for enriching the
training data with utterances that best solve the
problems of young cohort. Many recent stud-
ies have shown that augmented data with semi-
supervised learning (Chapelle et al., 2006) can
boost the performance of text classification tasks
with reduced number of annotated data. We inte-
grate them together with the utterances selected for
annotation in Phase I in a self-training scheme to
select best utterances that can be augmented into
the training set. In particular, the process consist of
the following steps:

1. Take all data coming from T and with the
output NLP model F ′, retrained in Phase I.

2. F ′ runs on a new unlabelled set of utterances
to achieve H1 and their scores.

3. Construct the set Tssl that contains all selected
utterances that are most similar to those com-
ing from T with the highest confidence to be
added to the training data with a data retrieval
module based on similarity search.

Figure 3 shows how the SSL data selection
works, where we search for early cohort most rel-
evant utterances from the live traffic. Due to the
large scale of the data, it is prohibitively expen-
sive to search for relevant utterances from the de-
identified live traffic data using pair wise similarity
search. Therefore, we encoded and indexed all
utterances once, clustering the data where each
cluster is represented by their centroids, which are
used as inverted file and indices (Johnson et al.,
2019). For each of the selected early cohort ut-
terances (that were annotated in Phase I), we find
those that are most semantically similar (but are
not identical). When a query vector comes in, a
most suitable cluster found based on its similarity
with the centroids is returned together with the top
K-nearest utterances coming from the live traffic
data.

555



Figure 2: Identification of cohort representative utterances

Figure 3: Indexing and searching module

5 Experiment setup

5.1 Models and dataset

We took aggregated and de-identified data for eval-
uating our framework for both German (DE) and
French (FR) languages. The offline results are eval-
uated on human annotated test set that comes from
the live traffic distribution. For the first phase we
got 8K annotated utterances. For the second phase,
we further enriched with ∼13K utterances using
semantic retrieval for SSL. The offline results are
reported with a sample test set containing 1M sam-
ples for DE and 800K samples for FR.

5.2 Metrics

We report our offline results in semantic error rate
(SEMER), which is calculated by the number of
errors (at slot and intent level) divided by the total
number of reference slots and intent classification
error rate (ICER), which takes only intent classifi-
cation error into consideration (see A.2 for more
information).

6 Results

We report offline results testing on annotated test
data.

Table 1 shows the relative changes of each phase
in compared to a baseline model for both ICER and
SEMER metrics. We observe a constant improve-
ment across domains for both phases in German
(DE) and French (FR) languages. In particular, the
biggest gain (6.99% intent error and 6.1% seman-
tic error reduction) is observed in German second
phase, where we include semi-supervised learning
with focus on early cohort. Among all domains, we
see especially good improvements in Help, Notifi-
cations and Knowledge domains. These domains
are also popular domains among new customers,
who tend to try out different functionalities and re-
quire support (Help) from the devices to understand
how to use them. We see also some small degra-
dation (0.29% in ICER for French phase II), but
no degradation with SEMER metric, when we take
also slot information into consideration. Overall,
the offline results show that both active and semi-
supervised learning are effective in improving the
performance of the model.

7 Conclusions

In this work, we provide an end to end framework
for bias mitigation with a focus on early cohort.
This framework is also general enough to apply to
other customer cohorts and other types of bias. Our
approach uses a combination of active and semi-
supervised learning techniques in a self-learning
scheme for effective data selection and augmenta-
tion. Our main contribution is the identification
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DE Phase I FR Phase I DE Phase II FR Phase II
Domain ICER SEMER ICER SEMER ICER SEMER ICER SEMER
Music -1.48% -0.99% 1.29% 1.36% -2.74% -1.82% -0.59% +2.13%
Global +2.31% +1.63% -1.08% -1.78% -2.23% -1.95% 0.96% +0.15%
HomeAutomation -0.61% -0.20% -1.13% -0.4% -0.79% -1.27% 0.97% +1.64%
Knowledge -0.13% -0.56% -1.49% -3.41% -5.44% -5.16% 2.89% -1.99%
Notifications -1.16% -0.20% -1.8% -1.99% -41.11% -32.79% -1.23% -0.8%
Communication +0.00% -2.44% -3.5% -4.01% -3.51% -1.48% 0% -3.69%
LocalSearch +1.59% +1.52% 1.46% -1.65% -1.17% -0.71% -0.35% +0.69%
Help -1.46% -1.93% -5.21% -5.31% +1.08% -3.62% -0.33% +1.12%
Overall -0.12% -0.40% -1.43% -2.15% -6.99% -6.10% 0.29% -0.09%

Table 1: ICER and SEMER relative changes (%) (negative shows an improvement, while positive indicates a
degradation)

of the cohort representativeness where we use a
combination of BERT topic embeddings with Au-
toencoder and density clustering to create a better
representation of each cohort data and identify the
contrastive area, where the new customers’ data is
missing. Furthermore, we applied SSL using a data
retrieval module based on similarity search to aug-
ment the training data relevant to the early cohort.
We compared a model that was trained on a random
set of data with a model that was selected based
on the active semi supervised learning approach.
The proposed approach improves overall semantic
and intent error rate for both German and French
languages during offline testing.

Limitations

In this work, we have employed different strate-
gies to identify the important utterances from early
cohort. However, since a voice assistant system
consists of many components, such as Wakeword,
automatic speech recognition, NLU, dialogue man-
ager, where errors occurring in one step might re-
sult to the final overall incorrect response. We have
not discussed or considered the interaction among
these components in this study. Last but not least,
weak signal learning using users’ feedbacks has
shown to be beneficial in many studies, it is impor-
tant to classify and identify the types of feedbacks
that are relevant and those that are not relevant to
NLU improvement (e.g., a negative feedback might
not be caused by an immediate previous request,
but be caused by other factors such as unsupported
features, ASR incorrect recognition, device techni-
cal problems).

Ethics Statement

In the self learning phase, we have increased the
representativeness of early cohort utterances in the
training data. While it helps to improve the end to

end experience of new customers, the method de-
scribed in this work focuses on improving common
customers and potentially introduces bias into the
training data as well as the model. For example,
minor customers that are not well represented in
the live traffic will have lower chances of having
their types of requests fulfilled through the active
semi-supervised learning phased. Similarly, certain
types of customers (e.g., those who use the device
frequently) may have better chances of having cor-
rect NLU predictions overtime, while the system
might still struggle dealing with rare requests in
some specific domains.
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A Appendix

A.1 Algorithm for sampling strategies

Algorithm 1 Sampling strategies for early cohort
Input: current NLU model release F

set of recent live traffic data U = {(xi, y
′
i)}|U|

i=1

K: the number of clusters used for diversity sampling strat-
egy

Output: A boosting model F ′ built on top of F

1) Initialize T = ∅
2) From a set of live traffic data U , select utter-
ances to be annotated with acquisition functions a =

⟨a(1), a(2), a(3), a(4)⟩
3) Uncertainty sampling
Select X(1) using a(1) that selects utterances with (1) low
confidence from early cohort that causes friction or (2) have
different annotations while the utterance texts are the same.

a(1)(xi) =





1, (xi, y
′
i) ∈ EARLY,FRICTION,

(xi, y
′
i) ∈ LOW

or ∃(xk, y
′
k) where xi = xk, y

′
i ̸= y′

k

0, otherwise

Send X(1) for human annotation to get T (1) =

{(xi, yi)|xi ∈ X(1)}|X
(1)|

i=1

4) Diversity sampling
Using k-means algorithm on a set of U

YF = {(x_i, y_i’) | (x_i, y_i’) ∈ EARLY, (xi, y
′
i) ∈

FRICTION}|Ui=1

YF|Kisthenumberofclustersandζ(2) is the utterance
budget for annotation
Assign initial values for E(x1), E(x2), ..., E(xUY F )
repeat
assign each item E(xi) to the cluster with the closest centroid;
calculate new centroid for each cluster
until converge
For each cluster, select ζ(2)/K representative utterances to be
added to X(2)

Send X(2)for human annotation to get T (2) = {(xi, yi)|xi ∈
X(2)}|X

(2)|
i=1

5) Using customer feedback inputs
Let UNF = {(xi, y

′
i)|(xi, y

′
i) ∈ EARLY, (xi, y

′
i) ∈

PNF_i = 1|UPNF| where
PNF = {(xi, y

′
i)|(xnext

i , y′
i
next) ∈

EARLY, (xnext
i , y′

i
next) ∈ NF}|UNF|

i=1 defines a group
of all previous utterances of those that are classified as
containing negative feedbacks.
Send X(3) for human annotation to get T (∋) =

{(xi, yi)|xi ∈ X(3)}|X
(3)|

i=1

6) Using cohort representative data with density clustering
Using BERT and LDA to define an embedding function of
each utterances coming from both early and mature cohort
Use density clustering to define clusters where early cohort
out-populates mature cohort in density to get X(4)

Send X(4) for human annotation to get T (4) = {(xi, yi)|xi ∈
X(4)}|X

(4)|
i=1

7) Train a new model F ′ on L′ = L ∪ T on top of F

The algorithm for sampling strategies in the first
phase is given in Table 1, where the aim is to select
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utterances with highest values for early cohort. The
final set of the utterances is the union of the four
sampling strategies.

A.2 Metrics
Semantic error rate (SEMER), is a metric used
in offline evaluation where model prediction
on domain/intent/slots is compared to human
annotations. SEMER considers substitution
error (S), insertion error (I), deletion error
(D) at intent and slot level, and number of cor-
rect intents/slots classification (C) (see Equation 1).

(1)
SEMER =

#errors

#referenceslots

=
(S + I +D)

(C + I + S +D)

ICER stands for Intent classification error, a metric
calculated as the percentage of utterances contain-
ing an error intent classification error divided by
total number of samples in this intent. BPS repre-
sent the percent increase/decrease from the current
value. Friction refers to instances where a model
does not understand the user or can not action the
user’s request.
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Abstract

Content moderation on social media is gov-
erned by policies that are intricate and fre-
quently updated with evolving world events.
However, automated content moderation sys-
tems often restrict easy adaptation to policy
changes and are expected to learn policy intri-
cacies from limited amounts of labeled data,
which make effective policy compliance chal-
lenging. We propose to model content moder-
ation as a binary question answering problem
where the questions validate the loosely cou-
pled themes constituting a policy. A decision
logic is applied on top to aggregate the theme-
specific validations. This way the questions
pass theme information to a transformer net-
work as explicit policy prompts, that in turn
enables explainability. This setting further al-
lows for faster adaptation to policy updates by
leveraging zero-shot capabilities of pre-trained
transformers. We showcase improved recall for
our proposed method at 95% precision on two
proprietary datasets of social media posts and
comments respectively annotated under curated
Hate Speech and Commercial Spam policies.

1 Introduction

Social media platforms use content moderation to
safeguard users from abuse, harassment, malicious
attacks, spam, etc. This moderation process is gov-
erned by a set of community policies1. For exam-
ple, to shield the users from undesired spammy
advertising of illegal products/services, social me-
dia platforms generally maintain a Commercial
Spam (CS) policy2. The large volume of content

1The professional community policy maintained
by LinkedIn https://www.linkedin.com/legal/
professional-community-policies or Facebook Com-
munity standards https://transparency.fb.com/en-gb/
policies/community-standards/

2 LinkedIn’s illegal, dangerous, and inappropriate
commercial policy: https://www.linkedin.com/help/
linkedin/answer/137373 and similarly Facebook’s com-
merce policy: https://www.facebook.com/policies_
center/commerce/

generated on social media platforms necessitates
building automated systems for content moderation
to scale policy-specific validations. (Fortuna and
Nunes, 2018; MacAvaney et al., 2019).

Traditionally, automated content moderation sys-
tems are mostly binary classifiers (Hovold, 2006;
Sakkis et al., 2001) often aided by pre-processing
(Naseem et al., 2021) and additional tasks such as
intent identification (Agarwal and Sureka, 2017).
Recent approaches involve fine-tuned Large Lan-
guage Models (LLMs) (Caselli et al., 2020; Tan
et al., 2020), putting attention on suspicious pieces
of text (Pavlopoulos et al., 2017), or reformulating
the problem as multi-task learning (Kapil and Ek-
bal, 2020) or natural language inference (Yin et al.,
2019; Goldzycher and Schneider, 2022).

However, policy compliance in automated con-
tent moderation still remains a challenge due to
two primary reasons: (1) The governing policies
are likely to contain intricacies arising from vari-
ous aspects like content-specific edge cases, con-
text driven interpretations, and exceptions. For
example, Table 1 documents a typical Hate Speech
policy (prohibiting hateful contents targeting inher-
ent traits such as gender, race etc.) that can have
complicated samples where decision making is dif-
ficult. (2) To keep up with world events and their
direct impact on content distribution, policies may
need to be updated somewhat frequently.

The common industry practice considers policy
as a single atomic concept and formulates content
moderation as binary classification problem. Here
the policy appears to the classifier as a black-box
abstract concept yet it is expected to learn even the
minute intricacies of the policy only through the
labeled data. This leads to three major production
challenges: (1) Labeled data are limited in quantity.
(2) The non-stationary distribution of content on
social media continuously evolves in response to
world events resulting in label and concept drift
(Gama et al., 2014; Yamazaki et al., 2007). (3)
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Table 1: The intricacies inherent to an example content moderation policy such as Hate Speech.

Example Content Content Label Policy Reasoning

<Ethnicity> people should not be allowed to vote Hate Speech Call for excluding a group based on inherent traits
You are a <racial slur> Hate Speech Attacking people based on inherent traits.
You are of no use to this world. Non-Hate Speech The content is clearly hateful but it is not targeting an inherent trait. Thus, this is

not a Hate Speech.

Table 2: Example of update in commercial spam policy.

Decision Logic: A content is marked as Spam if it violates any one of the themes.

Theme Definition Initial label Updated label

Human Body Parts Purchase or sale of organs, blood, and urine. Spam Spam
Recreational Drugs Promotion of Cannabis and its derivatives. Spam Spam
Cryptocurrency Investment in Cryptocurrency. Spam Clear
Pharmaceuticals Advertising of prescription drugs or supplements. Clear Spam

There is no direct way to reuse an existing model
following policy update. Instead, one has to rean-
notate data for the updated policy and develop a
fresh model. From industry perspective, this incurs
additional labeling and development cost leading
to compliance delays that leaves the user on the
platform less protected for a prolonged period.

To get a better understanding of content policies
we take an example CS policy that prohibits adver-
tising/selling of illegal products from any of the
three categories (hereafter called themes), namely
Human Body Parts, Recreational Drugs, and Cryp-
tocurrency (see Table 2). Thus, a policy can be seen
as a collection of loosely coupled themes (the small-
est, logically coherent, and well defined granularity
of a policy) threaded together by a decision logic
(here if the content violates any of the themes it will
be marked as commercial spam). Breaking down
a policy into themes has two benefits. (1) Themes
are independent and focused thus they tend to be
less ambiguous. (2) A policy update boils down to
addition of new themes or removal of old themes
with changes in the decision aggregation logic. For
example, an updated CS policy may clear Cryp-
tocurrency and introduce Pharmaceuticals as a new
prohibited item (see Table 2).

When we consider the policy as a set of themes
combined by a decision logic, it enables us to for-
mulate the task of policy compliance as a binary
Question Answering problem (Clark et al., 2019)
that leverages a pre-trained Large Language Model
(LLM) as described in Figure 1. This formulation
has four advantages. (1) The theme information
can be passed to the LLM in the form of explicit
prompts, in this case, binary questions (answered
Yes or No). This is similar to a prompt-based learn-
ing (Liu et al., 2023) approach that enables a better
understanding of the policy. (2) Prompting enables

leveraging zero-shot capabilities of LLMs for un-
derstanding the question-content relation to vali-
date less prevalent or newly added themes with no
or few data samples. (3) The decision logic gets
decoupled from the model. This simplifies learn-
ing and enables fast adaptation to policy changes.
(4) The individual theme validations provide ex-
plainability useful for fine-grained monitoring and
performance tuning (can be used for transparency
and fairness requirements for social media).

The key highlights of this paper are as follows:.
(1) In Section 3, we propose a binary Question
Answering based Content Moderation (QnA-CM)
system. Here, we leverage the policy structure
that allows reformulating the problem of content
moderation as a generic task of binary QnA. Going
beyond Clark et al. (2019); Saeidi et al. (2021a) that
deal with more syntactical and factual questions,
with QnA-CM we aim to answer semantically in-
volved theme-validations. (2) Contrary to BoolQ
(Clark et al., 2019) in QnA-CM to maintain diver-
sity and limit class imbalance in the training set, we
undertake a sampling strategy detailed in Section
3. (3) We further propose a scalable multi-level
inference strategy in Section 3 that enables QnA-
CM to perform at near computational cost of binary
classifiers while offering greater explainability. (4)
Using questions QnA-CM leverages explicit policy
knowledge and consequently gains agility to policy
changes in a zero-shot manner, as demonstrated in
a simulation study in Section 4.

2 Related Works

Content moderation systems usually employ bi-
nary (Sakkis et al., 2001) or multi-class classifiers
(Founta et al., 2018) to label content. A binary
classifier ignores themes altogether by treating pol-
icy as a black box seen through the lens of spam
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Figure 1: High-level schematic of the proposed content moderation system. A theme-validating binary answerable
question derived from the policy along with a content is passed to LLM that answers Yes or No. These answers
from LLM are then aggregated by the well defined decision logic provided by the policy. A policy change at the
Business side does not impact the AI side as the LLM uses zero-shot to answer new questions.

and clear labels. Even though a multi-class classi-
fier may consider themes it is not agile to policy
changes. With the advent of LLMs (Devlin et al.,
2018), models like TextCNN (Kim, 2014), XG-
Boost (Chen and Guestrin, 2016) using external
word embeddings like Glove (Pennington et al.,
2014) have been outperformed. Notable LLM-
based content moderation systems, primarily de-
signed for Hate Speech detection, usually fail in
production due to language-specific interjections
(Nozza, 2021), limited data availability (Uzan and
HaCohen-Kerner, 2021), demand for fine grained
subjective labels (Mollas et al., 2022), theme im-
balance (Plaza-Del-Arco et al., 2021), and high
response time (Goldzycher and Schneider, 2022).

A pre-trained LLM can be fine-tuned to perform
text understanding tasks such as binary question an-
swering as in BoolQ (Clark et al., 2019). However,
BoolQ is trained to answer in Yes or No responses
to content-specific factual questions thus cannot be
directly applied to the task of policy compliance.
Even though BoolQ inspired question answering
along with rule based deductive reasoning have
found some success in content validation (Saeidi
et al., 2021b; Saeed et al., 2021), they use simple
clearly defined policies and did not investigate the
applicability in content moderation that requires an-
swering semantically involved questions. To elabo-
rate, policies governing content moderation often
use legal language that are difficult to process by
LLMs (Moro and Ragazzi, 2022; Khazaeli et al.,
2021; Ravichander et al., 2019). For short, focused,
and well defined insurance policies, expressing the

rules as decision trees may be useful (Kotonya et al.,
2022) but that neither extends to capture the intri-
cacies in social media content moderation policies
or formally characterize their updates.

3 Methodology

Preliminaries: Let us take a set X =
{x1,x2, · · · ,xn} of n text contents paired with a
set of labels YP = {Spam,Clear}n where P is
the underlying policy. Due to the likely imbalance
between s Spam and c Clear contents n = c + s
and c = rs where r > 1 is the imbalance ratio. A
policy P as mentioned in Section 1 usually consists
of a set of themes T and a decision logic (combina-
tion of logical operators like AND, OR, etc.) D to
combine the theme-specific validations to reach a
final Spam or Clear label or P = (T,D).

To elaborate, content policies in social media
typically have a primary theme of “common in-
tent" in T . For example, in CS this can be “sale of
prohibited items" or in hate speech a “hateful senti-
ment". Evidently, if this primary theme is violated
then only it makes sense to proceed with the checks
on the other themes for finding a spam. Each of
the other themes individually covers a certain “spe-
cific" rule under the policy such as a regulated prod-
uct like recreational drugs in CS and inherent traits
like gender in hate speech. The policy provides
the decision tree D that in its commonly preferred
form marks a content Spam if “common intent" is
violated along with (logical AND) any (i.e. logical
OR) other specific theme is contravened.

Now P when circulated to the user, should
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phrase T as a guideline to assist the user in cre-
ating good quality content. However, when P is
provided to human reviewers, T can be rephrased
as questions Q as that is more intuitive for validat-
ing a content. For example, a publicly circulated
Hate Speech policy may state “Please do not create
hateful contents that target the inherent traits of
an individual or group.” To a reviewer this may be
rephrased as a set of binary answerable questions
Q along with a decision logic D to aggregate the
answers, as shown in Figure 2. Similarly, in QnA-
CM mimicking a human reviewer we rephrase T
as Q such that the answers of Q can be logically
combined by D.

Formally, for a policy with k themes the set Q =
{q1,q2, · · · ,qm} contains m validatory questions.
Here, m ≥ k and equality is achieved when each
theme has exactly one validating question. The
decision tree D is a boolean function that maps
from {0, 1}m to {0, 1} using logical operators. We
are representing Yes as 1 and No as 0 to match the
implementation while⊗ and⊕ respectively denote
the logical operators AND and OR.
Binary Question Answering Using LLMs: We
follow from LLM classifiers (Devlin et al., 2018)
and BoolQ (Clark et al., 2019), for validating a con-
tent x ∈ X against a question q ∈ Q. The input i
concatenates [CLS], q, [SEP], and x in the order,
where [CLS] and [SEP] are special tokens. The
output f(i) of the LLM f summarizes the input i
in the feature space at f

(
i[CLS]

)
i.e. the dimen-

sion corresponding to the [CLS] input token (De-
vlin et al., 2018). This f

(
i[CLS]

)
is sent through

fully-connected layers to map to the two classes
(Clark et al., 2019). After applying softmax to
the logits, the model will output probability scores
Pr(1|(q,x)) and Pr(0|(q,x)) respectively for 1
(Yes) and 0 (No) responses. A threshold θ converts
the probability scores to binary labels. This can
be trained end-to-end with a loss such as binary
cross-entropy. Figure 4 illustrates the architecture.
Training of QnA-CM: In the QnA-CM training set
each sample is a question-content pair with 1 (Yes)
or 0 (No) label. To form such a training data we ask
the same set of questions Q to every content x in X .
However, this may result in severe class imbalance
depending on r and m. For simplicity without
loss of generality, let us assume k = m, a spam
content violates only one theme, and a positive
theme violation corresponds to a Yes answer only.
Thus, we have a total of sm(r + 1) questions in

the training data, where s of them are answered by
Yes and the rest (s(m − 1) from spam and rsm
from clear) are answered by No, resulting in an
imbalance of (m+mr − 1). A naive solution of
sampling random No answering question-content
pairs may not provide a quality training set.

We sample diverse question-content pairs with
label 0 (No) in three ways: (S1) Pair a Clear sample
with a random question with probability νn and
assign it a 0 (No) label. (S2) Take a Spam x that
answers Yes to qj. Pair x with probability νs with
any q ∈ Q \ {qj} and label it as 0 (No). (S3) Use
theme-specific weak classifiers using models like
TextCNN or pre-trained natural language inference
models like BART (Lewis et al., 2019) to find the
qj with highest confidence (above ω) that matches
with a Clear sample x. With a probability νh, pair
x with qj and label it as 0 (No).

The “common intent” of a policy is expressed
through the top-level spam and clear labels. To
utilize this additional information and learn the
commonalities across themes to aid zero-shot gen-
eralization, we sample Spam and Clear contents
respectively with probability ν+ and ν− and pair
them with a “common intent” validating question in
the training set. Note that, in the process of build-
ing the training set, we introduce five new data
dependent hyperparameters in QnA-CM, namely
νs, νh, νn, ν+, ν−, and ω.

Inference using QnA-CM: We propose a scal-
able multi-level inference strategy for QnA-CM as
described in Figure 3. Here we exploit two pecu-
liarities of the content moderation ecosystem. (1)
Spammy content is commonly very less frequent
than clear content. (2) In our two-level inference
strategy. In the first level L1, we match the content
against a single question representing the common
intent of the policy. Only if the content is matched
in L1, we proceed to the second level of L2 to
validate it against all the m theme-specific ques-
tions, otherwise we directly mark it as clear. This
way only the potential spammy content will be
validated against all m theme-validating questions
while the rest will be cleared in L1 with a similar
computation cost of a binary classifier. In other
words, the computational overhead will only be
zm/(1+r) times in practice where z is the ratio of
potential spam to actual spam content. Typically in
production r >> z (tuning distinct θs for L1 and
L2 offers finer control over z) and m is not large
thus zm/(1 + r) remains close to 1, thus asserting
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Hate 
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Content

Q D

Does this content mention race?

Does this content mention ethnicity, 
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or immigration status?

Does this content mention sex or 
gender identity?

Does this content mention disability?

Does this content mention sexual 
orientation?

Does this content mention caste?

Inherent traits

Does this content mention hateful 
speech?

Sentiment

Figure 2: Set of questions Q (derived from T ) and decision logic D for a sample Hate Speech policy.

Want to gain weight and have muscled body in a 
month? Try our miraculous product now!

Does this content 
mention prescription 

drugs or supplements?

Does this content 
mention Cannabis and 

its derivatives?

LLM with 
fully-connected 

layer 

Score: 0.02

Score: 0.90

Content

Theme validating 
questions

Commercial 
Spam

D

LLM with 
fully-connected 

layer on top

Does this content 
promoting, advertising, 
or attempting to sell?

Common intent of the policy 
validating question

Clear

Answer: No

Score: 0.98
Answer: Yes

Clear

Answers: No

L1 L2

Discarded Theme

Inserted Theme
Inserted 

Theme Score

Figure 3: The multi-level inference of QnA-CM is illustrated with the CS policy example. The thresholds for both
levels are set at 0.5. In L1 the content gets a high score of 0.98 for the common policy intent to move forward to L2.
During L2 we pair the content with each of the m theme validating questions and get the scores. Here, given the
content violates Pharmaceuticals theme it gets a high score of 0.9 for the same and obtains low scores otherwise.
Thus, the content gets Yes for Pharmaceuticals and consequently gets labeled as Spam.

scalability similar to traditional methods.

4 Experiments

Experimental Protocol: We use two proprietary
long-tailed text datasets, both sampled from content
publicly posted on social media during 2021-2023
(both are sampled from the same social media to
maintain consistency). (D1) Comments in four
languages namely English, Spanish, French, and
Portuguese. (D2) Text part of Feed Posts made
in English. For our experiments, we curate two
typical policies by selectively amalgamating the
ones used by various social media platforms. (P1)
A CS policy that contains 17 themes (described
in terms of Q and D in Appendix A.2). (P2) A
Hate Speech policy that employs hateful Q and D

as shown in Figure 2. The D1 dataset is validated
against P1 while D2 is labeled with P2 (datasets
are detailed in Appendix A.3).

We take 4 English and 2 multilingual pre-trained
LLMs for our experiments (listed in Appendix A.4
with additional network architecture and hyperpara-
mater details). For all the experiments we compare
a fine-tuned LLM-based baseline binary classifier
that maps the [CLS] token embedding of the back-
bone to Spam or Clear labels by a multi-layer per-
ceptron network againstst a QnA-CM model with
the same backbone. Content moderation systems
in production aim to achieve better recall with high
precision such that the users (and reviewers) are
minimally affected by false positives. Thus, we use
recall value at 95% precision level for comparing
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among contenders (note that accuracy is not suit-
able given the class imbalance while GMean is not
informative as content moderators do not need to
focus on true negatives (Mullick et al., 2020)).

We demonstrate performance of QnA-CM across
two dimensions. (1) To train with the full dataset,
we retain all the themes in training, validation, and
test set mimicking a long standing static policy.
Here we aim to evaluate how well QnA-CM em-
ploys prompting through questions to handle the
long tallied theme distribution. (2) For the CS
policy, we simulate a policy change (Hate Speech
policy is commonly static as the inherent traits are
well defined) where new themes are introduced in
the policy (see Appendix A.5). Thus, we train the
model only on previously existing themes while
inferring on newly introduced ones to evaluate how
QnA-CM employs prompting and zero-shot capa-
bility of LLM to adapt to policy update.

Table 3: Average performance of QnA-CM in terms of
R@95P compared to the baseline binary classifiers.

LLM Full Data Policy Change Full Data
(CS) (CS) (Hate Speech)

Baseline 41.36 11.38 78.76
QnA-CM (Ours) 48.17 33.68 85.90

Performance of QnA-CM Compared to Binary
Classifiers: We can observe from Table 3 (detailed
in Table 12) that for both the policies, QnA-CM
is achieving a better performance on average over
the four backbone LLMs than the baseline binary
classifiers in terms of R@95P. The performance im-
provement is more apparent in the case of simulated
policy changes in CS, indicating better adaptabil-
ity of QnA-CM to policy updates. Further, in the
training with full data, the better performance of
QnA-CM attests to the usefulness of theme-specific
knowledge prompted through the questions.

Table 4: Theme wise Precision and Recall at 95% policy-
level Precision for QnA-CM using BERT-Large.

Full data (Precision, Recall)

Cryptocurrency Occult Precious Metals
0.9867, 0.6394 0.9775, 0.5829 0.9762, 0.5351

Newly themes after policy change (Precision, Recall)

Animal Products Fabricated Items Human Body Parts
0.6675, 0.5218 1.000, 0.2720 0.3334, 0.2113

Explainability of QnA-CM: In Table 4 we report
the performance at 95% policy-level precision for
three highly prevalent themes after training QnA-
CM with full data. The Table 4 also lists down

the metrics at 95% policy-level precision for three
themes newly introduced through policy change.
This theme-level performance provided by QnA-
CM allows finer monitoring and tuning. For exam-
ple, we can prioritize data collection to improve
recall for Human Body Parts while increasing the
respective threshold can provide better precision.

Table 5: Ablation study for the QnA-CM learning strat-
egy using BERT-Large. Results are in terms of R@95P.
Strategies S1, S2, and S3 are detailed in in Section 3.

Strategy Full Data Policy Change
(CS) (CS)

With S3 19.38 8.65
With S1+S2+S3 35.47 22.96
With S1+S2+S3+Common Intent 40.98 28.77

Ablation Study: To understand how the proposed
training strategy of QnA-CM aids in learning we
perform an ablation study using the D1 English
Comments datasets labeled with CS policy. In Ta-
ble 5 we see that the performance of QnA-CM
greatly improves as hard “No” answering questions
are added on top of the randomly selected ones (i.e.
S1+S2+S3 as in Section 3). QnA-CM further ben-
efits, especially in a policy update situation, when
the policy-level question for the “Common Intent”
is additionally used during training.

Table 6: Performance of QnA-CM compared to the
baseline on D1 multilingual comments dataset.

Algorithm R@95P

Baseline with BERT-Base-Multilingual 8.71
Baseline with XLM-RoBERTa-Base 16.95

QnA-CM with BERT-Base-Multilingual (Ours) 27.62
QnA-CM with XLM-RoBERTa-Base 36.57

Multilingual Inference on D1 Comments
Dataset: We fine-tune two multilingual LLMs for
QnA-CM using the D1 English comments training
dataset. However, we infer on the samples from the
three other languages along with the English test
set. We keep the questions in English, to validate
how well QnA-CM can adapt to multilingual con-
tent without explicit multilingual fine tuning. We
see from Table 6 that QnA-CM elevates the per-
formance of the models compared to the baselines
indicating the usefulness of prompt-based learning
through questions even for bilingual inputs.
Importance of Prompted Learning: We show-
case benefits of our prompt based learning frame-
work QnA-CM on Hate Speech detection. In the
real world industry setting, Hate Speech detection
is often plagued with false positives that arise due to
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binary classifiers getting confused between “hate-
ful” content and “hate speech”. This distinction is
important for fair assessment of the content sever-
ity and user regulation. Therefore, understanding
of inherent traits along with hateful intent becomes
crucial, which can be achieved via questions in
QnA-CM. We demonstrate this setting by two ex-
periments. (1) At 95% precision level we compare
the average theme-specific recall over four back-
bone LLMs for each of the 6 inherent traits for the
D2 Posts dataset labeled against the Hate Speech
policy. From Table 7 (full results in Table 13) we
can see that QnA-CM performs better in all cases
irrespective of the imbalance thus validating that
the questions are providing useful information to
the model. (2) We take 116 English posts from
social media that annotators marked as hateful but
do not target any inherent traits thus are not Hate
Speech. The Table 7 (and Table 14 in Appendix)
shows QnA-CM achieving disentanglement among
the “hateful” and inherent traits thus offering a
lower false positive rate for Hate Speech.

Table 7: The importance of prompted learning through
questions for Hate Speech in QnA-CM.

(1) Recall for each inherent traits of Hate Speech at 95% Precision

Inherent Traits QnA-CM (Ours) Baseline

Ethnicity, National Origin, Religious
Affiliation, Immigration Status

88.18 80.90

Race 92.29 82.69
Sex, Gender Identity 75.00 69.23
Sexual Orientation 75.00 71.65
Caste 100 100
Disability Status 100 25

(2) False Positive Rate for 116 Hateful but not Hate Speech Posts.

Performance Metric QnA-CM (Ours) Baseline

FPR at 95% Hate Speech Precision 0.40 0.71

5 Conclusion

In this work, we model content moderation as a
binary question answering problem where the ques-
tions act like prompts, validating various themes
belonging to a content policy. This further allows
faster adaptation to policy updates by leveraging
zero-shot capabilities of pre-trained transformers.
Our experiments show 7% absolute improvement
in recall over the binary classification setting. In
case of policy updates we achieve 22% absolute
recall improvement as well, without any additional
training. Furthermore we show improved recall on
multilingual data with QnA-CM fine-tuned only
on English. We also show improved recall and
reduced false positives for Hate Speech using QnA-

CM. All these facilitate an agile response to policy
updates by prompt injection thus limiting member
exposure to spam. In the future, we aim to investi-
gate the applicability of open source datasets with
recently developed large generative models with
high natural language understanding and prompt-
driven zero-shot capabilities such as GPT series
(Brown et al., 2020) or LLaMA (Touvron et al.,
2023) in the QnA-CM framework.
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A Appendix

A.1 Model Architecture

The model architecture used for QnA-CM is illus-
trated in the following Figure 4.

Pre-trained LLM (f)

[CLS] q [SEP] x

f(i[CLS])

Fully connected layers

0 1

Figure 4: The QnA-CM architecture takes a question
and content pair as input while using the output corre-
sponding to the [CLS] token to map to the answer.

A.2 Policies Curated for the Experiments

We have generated a CS policy for our experiments
that marks a content as Spam if it comes with a
primary common intent of “promoting, facilitat-
ing access to, distributing, or attempting to sell”
any of the 17 types of illegal or regulated products
or services (that correspond to 17 themes). Es-
sentially Q contains one question for the common
intent and 17 others covering the individual themes.
The decision tree D is similar to Figure 2 where the
themes are aggregated by logical OR and combined
with the policy intent with a logical AND. More-
over, the inference directly follows from Figure 3.
We formulate this CS policy by taking inspiration
from the community policies publicly circulated
by LinkedIn, Facebook (see footnote 2) and Twit-
ter (https://business.twitter.com/en/help/
ads-policies.html). Note that, this CS policy is
not an exact copy of any of the three social media
but rather a selective amalgamation, with additions
such as Cryptocurrency, Occult, etc and removal
of themes like unauthorized sale of digital media,
adult contents etc.

For the Hate Speech policy we have considered
the traditional sense i.e. hateful content targeting
inherent traits of person or group. Again this is
inspired by the LinkedIn Hateful and Derogatory
Content Policy (https://www.linkedin.
com/help/linkedin/answer/a1339812),
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Facebook Hate Speech Policy (https:
//transparency.fb.com/en-gb/policies/
community-standards/hate-speech/), and
Twitter policy on Hateful Conduct (https://
help.twitter.com/en/rules-and-policies/
hateful-conduct-policy). However, like the
CS policy the Hate Speech policy curated by
us does not directly follow any of the social
media in particular rather it combines the essence
of the three, focussing on some key inherent
traits only. Moreover, we have observed that
even highly capable LLMs like BART (Lewis
et al., 2019) often get confused with particularly
identifying fine grained inherent traits. For
example, it is a complicated problem for the
LLMs to disambiguate between Ethnicity, National
Origin, Religious Affiliation, and Immigration
Status as they often occur together and can even
be interpreted synonymously in the same content.
Similarly it has been found that LLMs are not
powerful enough to properly distinguish between
gender and sex as different inherent traits. Hence,
while creating the question set as described in
Figure 2 we joined these fine grained inherent
traits together.

One key challenge for QnA-CM is to formulate
questions from the policy definition as the same
statement can be rephrased in multiple ways. To
remove this possible ambiguity during training we
left the question design to the unanimous decision
by a team of 5 reviewers who are well acquainted
with the two curated policies. We felt this is a
reasonable approach as this directly reflects the
human reviewers’ understanding of a content policy
and best aids the mimicking of that in QnA-CM.

A.3 D1 Comments and D2 Posts Datasets

For both the D1 Comments and D2 Posts dataset,
each content is labeled against the respective pol-
icy by two annotators and conflicts are resolved
through a third opinion. We have used a group of 5
annotators who are all trained on the two curated
policies. The D1 Comments dataset has three pri-
mary features to replicate real world scenarios. (1)
The distribution of examples over the languages
is long tailed i.e. there is imbalance in the dataset
across languages (2) The distribution of the sam-
ples over the themes is also long tailed for each of
the four languages. (3) There is an imbalance be-
tween the number of Spam and Clear instances. We
achieve this by using a couple of multinomial dis-

tributions respectively with distinct language and
theme selection probabilities along with a biased
Bernoulli distribution. The final data distribution
over the language, content labels, and themes is
documented in Figure 5.

Figure 5: The distribution of samples for the D1 com-
ments dataset and labeled against the CS policy (see
Table 8). For each language we show the percentage of
samples for each theme along with the total number of
Spam and Clear contents.

For the D2 Posts dataset we have applied a strat-
egy similar to the one used for Comments. Here
the dataset contains only the text part of the English
posts. Similar to comments here also we aim to
maintain two key features to mimic real-life scenar-
ios. (1) The distribution of the samples over the 6
inherent themes is long tailed. (2) The number of
Spam examples is less than that of the Clear ones.
Thus, we use a multinomial distribution with dif-
ferent probabilities for each theme and a Bernoulli
distribution biased to the Clear contents to sample
our Posts dataset.

We partition the D1 English Comments and D2
Posts datasets intro training, validation, and test
sets by theme level stratified sampling (Singh and
Mangat, 1996) The distributions of samples over
the three sets for these two datasets are described
in the following Table 10.

A.4 Model Details for QnA-CM
In this study we employ the general purpose
BERT-Large (Devlin et al., 2018), RoBERTa-Large
(Liu et al., 2019), Albert-Large-V2 (Lan et al.,
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Table 8: The CS policy curated for our experiments has a total of 17 themes along with a top-level policy-specific
question such that common knowledge can be shared across intra-policy themes.

Top-level policy concept Question

Commercial Spam policy
Common Intent

Does the text mention promoting, facilitating access to, distributing, or attempting to sell, illegal or regulated goods or
services?

Theme Question

Cryptocurrency Does the text mention about promotion or investment of cryptocurrencies, NFTs, or forex trading?
Occult Does the text mention dream interpretation, individual horoscope, spell craft, black magic, love spells or witchcraft?
Pharmaceuticals Does the text mention about prescription drugs, ingestible supplyments, weight loss products, vitamins, sexual enhancement

drugs, herbal medication, steroids, face creams, medical devices to diagnose, cure or treat a disease?
Precious Metals Does the text mention the purchase or sale of gold, diamond, platinum or fuel?
Recreational Drugs Does the text mention Cannabis and its components such as CBD?
Gambling Does the text mention betting, online real money, casinos, poker, bingo, gambling or promotes gambling?
Lottery Does the text mention about lotteries, sweepstakes, and surveys for free goods?
Circumvention Does the text mention hacking resources or circumventing to get free access to video games, software, websites, bots to

scrape data or artificially inflate data?
Alcohol and Tobacco Does the text mention alcohol, tobacco, rolling paper, hookah or electronic cigarettes?
Animal Products Does the text mention fur, skin, ivory, bones, horns, carcasses, and the sale of raw meat for consumption?
Fabricated Items Does the text mention about fabricated educational certificated, scraped data, proxy test taking or instructions to create

forged documents?
Illegal Drugs Does the text mention illegal drugs like opioid, cocaine, meth, heroin, opium, MDMA, GHB, LSD or amphetamines?
Human Body Parts Does the text mention organs, blood, urine or for any organ donors?
Mail Order Brides Does the text mention a catalog of women for men to select for marriage?
Weapons Does the text mention weapons, firearms, or violent products or services?
Counterfeit Items Does the text advertise non genuine items as genuine or replica of real items such as rolex watches, pirated software?
Human Exploitations Does the text mention about extortion, sextortion, sex trafficking or human trafficking?

Table 9: Distribution of themes over the D2 English
Posts dataset.

Inherent Traits Percentage of Samples

Ethnicity, National Origin, Religious Affilia-
tion, Immigration Status

62.60

Race 12.19
Sex, Gender Identity 15.40
Sexual Orientation 9.30
Caste 0.23
Disability Status 0.17

Table 10: Distribution of samples over training, valida-
tion, and test sets for the two LinkedIn datasets.

Dataset Split Spam Clear

D1 Training 5828 39871
English Validation 698 4603
Comments Test 815 5316

D2 Training 1376 7870
English Validation 182 974
Posts Test 181 975

2019), and DeBERTa-Large (He et al., 2020),
along with multilingual models such as BERT-
Base-Multilingual (Devlin et al., 2018) and XLM-
RoBERTa-Base (Conneau et al., 2019), as the back-
bone LLM for both binary classifier and QnA-CM.
All the LLM backbones used in QnA-CM are fine-
tuned using the dataset under concern for a maxi-
mum number of 10 epochs with a learning rate of
1.00e-05 for the Adam (Kingma and Ba, 2014) op-
timizer. We measure the performance on the valida-
tion set after every 100 steps. An early termination
criterion is used to check if the performance eval-
uation metrics such as Accuracy, precision, recall,

and F1 score have not improved on the validation
set for the last e consecutive evaluation steps. For
the CS policy e is set to 10 and the same for Hate
Speech is kept to 5, as those choices found to be
performing well on average. The hyperparameters
introduced in QnA-CM are tuned using grid search.
The search space and the final choices for these
hyperparameters for the D1 Comments and the D2
Posts datasets are detailed in Table 11.

Table 11: Hyperparameter tuning in QnA-CM.

Name D1 D2 Search
Comments Posts Space

νs 1 0.5 {0.5, 1}.
ω 0.2 0.3 {0.2, 0.3}1.
νh 0.6 0.2 {0.2, 0.4, 0.6, 0.8}.
νn 0.3 1 {0.1, 0.3, 0.6, 0.9, 1}.
ν+ 0.3 0.3 {0.1, 0.3, 0.5}.
ν− 0.1 0.1 {0.05, 0.1, 0.15, 0.2}.

θ1, θ2 - - {0.501, 0.502, · · · 0.99}2
1 The threshold is set to be the same for all themes.
2 Model dependent, varied to optimize metric as per common practice.

A.5 Policy Update Simulation for CS Policy
To simulate an update for the CS policy, the
low prevalent eight themes in the English dataset,
namely Animals, Fabricated Items, Illegal Drug,
Human Body Parts, Mail Order Bride, Weapons,
Counterfeit Items, and Human Exploitation are re-
moved from the training and validation set and
added to the test set. Further, the corresponding
validating questions for these eight themes are only
used during inference. This is a viable strategy for
simulating policy update as it is likely that the ex-
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isting themes will have enough annotated samples
while the same for the newly introduced themes
will be less in number.

Table 12: Performance of QnA-CM in terms of R@95P
compared to the baseline binary classifiers.

LLM Full Data Policy Change Full Data
(CS) (CS) (Hate Speech)

Baseline

BERT-Large 40.12 9.71 81.00
RoBERTa-Large 43.25 13.52 75.41
ALBERT-Large-V2 34.38 10.75 77.09
DeBERTa-Large 47.72 11.57 81.56

QnA-CM (Ours)

BERT-Large 40.98 28.77 87.15
RoBERTa-Large 45.83 23.34 87.15
ALBERT-Large-V2 50.42 12.97 81.05
DeBERTa-Large 55.48 69.66 88.26

A.6 Full Results
The complete results for Table 3 is available in
Table 12 while the same for Table 7 is reported in
Table 13. Moreover, the scores of QnA-CM and
Baseline for two examples that are hateful but not
Hate Speech are detailed in Table 14.
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Table 13: Theme-specific Recall comparison of QnA-CM and Baseline on the D2 Posts dataset at 95% Policy-level
Precision for each of the 6 inherent traits in Hate Speech policy.

LLM Inherent Traits QnA-CM (Ours) Baseline

BERT-Large

Ethnicity, National Origin, Religious Affiliation, Immigration Status 90.90 81.81
Race 96.10 88.46
Sex, Gender Identity 69.23 69.23
Sexual Orientation 73.33 86.66
Caste 100 100
Disability Status 100 25

RoBERTa-Large

Ethnicity, National Origin, Religious Affiliation, Immigration Status 89.09 76.36
Race 80.76 76.92
Sex, Gender Identity 88.46 76.92
Sexual Orientation 80.00 66.60
Caste 100 100
Disability Status 100 0

ALBERT-Large-V2

Ethnicity, National Origin, Religious Affiliation, Immigration Status 84.54 81.81
Race 92.30 80.76
Sex, Gender Identity 65.38 65.38
Sexual Orientation 60.00 53.33
Caste 100 100
Disability Status 100 0

DeBERTa-Large

Ethnicity, National Origin, Religious Affiliation, Immigration Status 88.18 83.63
Race 100 84.61
Sex, Gender Identity 76.92 65.38
Sexual Orientation 86.66 80.00
Caste 100 100
Disability Status 100 100

Table 14: Scores and decisions of BERT-Large based QnA-CM and Baseline for two hateful but not Hate Speech
examples (thresholds are set to 95% policy-level Precision performance on Hate Speech). Trigger Warning: The
examples contain abusive language and hateful sentiment.

Example 1: he’s also a fraud don’t believe them they are begger’s they are doing from of such amount and employee are paying from ther own
such a <slur> begger’s.

Algorithm Scores Decision

QnA-CM (Ours)

Hateful 0.95

Non-Hate Speech

Ethnicity, National Origin, Religious Affiliation, Immigration Status 0.76
Race 0.06
Sex, Gender Identity 0.01
Sexual Orientation 0.02
Caste 0.00
Disability Status 0.00

Baseline 0.97 Hate Speech

Example 2: This guy is a swindler and takes advantage of ur daughter doesn’t care abt her age ..

QnA-CM (Ours)

Hateful 0.92

Non-Hate Speech

Ethnicity, National Origin, Religious Affiliation, Immigration Status 0.17
Race 0.03
Sex, Gender Identity 0.21
Sexual Orientation 0.05
Caste 0.02
Disability Status 0.01

Baseline 0.98 Hate Speech

Comment: The Baseline classifier is not being able to distinguish between “hateful" and Hate Speech. In case of QnA-CM, we can explicitly
question the learner about the inherent traits and check if any of them responses Yes alongside “hateful" to mark as Hate Speech. As we can see
from the scores for QnA-CM that none of the inherent traits response Yes thus we are being able to correctly classify the contents as Non-hate
Speech (even if it is “hateful" as per the high score for that question only). This way the prompts aid QnA-CM to effectively learn the individual
themes and achieve disentanglement between the distinct concepts.
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Abstract

Item categorization (IC) aims to classify prod-
uct descriptions into leaf nodes in a categorical
taxonomy, which is a key technology used in
a wide range of applications. Along with the
fact that most datasets often has a long-tailed
distribution, classification performances on tail
labels tend to be poor due to scarce supervision,
causing many issues in real-life applications.
To address IC task’s long-tail issue, K-positive
contrastive loss (KCL) is proposed on image
classification task and can be applied on the IC
task when using text-based contrastive learn-
ing, e.g., SimCSE. However, one shortcoming
of using KCL has been neglected in previous re-
search: false negative (FN) instances may harm
the KCL’s representation learning. To address
the FN issue in the KCL, we proposed to re-
weight the positive pairs in the KCL loss with
a regularization that the sum of weights should
be constrained to K+1 as close as possible. Af-
ter controlling FN instances with the proposed
method, IC performance has been further im-
proved and is superior to other LT-addressing
methods.

1 Introduction

Item categorization (IC) aims to classify a product
into a node of a taxonomy hierarchy. The textual
descriptions of the products are used as the input
and thus the task can be formulated as a text clas-
sification problem. IC is a fundamental task in
e-commerce and the base for many applications
such as personal recommendation and query under-
standing. One of the major challenges in building
a highly effective real-life IC system is the seri-
ous long-tailed (LT) problem—A few head classes
have the majority of the product items, while each
of the remaining (large number of) tail classes
contains only a few items. Consequently, the
scarce supervision available for these tail classes
tends to cause unsatisfactory classification perfor-
mance. In the most recent years, several novel

LT-addressing methods, e.g., methods utilizing self-
supervision (Yang and Xu, 2020) and contrastive
learning (CL) (Kang et al., 2021), have emerged
in computer vision. However, the related research
on natural language processing (NLP) tasks is still
limited.

However, when utilizing unsupervised con-
trastive learning, e.g., K-positive contrastive loss
(KCL) (Kang et al., 2021), the issue of appearing
False Negative (FN) samples hurts model learning.
Figure 1 shows an example of the FN issue and
the performance impact reported in (Huynh et al.,
2020). In this paper, to build IC models and use
KCL to solve the LT issue, we propose a novel
method to control the FN issue, which entails as-
signing different weights for each positive sample
in the KCL loss and tries to keep the sum of these
weights equal to a predefined value. The experi-
mental results on the three Amazon product cate-
gory datasets show that the proposed contrastive
learning methods help on improving the model per-
formance on tail classes and the FN controlling can
further improve CL-based LT-addressing method.
Our main contributions can be summarized as:

Figure 1: False Negative (FN) samples may appear
when applying contrastive learning. Addressing the
FN issue can improve the learned model’s downstream
performance. Result is from the Table 2 in (Huynh et al.,
2020) regarding image classification on the ImageNet
data using the model learned by SimCLR (Chen et al.,
2020)
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• We recognize the false negative sample issue
in K-positive contrastive loss.

• We propose a novel false negative controlling
method to mitigate the its negative impact and
show the effectiveness of proposed model.

• To the best of our knowledge, we are the first
to apply contrastive learning to address the LT
challenge in the IC text classification.

2 Related Work

Many methods have been proposed to address
the LT issue. One category of those methods re-
samples the data to balance the label distribution,
e.g., SMOTE (Chawla et al., 2002). Another cat-
egory of methods assign different weights to sam-
ples based on their label frequencies, e.g., Focal
loss (Lin et al., 2017) Class-balanced loss (Cui
et al., 2019), Label-Distribution-Aware Margin loss
(LDAM) (Cao et al., 2019) and so on. Some of
those loss-balanced methods are also applied to the
NLP domain in (Huang et al., 2021). In addition,
few shot learning (Liu et al., 2019) and transfer
learning (Xiao et al., 2021) methods are also pro-
posed for long tail classification.

Recently, a two-stage training strategy (exam-
pled in (Kang et al., 2019; Zhou et al., 2020)),
which decouples the learning a feature encoder
and the learning of a classifier, has become influ-
ential in computer vision and shows its superior
performance on addressing the LT issue.

Contrastive learning (CL) has been found to be
effective in providing high-quality encoders in a
simple self-learning fashion. The CL-based text
representation learning has become a hot research
topic in NLP. SimCSE (Gao et al., 2021) uses
dropout operations to be an effective text augmen-
tation and can learn effective text representations.

In the LT-addressing two-stage method, self-
learning which discards the influence of label dis-
tribution has been used in its representation learn-
ing stage, e.g., (Yang and Xu, 2020; Kang et al.,
2021). Besides simply using self-supervision, in-
cluding the supervision signal from existing labels
can improve the representation learning (Khosla
et al., 2020). However, introducing semantics infor-
mation may suffer from the LT issue and hurt the
performance of tail classes. To address this issue,
K-positive contrastive loss (Kang et al., 2021) is
proposed to learn balanced feature representations.

An instance is called false negative (FN), if any
in-batch negative instance shares the label carried

by the anchor sample. FN samples are found to
be harmful to CL methods and corresponding miti-
gation methods are proposed (Huynh et al., 2020;
Chen et al., 2021).

3 Methodology

Let x denote the title of a product and y its category
label. Then IC can be formulated as a text classifi-
cation problem: given a product title x, we a model
to predict the class label y, where h and h+ are the
representations of the anchor sample x and its cor-
responding positive sample x+, respectively. H−

is the representations of negative sample set X− of
the given the anchor sample x and positive sample
x+. h− ∈ H− is the representation of the negative
sample x− in X− where X− is the negative sam-
ple set given the anchor sample x and its positive
sample x+. τ is a temperature hyper-parameter and
sim(·, ·) denotes the cosine similarity of the two
vectors.

3.1 Recap of KCL

The KCL is a state-of-the-art model that learns bal-
anced feature representations for long-tailed label
distribution. It defines a positive sample set by
sampling K samples belonging to the same class
as the anchor if such samples are more than K in
existing mini-batch. The KCL can be calculated by
the Eq. 1.

LKCL =
1

(K + 1)

∑

h∈H

∑

h+∈{h′}∪H+
K

L(h, h+)

L(h, h+) = −log esim(h,h+)/τ

∑
hi∈H−{h} e

sim(h,hi)/τ

(1)

where h is the anchor sample representation and h′

the self-augmented representation of h. H+
K repre-

sents the representation set of sampled K positive
samples from the batch. H denotes the samples in
the same batch. K is the hyper-parameter repre-
senting the defined number of positive pairs.

In NLP, to generate h′, we propose to use the
SimCSE (Gao et al., 2021) method. In particular,
an anchor sample x is encoded using a BERT (De-
vlin et al., 2018) model with varying dropout masks.
The encoded representations can be represented as:

h = tanh(MLP (BERT (x, z)))

h′ = tanh(MLP (BERT (x, z′)))
(2)
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where BERT (x, z) denotes the BERT encoder
using a random dropout mask. For MLP , we use
a layer of fully connected network with the tanh
activation, while z and z′ are two different random
dropout masks in BERT at rate of 0.1.

negative H-positive H+

p0 p1 p2 p3 p4

Anchor

z'
BERTdropout z dropout z'

Figure 2: KCL applied on a batch with five samples, P0
to P4. Color on input blocks shows labels. P0 serves
as an anchor and its positive pair is obtained by Sim-
CSE with a different dropout mask. When K = 1, P1 is
added into the positive set H+. P2, however, is assigned
into the negative set H− and a false negative case ap-
pears and is marked as a red cross.

Fig. 2 illustrate how the KCL represented in
Eq. 1 is applied on a mini-batch with five sam-
ples. Since P2 and P0 share the same label, their
encoded representations are expected to be close.
However, when running KCL with K = 1, P2
will be wrongly pushed away from P0 being a FN
sample.

3.2 False Negative Control
As shown in Fig 2, a significant drawback of KCL
is that some positive samples can be treated as neg-
ative if there are more than K + 1 samples belong-
ing to the same class in a batch. The occurrence of
the false negative instances will degrade the qual-
ity of the learned representations and further hurt
the classification performance. To alleviate the
false negative, we propose a novel method named
false negagive control (FNC), which assigns vary-
ing weights to positive samples in the KCL loss
based on the embeddings of the anchor sample and
the positive samples, represented as:

wh,h+ = ReLU(MLP (h⊕ h+)) (3)

where wh,h+ is the weight for the positive sample
h+ with respect to the anchor sample h. ⊕ is the
vector concatenation operation.

With the learned weights, we propose the
weighted contrastive loss by re-weighting the pos-

itive samples in the original InfoNCE loss, which
can be defined as:

Lw(h, h
+) = −log

esim(h,h+)/τ

∑
h+
i ∈H+ wie

sim(h,h+
i )/τ +

∑
h−
i ∈H− esim(h,h−

i )/τ

(4)

To satisfy the property of balancing the feature
space for classes with different frequencies in KCL
while controlling the FN issue at the same time,
we propose the KCL-FNC loss with the aforemen-
tioned defined weighted contrastive loss with the
constraint that the summation of these weights is
as close to a predefined value (K + 1) as possible.
The KCL-FNC loss is defined as:

LKCL−FNC =
∑

h∈H

∑

h+∈{h′}∪H+
K

Lw(h, h+) + λLreg(h,H+)

(K + 1)

(5)

where λ is the balanced parameter and
Lreg(h,H+) is the regularization loss denoted as:

Lreg(h,H+) = |
∑

h+∈H+

wh,h+ −K − 1| (6)

The advantages of the proposed KCL-FNC loss
over exiting FN controlling methods are two-folds:
(1) learning balanced feature representations and
(2) applying as much available information as pos-
sible. The attraction strategy (FNA) in (Huynh
et al., 2020; Chen et al., 2021), which include all
positive samples rather that K sampled positive
samples, makes the KCL roll back to the supervised
contrastive loss when the ground-truth labels are
known, and therefore destroys the KCL’s property
of learning balanced representations. The elimina-
tion (FNE) strategy, which ignores the FN samples
in calculating the contrastive loss, loses valuable in-
formation and further degrades the representation-
learning performance, especially the number of
such instances are large, such as for head labels in
a imbalanced data set.

4 Experiments

Datasets. The experiments are performed on the
public Amazon dataset (McAuley et al., 2015; He
and McAuley, 2016) which is a widely used bench-
mark. Following (Tayal et al., 2020), we use three
categories of Amazon product datasets: Automo-
tive, Beauty, and Electronics. Each sample in the
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Automotive Electronics Beauty AutoH AutoM AutoT

F1w F1m↑ F1w F1m↑ F1w F1m ↑ F1m↑ F1m↑ F1m↑
BERT-CE 78.03 63.95 67.68 52.94 71.44 56.64 75.42 64.51 51.78

cRT 77.85 63.72 67.54 52.99 71.55 55.88 75.20 63.99 51.78
SimCSEus 76.36 64.25 65.82 53.30 70.99 58.06 74.16 64.92 54.65

KCL 76.87 65.17 65.18 53.39 71.44 58.26 74.99 65.06 55.36
KCL-FNA 76.54 64.65 66.08 53.69 71.65 58.31 74.46 64.88 54.53
KCL-FNE 77.96 65.82 65.73 53.67 71.43 57.95 75.97 65.78 55.61
KCL-FNC 78.05 66.20 66.24 54.02 71.84 58.56 76.02 66.50 56.07

Table 1: Model Performance on Long-tailed IC. The left part of the table shows the performance on the three
datasets: Automotive, Electronics and Beauty. The right part shows the results on the three subsets of the Automotive
dataset, where AutoH , AutoM and AutoT consist of the head, medium and tail classes in Automotive. The best
results are highlighted using bold fonts. F1w and F1m denote the weighted F1 and macro-F1.

datasets has a title and a category label. All three
datasets have long-tail issue.1

Overall Performance. We compare the proposed
method with the following models: BERT with
cross-entropy loss (BERT-CE), cRT (Kang et al.,
2019), unsupervised SimCSE (SimCSEus), and
controlling false negative instances with attraction
(KCL-FNA) and elimination (KCL-FNE). Note
that except for BERT-CE, all other baseline mod-
els use the two-stage approach to address the long
tail issue, in which the classifier is trained using a
balanced data set.

The experimental results are shown in Table 1.
We can observe that all contrastive learning-based
models outperform BERT-CE and cRT in terms of
macro-F1, which demonstrates the effectiveness
of contrastive learning in addressing the long tail
issue in IC. The calculated FN sample rates are
0.036 (Automotive), 0.068 (Electronics) and 0.102
(Beauty), showing that there are significant number
of FN samples when using KCL1. When compar-
ing the false negative controlling methods with the
KCL, we observed that those false negative control-
ling methods achieved better performance in terms
of macro-F1. The results demonstrate the necessity
of controlling the FN issue in KCL. Among those
false negative controlling methods, the proposed
method outperforms all other methods, showing its
advantage over existing methods.

Performance on Subsets. To investigate the per-
formance of the models on the classes with dif-
ferent label frequencies, we split the Automotive
dataset into three subsets according to the label
frequency: Head, Median and Tail and evaluate
the models by macro-F1 on the subsets1. The

model performance on the subsets are included in
Table 1. We can see that the performance decreases
along with the decrease of the label frequencies
for each single model, illustrating the lacking of
samples limits the model performance. Moreover,
the methods based on KCL outperforms all other
baselines. The proposed FN controlling method
achieves the best performance on all subsets which
demonstrates the false negative controlling method
can help address the long tail issue in IC task with-
out hurting the overall performance. The details
can be found in the Appendix.

5 Conclusion

In large-scaled item categorization tasks, category
labels are naturally distributed in a long tail pattern,
which challenges the performance on tail classes
due to severe supervision missing. To address this
challenge, we adopt a two-stage LT-addressing
method that was originally proposed in the image
classification task. To make this method work on
our text classification task, we use the recently
proposed SimCSE (Gao et al., 2021) to do an
effective text transformation and KCL loss in
the representation learning stage. Furthermore,
we recognize there are false negative samples
caused by using the KCL loss and propose a novel
controlling method to reduce the corresponding
negative influences. The experimental results
prove that the proposed method helps improve
the performance on long-tailed data and the false
negative controlling can further help boost the
performance when using KCL. While we worked
on item classification in this paper, we will extend
the model to other problems.
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6 Limitations

A major limitation of this research work is only
item classification, one specific type of NLU tasks,
is used in our experiments. To better evaluate our
proposed KCL-FNC method, an expanded testing
task set will provide more convincing power. In ad-
dition, we only used cross-entropy (CE) loss when
training models, in both representation and clas-
sifier learning stages. It will be interesting to see
the compound effect when applying our proposed
method together with some advanced loss types,
such as LDAM (Cao et al., 2019).
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A Dataset Statistics

The statistics of the three data sets: Automotive,
Beauty and Electronics are shown in Table A. 1
and the histogram of the label frequencies of the
three data sets are shown in Figure A. 1.

Labels Samples Title Length

Automotive 953 160,725 9.90± 5.51
Beauty 229 159,805 10.26± 5.61

Electronics 500 86,357 14.90± 9.56

Table A. 1: Statistics of Datasets

B Implementation Details

For all the models except for the BERT, we fol-
low the two-stage training protocol in (Kang et al.,
2019). The batch size is set to 32 and initial learn-
ing rate is 1e− 5 with a linear decay. The datasets
are preprocessed following (Tayal et al., 2020). We
split the training datasets into two subsets: train vs.
dev that is used to select hyperparameters and vali-
date the performance 2. The models are evaluated
using two metrics: macro-F1 (F1m) and weighted
F1 (F1w). Note that macro-F1 is frequently used
in evaluating LT-addressing methods. Since it cal-
culates the F1 for each class and averages them, it
is significantly influenced by the performance of
tail classes. We report the results on the test set
using the best models on the dev set measured by
macro-F1.

C False Negative Rate Calculation

To calculate the false negative rate, we use the
obtained embeddings of SimCSE-KCL in the first
stage after 10 epoch and report the average of five
runs. We calculate the false negative rate of those
three datasets where the batch size is set to 32 and
K is set to 1. Following (Chen et al., 2021), we
calculate the false negative rate in SimCSE-KCL
for the three datasets. The false negative rate fnr
is the number of false negative samples among top
25% the most similar samples of the anchor in a
batch, which can be represented as:

fnr =

∑N
i=1

∑
xj∈Bi

max(0, |Bj
i | − (K + 1))

∑N
i=1(0.25× |Bi| × (|Bi| − 1))

N is the number of batches. Bi is the set of samples
in batch i and |Bi| is the number of samples in

2The code will be available after acceptance.

batch i. |Bj
i | is the number of samples belonging

to the same class as xj in the 25% most similar
samples with the sample xj .

D Data Statistics of the Subsets

The classes are sorted based on their frequencies.
The Head subset consists of the samples in the most
frequent 1

3 classes and the Tail subset includes the
samples belonging to the least frequent 1

3 classes.
The rest samples belonging to the 1

3 median fre-
quent classes consists of the Median subset. The
statistics of the subsets are shown in the Table D. 1.

Automotive

Head Median Tail

Label 318 318 317
Sample 132, 590 20, 318 7, 817

Table D. 1: Data statistics of the subsets of the three
original training data sets based on the label frequencies.

579



(a) Automotive (b) Beauty (c) Electronics

Figure A. 1: Label Frequency Histogram of Automotive, Beauty and Electronics Datasets
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Abstract
Recent NLP literature pays little attention to
the robustness of toxicity language predictors,
while these systems are most likely to be used
in adversarial contexts. This paper presents
a novel adversarial attack, ToxicTrap, intro-
ducing small word-level perturbations to fool
SOTA text classifiers to predict toxic text sam-
ples as benign. ToxicTrap exploits greedy
based search strategies to enable fast and ef-
fective generation of toxic adversarial exam-
ples. Two novel goal function designs allow
ToxicTrap to identify weaknesses in both mul-
ticlass and multilabel toxic language detectors.
Our empirical results show that SOTA toxic-
ity text classifiers are indeed vulnerable to the
proposed attacks, attaining over 98% attack suc-
cess rates in multilabel cases. We also show
how a vanilla adversarial training and its im-
proved version can help increase robustness of
a toxicity detector even against unseen attacks.

1 Introduction

Deep learning-based natural language processing
(NLP) plays a crucial role in detecting toxic lan-
guage content (Ibrahim et al., 2018; Zhao et al.,
2019; Djuric et al., 2015; Nobata et al., 2016;
MacAvaney et al., 2019). Toxic content often in-
cludes abusive language, hate speech, profanity
or sexual content. Recent methods have mostly
leveraged transformer-based pre-trained language
models (Devlin et al., 2019; Liu et al., 2019a)
and achieved high performance in detecting tox-
icity (Zampieri et al., 2020). However, directly
deploying NLP models could be problematic for
real-world toxicity detection. This is because toxi-
city filtering is mostly needed in security-relevant
industries like gaming or social networks where
models are constantly being challenged by social
engineering and adversarial attacks.

In this paper, we study the adversarial robustness
of toxicity language predictors1 and propose a new

1We use “toxicity detection”, “toxicity language detection”

Original text: The village idiot.          
à 90.32% Toxicity  [Ground Truth]
à 92.83% Toxicity  [By Model]

Perturbed text: The village douche. 
à 0.066% Toxicity [By Model]à Failed Detection
à 86.84% Toxicity [AT Retrained] à Successful

Figure 1: ToxicTrap successfully fooled a SOTA tox-
icity predictor by perturbing one word in the original
text using word synonym perturbation. After adversar-
ial training (AT), the improved toxicity predictor can
correctly flag the perturbed text into the toxicity class.

set of attacks, we call "ToxicTrap ". ToxicTrap
generates targeted adversarial examples that fool a
target model towards the benign predictions. Our
design is motivated by the fact that most toxic-
ity classifiers are being deployed as API services
and used for flagging out toxic samples. Figure 1
shows one ToxicTrap adversarial example. The
perturbed text replaces one word with its synonym
and the resulting phrase fooled the transformer
based detector into a failed detection (as "benign").

We propose novel goal functions to guide greedy
word importance ranking to iteratively replace each
word with small perturbations. Samples generated
by ToxicTrap are toxic, and can fool a victim tox-
icity predictor model to classify them as "benign"
and not as any toxicity classes or labels. The pro-
posed ToxicTrap attacks can pinpoint the robust-
ness of both multiclass and multilabel toxicity NLP
models. To the authors’ best knowledge, this paper
is the first work that introduces adversarial attacks
2 to fool multilabel NLP tasks. Design multilabel
ToxicTrap is challenging since coordinating multi-
ple labels all at once and quantifying the attacking
goals is tricky when aiming to multiple targeted

and “toxicity prediction” interchangeably.
2This paper uses “methods for adversarial example genera-

tion” and “adversarial attacks” interchangeably.
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labels.
Empirically, we use ToxicTrap to evaluate

BERT (Devlin et al., 2018) and DistillBERT (Liu
et al., 2019b) based modern toxicity text classi-
fiers on the Jigasw (Jig, 2018), and Offensive tweet
(Bowman et al., 2015) datasets. We then use adver-
sarial training to make these models more resistant
to ToxicTrap adversarial attacks. In adversarial
training a target model is trained on both original
examples and adversarial examples (Goodfellow
et al., 2014). We improve the vanilla adversarial
training with an ensemble strategy to train with
toxic adversarial examples generated from multi-
ple attacks. Our contributions are as follows:
• ToxicTrap reveals that SOTA toxicity classifiers

are not robust to small adversarial perturbations.
• Conduct a thorough set of analysis comparing

variations of ToxicTrap designs.
• Empirically show that greedy unk search with

composite transformation is preferred.
• Adversarial training can improve robustness of

toxicity detector.

2 Method

Methods generating text adversarial examples in-
troduce small perturbations in the input data check-
ing if a target model’s output changes significantly.
These adversarial attacks help to identify if an NLP
model is susceptible to word replacements, mis-
spellings, or other variations that are commonly
found in real-world data. For a given NLP classi-
fier F : X → Y and a seed input x, searching for
an adversarial example x′ from x is:

x′ = T (x,∆x), x′ ∈ X
s.t. G(F ,x′), and {Ci(x,x

′)} (1)

Here T (x,∆x) denotes the transformations that
perturb text x to x′. G(F ,x′) represents a goal
function that defines the purpose of an attack, for
instance like flipping the output. {Ci(x,x

′)} de-
notes a set of constraints that filters out undesirable
x′ to ensure that perturbed x′ preserves the seman-
tics and fluency of the original x.

To solve Equation (1), adversarial attack meth-
ods design search strategies 3 to transform x to x′

via transformation T (x,∆x), so that x′ fools F
by achieving the fooling goal G(F ,x′), and at the
same time fulfilling a set of constraints {Ci(x,x

′)}.
Therefore designing adversarial attacks focus on

3Because brute force is not feasible considering the length
and dictionary size of natural language text.

designing four components: (1) goal function, (2)
transformation, (3) search strategy, and (4) con-
straints between seed and its adversarial examples
(Morris et al. (2020b)).

We propose a suite of ToxicTrap attacks to iden-
tify vulnerabilities in SOTA toxicity NLP detectors.
ToxicTrap attacks focus on intentionally generat-
ing perturbed texts that contain the same highly
abusive language as original toxic text, yet receive
significantly lower toxicity scores and get predicted
as "benign" by a target model.

2.1 Word transformations in ToxicTrap

For T (x,∆x), many possible word perturbations
exist, including embedding based word swap, the-
saurus based synonym substitutions, or character
substitution (Morris et al., 2020a).

Attacks by Synonym Substitution: Our design
focuses on transformations that replace words from
an input with its synonyms.

• (1) Swap words with their N nearest neigh-
bors in the counter-fitted GloVe word embed-
ding space; where N ∈ {5, 20, 50}.

• (2) Swap words with those predicted by BERT
Masked Language Model (MLM) model.

• (3) Swap words with their nearest neighbors
in the wordNet.

The goal of word synonym replacement is to create
examples that can preserve semantics, grammati-
cality, and non-suspicion.

Attacks by Character Transformation: An-
other group of word transformations is to gener-
ate perturbed word via character manipulations.
This includes character insertion, deletion, neigh-
boring character swap and/or character substitution
by Homoglyph. These transformations change a
word into one that a target toxicity detection model
doesn’t recognize. These character changes are
designed to generate character sequences that a hu-
man reader could easily correct into those original
words. Language semantics are preserved since
human readers can easily correct the misspellings.

Composite Transformation: We also propose
to combine the above transformations to create new
composite transformations. For instance, one com-
posite transformation can include both perturbed
words from character substitution by Homoglyph
and from word swaps using nearest neighbors from
GloVe embedding (Pennington et al., 2014).
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2.2 Novel goal functions for ToxicTrap

A goal function G(F ,x′) module defines the pur-
pose of an attack. Different kinds of goal functions
exist in the literature to define whether an attack is
successful in terms of a victim model’s outputs.

Toxicity language detection has centered on a
supervised classification formulation, including bi-
nary toxicity detector, multiclass toxicity classifica-
tion and multilabel toxicity detection which assigns
a set of target labels for x. See Section A.2 for more
details. As aforementioned, toxicity classifiers are
used mostly as API services to filter out toxic text.
Therefore, its main vulnerability are those samples
that should get detected as toxic, however, fooling
detectors into a wrong prediction as "benign".

Now let us define G(F ,x′) for ToxicTrap at-
tacks. We propose two choices of designs regarding
the target model types.

Multiclass or Binary Toxicity: When toxicity
detector F handles binary or multiclass outputs,
we define ToxicTrap attacks’ goal function as:

G(F ,x′) := {F(x′) = b;F(x) ̸= b} (2)

Here b denotes the "0:benign" class.

Multilabel Toxicity: Next, we study how to fool
multilabel toxicity predictors. In real-world appli-
cations of toxicity identification, an input text may
associate with multiple labels, like identity attack,
profanity, and hate speech at the same time. The
existence of multiple toxic labels at the same time
provides more opportunities for attackers, but also
poses design challenges 4.

Multilabel toxicity detection assigns a set of tar-
get labels for x. The output y = {y1, y2, ..., yL}
is a vector of L binary labels and each yi ∈ {0, 1}
(Zhao et al., 2019). For example in the Jigsaw
dataset (Jig, 2018), each text sample associates
with six binary labels per sample, namely {benign,
obscene, identity attack, insult, threat, and sexual
explicit}. We introduce a novel goal function for
attacking such models as follows:

G(F ,x′) := {Fb(x
′) = 1;Fb(x) = 0;

Ft(x
′) = 0, ∀t ∈ T} (3)

Here, T = {y2, ..., yL} denotes the set of toxic
labels, and b = {y1 : Benign} is the non-toxic

4To the authors’ best knowledge, no multilabel adversarial
attacks exist in the NLP literature.

or benign label. {Fb(x
′) = 1;Fb(x) = 0} de-

notes "x′ gets predicted as Benign, though x is
toxic". And {Ft(x

′) = 0,∀t ∈ T} denotes x′ is
not predicted as any toxicity types. In summary,
our ToxicTrap attacks focus on perturbing cor-
rectly predicted toxic samples.

2.3 Language constraints in ToxicTrap

In Equation (1), we use a set of language con-
straints to filter out undesirable x′ to ensure that
perturbed x′ preserves the semantics and fluency
of the original x, and with as fewer perturbations
as possible. There exist a variety of possible con-
straints in the NLP literature (Morris et al., 2020b).
In ToxicTrap , we decide to use the following list:

• Limit on the ratio of words to perturb to 10%
• Minimum angular similarity from universal

sentence encoder (USE) is 0.84
• Part-of-speech match.

2.4 Greedy Search strategies in ToxicTrap

Solving Equation (1) is a combinatorial search task
searching within all potential transformations to
find those transformations that result with a success-
ful adversarial example, aka, achieving the fooling
goal function and satisfying the constraints. Due
to the exponential nature of search space, many
heuristic search algorithms existed in the recent lit-
erature, including like greedy search, beam search,
and population-based search (Zhang et al., 2019).

For a seed text x = (w1, . . . , wi, . . . , wn), a per-
turbed text x′ can be generated by swapping wi

with altered w′
i. The main role of a search strat-

egy is to decide what word wi from x to perturb
next. We propose to center the search design of
ToxicTrap using greedy search with word impor-
tance ranking to iteratively replace one word at a
time to generate adversarial examples.

The main idea is that words of x are first ranked
according to an importance function. Four possible
choices: (1) "unk " based: word’s importance is
determined by how much a heuristic score (details
later) changes when the word is substituted with an
UNK token. (2) "delete ": word’s importance is de-
termined by how much the heuristic score changes
when the word is deleted from the original input.
(3) "weighted saliency" or wt-saliency : words
are ordered using a combination of the change in
score when the word is substituted with an UNK to-
ken multiplied by the maximum score gained by
perturbing the word. (4) "gradient ": each word’s
importance is calculated using the gradient of the
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victim’s loss with respect to the word and taking
its L1 norm as the word’ importance.

After words in x get sorted in the order of de-
scending importance, word wi is then substituted
with w′

i with allowed transformation. This is until
the fooling goal is achieved, or the number of per-
turbed words reaches upper bound. The heuristic
scoring function used in the word importance rank-
ing relates to the victim model and the fooling goal.
For instance, when we work with a binary toxicity
model, the heuristic score ToxicTrap equals to the
model’s output score for the target "0:benign" class.
Algorithm 1 shows our design of the score function
for the multilabel ToxicTrap attacks. In experi-
ments, we also evaluate two other search strategies:
"beam search" and "genetic search". Our empir-
ical results indicate strong performance from the
greedy search with word importance ranking over
other strategies.

Algorithm 1 provides the pseudo code of how
we implement Equation (3) as a new goal func-
tion in the TextAttack python library (Morris et al.,
2020a). The implemented MultilabelClassification-
GoalFunction extends the TextAttack library to
multilabel tasks.

2.5 Harden with Adversarial Training
Our ultimate goal of designing ToxicTrap attacks
is to improve toxicity NLP models’ adversarial
robustness. A simple strategy called Adversarial
Training (AT ) has been a major defense strategy
for improving adversarial robustness (Madry et al.,
2018). The vanilla adversarial training process in-
volves augmenting the training data with adversar-
ial examples generated from perturbing the training
data in the input space. Two variations of adversar-
ial training exist. (1) If the augmented adversarial
examples are generated from a single attack ap-
proach, we name this process as AT1 . (2) If the
augmented examples are generated from multiple
attack methods, we call the training as AT2 .

2.6 ToxicTrap Recipes and Extensions
The modular design of ToxicTrap allows us to im-
plement many different ToxicTrap attack recipes
in a shared framework, combining different goal
functions, constraints, transformations and search
strategies. In Section 3, we conduct a thorough
empirical analysis to compare possible ToxicTrap
recipes and recommend unk greedy search and the
composite transformation for most use cases. Ta-
ble 1 lists our recommended recipe.

Algorithm 1 Attack with MultilabelClassification-
GoalFunction
Input: An original text x, a multilabel classifierF ,

a set of targeted labels as T (for which scores
are to be maximized), a set of other labels as N
(for which scores are to be minimized); max-
imization threshold ϵmaximize = 0.5; search
method S() := Greedy-WIR, transformations
T , a set of constraints as C, and the max num-
ber of trials I .

Output: adversarial example x′, Attack Status =
{Fail, Success}

1: Initialize x′ ← None, goal ← −∞,
ϵminimize = 1− ϵmaximize

2: for trial i = 1, . . . , I do
3: x̃← T (x, S(goal, x, i))
4: if ∀C ∈ C, C(x, x̃) is not True then
5: Continue
6: end if
7: scores← sigmoid( F(x̃) )
8: goal

′ ← ∑
l∈Lmax

scores[l] +
∑

l∈Lmin
(1 −

scores[l])
9: if goal

′
> goal then

10: goal← goal
′

# search S() will use goal
value

11: if scores[l] > ϵmaximize for ∀l ∈ T and
scores[l] < ϵminimize for ∀l ∈ N then

12: x′ ← x̃
13: return x′, Attack Succeeded
14: end if
15: end if
16: end for
17: return x′, Attack Failed

Besides, we select to adapt another five SOTA
combinations of transformation and constraints
from popular general NLP adversarial example
recipes in the literature to create ToxicTraps
Extend attacks in Table 14, covering a good range
of transformations and constraints. Table 15 shows
generated adversarial examples using these attacks.

3 Experiments

We conducted a series of experiments covering
three different toxicity classification tasks: binary,
multilabel, and multiclass; over two different trans-
former architectures: DistillBERT and BERT; and
across two datasets: the large-scale Wikipedia Talk
Page dataset- Jigsaw (Jig, 2018) and the Offensive
Tweet for hate speech detection dataset (Davidson

584



Attack Recipe Constraints Transformation Search Method
ToxicTrap general
recommendation

USE sentence encoding
angular similarity > 0.84,
Part-of-speech match,
Ratio of number of words
modified < 0.1

{Random Character Insertion, Random
Character Deletion, Neighboring Char-
acter Swap, Character Substitution by
Homoglyph, Word Synonym Replace-
ment with 20 nearest neighbors in the
counter-fitted GLOVE word embedding
space}

Greedy word impor-
tant ranking ( unk -
based)

Table 1: Recommended ToxicTrap Attack Recipe

Search unk unk unk unk unk
POS x x x x

Transformation (N) glove (20) + chars glove (20) + chars wordnet (-) mlm (20) glove (50)
Seed Text
thank god FOB didnt
come back doing
some shitty arena
tour...

(0.911) thank god
FOB didnt come
back doing some
bollocks arena tour...

(0.906) thank god
FOB didnt come
back doing some
lousy arena tour...

(0.917) thank god
FOB didnt come
back doing some
stinky arena tour...

(0.908) thank god
FOB didnt come
back doing some
wild arena tour...

(0.910) thank god
FOB didnt come
back doing some
foul arena tour...

Jews and white race
traitors have to be...

(0.588) Jews and
white race traitors
have to be ...

(0.588) Jews and
white race traitors
have to be...

(0.507) Jews and
white race betrayer
have to be...

(0.557) Jews and
white race members
have to be...

(0.477) Jews and
white race betrayers
have to be...

Fluffy is a retard
homeboy is calling a
baby...

(0.566) Fluffy is a
retarded homeboy
is calling a baby...

(0.520) Fluffy is a
moron homeboy is
calling a baby...

(0.520) Fluffy is a
moron homeboy is
calling a baby...

(0.915) Fluffy is a
child homeboy is
calling a baby...

(0.520) Fluffy is a
moron homeboy is
calling a baby...

ugh your with
Tebow? You’re
officially a fag now
and in followed.

(0.897) ugh your
with Tebow? You’re
officially a poof now
and in followed.

(0.897) ugh your
with Tebow? You’re
officially a poof now
and in followed.

(0.908) ugh your
with Tebow? You’re
officially a fatigue
now and in followed.

(0.907) ugh your
with Tebow? You’re
officially a wolf now
and in followed.

(0.907) ugh your
with Tebow? You’re
officially a poofter
now and in followed.

Table 2: Selected toxic adversarial examples generated attacking HTweet-MC model. Perturbed scores are reported in
parenthesis. Adversarial examples were generated using unk search method; with and without POS constraint; and
using three word synonym substitution transformations with number of nearest neighbors specified in parenthesis;
chars indicates that character transformations were applied. More in Table 9.

et al., 2017). Table 3 lists two datasets’ statistics.
Section A.4 provides more details.

Base Toxicity Models: Our experiments work
on three base models, including {Jigsaw-BL ,
Jigsaw-ML , HTweet-MC } to cover three types of
toxicity prediction tasks. See details in Section A.5.

Implementation: We implement all of our
ToxicTrap and ToxicTraps Extend attacks us-
ing the NLP attack package TextAttack5 (Morris
et al., 2020a). When generating adversarial exam-
ples, we only attack seed samples that are correctly
predicted by a victim model. (Adversarial attack
does not make sense if the target model could not
predict the seed sample correctly!). In our setup,
this means we only use toxic seed samples when
attacking three base models. This set up simulates
real-world situations in which people intentionally
create creative toxic examples to circumvent toxic-
ity detection systems.

Evaluation Metrics: We use attack success rate
(ASR = # of successful attacks

# of total attacks ) to measure how suc-

5TextAttack https://github.com/QData/TextAttack.

cessful each ToxicTrap attacking a victim model.
To measure the runtime of each algorithm, we use
the average number of queries to the victim model
as a proxy. We also report the average percentage
of words perturbed from an attack. In addition, for
models trained with adversarial training, we report
both, the model prediction performance and model
robustness (by attacking robust model again).

3.1 Results on Attacking 3 Toxicity Predictors

Table 2 provides a few selected adversarial exam-
ples generated by attacking HTweet-MC model with
five variations of ToxicTrap . The first column
provides seed text that was used to generate adver-
sarial examples.

Several observations can be made when com-
paring these examples. It is important to use POS
constraint to generate syntactically correct exam-
ples. For the first seed text, a recipe without POS
constraint (second column) produced replacement
word "bullocks", while including POS constraint
in the recipe (third column) produced syntactically
correct example with replacement word "lousy".
We also see that using glove for word synonym
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Dataset Train Dev Test Test Toxic Samples Train Toxic Samples

Jigsaw (Jig, 2018) 1.48MM 185k 185k 8,909 71,273
Offensive Tweet (Davidson et al., 2017) 20k 2.2k 2.5k 1897 (offensive) +

145 (hateful)
15510 + 1142

Table 3: Overview of the data statistics.

Base Model
−→ Jigsaw-BL Jigsaw-ML HTweet-MC

Dataset Jigsaw Jigsaw HateTweet
Classification Binary Multilabel Multiclass
Architecture DistillBERT DistillBERT BERT
LearningRate 2.06e-05 3.80e-05 2.66e-05
Epochs 5 10 10

Table 4: Overview of the base model statistics.

Task Search POS
Attack

Success
Rate

Average
Number

of Queries

Average
Perturbed

Word %

Ji
gs
aw
-B
L

gradient 98.74 34.68 7.58
gradient x 98.72 26.78 7.06
delete 99.42 55.38 7.38
delete x 99.21 48.03 6.80
unk 99.32 55.11 7.12
unk x 99.27 47.62 6.76
wt-saliency x 99.19 407.43 6.71
genetic x 92.67 846.41 8.73
beam x 99.68 658.55 6.95

Ji
gs
aw
-M
L

gradient 97.62 38.45 8.36
gradient x 97.72 29.78 7.56
delete 98.71 57.60 7.54
delete x 98.63 49.93 6.99
unk 98.75 57.08 7.70
unk x 98.75 49.38 6.96
wt-saliency x 98.51 419.58 6.91
genetic x 88.91 876.81 8.82
beam x 99.54 756.05 7.19

HT
we
et
-M
C

gradient 67.16 63.51 24.13
gradient x 67.56 49.67 24.08
delete 71.46 58.78 18.96
delete x 71.46 48.17 19.37
unk 72.38 58.99 18.80
unk x 72.23 48.04 19.43
wt-saliency x 74.71 178.91 18.81
genetic x 80.49 1025.66 21.86
beam x 90.07 442.18 18.76

Table 5: Effect of different search strategies on attack
performance. Search column identifies type of search
method. POS column identifies if part-of-speech match-
ing constraint is used. The composite transformation
is used: glove with N = 20 plus the character trans-
formations. Results from rows on "unk + POS" can
compare with "unk " rows in Table 6.

substitution is a better choice than mlm or wordnet
. For the second and third seed text, mlm did not
generate toxic phrases. In addition, we see that the
recipe using glove (50) (last column) often gen-
erates similar examples as the glove (20) (third
column). Finally, we observe that using character
manipulation can generate adversarial examples
with the same toxic meaning that fool the classifier.

Task
Transform-
ation

N
Attack

Success
Rate

Average
Number

of Queries

Average
Perturbed

Word %

Ji
gs
aw
-B
L

wordnet - 89.59 34.87 6.66
glove 5 86.04 30.55 7.06
glove 20 96.75 41.87 6.68
glove 50 98.38 64.17 6.55
mlm 20 93.29 39.57 6.55

Ji
gs
aw
-M
L

wordnet - 87.72 37.01 6.81
glove 5 84.33 32.15 7.47
glove 20 95.92 43.84 6.89
glove 50 97.91 67.09 6.68
mlm 20 92.73 41.33 6.62

HT
we
et
-M
C

wordnet - 56.66 32.08 17.94
glove 5 33.65 21.82 23.06
glove 20 66.70 41.06 18.85
glove 50 69.99 81.14 18.18
mlm 20 65.23 33.66 21.30

Table 6: Comparing synonym transformations only. No
character transformations used. Reporting attack perfor-
mance when using unk greedy search. The same con-
straints as in Table 5 with POS (part-of-speech) match.

Training AUC AP F1 Recall
No AT 0.935 0.786 0.73 0.71

AT1-delete 0.936 0.792 0.74 0.719
AT1-unk 0.938 0.785 0.738 0.723
AT2 0.932 0.778 0.685 0.641

Table 7: Effect of adversarial training on model perfor-
mance. Macro-average metrics for HTweet-MC model.

For the second seed text, character transformation
(second and third columns) generates replacement
word "traitors" where the second "t" is replaced
with a monospace Unicode character "t".

3.2 Comparing Constraints in ToxicTrap

Then we study the effect of the part-of-speech
match (POS) constraint on the attack performance.
Table 5 shows that the use of POS constraint lowers
average number of queries sent to the victim model.
We observe this phenomena across all three tasks
and all three search methods (gradient , delete
, unk ). For example, when attacking Jigsaw-ML
model using unk with and without POS constraint,
average number of queries are 49.38 and 57.08, re-
spectively. We also observe that for most of the
recipes, using POS constraint slightly decreases at-
tack success rate (ASR). Considering the empirical
results in Table 5 and the anecdotal examples in
Table 2, we conclude POS constraint is preferred.
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Attack Average Average
Training Search Success Number of Perturbed

Rate Queries Word %
No AT delete 71.46 48.17 19.37
No AT unk 72.23 48.04 19.43

AT1-delete delete 21.97 69.68 28.83
AT1-unk unk 11.17 74.71 33.07
AT2 delete 8.28 75.71 27.89
AT2 unk 6.08 77.91 33.24

Table 8: Effect of adversarial training on attack per-
formance. Results for HTweet-MC model are reported.
When attacking, ToxicTrap uses glove with N = 20
plus character transformations; constraint with POS;
and search with two different greedy search methods.

3.3 Comparing Search in ToxicTrap

Table 5 also compares the effect of using differ-
ent search methods on the attack performance. It
shows that a greedy search method is preferred
over genetic and beam . For example, when com-
pared to unk , genetic and beam require almost
10x as many queries on average for all three tasks.
The beam search results in higher ASR values on
all three tasks, while genetic only outperforms
greedy methods when attacking HTweet-MC . In
addition, attacking Jigsaw-BL and Jigsaw-ML ,
beam only slightly outperforms greedy methods.
Among the greedy search methods, unk is a good
choice, as it provides consistently good ASR per-
formance on all three tasks. It is worth noting
that unk outperforms other three greedy search
methods, except for wt-saliency when attacking
HTweet-MC . However, attacking HTweet-MC model
with wt-saliency requires more than 3x as many
queries as the unk method.

3.4 Comparing Synonym Transformations

Now we compare word synonym substitutions,
when the unk search method is used and the char-
acter manipulation are not (to single out the ef-
fect). Table 6 shows that glove with N = 20
nearest neighbors is an optimal choice for all three
tasks. We observe that the wordnet and mlm trans-
formations result in lower ASRs than glove . Also,
glove with N = 50 only slightly lifts ASRs when
compared to glove with N = 20. At the same
time, using N = 50 nearest neighbors sends over
50% more queries to the victim models. We in-
clude the analysis of using different transforma-
tions with three different search methods (delete ,
unk , wt-saliency ) in the Appendix in Table 10.
These results also confirm that the choice of glove
with N = 20 is preferred.

3.5 Results from Adversarial Training
Empirically, we explore how AT1 and AT2 impact
both prediction performance and adversarial ro-
bustness. Table 7 and Table 8 present AT results
on the HTweet-MC task (Table 12 and Table 13
on two other tasks). In Table 7, we observe that
AT1-delete and AT1-unk both maintain the reg-
ular prediction performance as the base model.
Table 8 shows the attack success metrics when
we use ToxicTrap to attack the retrained robust
HTweet-MC models. The AT1 models trained from
using AT1-delete and AT1-unk attacks show sig-
nificant improvements in robustness after AT1 ad-
versarial training. We recommend readers to use
AT1-unk as their default choice for hardening gen-
eral toxic language predictors, since in both tables,
AT1-unk outperforms AT1-delete slightly.

For the AT2 robust model, ToxicTrap attacks are
"unseen" (we used the five ToxicTraps Extend
attacks from Section B to create the AT2 model
in our experiments). Our results show AT2 can
harden HTweet-MC model not only against attacks
it is trained on (ToxicTraps Extend ) but also
against attacks it has not seen before (ToxicTrap
). This could be attributed to the hypothesis that
an unseen attack may share similar underlying pat-
terns with the attack ensemble that AT2 model has
used. In Table 7, AT2 slightly under-performs base
on regular predictions, since it was trained with
more adversarial examples from multiple attacks.

4 Conclusion

Text toxicity prediction models are not designed to
operate in the presence of adversaries. This paper
proposes a suite of ToxicTrap attacks to identify
weaknesses in SOTA toxicity language predictors
that could potentially be exploited by attackers. We
also evaluate how adversarial training improves
model robustness across seen and unseen attacks.
As next steps, we plan to investigate other strate-
gies like virtual adversarial training, disentangled
representation learning or generative methods and
pinpoint how they will influence the robustness of
toxicity predictors (Qiu et al., 2022).
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2020. SemEval-2020 task 12: Multilingual offensive
language identification in social media (OffensEval
2020). In Proceedings of the Fourteenth Workshop on
Semantic Evaluation, pages 1425–1447, Barcelona
(online). International Committee for Computational
Linguistics.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combi-
natorial optimization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6066–6080, Online. Association
for Computational Linguistics.

Wei Emma Zhang, Quan Z. Sheng, and Ahoud Abdul-
rahmn F. Alhazmi. 2019. Generating textual adver-
sarial examples for deep learning models: A survey.
CoRR, abs/1901.06796.

Zhixue Zhao, Ziqi Zhang, and Frank Hopfgartner. 2019.
Detecting toxic content online and the effect of train-
ing data on classification performance. EasyChair
Preprints.

589

https://doi.org/10.1371/journal.pone.0221152
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://arxiv.org/abs/2004.14174
http://arxiv.org/abs/2004.14174
https://doi.org/10.1145/2872427.2883062
https://doi.org/10.1145/2872427.2883062
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.1145/3488366
https://doi.org/10.1145/3488366
https://doi.org/10.1145/3488366
https://doi.org/10.48550/ARXIV.2103.01328
https://doi.org/10.48550/ARXIV.2103.01328
https://doi.org/10.48550/ARXIV.2109.00544
https://doi.org/10.48550/ARXIV.2109.00544
https://www.aclweb.org/anthology/2020.semeval-1.188
https://www.aclweb.org/anthology/2020.semeval-1.188
https://www.aclweb.org/anthology/2020.semeval-1.188
https://www.aclweb.org/anthology/2020.acl-main.540
https://www.aclweb.org/anthology/2020.acl-main.540
http://arxiv.org/abs/1901.06796
http://arxiv.org/abs/1901.06796


A Appendix

A.1 Related Works
To the authors’ best knowledge, the toxicity NLP
literature includes very limited studies on adver-
sarial attacks. Only one study from Hosseini et al.
(2017) tried to deceive Google’s perspective API
for toxicity identification by misspelling the abu-
sive words or by adding punctuation between the
letters. This paper tries to conduct a comprehen-
sive study by introducing a wide range of novel
attack recipes and improving adversarial training
to enable robust text toxicity predictors.

Next, we also want to point out existing studies
on text adversarial examples center in generating
adversarial examples against binary and multi-class
classification models (Morris et al., 2020a). To the
authors’ best knowledge, no multilabel adversarial
attacks exist in the NLP literature. Our work is the
first that designs novel attacks against the multil-
abel toxicity predictors. The design of multilabel
adversarial examples is challenging since coordi-
nating multiple labels all at once and quantifying
the attacking goals is tricky because it is harder to
achieve multiple targeted labels. Simply adapting
attacks for binary or multiclass models (Morris
et al., 2020a) to multilabel setup is not feasible.
In multilabel prediction, each instance can be as-
signed to multiple labels. This is different from the
multi-class setting in which classes are mutually
exclusive and one sample can only associate to one
class (label). The existence of multiple labels at the
same time provides better opportunities for attack-
ers, but also posts design challenges. Our design in
Equation (3) and Algorithm 1 has paved a path for
multilabel text adversarial example research.

A.2 Toxicity Detection from Text
The mass growth of social media platforms has
enabled efficient exchanges of opinions and ideas
between people with diverse background. How-
ever, this also brings in risk of user generated toxic
contents that may include abusive language, hate
speech or cyberbullying. Toxic content may lead to
incidents of hurting individuals or groups (Johnson
et al., 2019), calling for automated tools to detect
toxicity for maintaining healthy online communi-
ties.

Automatic content moderation uses machine
learning techniques to detect and flag toxic con-
tent It is critical for online platforms to prohibit
toxic language, since such content makes online

communities unhealthy and may even lead to real
crimes (Johnson et al., 2019; Committee et al.,
2017).

Past literature on toxicity language detection has
centered on a supervised classification formula-
tion (Zhao et al., 2019; Djuric et al., 2015; Nobata
et al., 2016; MacAvaney et al., 2019). We denote
F : X → Y as a supervised classification model,
for example, a deep neural network classifier. X
denotes the input language space and Y represents
the output space. For a sample (x,y), x ∈ X de-
notes the textual content 6 and y ∈ Y denotes its
toxicity label(s). The toxicity detection task varies
with what y stands for. The literature has included
three main cases:

(1) binary toxicity detector, here y from {0:
benign,1:toxic};

(2) multilabel toxicity detection which assigns
a set of target labels for x. Here y =
{y1, y2, ..., yL} is a vector of L binary la-
bels and each yi ∈ {0, 1} (Zhao et al.,
2019). For example in the Jigsaw dataset (Jig,
2018), each text sample associates with six
binary labels per sample, namely {benign, ob-
scene, identity attack,insult,threat, and sexual
explicit};

(3) multiclass toxicity classification, and y is a
discrete integer. For example, the Offensive
Tweet dataset (Davidson et al., 2017) has three
classes - {0:benign, 1:offensive, and 2:hate}
(one class per sample).

The literature on toxicity has been mostly fo-
cused on improving accuracy, via feature engineer-
ing (Zampieri et al., 2020), deep representation
learning (Wang and Zhang, 2021) and via fine tun-
ing from pretrained large language models (Ghosh
and Kumar, 2021). Recently literature has extended
to investigate these classifiers’ interpretability (Xi-
ang et al., 2021) and fairness (Hartvigsen et al.,
2022).

A.3 Basics of Text Adversarial Examples

Research has shown that current deep neural net-
work models lack the ability to make correct pre-
dictions on adversarial examples (Szegedy et al.,
2014). The field of investigating the adversarial ro-
bustness of NLP models has seen growing interest,

6this paper focuses on toxicity detection from text
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Search unk unk unk unk unk
POS x x x x

Transformation (N) glove (20) + chars glove (20) + chars wordnet (-) mlm (20) glove (50)
Seed Text
My neighbors hate
me cuz i smoke
weed and blast the
most ghetto music
f...

(0.554) My
neighbors hate me
cuz i smoke pot and
blast the most ghetto
music from...

(0.554) My
neighbors hate me
cuz i smoke pot and
blast the most ghetto
music from...

(0.554) My
neighbors hate me
cuz i smoke pot and
blast the most ghetto
music from...

(0.554) My
neighbors hate me
cuz i smoke pot and
blast the most ghetto
music from...

(0.554) My
neighbors hate me
cuz i smoke pot and
blast the most ghetto
music from...

thank god FOB didnt
come back doing
some shitty arena
tour...

(0.911) thank god
FOB didnt come
back doing some
bollocks arena tour...

(0.906) thank god
FOB didnt come
back doing some
lousy arena tour...

(0.917) thank god
FOB didnt come
back doing some
stinky arena tour...

(0.908) thank god
FOB didnt come
back doing some
wild arena tour...

(0.910) thank god
FOB didnt come
back doing some
foul arena tour...

Jews and white race
traitors have to be
swept clean so the
Aryan race ca...

(0.588) Jews and
white race traitors
have to be swept
clean so the Aryan
race can...

(0.588) Jews and
white race traitors
have to be swept
clean so the Aryan
race can...

(0.507) Jews and
white race betrayer
have to be swept
clean so the Aryan
race can...

(0.557) Jews and
white race members
have to be swept
clean so the Aryan
race can ...

(0.477) Jews and
white race betrayers
have to be swept
clean so the Aryan
race ca...

How ghetto girls
pronounce there
names... I could cry
right now oh my g...

(0.474) How ghetto
females pronounce
there names... I
could cry right now
oh my g...

(0.474) How ghetto
females pronounce
there names... I
could cry right now
oh my g...

(0.588) How ghetto
daughter pronounce
there names... I
could cry right now
oh my ...

(0.534) How ghetto
ers pronounce there
names... I could cry
right now oh my god
h...

(0.474) How ghetto
females pronounce
there names... I
could cry right now
oh my g...

America is white
trash and so are all
Americans.

(0.863) America is
white trash and so
are all Americans.

(0.863) America is
white trash and so
are all Americans.

(0.899) America is
ashen trash and so
are all Americans.

(0.784) America is
utter trash and so
are all Americans.

(0.897) America is
pristine trash and so
are all Americans.

Fluffy is a retard
homeboy is calling a
baby rattlesnake
friend and kis...

(0.566) Fluffy is a
retarded homeboy
is calling a baby
rattlesnake friend
and kis...

(0.520) Fluffy is a
moron homeboy is
calling a baby
rattlesnake friend
and kissin...

(0.520) Fluffy is a
moron homeboy is
calling a baby
rattlesnake friend
and kissin...

(0.915) Fluffy is a
child homeboy is
calling a baby
rattlesnake friend
and kissin...

(0.520) Fluffy is a
moron homeboy is
calling a baby
rattlesnake friend
and kissin...

More queer lady
Templars. That’s my
point.

(0.908) More fairy
lady Templars.
That’s my point.

(0.908) More fairy
lady Templars.
That’s my point.

(0.910) More
curious lady
Templars. That’s my
point.

(0.901) More likely
lady Templars.
That’s my point.

(0.910) More
cheerful lady
Templars. That’s my
point.

ugh your with
Tebow? You’re
officially a fag now
and in followed.

(0.897) ugh your
with Tebow? You’re
officially a poof now
and in followed.

(0.897) ugh your
with Tebow? You’re
officially a poof now
and in followed.

(0.908) ugh your
with Tebow? You’re
officially a fatigue
now and in followed.

(0.907) ugh your
with Tebow? You’re
officially a wolf now
and in followed.

(0.907) ugh your
with Tebow? You’re
officially a poofter
now and in followed.

Table 9: Selected Toxic Adversarial Examples. Here we only show adversarial examples generated by attacking
base model HTweet-MC on Offensive Tweet text, since it contains much shorter messages than Jigsaw. Perturbed
scores for adversarial examples are reported in parenthesis. Adversarial examples were generated using unk greedy
search method. POS row marked with an "x" indicates that the part-of-speech matching constraint was used.
Transformation row indicates which word substitution method was used (glove , wordnet , mlm ), and number of
nearest neighbors N is specified in parenthesis. chars indicates that character transformations were applied.
We used different word transformations for synonym substitution with varying number of nearest neighbors (20
or 50). Two recipes used character transformations, while the other three did not. Also, one recipe did not use
part-of-speech match (POS) constraint, and it was included in the rest of recipes. All five recipes used unk greedy
search method.

with a body of new adversarial attacks7 designed
to fool question answering (Jia and Liang, 2017),
machine translation (Cheng et al., 2018), and text
classification systems (Ebrahimi et al., 2017; Jia
and Liang, 2017; Alzantot et al., 2018; Jin et al.,
2019; Ren et al., 2019; Zang et al., 2020; Garg and
Ramakrishnan, 2020).

7We use “generating adversarial example” and “adversarial
attacks” interchangeably.

A.4 Datasets Details

A.4.1 Jigsaw.

This dataset was derrived from the Wikipedia Talk
Pages dataset published by Google and Jigsaw on
Kaggle (Jig, 2018). Wikipedia Talk Page allows
users to discuss improvements to articles via com-
ments. The comments are anonymized and labeled
with toxicity levels. Here "obscene", "threat", "in-
sult" and "identity hate" are four sub-labels for
"toxic" and "severe toxic" (hence may co-occur for
a comment). The "toxic" comments that are not
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Task Search Transformation N Attack Success Average Number Average Time
Rate of Queries Perturbed Word % (s)

Jigsaw-BL

delete

wordnet - 89.29 35.35 6.68 836
glove 5 85.61 30.77 7.04 765
glove 20 96.58 42.37 6.71 906
glove 50 98.27 65.05 6.55 1355
mlm 20 93.22 40.21 6.56 1882

unk

wordnet - 89.59 34.87 6.66 822
glove 5 86.04 30.55 7.06 749
glove 20 96.75 41.87 6.68 888
glove 50 98.38 64.17 6.55 1278
mlm 20 93.29 39.57 6.55 1727

wt-saliency

wordnet - 90.27 152.05 6.6 4491
glove 5 86.74 96.98 7.0 3646
glove 20 96.99 288.58 6.65 7964
glove 50 98.65 642.58 6.53 17152
mlm 20 93.88 254.81 6.58 20093

Jigsaw-ML

delete

wordnet - 87.29 37.05 6.83 959
glove 5 83.81 32.21 7.46 857
glove 20 95.75 44.27 6.9 1046
glove 50 97.75 68.03 6.69 1665
mlm 20 92.76 41.83 6.63 2156

unk

wordnet - 87.72 37.01 6.81 981
glove 5 84.33 32.15 7.47 865
glove 20 95.92 43.84 6.89 997
glove 50 97.91 67.09 6.68 1530
mlm 20 92.73 41.33 6.62 2011

wt-saliency

wordnet - 88.55 157.43 6.74 5331
glove 5 84.98 100.33 7.36 3993
glove 20 96.09 297.63 6.86 8965
glove 50 97.89 662.08 6.65 19191
mlm 20 93.45 262.76 6.72 22787

HTweet-MC

delete

wordnet - 56.46 32.5 17.99 333
glove 5 33.0 21.96 23.19 283
glove 20 66.29 41.47 18.86 375
glove 50 69.29 82.19 18.15 659
mlm 20 64.98 34.34 21.34 862

unk

wordnet - 56.66 32.08 17.94 329
glove 5 33.65 21.82 23.06 284
glove 20 66.7 41.06 18.85 378
glove 50 69.99 81.14 18.18 655
mlm 20 65.23 33.66 21.3 851

wt-saliency

wordnet - 55.96 80.57 17.15 752
glove 5 34.31 44.73 22.46 575
glove 20 67.82 130.65 18.2 1073
glove 50 71.31 296.44 17.71 2137
mlm 20 65.48 104.41 21.2 2780

Table 10: Effect of word transformations on attack performance. Comparing synonym transformations only. No
character transformations used. Reporting attack performance when using delete , unk , and wt-saliency greedy
search. The same constraints as in Table 5 with POS (part-of-speech) match.

"obscene", "threat", "insult" and "identity hate" are
assigned to either "toxic" or "severe toxic". Com-
ments that are not assigned any of the six toxicity
labels get int "non toxic".

A.4.2 Offensive Tweet.

The authors of (Davidson et al., 2017) used crowd-
sourced hate speech lexicon from Hatebase.org
to collect tweets containing hate speech keywords.
Then they used crowd-sourcing to label these tweet
samples into three categories: those containing hate
speech, only offensive language, and those with
neither.

A.5 Base Model Setup:

We build three base models, including {Jigsaw-BL
, Jigsaw-ML , HTweet-MC } to cover three types
of toxicity prediction tasks. Table 4 presents the
choice of task, training/test data, transformer archi-
tecture and learning rate plus number of epochs.
We use "distilbert-base-uncased" pre-trained trans-
formers model for DistilBERT architecture. For
BERT architecture, we use "GroNLP/hateBERT"
pre-trained model. All texts are tokenized up to the
first 128 tokens. The train batch size is 64 and we
use AdamW optimizer with 50 warm-up steps and
early stopping with patience 2.

The models are trained on NVIDIA T4 Tensor
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Algorithm 2 Adversarial Training with AT2

Input: Set of all attack recipes Srecipes, number
of attack recipes to exclude Nexc, set of at-
tack recipes to use for adversarial training
Sattack (created by choosing (|Srecipes| −Nexc)
attack recipes from the set Srecipes), number
of clean epochs Nclean, number of adversar-
ial epochs Nadv, percentage of dataset to at-
tack γ, attack A(θ,x,y), and training data
D = {(x(i),y(i))}ni=1

Output: model weights θ
1: Initialize model weights θ
2: for clean epoch= 1, . . . , Nclean do
3: Train θ on D
4: end for
5: Initialize D′ ← D
6: for attack recipe in Sattack do
7: Dadv ← {}
8: i← 1
9: while |Dadv| < γ ∗ |D| and i ≤ |D| do

10: x
(i)
adv ← A(θ,x(i),y(i))

11: Dadv ← Dadv ∪ {(x(i)
adv,y

(i))}
12: i← i+ 1
13: end while
14: D′ ← D′ ∪Dadv
15: end for
16: Randomly shuffle D′

17: for adversarial epoch= 1, . . . , Nadv do
18: Train θ on D′

19: end for

Core GPUs and NVIDIA Tesla V100 GPUs with
16 GB memory, 2nd generation Intel Xeon Scalable
Processors with 32GB memory and high frequency
Intel Xeon Scalable Processor with 61GB mem-
ory.

A.6 Adversarial Training with Single or
Multiple Attacks

Adversarial training has been a major defense strat-
egy in most existing work for improving adversar-
ial robustness (Madry et al., 2018). The vanilla
adversarial training process involves augmenting
the training data with adversarial examples gener-
ated from perturbing the training data in the input
space.

Let L(F ,x,y) represent the loss function on
input text x and label y. Let A(F ,x,y) be the ad-
versarial attack that produces adversarial example
x′. Then, vanilla adversarial training objective is

as follows:

argmin
F

E(x,y)∼D[L(F(x),y)

+ ∗ L(F(x′ = A(F ,x,y)),y)]
(4)

Adversarial training use both clean8 and adversarial
examples to train a model. This aims to minimize
both the loss on the original training dataset and
the loss on the adversarial examples.

In recent NLP studies, adversarial training (AT
) is only performed to show that such training can
make models more resistant to the attack it was
originally trained with. This observation is not
surprising. The literature has pointed out the im-
portance of robustness against unseen attacks and it
is generally recommended to use different attacks
to evaluate the effectiveness of a defense strategy
(Carlini et al., 2019).

Adversarial Training with Multiple Attacks
(AT2 ): A simple strategy to revise vanilla AT is
to train a model using both clean examples and
adversarial examples from different attacks. This,
we call Adversarial Training with Multiple (AT2 ),
trains a target model on a combination of adversar-
ial examples. AT2 aims to help a model become
more robust not only against attacks it is trained on
but also the attack recipes it has not seen before.
Algorithm 2 presents our pseudo code of AT2 .

AT1 vs AT2 : In the rest of the paper, we call
vanilla adversarial training as single adversarial
training (AT1 ). In Section 3 and Section B our
results show that models trained with AT2 can be
more effective in protecting against unseen text ad-
versarial attacks compare with AT1 models trained
on the same attack. This could be contributed to the
hypothesis that an unseen attack may share similar
underlying attributes and patterns with the attack
ensemble that the model is trained on.

Selecting what attacks to use in AT2 is important.
Part of the reason we select to adapt the five pop-
ular recipes to ToxicTraps Extend in Table 14 is
because these attacks cover a good range of popular
transformations and constraints. Table 14 includes
three word based attacks, two character based at-
tack, plus TT-TBug is a character and word level
combination attack. In our experiments, we simu-
lated potential AT2 use cases by leave-one attack
out as "unseen" and train AT2 models using the rest.
For instance, when a target model never uses ex-
amples from TT-TFool in training, the AT2 trained

8Clean examples refer to the original training examples.
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model may have already known certain informa-
tion on similar word transformations since similar
transformations have been used by other attacks in
the ensemble.
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Base Model Search POS
Toxic

Examples
Attacked (%)

Attack
Success

Rate

Average
Number of

Queries

Average
Perturbed

Word
Time (s)

Jigsaw-BL

gradient

59.76

98.74 34.68 7.58 849
gradient x 98.72 26.78 7.06 883
delete 99.42 55.38 7.38 915
delete x 99.21 48.03 6.8 1070
unk x 99.27 47.62 6.76 939

wt-saliency x 99.19 407.43 6.71 10653
genetic x 92.67 846.41 8.73 21504
beam x 99.68 658.55 6.95 16043

Jigsaw-ML

gradient

65.46

97.62 38.45 8.36 1066
gradient x 97.72 29.78 7.56 1151
delete 98.71 57.6 7.54 1112
delete x 98.63 49.93 6.99 1168
unk x 98.75 49.38 6.96 1141

wt-saliency x 98.51 419.58 6.91 12849
genetic x 88.91 876.81 8.82 26137
beam x 99.54 756.05 7.19 21290

HTweet-MC

gradient

96.62

67.16 63.51 24.13 554
gradient x 67.56 49.67 24.08 581
delete 71.46 58.78 18.96 412
delete x 71.46 48.17 19.37 425
unk x 72.23 48.04 19.43 425

wt-saliency x 74.71 178.91 18.81 1467
genetic x 80.49 1025.66 21.86 6560
beam x 90.07 442.18 18.76 2938

Table 11: Effect of with or without part-of-speech constraints when combining with different search strategies
on attack performance. The Search column identifies type of search method used. The POS column identifies if
part-of-speech matching constraint is used.

Task Training Search
Attack

Success
Average
Number

Average
Perturbed

Time (s)

Rate of Queries Word

Jigsaw-BL
No AT unk 99.27 47.62 6.76 939

AT1-unk unk 60.28 103.54 13.03 3546

Jigsaw-ML
No AT unk 98.75 49.38 6.96 1141

AT1-unk unk 71.7 91.08 11.84 3106

HTweet-MC

No AT delete 71.46 48.17 19.37 425
No AT unk 72.23 48.04 19.43 425

AT1-delete delete 21.97 69.68 28.83 598
AT1-unk delete 11.17 74.71 33.07 641

AT2 delete 8.28 75.71 27.89 672
AT2 unk 6.08 77.91 33.24 681

Table 12: Effect of adversarial training on attack performance on three tasks. When attacking, ToxicTrap uses the
glove with N = 20 plus character transformations; constraints with POS; and search with two different greedy
methods.

Task Training AUC AP F1 Recall

Jigsaw-BL
No AT 0.971 0.749 0.823 0.794

AT1-unk 0.971 0.733 0.823 0.811

Jigsaw-ML
No AT 0.984 0.636 0.587 0.515

AT1-unk 0.984 0.633 0.594 0.535

HTweet-MC

No AT 0.935 0.786 0.730 0.710
AT1-delete 0.936 0.792 0.740 0.719
AT1-unk 0.938 0.785 0.738 0.723
AT2 0.932 0.778 0.685 0.641

Table 13: Effect of adversarial training on model performance. Macro-average metrics are reported.
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B Extra on ToxicTrap Extensions

B.1 A Suite of Attack Recipes to Extend
ToxicTrap

Morris et al. (2020b) splits each text adversarial at-
tack into four parts: goal function, transformation,
search strategy and constraints. With this modular
design, new NLP attacks frequently consist of just
or two new components and often re-use remaining
components from past work. We follow this de-
sign process, using our newly proposed ToxicTrap
goal functions to pair with popular choices of other
three components from the literature to get a set of
ToxicTraps Extend recipes.

We select five popular attack recipes from the
literature including DeepWordBug , TextBugger
, A2T , PWWS and TextFooler that were popular
recipes proposed to attack general language clas-
sifiers. By swapping these recipes’ goal func-
tion with the three goal function we propose in
Equation (2) and Equation (3), we construct 15
new ToxicTraps Extend attack recipes as shown
in Table 14. This table categorizes different
ToxicTraps Extend attack recipes, based on their
goal functions, constraints, transformations and
search methods.
TT-Dbug and TT-TBug are adapted from two

SOTA attack recipes DeepWordBug (Gao et al.,
2018) and TextBugger (Li et al., 2019). They
generate ToxicTraps Extend via character ma-
nipulations. These attacks perform character inser-
tion, deletion, neighboring swap and replacements
to change a word into one that a target toxicity
detection model doesn’t recognize. These char-
acter changes are designed to generate character
sequences that a human reader could easily cor-
rect into those original words. Language semantics
are preserved since human readers can correct the
misspellings.

We then select three other popular attacks A2T
, PWWS and TextFooler (Yoo and Qi, 2021; Ren
et al., 2019; Jin et al., 2019) to ToxicTraps
Extend TT-A2T , TT-Pwws and TT-TFool attacks.
These attacks generate adversarial examples via
replacing words from the input with synonyms.
These attacks aim to create examples that preserve
semantics, grammaticality, and non-suspicion.
They vary regarding the word transformation strate-
gies they use (see Table 14 for details).

All ToxicTraps Extend attack recipes use
greedy based word importance ranking (Greedy-
WIR) strategy to search and determine what words

to manipulate (with character changes or with syn-
onym replacement).

Lastly, these ToxicTraps Extend recipes also
have difference in what languages constraints they
employ to limit the transformations, for instance,
TT-A2T puts limit on the number of words to per-
turb. TT-TBug uses universal sentence encoding
(USE) similarity as a constraint.

Table 15 presents a few generated ToxicTraps
Extend examples from attacking base models us-
ing five ToxicTraps Extend attacks.
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Attack Recipe Constraints Transformation Search Method
TT-A2T

(revised from (Yoo and
Qi, 2021))

Sentence-
transformers/all-MiniLM-
L6-v2 sentence encoding
cosine similarity > 0.9
†, Part-of-speech match,
Ratio of number of words
modified < 0.1

Word Synonym Replacement. Swap
words with their 20 nearest neighbors
in the counter-fitted GLOVE word em-
bedding space or optionally with those
predicted by BERT MLM model.

Greedy-WIR
(gradient-based)

TT-TFool
(revised from (Jin et al.,
2019)

Word embedding cosine
similarity > 0.5, Part-of-
speech match, USE sen-
tence encoding angular
similarity > 0.84

Word Synonym Replacement. Swap
words with their 50 nearest neighbors
in the counter-fitted GLOVE word em-
bedding space.

Greedy-WIR
(deletion-based)

TT-Pwws
(revised from (Ren
et al., 2019))

No special constraints Word Synonym Replacement. Swap
words with synonyms from WordNet.

Greedy-WIR
(saliency)

TT-Dbug
(revised from (Gao
et al., 2018))

Levenshtein edit distance
< 30

{Random Character Insertion, Random
Character Deletion, Random Charac-
ter Swap, Random Character Replace-
ment}*

Greedy-WIR
(deletion-based)

TT-TBug
(revised from (Li et al.,
2019))

USE sentence encoding
cosine similarity > 0.8

{Random Character Insertion, Random
Character Deletion, Neighboring Char-
acter Swap, Character Substitution by
Homoglyph ‡, Word Synonym Replace-
ment with 5 nearest neighbors in the
counter-fitted GLOVE word embedding
space}*

Greedy-WIR
(deletion-based)

Table 14: ToxicTraps Extend Attack recipes categorized regarding: search method, transformation, goal function,
constraints. All attack recipes include an additional constraint which disallows the replacement of stopwords.
Greedy search with Word Importance Ranking (Greedy-WIR).
† indicates new features or enhancements we added to extend the capability of the original attack recipes proposed in the original
papers
* indicates a combination of multiple transformations. ‡ substitute a character with visually similar ones or those adjacent on
keyboard. For example, substitute "1" with "l".
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Seed Text TT-A2T TT-TFool TT-Pwws TT-Dbug TT-TBug

My neighbors hate
me cuz i smoke
weed and blast the
most ghetto music
f...

My neighbors hate
me cuz i smoke
weeds and blast the
most ghetto music
fr...

My neighbors hate
me cuz i smoke pot
and blast the most
ghetto music from...

My neighbors hate
me cuz i smoke
smoke and blast the
most ghetto music
fr...

My neighbors hate
me cuz i smoke wee
and blast the most
ghetto music from...

My neighbors hate
me cuz i smoke wed
and blast the most
ghetto music fro...

thank god FOB didnt
come back doing
some shitty arena
tour. #iwaited5ye...

thank god FOB didnt
come back doing
some crappy arena
tour. #iwaited5year...

thank god FOB didnt
come back doing
some foul arena tour.
#iwaited5yearsf...

thank god FOB didnt
come back doing
some stinky arena
tour. #iwaited5year...

thank god FOB didnt
come back doing
some sitty arena tour.
#iwaited5years...

thank god FOB didnt
come back doing
some crappy arena
tour. #iwaited5year...

Fluffy is a retard
homeboy is calling a
baby rattlesnake
friend and kis...

Fluffy is a brainless
homeboy is calling a
baby rattlesnake
friend and ki...

Fluffy is a moron
homeboy is calling a
baby rattlesnake
friend and kissin...

Fluffy is a
changeling
homeboy is calling a
baby rattlesnake
friend and k...

Fluffy is a Getard
homeboy is calling a
baby rattlesnake
friend and kissi...

Fluffy is a retarded
homeboy is calling a
baby rattlesnake
friend and kis...

Typically hateful,
anti-Christian,
mentally ill and ugly
dyke trash pig ...

Typically hateful,
anti-Christian,
mentally ill and ugly
levee trash pig ...

Typically hateful,
anti-Christian,
mentally ill and ugly
embankment
trash...

Typically hateful,
anti-Christian,
mentally ill and ugly
dike trash pig c...

Typically hateful,
anti-Christian,
mentally ill and ugly
dmyke trash pig ...

Typically hateful,
anti-Christian,
mentally ill and ugly
dike trash pig c...

How ghetto girls
pronounce there
names... I could cry
right now oh my g...

How ghetto females
pronounce there
names... I could cry
right now oh my g...

How ghetto females
pronounce there
names... I could cry
right now oh my g...

How ghetto missy
pronounce there
names... I could cry
right now oh my
god...

How ghetto girsl
pronounce there
names... I could cry
right now oh my
god...

How ghetto gilrs
pronounce there
names... I could cry
right now oh my
god...

More queer lady
Templars. That’s my
point.

More homo lady
Templars. That’s my
point.

More fairy lady
Templars. That’s my
point.

More curious lady
Templars. That’s my
point.

More qIeer lady
Templars. That’s my
point.

More homo lady
Templars. That’s my
point.

Table 15: Selected Toxic Adversarial Examples. We show adversarial examples generated by attacking base model
HTweet-MC . To conserve space, we only show results from Offensive Tweet that contain much shorter messages
than Jigsaw.
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Abstract

In recent years, the utilization of Artificial Intel-
ligence (AI) in the contact center industry is on
the rise. One area where AI can have a signifi-
cant impact is in the coaching of contact center
agents. By analyzing call transcripts using Nat-
ural Language Processing (NLP) techniques, it
would be possible to quickly determine which
calls are most relevant for coaching purposes.
In this paper, we present “AI Coach Assist”,
which leverages the pre-trained transformer-
based language models to determine whether a
given call is coachable or not based on the qual-
ity assurance (QA) questions asked by the con-
tact center managers or supervisors. The sys-
tem was trained and evaluated on a large dataset
collected from real-world contact centers and
provides an effective way to recommend calls
to the contact center managers that are more
likely to contain coachable moments. Our ex-
perimental findings demonstrate the potential
of AI Coach Assist to improve the coaching pro-
cess, resulting in enhancing the performance of
contact center agents.

1 Introduction

AI has the potential to revolutionize many indus-
tries, including the contact center industry. With
the growing demand for high-quality customer ser-
vice, contact centers are constantly seeking ways to
improve their processes and enhance their agents’
performance. One way to achieve this goal is
by providing effective coaching and feedback to
agents, which can help them identify areas of im-
provement and develop the necessary skills to pro-
vide exceptional customer service. As a common
practice, contact center managers or supervisors
manually select call recordings to listen in, and
grade agents’ performance using a rubric that con-
tains questions such as “did the agent greet the cus-
tomer by name" or “did the agent properly resolve
the customer issue" to score the call in order to ver-
ify if the agent is following the company’s preferred

protocol. The grades given by the managers along
with their comments are then shared with the agents
to improve their performance. However, with the
large volume of calls that contact centers receive,
it is very challenging for managers or supervisors
to determine which calls are most important for
agent coaching. Thus, the traditional approaches
to randomly select calls for agent coaching has the
following limitations:

• Time-consuming process: Coaching agents
can be a time-consuming process, particularly
for managers and supervisors who must man-
ually review large numbers of calls to identify
which calls are most relevant for coaching.

• Inefficient use of resources: Without an ef-
ficient and effective process for determining
which calls are most relevant for coaching, re-
sources may be wasted on calls that are not
critical for improving agent performance.

This is where NLP could be useful. By analyz-
ing call transcripts using NLP models, it could be
possible to recommend calls to the contact cen-
ter managers/supervisors that are most relevant for
coaching purposes. This will lead to an improved
coaching experience by prioritizing the calls for
analysis that are more likely to contain coachable
moments, resulting in saving time for the contact
center managers as well as improving agent per-
formance, ultimately leading to better customer
satisfaction. For the purpose of improving real-
world contact centers, we present the AI Coach
Assist system to assist contact center managers or
supervisors by suggesting calls that could be more
useful for agent coaching.

In this paper, we explore the concept of our pro-
posed AI Coach Assist system, which leverages the
advantage of fine-tuning a pre-trained transformer-
based language model (Devlin et al., 2019; Sanh
et al., 2019; Liu et al., 2019; Lan et al., 2020;
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Zhong et al., 2022). Moreover, we provide a de-
tailed overview of its development process (imple-
mentation and preparation of a balanced dataset
to avoid biases), as well as our experimental find-
ings. In addition, we demonstrate how it could
be productionized in real-world contact centers to
assist managers/supervisors. Note that our model
does not automate the scoring of employee perfor-
mance or replace human review. Instead, our model
is intended to help contact center supervisors by
recommending calls for coaching their employees
instead of the traditional random sampling of calls.

2 Related Work

The significant performance gain achieved via
leveraging transformer-based language models
(Vaswani et al., 2017; Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2020) in a wide range of NLP
tasks in recent years has also led to the use of
transformer-based models in the contact center in-
dustry (Laskar et al., 2022b,c,a; Khasanova et al.,
2022). The successful deployment of these mod-
els in industries has helped many organizations to
enhance their processes, resulting in improved cus-
tomer satisfaction. In recent years, several studies
(Fu et al., 2022a,b) have explored the potential of
AI-powered call analysis (e.g., entity recognition,
sentiment analysis, etc.), along with providing real-
time assistance to contact center agents.

In addition to these studies, several commer-
cial solutions have been developed that offer AI-
powered call analysis and AI assistance for agents
in contact centers. Some of these solutions also
offer real-time feedback to agents during calls123,
allowing them to adjust their behavior and improve
their performance in real-time. However, to the
best of our knowledge, there is no prior commer-
cial application that assists contact center managers
by suggesting calls that could be the most useful to
coach agents.

One potential approach for this purpose could be
the use of automatic call recommendation, where
calls are analyzed using NLP techniques and sug-
gested to the contact center managers based on
various factors, such as agents’ behavior, issue res-
olution, customer satisfaction, sales success, etc.

1https://cloud.google.com/solutions/
contact-center, accessed in Feb 2023.

2https://cresta.com/product/agent-assist/,
accessed in Feb 2023.

3https://www.five9.com/products/capabilities/
agent-assist, accessed in Feb 2023

These suggested calls can then be analyzed by the
managers for coaching purposes to provide rele-
vant feedback to agents. In this regard, we propose
AI Coach Assist, a system that leverages the trans-
former architecture to effectively analyze the full
call transcripts in contact centers and recommends
contact center managers with calls that are more
likely to contain coachable moments for a given
query. In the following section, we describe how
we construct a dataset, which we denote as QA
Scorecard, to train and evaluate our proposed AI
Coach Assist system.

3 The QA Scorecard Dataset

We collected our data from real-world contact cen-
ters. The dataset consists of customer-agent call
conversation transcripts generated using Automatic
Speech Recognition (ASR) systems, along with
annotations indicating whether a call is coachable
or not. The process of annotating the dataset was
carefully designed and implemented, as the annota-
tions were performed by real-world contact center
managers and supervisors who analyzed the whole
conversation/transcript. In this way, we ensure the
high quality of the dataset.

The data annotation works as follows, the man-
agers/supervisors assign a score to the call based
on the performance of the agent for a particular
question. We consider a call as coachable for a par-
ticular question if the call achieves less than 50%
scores, otherwise, we consider the call for that par-
ticular question as not coachable. The dataset was
collected over a period of one year and includes a
diverse range of call types from different industries,
with a variety of customer interactions, reflecting
the real-world complexities of the contact center
industry. The resulting dataset consists of a large
number of call transcripts and annotations, provid-
ing a robust representation of real-world customer-
agent interactions.

Note that a total of 58 questions are curated,
which are distributed among training, validation,
and test sets. While constructing the training, val-
idation, and test splits, we observe that the class
distribution (whether coachable or not coachable)
for many question-transcript pairs was imbalanced.
Thus, to ensure an unbiased dataset (as well as
to avoid model overfitting), for each question, we
ensured that the ratio between coachable and not
coachable classes (or vice-versa) to be at most
1:2. In Table 1, we describe the distribution of
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Split Total Samples Not Coachable Coachable Avg. Question Length Avg. Transcript Length

Training 12065 6521 5544 9.77 659.53

Validation 1653 891 762 9.62 664.55

Test 3435 1855 1580 9.77 727.77

Table 1: Data distribution on each split (train/valid/test) based on the total number of question-transcript pairs,
coachable and not coachable labels, and the average length of questions and transcripts.

Question Type Example Question

Account Verification Did the agent verify the customer’s email address?

Addressing Customer Did the agent use the customer’s name appropriately?

Behavioral Did the agent show proper empathy statements?

Closing Did the agent properly end the call?

Providing Complete Information Did the agent mention the payment terms in detail?

Customer Identification Did the agent verify the customer’s information?

Customer Satisfaction Was the customer happy?

Greeting Did the agent properly greet the customer?

Information Collection Did the agent collect all necessary information from the customer?

Issue Identification Could the agent properly identify the issue?

Issue Resolution Could the agent resolve the issue?

Table 2: Example Questions based on Question Types

our dataset based on our training, validation, and
test set. Meanwhile, to evaluate the performance of
AI Coach Assist based on the type of the questions,
we also categorize the questions into 11 types us-
ing human annotators. We show the question types
with example questions for each type in Table 2.

4 Our Proposed Approach

We treat the AI Coach Assist model as a text clas-
sification model that combines the query/question
given by the contact center manager or supervisor
with the call transcript to predict whether a given
call is coachable or not. Due to the recent success
of fine-tuning pre-trained transformer models for
text classification (Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2020), we also leverage the pre-
trained language models based on the transformer
architecture for this task.

As we are doing text classification instead of
generation, we give input data to the pre-trained
language model as follows (see Figure 1): at first,
we create a text sequence by concatenating the
question and the call transcript. Then, this con-
catenated text sequence is given as input to the
language model to learn the contextual relationship
between the sentences. The pre-trained transformer

language model is fine-tuned to output a probabil-
ity score for each input sequence, indicating the
likelihood that the call is coachable or not, for the
given question. Whether a question-transcript pair
is coachable or not coachable is determined based
on the probability score of the class having the
higher score.

Since our objective is to build the AI Coach As-
sist system for real-world contact centers, we con-
sider the following two cases while selecting the
pre-trained language models:

(i) Utilize a model to ensure high efficiency: We
choose DistilBERT (Sanh et al., 2019) for this sce-
nario. DistilBERT is a distilled version of BERT
(Devlin et al., 2019), designed to be smaller and
faster while retaining a similar level of perfor-
mance. Despite its smaller size, DistilBERT has
been shown to perform similarly to BERT on many
NLP tasks, making it a suitable alternative for many
NLP applications. This makes it a popular choice
for real-world scenarios where computational re-
sources are limited but the preference is to deploy
a fast and optimize model in production.

(ii) Utilize a model to ensure higher accuracy:
For this purpose, we leverage the DialogLED
model (Zhong et al., 2022), which was pre-trained
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Figure 1: An overview of our proposed AI Coach Assist model. Given a query and a transcript, the transformer-based
language model will determine whether a call is coachable or not. For the given query: "Did the agent properly greet
the customer?", on the left (a), we show an example transcript where the agent did proper greeting, i.e., mentioned
his/her name as well as the company name. On the right (b), we show an example transcript where the agent did not
properly greet the customer as the agent name and the company name were not mentioned.

on long dialog conversations, having more similar-
ities with our customer-agent conversation dataset.
Though in comparison to DistilBERT, the Di-
alogLED model may require higher computational
resources for production deployment, it fulfills our
criteria of using a model that may provide higher
accuracy for being pre-trained on long dialog con-
versations, mimicking the customer-agent conver-
sations in the real world. In addition, DialogLED
can also process long text sequences, contrary to
the 512-token limit of most transformer-based mod-
els (Devlin et al., 2019; Sanh et al., 2019; Liu et al.,
2019; Lan et al., 2020). This makes DialogLED a
suitable choice to build the AI Coach Assist system
since the average length of the transcripts in our
QA scorecard dataset is longer than 512 words.

5 Experiments

In this section, we first present the experimental
settings and the implementation details of our pro-
posed model. Then we discuss our experimental
findings in detail.

5.1 Implementation
For the DialogLED model, we adopt the
DialogLED-base4 model from the HuggingFace
library (Wolf et al., 2020). Specifically, we used

4https://huggingface.co/MingZhong/
DialogLED-base-16384

the LEDForSequenceClassification which adds a
classification head on top of the LED (Longformer-
Encoder-Decoder) model (Beltagy et al., 2020). We
ran our experiments in GCP5 on an n1-standard-
32 machine with 4 Nvidia T4 GPUs. A total of 3
epochs were run, with the training batch size set to
26, and the maximum sequence length set to 1024.
The learning rate was set to 2e − 5. For the Dis-
tilBERT model, we leverage its base model from
HuggingFace7. We also set the learning rate for
DistilBERT to 2e − 5 and ran 3 epochs with the
training batch size set to 16 while the maximum
sequence length set to 512. Note that for both mod-
els, these hyperparameters were tuned based on
the performance in the validation set. The best-
performing method in the validation set was then
used for evaluation on the test set.

5.2 Results & Discussions

In this section, we first present the results of our
base models. Then we conduct some ablation tests
and also compare our proposed models with some
classical machine learning baselines to further vali-
date the effectiveness of our approach. Finally, we
study the advantages and limitations of our model
based on various question types.

5https://console.cloud.google.com/
6Larger batch size leads to Out of GPU Memory errors.
7https://huggingface.co/distilbert-base-cased
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Model Precision Recall F1 Accuracy

DialogLED 67.92 63.72 65.76 70.52

DistilBERT 62.53 58.39 60.39 66.25

Table 3: Performance Comparisons between the AI
Coach Assist models on our QA Scorecard dataset.

Model Precision Accuracy

DialogLED 67.92 70.52
- without query 57.76 62.83
- reduced sequence length = 512 66.01 67.52
- reduced sequence length = 256 63.15 63.64

DistilBERT 62.53 66.25
- without query 59.32 61.22

Table 4: Ablation Tests on the QA Scorecard dataset.

5.2.1 Performance of the Base Models
In this section, we compare the performance of us-
ing DialogLED and DistilBERT as the base model
for the AI Coach Assist system. Though we con-
sider precision and accuracy as the main criteria
for the production deployment of this system, for
this performance evaluation we also consider recall
and f1 in addition to precision and accuracy.

We observe from our results given in Table 3 that
the DialogLED model outperforms its counterpart
DistilBERT model in terms of all metrics (preci-
sion, recall, f1, and accuracy). The DialogLED-
based model also ensures scores above 60 in all
4 metrics. Moreover, in terms of accuracy and
f1, it achieves a score of 70.52 and 65.76, respec-
tively. Meanwhile, both models achieve compar-
atively lower recall scores, noticeably the Distil-
BERT model achieves a recall score even below
60. However, in our criteria for production deploy-
ment, a highly precise model is more important,
with both DialogLED and DistilBERT achieving
higher precision scores (67.92 and 62.53, respec-
tively) in comparison to their recall scores (63.72
and 58.39, respectively).

The superior performance using DialogLED
over DistilBERT in all these metrics demonstrates
the effectiveness of fine-tuning a language model
for contact center telephone transcripts that is pre-
trained on dialog conversations. Moreover, since
customer-agent conversations can also be quite
long and may not fit within the 512 tokens limit of
DistilBERT-like models (as shown in Table 1), the
ability of DialogLED to process input text of larger
size may also help it to achieve better performance.
In the following section, we conduct some ablation

Model Precision Accuracy

TF-IDF + SVM 57.9 57.7

TF-IDF + Decision Tree 58.0 60.8

TF-IDF + Random Forest 59.3 60.1

TF-IDF + Naïve Bayes 52.5 53.3

DialogLED 67.9 70.5

DistilBERT 62.5 66.3

Table 5: Performance Comparisons between some base-
lines and proposed models on the QA Scorecard dataset.

studies to further investigate the effectiveness of
our models.

5.2.2 Ablation Studies
In this section, we conduct some ablation studies to
investigate our approach of concatenating the query
and the transcript as input for our transformer-
based language models (DialogLED/DistilBERT),
as well as how the sequence length impacts the
overall performance of DialogLED. We show the
results from our ablation study in Table 4.

For our first ablation test, we remove the query
from the input text to better study the relationship
between the query and the transcript. We find that
for both models the accuracy is dropped by a great
margin if the query is removed. The removal of
the query from the input text leads to an accu-
racy drop of 10.90% for DialogLED and 8.03%
for DistilBERT. In terms of precision, the perfor-
mance is deteriorated by 14.96% and 5.13%, for
DialogLED and DistilBERT, respectively. These
findings demonstrate that the model learns to pre-
dict the coachable and not coachable moments in
transcripts for the given query based on the concate-
nated representation of the query and the transcript.

For our other ablation test, we reduce the input
sequence length from our DialogLED model. We
find that reducing the input sequence length from
1024 to 512 and 256 leads to a huge drop in accu-
racy (dropped by 4.71% and 9.76%, respectively)
and precision (dropped by 2.81% and 7.02%, re-
spectively). This demonstrates the effectiveness
of using the DialogLED model which can process
longer input sequences.

Moreover, we observe that when the size of the
input sequence length for DialogLED is 512 (same
as DistilBERT), it still outperforms DistilBERT in
terms of both accuracy and precision. This further
gives an implication that the utilization of a model
that is pre-trained on conversational data is more
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Figure 2: Performance of DialogLED and DistilBERT on our QA Scorecard dataset based on each Question Type.

helpful to improve the performance of the Ai Coach
Assist system.

5.2.3 Performance against other Baselines
In this section, we compare our proposed models
for the AI Coach Assist system: DialogLED and
DistilBERT, with some baseline models to further
study their effectiveness. Below, we describe the
baseline models that we use for comparisons:

TF-IDF with Classical Machine Learning
Models as Baselines: We use TF-IDF as keyword-
based features for some classical machine learning
models, such as Support Vector Machine (SVM)
(Hearst et al., 1998), Random Forest (Ho, 1995),
Decision Tree (Rokach and Maimon, 2005), and
Naïve Bayes (Webb et al., 2010), as our baseline
models for comparisons. We show our experimen-
tal results in Table 5 to observe that both of our
proposed models (the DialogLED model which
obtains the highest accuracy and the DistilBERT
model which ensures high efficiency) for AI Coach
Assist outperform all TF-IDF feature-based classi-
cal machine learning approaches. On Average, the
DistilBERT model and the DialogLED model out-
perform the baseline models by 8.97% and 12.48%
in terms of precision, while 16.20% and 17.78% in
terms of accuracy, respectively.

5.2.4 Performance based on Question Types
In this section, we conduct an in-depth analysis
of the proposed models for AI Coach Assist: Di-
alogLED and DistilBERT. For our analysis, we
investigate their performance in different question
types. In Figure 2, we show their accuracy on each

question type. We observe that for most question
types, DialogLED outperforms DistilBERT (the
only exceptions are the following question types:
Addressing Customer, Behavioural, and Customer
Identification). Among the questions where Di-
alogLED outperforms DistilBERT (7 out of 11), the
highest performance gains are in question types that
are of Greeting and Account Verification. For Greet-
ing, it achieves the best accuracy with a score of
84.62, while for Account Verification, the accuracy
is 83.33. Meanwhile, even though the DialogLED
model achieves an accuracy of at least 60 for all
question types, the DistilBERT model achieves
quite low scores for some question types (e.g., only
57% scores for Closing type and Customer Satisfac-
tion type questions). For the DialogLED model, it
finds the Behavioral and the Issue Resolution type
questions most challenging, as its accuracy drops
below 70. Among these two question types, the
Behavioral question type achieves the lowest accu-
racy score of 63.59, followed by Issue Resolution,
with an accuracy of 64.0.

6 Usage in Real World Contact Centers

In this section, we discuss how the AI Coach Assist
system can be used in real-world contact centers.
Since determining the calls that are coachable is not
required in real-time, rather they are required after
the call is over, the inference speed of the model
may not be an issue in this regard. Moreover, for
contact centers where the computing resource is not
a problem, our DialogLED-based model could be
used, as it achieves better accuracy than its Distil-
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BERT counterpart. Since the size of the trained Di-
alogLED model is 648 MB, the DistilBERT model
which takes only 263 MB could be used in scenar-
ios where the computing resource is limited.

We also prototype our proposed system for usage
in a real contact center. Since directly predicting
a score to a call might impact the evaluation of
agent performance in contact centers, as such met-
rics could be used by managers for performance
evaluation of agents, in our prototype we rather
recommend a list of calls to the managers that are
highly likely to contain coachable moments for a
particular question type. Thus, instead of using
those calls for a direct performance evaluation of
agents, the managers still require to listen to the
conversation or read the ASR-generated transcript.
More particularly, using our proposed AI Coach
Assist, we help the managers with a list of calls that
they may use to manually grade agent performance,
contrary to the existing methods of random call
selection. In this way, the proposed prototype of AI
Coach Assist may not cause any ethical concerns.

7 Conclusion

In this paper, we presented AI Coach Assist, a
transformer-based pairwise sentence classification
model that combines the query/question given by
the contact center manager or supervisor with the
call transcript to determine which calls are most
relevant for coaching purposes. The evaluation re-
sults demonstrate the potential of AI Coach Assist
to transform the way contact centers coach their
agents, providing an efficient and effective method
that recommends calls that are the most relevant
for coaching purposes. This will help to improve
the coaching process and enhance the performance
of contact center agents, leading to better customer
satisfaction. Note that our model is intended to
help contact center supervisors to be more effective
in coaching their employees by improving over the
random sampling of calls. The model does not au-
tomate the evaluation of employee performance by
replacing human review.

In the future, we will study how to improve the
performance on the question types where the model
performs poorly. We will also study how to uti-
lize other question-answering models (Laskar et al.,
2020, 2022d) or leverage generative large language
models (OpenAI, 2023; Anil et al., 2023) that can
point out the reason for a call being coachable and
not coachable.

Limitations

As our models are trained on customer-agent con-
versations in English, they might not be suitable to
be used in other domains, types of inputs (i.e writ-
ten text), or languages. Moreover, as we demon-
strated in the paper that the model has limitations
in certain question types, the user needs to decide
which question types to be used when deploying
the system in production. Though the DialogLED
model performs better, it requires higher comput-
ing resources. On the contrary, even though the
DistilBERT model consumes lower memory, its
performance is poorer than the DialogLED model.

Ethics Statement

• Data Annotation: Since the calls are an-
notated by real-world contact center man-
agers/supervisors, we did not require any
additional compensation for this annotation.
Rather, we develop a system where the man-
agers/supervisors put their scores for different
call conversations in their contact centers. To
map the questions to different question types,
Labelbox8 was used for data annotation and
the annotators were provided with adequate
compensation (above minimum wages).

• Privacy: There is a data retention policy avail-
able so that the call transcripts will not be used
if the user does not give permission to use
their call conversations for model training and
evaluation. To protect user privacy, sensitive
data such as personally identifiable informa-
tion (e.g., credit card number, phone number)
were removed while collecting the data.

• Intended Use by Customers: Note that our
model is intended to help contact center su-
pervisors to be more effective in coaching
their employees by improving over the ran-
dom sampling of calls. The model does not au-
tomate the scoring of employee performance
or replace human review.

• Prevention of Potential Misuses: Below, we
discuss some of the potential misuses of the
system and our suggestions to mitigate them:

(i) Automatic Performance Reviews of
Agents by Considering all Recommended
Calls as Bad Calls: One potential misuse of

8https://labelbox.com/
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the system could be the evaluation of agent
performance by considering all recommended
calls as bad calls without any manual review
of the call. To mitigate this, we can do the
following:

– Contact center supervisors that use this
system must be properly instructed that
this system does not determine whether
an agent performs badly in a certain call.
Rather, the intention of the proposed sys-
tem is to only suggest a set of calls to the
managers (instead of randomly selecting
calls) that they need to manually review
to determine whether the agent requires
coaching or not.

(ii) Considering Agents with More Recom-
mended Calls as an Indicator to Poorer
Agent Performance: Another potential mis-
use of the system is if contact center managers
start considering that if more calls are recom-
mended by our system for a particular agent,
then the agent is more likely to perform poorly.
To prevent this, we can do the following:

– We may suggest some positive calls as
well as negative calls to the managers.
Here, positive calls are the ones that our
system rates with a very high score and
categorizes as not requiring any coach-
ing. Whereas negative calls are the
ones that our system rates with quite
lower scores and classifies as coaching
required. To avoid any misuse of the
suggested calls, the proposed AI Coach
Assist system should never reveal to the
managers whether a call requires coach-
ing or not. Rather it should only al-
low the managers to make the final de-
cision on whether the call is a positive
call or a negative call. Once the sug-
gested calls are manually reviewed by
the managers and categorized as positive
by them, these calls can then be used to
train other agents that require improve-
ment in certain areas, whereas a call cat-
egorized as negative can be used to train
a particular agent who did not perform
well (i.e., requires coaching) in that spe-
cific call.

– In addition, to avoid suggesting too many
calls for the same agent, the system may

suggest only a certain number of calls
(not above a pre-defined limit) per agent
to the managers.

(iii) Using Bad Questions For Model Devel-
opment: In some contact centers, there may
be questions that are used for evaluating agent
performance which may contain any potential
biases toward a specific race or gender. We
can prevent this in the following way:

– The system should only respond to a pre-
selected set of questions that were used
during the training phase of the model.
Any questions that may pose any ethical
concerns or potential biases should not
be used while training the model such
that these questions can also be automati-
cally ignored during the inference phase.

• License: We maintained the licensing require-
ments accordingly while using different tools
(e.g., HuggingFace).
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Abstract

Query rewriting (QR) is an important technique
for user friction reduction (i.e. recovering ASR
error or system error) and contextual carry-
over (i.e. ellipsis and co-reference) in conversa-
tional AI systems. Recently, generation-based
QR models have achieved promising results on
these two tasks separately. Although these two
tasks have many similarities such as they both
use the previous dialogue along with the cur-
rent request as model input, there is no unified
model to solve them jointly. To this end, we
propose a unified contextual query rewriting
model that unifies QR for both reducing fric-
tion and contextual carryover purpose. More-
over, we involve multiple auxiliary tasks such
as trigger prediction and NLU interpretation
tasks to boost the performance of the rewrite.
We leverage the text-to-text unified framework
which uses independent tasks with weighted
loss to account for task importance. Then we
propose new unified multitask learning strate-
gies including a sequential model which out-
puts one sentence for multi-tasks, and a hybrid
model where some tasks are independent and
some tasks are sequentially generated. Our
experimental results demonstrate the effective-
ness of the proposed unified learning methods.

1 Introduction

Large-scale conversational AI agents such as Alexa,
Siri, and Google Assistant, are becoming increas-
ingly popular in real-world applications to assist
users in daily life. However, some of the user in-
teractions lead to dissatisfied experiences, where
users do not get what they requested or the assistant
has to engage with the user again to clarify the user
request. These user frictions arise from errors in
the system, including Automatic Speech Recogni-
tion (ASR) and Natural Language Understanding
(NLU), as well as user ambiguity and background

∗Work done while Mukund Rungta was interning at Ama-
zon.

noise. The goal of QR (Hao et al., 2022; Cho et al.,
2021) is to identify the queries that lead to friction
and rewrite them to queries without changing the
users’ intention, in order to mitigate defective inter-
actions. Besides, in a multi-turn dialogue session
with agent, users sometimes tend to use incom-
plete utterances which usually omit or refer back
to entities or concepts that appeared in the previous
dialogue, namely ellipsis, and co-reference. Thus,
we also always rely on contextual carryover (El-
gohary et al., 2019; Liu et al., 2020) to rewrite
the incomplete query into a context-dependent and
self-contained query.

Although query rewriting has received a lot of at-
tention in recent years, it has always been studied in
two separate directions, i.e., reduce defects and con-
textual carryover. Recent works integrate all func-
tionalities into pre-trained Sequence-to-Sequence
(Seq2Seq) language models and report impressive
results (Su et al., 2021; Raffel et al., 2020). This
synergy has resulted in a great deal of recent work
developing transfer learning methodology for NLP.
Inspired by that, we propose a unified contextual
query rewriting framework, that can utilize one
model to perform the rewrite for both friction re-
duction and contextual carryover. Moreover, we
involve two additional tasks in the unified model:
NLU interpretation of rewrite and rewrite trigger
prediction. NLU interpretation of rewrite is a task
to predict the domain, intent, and entity slots infor-
mation. Trigger prediction is a task that enables the
model to decide to trigger a rewrite or not. These
tasks can not only be used for downstream mod-
ules but also serve as auxiliary tasks to boost the
primary task query rewriting performance.

Specifically, we leverage the BART
model (Lewis et al., 2020) which is a large-
scale Seq2Seq framework. We unify defect
reduction and contextual carryover as one QR
task, where the model input is a dialogue context
along with the current request, and the output is
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the rewrite. For NLU interpretation and trigger
prediction tasks, we also cast them as a text-to-text
generation task, where the model output the
trigger decision and the NLU interpretation for
the current request. Motivated by the concept
of in-context learning (Brown et al., 2020), to
steer the model to solve different sub-task, we
plug a task-specific prompt, into the model input.
This way, the generations of different sub-tasks
are decoupled, leading to better flexibility of the
model regarding generation for each sub-tasks.
Besides the traditional text-to-text unified learning
approach (Raffel et al., 2020) in which each task’s
prediction is generated independently, we explored
variants of unified learning approach, including
sequential unified learning where one sequence
is used to generate multi-task results using
target prompts and hybrid unified learning where
some tasks are independent and some tasks are
sequentially generated. We conducted extensive
offline experiments to study the proposed unified
learning approaches. Our experimental results
demonstrate the effectiveness of the proposed
approaches. Our production simulation validates
the positive impact of the proposed model which
indeed generates rewrites of better quality.

2 Related Work

Query Rewriting In dialogue systems, query
rewriting benefits dialogue state tracking especially
co-reference resolution (Rastogi et al., 2019; Hao
et al., 2021), and reducing users’ friction by re-
placing the users’ utterance (Wang et al., 2021;
Fan et al., 2021; Chen et al., 2023). Fan et al.
(2021) and Cho et al. (2021) propose to leverage
the search-based model, which consists of a DSSM
based retrieval layer and a tree ranking layer, to han-
dle global and personalized query rewriting. Su
et al. (2019) use generation-based approaches to
tackle the co-reference and omission-specific sce-
narios. Hao et al. (2022) propose a constrained
generation based Seq2Seq model for query rewrit-
ing.

Contextual Carryover Contextual carryover has
been an important component in dialogue systems
for resolving co-reference and omission. Naik et al.
(2018) leverage an encoder-decoder architecture
for making independent carryover decision for each
slot in the context. Later, Chen et al. (2019) pro-
pose a framework to jointly predict whether a sub-
set of related slots should be carried over from

dialogue history. Rastogi et al. (2019) formulate
the contextual carryover problem as a contextual
query rewriting problem (CQR). Yu et al. (2020)
present a few-shot generative approach to conver-
sational query rewriting. In this work, we unify the
query rewiring task with CQR by one text-to-text
generation model, with generated rewrite handling
contextual slot carryover cases.

Unified Learning Transfer learning in natural
language processing (NLP) has gained popularity
due to its demonstrated effectiveness. This ap-
proach involves pre-training a model on a data-rich
task and fine-tuning it for a specific task (Dong
et al., 2019; Radford et al., 2018; Lewis et al.,
2020). Later, the efficacy of transfer learning has
been further improved by a unified framework that
converts all text-based language problems into a
text-to-text format presented through the T5 model
(Raffel et al., 2020). In this paradigm, instead of
adapting the pre-trained language model (LM) to
downstream tasks via objective engineering, down-
stream tasks are reformulated to look more like
those solved during the original LM training with
the help of a textual prompt.

3 Methodology

Before introducing the unified learning model, we
first establish the baseline for the query rewriting.
We formulate the query rewriting as a sequence-
to-sequence (Seq2Seq) task and fine-tune a pre-
trained BART model for the rewrite generation.
As shown in Figure 1, the model takes the cur-
rent turn and its previous dialog context as input
and generates the target text autoregressively. The
Seq2Seq architecture comprises a bidirectional en-
coder that takes the context and current request as
input, and an autoregressive decoder that performs
constrained decoding to generate the target rewrite.

3.1 Generation based query rewrite
Query rewrite with contextual carryover. In ad-
dition to rewriting defective queries such as "play
night talk by drake" to "play knife talk by drake",
we consider contextual carryover task as a query
rewriting task as well. For example, in a multi-
turn dialog, we have "[USER] what’s the current
temperature at Colorado Springs [AGENT] Right
now, it’s 46 degrees Fahrenheit. Today, expect a
high of 75 degrees. [USER] what’s the air quality",
where location slot "Colorado Springs" needs to
be a carryover to current turn "[USER] what’s the
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Figure 1: Illustration of the seq2seq model query rewriting model. When a new utterance arrives, the model takes
the flattened contextual input and outputs as the final rewrite. We use [USER] as a special symbol added in front of
the user turn, and [AGENT] as a special symbol added in front of the agent turn.

air quality". In such cases, we directly address the
carryover problem by formulating it as a rewrit-
ing task, with the goal of generating the rewrite
"What’s the air quality in Colorado Springs."

We adopt the pre-trained BART (Lewis et al.,
2020) which has the same model architecture as
the widely-used Transformer model (Vaswani et al.,
2017) and is pre-trained with a denoising way (De-
vlin et al., 2018). As illustrated in Figure 1, we
flatten the previous dialogue turns (including both
user requests and agent responses) and the current
user request into a single sequence for input to the
encoder. Then, we fine-tune BART for our task.

Formally, given a contextual request sequence
q = {q1, ..., qM}, where qi for i ∈ {1, ...,M}
denotes a token in the sequence, and the corre-
sponding rewrite r = {r1, ..., rN}. The encoder
is responsible for reading the input request and its
previous dialogue turns, and the decoder autore-
gressively generates the rewrites.

The ultimate goal of the rewrite generation prob-
lem is to learn a probability distribution pθ(r) over
the variable-length text sequence r, where θ is the
parameter of the BART. Typically, the maximum
likelihood estimation (MLE) objective is used to
train the language model which is defined as

Lθ(q, r) = −
1

|r|

|r|∑

j=i

log pθ(rj |r<j) .

Typically, given finite training examples, i.e.,
T pairs of contextual query and rewrite S =
{qt, rt}Tt=1, the model is trained by minimizing
the empirical finite sample objective loss function
Lθ(S) = 1

T

∑T
t=1 Lθ(qt, rt).

3.2 Other tasks

We first introduce the tasks we consider in this
paper as follows.

NLU hypothesis generation task. In conversa-
tional AI systems, interpreting the user’s query,
such as their intent and domain, helps downstream
modules to respond more effectively to the user’s

request. Integrating this interpretation task into the
model can improve its understanding of the user’s
request and context. The results of the NLU inter-
pretation can not only be utilized by downstream
modules but also act as regularizers for the pri-
mary query rewriting task. To integrate the NLU
interpretation task, we let the model generate such
interpretation as an NLU hypothesis that takes the
form of "domain | intent | slot_type:slot_value". For
example, given the query "play bad blood by taylor
swift", the corresponding NLU hypothesis would
be "Music | PlayMusic | SongName:bad blood |
ArtistName:taylor swift". The NLU hypothesis
generation task takes the query as input and gener-
ates the corresponding NLU hypothesis.

Trigger prediction task. The trigger task allows
the model to predict whether a rewrite (or contex-
tual carryover) is necessary for the incoming query.
For example, if the query "play bad blood by Taylor
Swift" is not defective, the model should not trig-
ger a rewrite. Typically, separate and independent
models are used to make this binary decision. How-
ever, in our unified model, we formulate this binary
prediction problem as a text generation problem.
Queries that do not require a rewrite have a tar-
get output of "no trigger", while defective queries
have a target output of "trigger". Integrating trigger
tasks in the unified generation model can save the
resources for having separate trigger models.

3.3 Parallel unified learning model
Figure 2 illustrates the design of parallel unified
learning which is similar to T5 (Raffel et al., 2020).
We fine-tune the BART model on the above three
tasks. The rationale behind unifying multi-tasks
in training is that by successfully predicting the
system’s interpretation of a request (i.e., domain,
intent, and slots in the NLU hypothesis) and its
trigger decision, the model can improve its pre-
diction of the trigger task and subsequent rewrite.
As shown in Figure 2, we add the prompt "predict
trigger:" to the contextual query as input: "predict
trigger: turn brightness down to one percent" and
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Figure 2: Illustration of the parallel multi-task unified learning model. For each task, the model takes the current
turn with its previous dialog context and the task-specific prompt as input to generate the corresponding target text,
i.e., prompt predict hypothesis: for NLU task, predict trigger for trigger task, and generate rewrite used for rewrite
task.

the target output of trigger prediction task is "trig-
ger". For the NLU interpretation task, the model
takes "predict hypothesis: turn brightness down
to one percent" as input and generates the corre-
sponding hypothesis. For the rewriting task, we
add prompt "generate rewrite" to the input. To
account for the varying importance of each task,
we incorporate a weighted loss in our multi-task
unified training approach. Given the incoming con-
textual query q, and target rewrite r, target NLU
hypothesis h and target trigger prediction g, we
use weighted loss as follows

Lθ(q, r,h,g) =λ1 Lθ(q, r)+
λ2 Lθ(q,h) + λ3 Lθ(q,g) ,

where λ1, λ2, and λ3 are the weights for rewrite,
NLU, and trigger tasks separately.

3.4 Sequential unified learning model

In this section, we propose a novel unified learning
approach by leveraging a single (i.e. text genera-
tion) task of text generation with multiple prompts.
Our model encodes the current request and its previ-
ous dialog context and then generates a sequential
output that predicts various tasks. To guide the pre-
dictions, we use markup tokens such as "[rewrite]",
"[trigger]", and "[hypothesis]" to prompt the predic-
tion. This approach leverages the benefits of condi-
tional generation, allowing the model to consider
the previous task’s prediction when performing the
next task’s prediction. As a result, the order of task
generation is important. We also consider the same
three tasks for training this model: NLU hypothesis
task, trigger task, and rewrite generation task. The
model generates the prediction for each task in a
single sequence with the order: rewrite → trigger
→ hypothesis. Figure 3 illustrates the idea of this
sequential multi-task unified learning model.

3.5 Hybrid unified learning model

Parallel and sequential unified learning approaches
both have advantages and disadvantages. The par-
allel multi-task approach trains each task indepen-
dently for a given query, which requires duplicating
training data by the number of tasks and leads to
a longer training cycle. As the number of tasks in-
creases, the size of the training data also increases,
making it challenging to add more tasks. Besides,
each task is trained independently, the model can-
not leverage the correlation between tasks. On the
other hand, the sequential unified approach does
not require duplicate data since the model nests
multitasks into one sequential output, reducing the
training cost. This model has the potential to learn
and leverage the correlation between tasks. How-
ever, the sequential model has higher latency due
to the longer decoding length compared with the
parallel multi-task model. In addition, it is hard to
apply weighted loss for sequential multi-tasks.

To address these issues and combine the benefits
of both models, we proposed a hybrid unified learn-
ing model as shown in Figure 4. The hybrid model
considers the rewrite generation and trigger predic-
tion as a nested sequential task, with the prompt
"generate_rewrite_trigger:". The NLU hypothe-
sis generation is treated as an independent parallel
task, with the prompt "predict hypothesis:". This
hybrid model reduces the duplication of training
data, reduces the training cost, and leverages the
correlation between tasks. We also apply weighted
loss training loss to reflect the importance of tasks:

Lθ(q, r,h,g) = λ1 Lθ(q, {r,g}) + λ2 Lθ(q,h)

where λ1, λ2 are the weights for nested
rewrite_trigger task and NLU tasks separately.
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Figure 3: Illustration of the sequential unified learning model. The model sequentially generate a single output of
different tasks. We have use special tokens (e.g., "[rewrite]", "[trigger]", "[hypothesis]") to prompt the prediction for
different tasks.

Figure 4: Illustration of the hybrid multi-task unified learning model. The model uses task-specific prompt to generate
the task-specific target text, i.e., prompt "predict hypothesis" for NLU hypothesis task, "generate_rewrite_trigger:"
for trigger task and rewrite task.

4 Experiments

We conduct two sets of experiments to evaluate the
proposed unified learning models. The first set of
experiments compares the three proposed unified
models in terms of their effectiveness on the query
rewrite, trigger prediction, and NLU hypothesis
generation. The second set of experiments evalu-
ates the benefit of integrating contextual carryover
into the query rewriting task.

4.1 Experimental Setup

Datasets We use two datasets for our experi-
ments: the query rewrite dataset (QueryR) and
the contextual carryover rewrite dataset (Carry-
overR). The QueryR dataset is weakly annotated
by a defect detection model to identify consecutive
user utterances where the first turn was defective
but the second turn was successful. We also col-
lect 1M non-defective quires which do not need
to be rewritten/triggered (i.e., trigger task label is
"no trigger"). The ContextCarryoverR dataset is
human-annotated for contextual carryover queries.
In this dataset, we have 1M queries need carryover
and 1M queries do not need carryover (i.e., trig-
ger task label is "no trigger"). We collect 1-month
period data for training and validation (randomly
split by 9:1) and subsequent 1-week period data
testing. Table 1 provides the information of each
dataset. Note there is no overlap between QueryR
and CarryoverR, i.e., QueryR does not have con-
textual carryover queries and CarryoverR only has
contextual carryover queries. Note that all the data
has been de-identified.

Datasets Trigger label Train Test

QueryR trigger 7M 200k

no trigger 1M 200k

CarryoverR trigger 1M 908

no trigger 1M 4340

Table 1: Statistics of the query rewriting data sets.

Model Setup In the first set of experiments, we
only focus on the QueryR dataset which does not
have any contextual carryover queries. We train
the parallel, sequential, and hybrid unified mod-
els on QueryR dataset by fine-tuning the BART-
base model, which has 140M parameters, follow-
ing must-task learning approaches in Sections 3.3,
3.4 and 3.5. We compared the proposed unified
learning with the baseline CGF (Hao et al., 2022)
which only consider query rewrite task.

In the second set of experiments, explore the ad-
vantages of unifying query rewrite with contextual
carryover. Thus we train the BART-base trained
on CarryoverR dataset for rewrite generation as
the baseline (name this baseline as BART_CR).
We also have another baseline that we combine
CarryoverR and QueryR datasets and train the
BART-base on the combined dataset for rewrite
generation (name this baseline as BART_CR_QR).
For the proposed unified method, we train the hy-
brid unified model on the combined dataset using
rewrite, trigger, and NLU tasks (name this unified
model as Hybrid_CR_QR).

Evaluation Metrics. In practice, the query
rewriting system is not expected to rewrite or trig-
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Task Rewrite Trigger NLU

precision F1 precision

CGF 78.44% NA NA

Parallel 79.01% 0.89 68.59%

Sequential 65.67% 0.90 66.11%

Hybrid 79.98% 0.91 67.78%

Table 2: Compare parallel, sequential, and hybrid uni-
fied models with existing CGF query rewriting on
QueryR test set. The Hybrid model achieves the best
precision and F1 score.

Dataset QueryR CarryoverR

BART_CR NA 68.51%

BART_CR_QR 78.62% 72.37%

Hyrbid_CR_QR 80.21% 78.45%

Table 3: Rewrite precision at 20% trigger rate of base-
lines and Hybrid unified model on QueryR and Carry-
overR test sets. Hybrid unified model achieves much
higher precision than baselines do.

ger every query from the users, taking into account
cases where the query itself may not be defective
or need a contextual carryover. Thus, To evalu-
ate rewrite and NLU hypothesis quality, we use
utterance-level precision at a fixed trigger rate, i.e.,
20% trigger rate. The utterance level precision de-
notes how often the triggered rewrite matches the
correct rewrite. We use the F1 score as the trigger
task evaluation metric. For CarryoverR test data,
we also use hallucination as metrics. A rewrite is
considered hallucinated if it contains entities that
are not present in the target utterance. We also eval-
uate intrinsic hallucination (when the hallucinated
entities are present in the input) and extrinsic hal-
lucination (when the hallucinated entities are not
present in the input).

4.2 Experimental Results

Unified models on QueryR For parallel model
and hybrid model, we have explored the weights

Hallucination Intrinsic Extrinsic

BART_CR 46.23% 30.42% 20.79%

BART_CR_QR 44.69% 31.82% 18.14%

Hyrbid_CR_QR 39.71% 27.78% 17.11%

Table 4: Hallucination rate (intrinsic and extrinsic hal-
lucination rates) of baselines and Hybrid model. The
Hybrid model achieves the lowest hallucination rate.

for different tasks. By conducting a grid search,
we identify the optimal choice of weight for par-
allel model is 0.7, 0.1, 0.2 for rewrite, trigger and
NLU tasks. For hybrid model the optimal choice of
weight is 0.8, 0.2 for rewrite-trigger task and NLU
task. Table 2 presents the results of the rewrite
generation precision at a 20% trigger rate on the
QueryR test set, as well as the F1 score for the
trigger task. The Hybrid model outperforms the
other models by achieving the best precision in
the rewriting task. The sequential model has a
performance regression due to its longer decoding
sequence when adding the hypothesis task. In the
hybrid model, the trigger task output is conditioned
at the rewriting task, which can explain the higher
F1 score for the Hybrid model compared with the
Parallel model where the trigger task is learned
independently. Overall, the Hybrid model is fa-
vored in terms of good rewrite performance, trigger
performance, and shorter decoding time.

Unified model on QueryR and CarryoverR Ta-
ble 3 shows the precision at 20% trigger rate of
the unified model on QueryR and CarryoverR test
sets. The results of BART_CR and BART_CR_QR
indicate that unifying the contextual carryover task
with the query rewrite task can improve the carry-
over performance, even under a single-task training
approach. The Hybrid model achieved the high-
est precision, demonstrating further improvement
through multi-task learning. Table 4 displays the
hallucination rates, including intrinsic and extrin-
sic hallucination rates, on the CarryoverR test set.
The results indicate that the Hybrid model has the
lowest hallucination rates.

Production simulation We also conduct the pro-
duction simulation of the proposed Hybrid model
(Hybrid_CR_QR). We gather one-week live traf-
fic data from our production system and input the
data into the model. We compare the proposed
model with the no-unified model rewrites within
the English-speaking user’s environment. We use
one primary metric to evaluate the rewrite perfor-
mance: defect rate, which is calculated as the num-
ber of defective rewritten utterances, divided by the
total number of rewritten utterances. We use the
defect detection model in Gupta et al. (2021) to
measure if an utterance is defective. In the analy-
sis, we observe a 16.65% reduction in the defect
rate and an increase of millions of new rewrites
per week. Table 5 provides examples showing the
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defect reduction case
USER: put satellite ho by monica
AGENT: I couldn’t find satellite ho by Monica,
but here is other music by Monica .
USER: i said sideline hope by monica

Baseline rewrite: play sideline hope by monica
Unified model rewrite: play sideline ho by monica

contextual carryover case
USER: who’s the tallest man in the world
AGENT: Sultan Kosen is the tallest man alive.
The tallest man across history is Robert Wadlowski.
USER: how tall is it

Baseline rewrite: how tall is sultan kosen
Unified model rewrite: how tall is robert wadlowski

Table 5: Production examples of Hybrid Unified model
and baseline.

effusiveness of the unified model.

4.3 Limitations

We acknowledge that there are certain limitations
of this framework. First, generation-based models
have latency issue due to the autoregressive gener-
ation. Thus, we will explore Non-autoregressive
and semi-autoregressive methods in a future study.
Second, the knowledge is only stored in model pa-
rameters which limits the capacity of the model
to make the smarter trigger decision through fact-
checking and generate a valid rewrite. To this end,
we intend to consider a retrieval-augmented gener-
ation to incorporate external knowledge to improve
performance as well as incorporating more contex-
tual (e.g. if the user is listening music) and person-
alized (e.g. user preference) signals into the model.
Moreover, generative models can also pose quality
control challenges, such as hallucinations. To miti-
gate this issue, we will add constrained decoding
(Hao et al., 2022) to control hallucinations.

5 Conclusion

In this work, we propose unified learning ap-
proaches for QR. The proposed approach unifies
several tasks into one text-to-text model. Besides,
the proposed approach unifies general rewrite tasks
with contextual carryover tasks. We explored multi-
ple unified learning scenarios such as parallel multi-
task learning, sequential multi-task learning, and
hybrid multi-task learning. Our experimental re-
sults and production simulation demonstrated the
superiority of the unified learning model.
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Abstract

E-commerce queries are often short and am-
biguous. Consequently, query understanding
often uses query rewriting to disambiguate user-
input queries. While using e-commerce search
tools, users tend to enter multiple searches,
which we call context, before purchasing.
These history searches contain contextual in-
sights about users’ true shopping intents. There-
fore, modeling such contextual information is
critical to a better query rewriting model. How-
ever, existing query rewriting models ignore
users’ history behaviors and consider only the
instant search query, which is often a short
string offering limited information about the
true shopping intent. We propose an end-to-end
context-aware query rewriting model to bridge
this gap, which takes the search context into
account. Specifically, our model builds a ses-
sion graph using the history search queries and
their contained words. We then employ a graph
attention mechanism that models cross-query
relations and computes contextual information
of the session. The model subsequently calcu-
lates session representations by combining the
contextual information with the instant search
query using an aggregation network. The ses-
sion representations are then decoded to gener-
ate rewritten queries. Empirically, we demon-
strate the superiority of our method to state-of-
the-art approaches under various metrics.

1 Introduction

Query rewriting is a task where a user inputs a
potentially problematic query (e.g., typos or insuf-
ficient information), and we rewrite it to a new one
that better matches the user’s real shopping intent.
This task plays an important role in e-commerce
query understanding, where without proper rewrit-
ing, search engines often return undesired items,
rendering the search experience unsatisfactory.

One major issue that impedes query rewriting is
the ambiguity of queries. For example, Figure 1

∗Correspondence to Qingyu Yin (qingyy@amazon.com).

Figure 1: Searching for “bumblebee costumes” with
(right) and without (left) history searches.

(left) demonstrates searching for “bumblebee cos-
tumes” without considering search context. From
the query alone, it is implausible to tell if the user’s
intent is for costumes of actual bumblebee (i.e.,
the animal) or the character from the movie fran-
chise. This type of ambiguity is common in e-
commerce search, where queries are usually short
(only 2-3 terms) and insufficiently informative (He
et al., 2016b). Therefore, it is not possible to dis-
ambiguate queries using only the instant search.
A common solution is to use statistical rules to
differentiate the possible choices. Specifically, in
our example, suppose a total of 100 users entered
the “bumblebee costumes” query, and 70 of them
eventually purchased the movie character costume.
When a new user searches for the same query, the
recommended products will consist of 70% movie
character costumes and 30% animal costumes. This
procedure is problematic because each user has a
specific intent, i.e., either the movie character cos-
tume or the animal costume, but rarely both, which
the aforementioned method fails to address.

We propose to explore contextual information
from users’ history searches to resolve the query
ambiguity issue. Taking the “bumblebee costumes”
example again, in Figure 1 (right), suppose a rewrit-
ing model recognizes that the user searched for
“Transformers movie” earlier, then it could infer
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that the user’s purchase intent is the movie char-
acter costume, and hence can remove the input
ambiguity. There have been existing works that
utilize search logs for query rewriting. For ex-
ample, Wang and Zhai (2007, 2008) use tradi-
tional TF-IDF-based similarity metrics to capture
relational information among the user’s history
searches. These approaches are too restrictive to
handle the increasingly complex corpus nowadays.
As such, the rewritten queries significantly differ
from the original one in intent. More recently, neu-
ral network-based query rewriting algorithms (He
et al., 2016b; Xiao et al., 2019; Yang et al., 2019)
are proposed. Most of such approaches employ a
multi-stage training approach. Consequently, they
involve complicated hand-crafted features or re-
quire excessive human annotations for the interme-
diate features (sometimes both).

To overcome the drawbacks of existing meth-
ods, we propose an end-to-end context-aware query
rewriting algorithm. Our model’s backbone is the
Transformer (Vaswani et al., 2017). In our context-
aware model, the Transformer encoder learns rep-
resentations for individual history queries. The rep-
resentations are further transformed to carry cross-
query relational information using a graph atten-
tion mechanism (GAT, Velickovic et al. 2018). The
GAT computes contextual information of a session
based on a session graph, where its nodes contain
the history queries and the tokens contained in the
history queries. After obtaining the contextual in-
formation from the GAT, it is aggregated with the
instant search using an aggregation network. The
augmented information is subsequently fed into the
Transformer decoder to generate rewritten queries.

Our proposed method improves upon existing
works from three aspects. First, our model does
not involve recursion, unlike conventional recur-
rent neural network-based approaches (He et al.,
2016b; Yang et al., 2019; Xiao et al., 2019). This
facilitates training deep models containing dozens
of layers capable of capturing high-order informa-
tion. Second, our end-to-end sequence-to-sequence
learning formulation eliminates the necessity of ex-
cessive labeled data. Previous approaches (Yang
et al., 2019; Xiao et al., 2019) require the judg-
ment of “semantic similarity”, and thus crave for
human annotations, which are expensive to obtain.
In contrast, our method uses search logs as super-
vision, which does not involve human effort, and
are cheap to acquire. Third, our method can lever-

age powerful pre-trained language models, such as
BART (Lewis et al., 2020). Such models contain
rich semantic information and are successful in nu-
merous natural language processing tasks (Devlin
et al., 2019; Liu et al., 2019; Radford et al., 2019).

We demonstrate the effectiveness of our method
on in-house data from an online shopping plat-
form. Our context-aware query rewriting model
outperforms various baselines by large margins.
Notably, comparing with the best baseline method
(Transformer-based model), our model achieves
11.6% improvement under the MRR (Mean Recip-
rocal Rank) metric and 20.1% improvement under
the HIT@16 metric (a hit rate metric). We further
verify the effectiveness of our approach by conduct-
ing online A/B tests.

2 Related Works

One line of work uses statistical methods. For ex-
ample, Cui et al. (2002, 2003) extract probabilistic
correlations between the search queries and the
product descriptions. Other works extract features
that are related to the user’s current search (Huang
et al., 2003; Huang and Efthimiadis, 2009), or
from relational information among the user’s his-
tory searches (Billerbeck et al., 2003; Baeza-Yates
and Tiberi, 2007; Wang and Zhai, 2007; Cao et al.,
2008; Wang and Zhai, 2008). There are also sta-
tistical machine translation-based models (Riezler
et al., 2007; Riezler and Liu, 2010) that employ
sequence-to-sequence approaches. The aforemen-
tioned statistical methods suffer from unreliable
extracted features, such that the rewritten queries
differ from the original one in intent.

Another line of work focuses on neural query
rewriting models (He et al., 2016b; Xiao et al.,
2019; Yang et al., 2019). These models adopt re-
current neural networks (RNNs, Hochreiter and
Schmidhuber 1997; Sutskever et al. 2014) to learn
a vectorized representation for the user’s search
query, after which KNN-based methods are used
to find queries that yield similar representations.
One major limitation is that the rewritten queries
are limited to the previously presented ones. Also,
these methods often involve complicated and un-
grounded feature function designs, e.g., He et al.
(2016b) and Xiao et al. (2019) hand-crafted 18
feature functions, or require excessive labeled
data (Yang et al., 2019). Other works (Sordoni
et al., 2015; Dehghani et al., 2017; Jiang and Wang,
2018) use RNNs for generative query suggestion,
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but they inherit the weaknesses of RNNs and yield
unsatisfactory performance in practice.

Note that Grbovic et al. (2015) construct context-
aware query embeddings using word2vec (Mikolov
et al., 2013). In their approach, an embedding is
learned for each distinct query in the dataset. As
such, the quality of the learned embeddings rely
heavily on the number of occurrences of each query.
This method is not applicable to our case because
in our dataset, almost all the queries are distinct.

3 Problem Setup

The session data are collected from search logs.
First, we collect all the searches from a specific
user within a time window, and we call the searches
a “session”. After the user purchases a product, the
session ends, i.e., we do not consider subsequent
queries and behaviors after a purchase happens.
This is because after a purchase, the user’s intent
often change. Note that different sessions may be
collected from different users.

Each session contains multiple searches from
the same user. We call the last query in the session
the “target” query, the second to the last query the
“source” (or the “instance) query, and the others the
“history” queries. The intuition behind this is that
because sessions always end with a purchase, the
last search (i.e., the target) reflects the user’s real
intent. When the user enters the second to the last
search (i.e., the source), if we can rewrite it to the
target query, the user’s intent will be fulfilled.

Below is an example of a search session. From
the history queries, the user is interested in car
related banners/posters. The source query contains
a typo (“doger” is a baseball team) and we should
rewrite it to the target query (“dodge posters”).

History: {dodge banners; mopar poster}

Source (Instance): dodger posters

Target: dodge posters

We collect about 3 million (M) sessions, where
each session consists of at least 3 history queries,
a source query (i.e., the one we need to rewrite),
and a target query (i.e., the ground-truth query that
is associated with the purchase). We have roughly
18.7M queries, and on average, each session con-
tains 4 history queries. Query rewriting is con-
sequently formulated as a sequence-to-sequence
learning problem. We highlight that per our formu-
lation, we do not need human annotations, unlike
existing approaches.

4 Method

Figure 2 illustrates our context-aware query rewrit-
ing model. The model contains four parts: a con-
ventional Transformer (Vaswani et al., 2017) en-
coder, a graph attention mechanism (Velickovic
et al., 2018) that captures the user’s purchase intent,
an aggregation network that encodes the history
searches, and a conventional Transformer decoder
that generates the rewritten query candidates.

Figure 2: Overview of model.

4.1 Transformer Encoder

For a given source query, we first pad it with a
<boq> (begin-of-query) token. Then, we pass
the padded query through a Transformer encoder,
after which we have its hidden representation Hs ∈
RLs×d. Here Ls is the length of the padded query,
and d is the hidden dimension. We also pass all the
history queries corresponding to this source query
through the encoder, and we have the history query
representation Uh ∈ RNh×Lh×d, where Nh is the
number of history queries and Lh is the padded
length. More details are presented in Appendix A.

4.2 Contextual Information from Session
Graphs

After we obtain the history query representations
Uh, the next step is to refine them. Such refinement
is necessary because the Transformer encoder con-
siders the history queries separately, such that their
interactions are not taken into account. However,
since each search depends on its previous searches
in the same session, modeling cross-query relations
are imperative for determining the user’s purchase
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Figure 3: Left: Illustration of a session graph, where
“T” stands for tokens and “Q” stands for queries. Right:
One-step update based on the session graph.

intent. To this end, we use a graph attention mech-
anism (Velickovic et al., 2018; Wang et al., 2020)
to capture contextual information from Uh.

4.2.1 Session Graph Construction

First we specify how to build a graph for each ses-
sion, which we call the session graph. Suppose we
have a session that contains three history queries:

Q1 :
{

Search query : T1, T3},
Q2 :

{
Search query : T1, T2, T3

}
,

Q3 :
{

Search query : T1, T2, T4, T5

}
,

(1)

where Q1, Q2, Q3 are the three queries, and
T1, · · · , T5 are the five tokens that appear in the
three queries. Recall Section 3 for the problem
setup. Figure 3 (left) illustrates the session graph.

4.2.2 Node Representations

The next step is to refine the node representations.
Each of the nodes in the session graph has its own
representation. The token representations are sim-
ply the corresponding representations of the tokens,
extracted from the token embedding matrix. The
query representations are the representations of the
<boq> token in each padded history query, i.e.,
the representation of the Q1 query node in Figure 3
is found by Uh[0, 0, :] ∈ Rd. Denote Gq = {qi}Nq

i=1

and Gt = {ti}Nt
i=1 the sets of representations for the

query and token nodes, respectively. Here Nq is
the number of query nodes and Nt is the number of
token nodes. Note that all the node representations
have the same size, i.e., qi, ti ∈ Rd.

4.2.3 Update Node Representations

We use a multi-head graph attention mechanism
to update the node representations. For simplicity,
denote Ng = Nq+Nt the number of distinct nodes
in the session graph, and G = Gq ∪ Gt = {gi}Ng

i=1

the set of all the node representations.
With the above notations, a single-head graph

attention mechanism is defined as

hi = gi + ELU


∑

j∈Ni

αijWvgj


 ,

where αij =
exp(zij)∑

ℓ∈Ni
exp(ziℓ)

,

zij = LeakyReLU (Wa[Wqgi;Wkgj ]) .

(2)

Here ELU(x) = x · 1{x > 0} + (exp(x) − 1) ·
1{x ≤ 0} is the exponential linear unit, Ni de-
notes the neighbor of the i-th node, and Wa, Wq,
Wk, Wv are trainable weights. Note that a residual
connection (He et al., 2016a) is added to the last
equation in Eq. 2. This has proven to be an effec-
tive technique to prevent gradient vanishing, and
hence, to stabilize training.

The session graph only induces attention be-
tween nodes that are connected. For example, in
Figure 3 (right), the model updates Q1 and Q2

using T3, while Q3 is unchanged, i.e., NT3 =
{Q1, Q2}. A multi-head graph attention mech-
anism is then defined as the concatenation of
[h1i , h

2
i , · · · , hKi ], where K is the number of heads,

and each of the hi is calculated via Eq. 2.
The token node representations and the query

node representations are updated iteratively. First,
we update the token representations (Gt) using the
query representations (Gq), in order that the tokens
acknowledge to which queries they belong. Then,
Gq is re-computed using the updated version of Gt,
which essentially evaluates cross-query relations,
using the token nodes as intermediaries. Note that
the graph attention mechanism (GAT) used in each
of the two steps are distinct, i.e., there are two
different sets of weights [Wa,Wq,Wk,Wv].

Eventually, we obtain the updated vectorized rep-
resentations {hi}Ng

i=1 for all the nodes, and we treat
them as the contextual information of the session.

We remark that the GAT mechanism explicitly
models cross-query relations by associating query
representations with word representations. Such
an approach is fundamentally different from exist-
ing methods, where the relations are either ignored
(e.g., conventional Transformer attention) or cap-
tured via recursion (e.g., RNN-based approaches).

4.3 Session Representations

Recall that we pass the source query through a
Transformer encoder and obtain Hs ∈ RLs×d.
The matrix Hs contains representations for all the
tokens in the source query. We use that of the
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Figure 4: Aggregation network.

prepended <boq> token as the representation of
the source query, which is denoted hs ∈ Rd. We
adopt an aggregation network to extract useful in-
formation with respect to hs from the contextual
information {hi}Nh+Nt

i=1 . The network employs an
attention mechanism that determines to what extent
each vector hi contributes to the source query hs.
Figure 4 illustrates the architecture of the aggrega-
tion network. Concretely,

Hsess = Hs +
∑Ng

i=1 αiWvhi, (3)

where αi = exp(zi)∑Ng
j=1 exp(zj)

, zi = (Wkhi)
⊤hs, Wk

and Wv are trainable weights. The summation in
the last equation in Eq. 3 is conducted row-wise,
wherein Hsess , Hs ∈ RLs×d, and v ∈ Rd. The
matrix Hsess serves as the representation of the ses-
sion. Intuitively, by incorporating the aggregation
network, we can filter out redundant information
from the session history and only keep the ones
pertinent to the source query.

After the Transformer encoder, the graph atten-
tion mechanism, and the aggregation network, we
obtain Hsess , the session representation that con-
tains information on both the source query and
its history searches. Subsequently, Hsess is fed
into the Transformer decoder to generate rewrit-
ten query candidates. The algorithm is detailed in
Algorithm 1 in Appendix D.

5 Experiments

We conduct experiments on some in-house data.
We implement two methods with different model
architectures: Transformer+Aggregation+Graph
and BART+Aggregation+Graph. The first one is
constructed in the previous section, and the sec-
ond one employs a fine-tuning approach instead of
training-from-scratch. The training details are de-
ferred to Appendix B.3. More experimental results
are shown in Appendix C.

5.1 Baselines

For baselines with pre-training, we use MeshBART
(Chen and Lee, 2020) and BART (Lewis et al.,
2020). For baselines without pre-training, we use
LQRW (He et al., 2016b), HRED (Sordoni et al.,
2015) and MeshTransformer (Chen and Lee, 2020)
(a variant of MeshBART where we train the model
from scratch). We also compare our algorithm with
two model variants: Transformer+Aggregation and
BART+Aggregation, where we use the aggregation
network but not the GAT mechanism. Please refer
to Appendix B.1 for details.

5.2 Evaluation Metrics

We use BLEU, MRR (Mean Reciprocal Rank),
HIT@1, and HIT@16 to evaluate the query rewrit-
ing models. For all metrics except BLEU, we report
the gains over the the results calculated by using
only source queries. We remark that MRR, HIT@1,
and HIT@16 (the percentage that the actual prod-
uct is ranked within the first 16 products i.e., the
first page when we search the rewritten query) are
more important than BLEU, because MRR and HIT
are directly linked to user experience. Please refer
to Appendix B.2 for details about these metrics.

5.3 Experimental Results

Table 1 summarizes experimental results. Recall
that in our formulation, we rewrite a source query
to a target query. The “target query” entry in Ta-
ble 1 is the performance gain of the ground truth
target query, i.e., this entry signifies upper bounds
of performance gain that any model can achieve.

We can see that the attention-based models (i.e.,
BART, MeshBART, Transformer and MeshTrans-
former) outperforms the recurrent neural network-
based approach (i.e., LQRW and HRED). This is
because RNNs suffer from forgetting and training
issues. In contrast, Transformer-based models use
the attention mechanism instead of recursion to cap-
ture dependencies, which has proven to be more ef-
fective. Moreover, by aggregating history searches,
BART+Aggregation and Transformer+Aggregation
consistently outperform their vanilla alternatives.
Essentially performance of these two methods indi-
cate that integrating history queries into training is
critical. The performance is further enhanced by in-
corporating the session graphs. Specifically, Trans-
former+Aggregation+Graph achieves the best per-
formance under almost all the metrics. Notice that
the HIT@16 metric gain improves from +15.9 to
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Table 1: Experimental results. The results of MRR, HIT@1, and HIT@16 are shown as gain over the source query.
The best results are shown in bold.

Number of candidates #Candidates=5 #Candidates=10 BLEUMetric MRR HIT@1 HIT@16 MRR HIT@1 HIT@16

Source Query 0 0 0 0 0 0 —
Target Query +16.1 +10.6 +29.0 +16.1 +10.6 +29.0 —

Baseline methods
LQRW +3.5 +2.5 +6.4 +6.8 +4.9 +12.6 29.4
HRED +4.7 +3.2 +8.4 +8.1 +5.7 +14.2 25.7
BART +4.6 +3.1 +8.2 +8.2 +5.5 +14.8 30.9
Transformer +4.3 +2.6 +9.2 +8.5 +5.6 +15.9 25.3
MeshBART +5.0 +3.8 +8.7 +8.3 +5.8 +14.3 31.7
MeshTransformer +4.0 +2.7 +8.4 +8.3 +5.6 +15.7 25.9

Our methods
BART+Aggregation +6.3 +3.9 +10.9 +9.7 +6.4 +17.1 31.9
Transformer+Aggregation +5.2 +2.9 +10.8 +10.2 +7.0 +17.3 27.2
BART+Aggregation+Graph +6.9 +4.6 +11.8 +10.5 +7.5 +17.6 32.9
Transformer+Aggregation+Graph +6.6 +4.6 +12.0 +11.6 +8.3 +20.1 28.2

+20.1 when employing both the aggregation net-
work and the session graph formulation for the
Transformer-based models. We highlight that the
graph attention mechanism can directly captures
cross-query relations, which is implausible for all
the baselines. We can see that this property indeed
contributes to model performance, i.e., HIT@16 in-
creases from +17.3 to +20.1 when we equip Trans-
former+Aggregation with the GAT mechanism.

Notice that BLEU is not a definitive metric. For
example, the MRR and HIT metrics of HRED
are consistently higher than those of LQRW, even
though the BLEU score of the former is signifi-
cantly lower than the latter. Also, compared with
Transformer-based models, the BLEU score is con-
sistently higher when using the BART model as
the backbone. This is because a pre-trained lan-
guage model contains more semantic information.
However, the MRR and HIT metrics of the BART-
based models are slightly worse than those of the
Transformer-based models.

However, the BLEU score is comparable for
models with the same backbone. For example,
for Transformer vs. Transformer+Aggregation
vs. Transformer+Aggregation+Graph, the BLEU
scores are 25.3 vs. 27.2 vs. 28.2. Such a tendency
coincides with the online metrics. We observe the
same results from BART-based models.

5.4 Online A/B Test
We conduct online A/B experiments on a large-
scale e-commerce shopping platform with our
query rewriting models. For a given search query
within a session, we generate one reformulated
query using the proposed model, and we feed both
the original query and rewritten query into the

Table 2: Two examples of context-aware query rewriting
with and without context.

Example 1 dodge led sign;

History
dodge banners;
mopar banner;
mopar poster

Source dodger posters

Target dodge posters

Rewritten w/o context dodger flag

Rewritten w/ context dodge poster
Example 2 samsung galaxy case;

History samsung galaxy a11 case;
samsung a11 case

Source samsung galaxy a7

Target samsung galaxy a7 case

Rewritten w/o context samsung galaxy a7 charger

Rewritten w/ context samsung galaxy a7 case

search system. Experiments are conducted over
five days, during which our system processed over
30 million sessions. The proposed method im-
proves business metrics in terms of revenue; and
also significantly decreases the number of refor-
mulated searches. This indicates that the rewrit-
ten queries better meet customers’ shopping intent
since customers are able to find their desired prod-
ucts with less number of searches.

5.5 Case Studies
⋄ Advantages of leveraging history information
Two examples are shown in Table 2. The first exam-
ple is error correction. In the example, the customer
wishes to purchase dodge (a car brand) posters,
but she mistakenly searches for dodger (a baseball
team) posters. Without history information, it is
impossible to determine the customer’s true intent.
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Table 3: Two examples of generated queries and their associated likelihood.

Type Query Likelihood Query Likelihood

History

iphone 11 pro case pokemon; colorado 2005 tail lights;iphone 11 pro case eevee; — colorado 2005 door —iphone 11 pro case hetalia; colorado 2005 accessoriesiphone 11 pro case sailor moon

Source iphone 11 pro case snow leopard — colorado headlights —

Target iphone 11 pro case tiger — colorado 2005 headlights —

Rewritten

iphone 11 pro case disney 0.497 2005 colorado headlights 0.566
iphone 11 pro case sailor moon 0.492 colorado headlights 2005 0.458
iphone 11 pro case harry potter 0.445 colorado headlights led 0.357

iphone 11 pro case 0.440 colorado headlights assembly 0.301
iphone 11 pro case cute 0.419 colorado tail lights 0.289

iphone 11 pro case leopard 0.391 colorado headlights housing 0.237
iphone 11 pro case clear 0.379 colorado led headlights 0.234

iphone 11 pro case disney princess 0.372 2004 colorado headlights 0.230
iphone 11 pro case pink 0.364 colorado 2004 headlights 0.214

iphone 11 pro case totoro 0.353 colorado headlights 2004 0.208

However, by looking at session histories, we find
that all the previous searches are related to auto-
mobiles (e.g., dodge and mopar), and therefore the
query should be rewritten to “dodge posters”. Our
model successfully captures this pattern. Notice
that the rewritten query without leveraging context
does not match the user’s intent.

The second example is keyword refinement. In
the example, by looking at the history searches, it
is obvious that the customer wishes to find phone
cases, instead of phones. However, this intent is im-
possible to capture by using only the source query.
Our model automatically adds the keyword “case”
to the source query and matches the target query.
On the other hand, without the context information,
the rewritten result is not satisfactory.

⋄ Diversity of query generation Table 3 demon-
strates two examples. In the first example (the left
three columns), notice that our model can grep in-
formation from history queries, e.g., “iphone 11
case sailor moon”, and can delete keywords that
are deemed insignificant or too restrictive, e.g.,
“iphone 11 case leopard” instead of “snow leop-
ard”. Also, our model can effectively capture do-
main information. For example, some of the history
query keywords (e.g., pokemon, eevee) are often
described as “cute”, and our model recommends
this keyword. All the history keywords are from
Japanese anime series, therefore our model sug-
gests another popular character, “totoro”. Addition-
ally, the “disney” and “disney princess” keywords
are generated based on the interest to virtual char-

acters. Finally, notice that the likelihood of all
the suggested queries is similar, which means our
model cannot single out a significantly better query
than the others. Therefore our model generated a
diverse group of queries.

In the second example (the right two columns),
the generated query successfully matches the target
query. Note that the top two generated queries have
high likelihood, and the likelihood decreases dras-
tically as the suggested queries become more and
more implausible. In this example, the first query
is 172% more likely than the tenth query, whereas
this number is only 41% in the previous example.
This suggests that our model can differentiate be-
tween good quality suggestions and poor quality
alternatives.

6 Conclusion and Discussion

We propose an end-to-end context-aware query
rewriting model that can efficiently leverage user’s
history behavior. Our model infers a user’s pur-
chase intent by modeling her history searches as
a graph, on which a graph attention mechanism
is applied to generate informative session repre-
sentations. The representations are subsequently
decoded into rewritten queries. Our proposed ses-
sion graph can be extended to incorporate more
information. Here, we present a bipartite graph,
which contains words and queries. Additional com-
ponents can be added as extra layers. For example,
we can add product information such as categories
to the session graph, which will create 3-partite
session graphs (word, query and product).
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A Transformer Encoder Details

For a given source query, we first pad it with a
<boq> (begin-of-query) token. Then, we pass the
padded query through a token embedding layer
and a position embedding layer, and we obtain
Ys ∈ RLs×d. Here Ls is the length of the padded
source query, and d is the embedding dimension.
Note that the position embedding can either be a
sinusoidal function or a learned matrix.

After the initial embedding layers, we pass Ys
through the self-attention module. Specifically, we
compute attention output S by

S = Softmax

(
QKT

√
dk

V

)
,

where Q = YsWq, K = YsWk, V = YsWv.

(4)

Here Wq,Wk ∈ Rd×dK , Wv ∈ Rd×dV are learn-
able weights. In practice we use multi-head self-
attention to increase model flexibility. To facil-
itate this, different attention outputs S1, · · · , SH

are computed using different sets of weights
{W h

q ,W
h
k ,W

h
v }Hh=1. The final attention output is

S = [S1, S2, · · · , SH ]Wo, (5)

where Wo ∈ RHdV ×d is a learnable aggregation
matrix. The attention output is then fed through a
position-wise feed-forward neural network to gen-
erate encoded representation Hs ∈ RLs×d for the
source query:

Hs = ReLU
(
S W 1

FFN
+ b1

)
W 2

FFN
+ b2. (6)

Here {W 1
FFN

,W 2
FFN

, b1, b2} are weights of the neu-
ral network. Equations 4, 5, and 6 constitute as
an encoder block. In practice we stack multiple
encoder blocks to build the Transformer encoder,
as demonstrated in Figure 2.

For the history queries in this session, we also
pad them with <boq> tokens. Suppose that we
have Nh padded history queries (recall a session
contains multiple history queries), and their respec-
tive length is denoted by L1

h, · · · , L
Nh
h . We pad the

history queries to the same length, and we obtain
the history query matrix Xh ∈ RNh×Lh , where
Lh = max{L1

h, · · · , L
Nh
h }. Then, following the

same procedures as encoding the source query, we
pass Xh through the embedding layers and the en-
coder blocks, after which we obtain the history
query representations Uh ∈ RNh×Lh×d.

B Experiments Details

B.1 Baselines

The baselines are split into two groups: without
pre-training and with pre-training. For the w/o
pre-training group, we build the following models:

⋄ Learning to Rewrite Queries (LQRW) (He et al.,
2016b) is one of the first methods that applies deep
learning techniques to query rewriting. Specif-
ically, the LQRW model combines a sequence-
to-sequence LSTM (Hochreiter and Schmidhuber,
1997; Sutskever et al., 2014) model with statisti-
cal machine translation (Riezler and Liu, 2010)
techniques to generate queries. The candidates
are subsequently ranked using hand-crafted feature
functions.

⋄ Hierarchical Recurrent Encoder-Decoder
(HRED) (Sordoni et al., 2015) employs a hierarchi-
cal recurrent neural network for generative query
suggestion. The model is a step forward from its
predecessors in that HERD is sensitive to the order
of queries and the method is able to suggest rare
and long-tail queries.

⋄ Transformer (Vaswani et al., 2017) has achieved
superior performance in various sequence-to-
sequence (seq2seq) learning tasks. To adopt Trans-
former to query rewriting, we treat the source query
as the source-side input, and the target query as the
target-side input. Then we train a model using only
these constructed inputs, similar to machine trans-
lation. Note that this setting resembles most of the
existing works. We adopt the Transformer-base ar-
chitecture, which contains about 72M parameters.

⋄ MeshTransformer (Chen and Lee, 2020) is a
variant of MeshBART, where the pre-trained BART
module is replaced by a Transformer and the model
is trained from scratch. The method concatenates
history queries to the source query in order to inte-
grate contextual information. See the MeshBART
method below for details.

⋄ Transformer+Aggregation is the model where
we use the aggregation network to encode history
search queries, i.e., without the graph attention
mechanism. Specifically, we first obtain the rep-
resentations of the source query and the history
queries from the Transformer encoder. Then, we
extract information related to the source query from
the history representations using an aggregation
network. Such information is added to the source
representation, and we follow a standard decoding
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procedure using these two factors. See Section 4.3
for details.

The second group of methods adopt pre-trained
language models for query rewriting.

⋄ BART (Lewis et al., 2020) is a pre-trained
seq2seq model. We adopt this particular model
instead of, for example, BERT (Devlin et al.,
2019) or GPT-2 (Radford et al., 2019), because
we treat query rewriting as a seq2seq task. And
the aforementioned architectures have either the
Transformer encoder (e.g., BERT) or the Trans-
former decoder (e.g., GPT-2), but not both. In our
experiments, BART is fine-tuned in a setting sim-
ilar to training the Transformer model. We adopt
the BART-base architecture in all the experiments,
which contains about 140M parameters.

⋄ MeshBART (Chen and Lee, 2020) is a BART-
based model that first concatenates the history
queries to the source query, and then feeds the
concatenated input to a pre-trained BART model
for query generation. Note that the original method
requires click information. We remove this com-
ponent as the proposed method do not need such
data.

⋄ BART+Aggregation is similar to Trans-
former+Aggregation, except we replace the Trans-
former backbone with the pre-trained seq2seq
BART model.

B.2 Evaluation Metrics

We use the BLEU score (Post, 2018) as an eval-
uation metric. This metric is constantly used to
evaluate the quality of translation. We adopt it here
because similar to machine translation, we formu-
late query rewriting as a seq2seq learning task. The
correlation between the rewritten query and the tar-
get query reflects the model’s ability to capture the
user’s purchase intent.

The MRR metric describes the accuracy of the
rewritten queries. For each source query in the test
set, we generate 10 candidate queries r1, · · · , r10.
Then we search each of these candidates using our
production search engine, and we obtain the re-
turned products, of which we only keep the top
32. Recap that we know the actual product that
the customer purchased. The next step is to cal-
culate the reciprocal of the actual product’s rank
for each of r1, · · · , r10. For example, suppose
for r1, the actual purchased product is the sec-
ond within the 32 returned products, then the score

for r1 is score1 = 1/2 = 0.5. The score of the
rewritten queries r1, · · · , r10 is then defined as
max{scorei}10i=1. Finally, the score for the query
rewriting model is the average over all the source
query scores.

We also use HIT@1 and HIT@16 as evaluation
metrics. The HIT@16 metric is the percentage
that the actual product is ranked within the first
16 products (the first page) when we search the
rewritten query. And the HIT@1 metric is similarly
defined.

B.3 Training Details

We use the Fairseq (Ott et al., 2019) code-base with
PyTorch (Paszke et al., 2019) as the back-end to
implement all the methods. All the experiments are
conducted using 8 NVIDIA V100 (32GB) GPUs.

For training a Transformer model from scratch,
we adopt the Transformer-base (Vaswani et al.,
2017) architecture. We use Adam (Kingma and
Ba, 2015) as the optimizer, and the learning rate
is chosen from {3 × 10−4, 5 × 10−4, 1 × 10−3}.
We use 4 heads for the multi-head graph attention
mechanism, where the head dimension is set to be
128 (note that the Transformer-base architecture
has embedding dimension 512).

For fine-tuning a BART model, we adopt the
BART-base (Lewis et al., 2020) architecture. We
use AdamW (Loshchilov and Hutter, 2019) as the
optimizer, and the learning rate is chosen from
{3 × 10−5, 5 × 10−5, 1 × 10−4}. Similar to the
training from scratch scheme, we adopt 4 heads,
each with dimension 192, for the graph attention
mechanism.

For both training-from-scratch and fine-tuning,
please refer to1 Ott et al. (2019) for more de-
tails such as pre-processing steps and other hyper-
parameters.

C More Experimental Results

C.1 Analysis

⋄ BART vs. Transformer Even though BART
contains twice the number of parameters compared
with Transformer (140M vs. 70M), models fine-
tuned on BART yield lower MRR and HIT metrics
(Table 1). One reason is that publicly available pre-
trained models are pre-trained on natural language
corpus, but queries are usually short and have dis-
tinct structures. This raises doubts on whether cur-

1https://github.com/pytorch/fairseq/blob/
master/examples/translation/README.md
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rent pre-trained models are suitable for the query
domain. Indeed, the rich semantic information en-
ables a much better BLEU score (32.9 vs. 28.2), but
the MRR and HIT metrics suggest the fine-tuned
models’ unsatisfactory performance.

Another reason is that in a conventional fine-
tuning task, a task-specific head is appended to
the pre-trained model, and the head usually con-
tains only a small number of parameters. But in
the query rewriting task, both the aggregation net-
work and the graph attention mechanism contain
a significant amount of parameters (about 10%
of BART). This is problematic because in fine-
tuning, the learning rate is usually small since
nearly all the weights are supposed to be mean-
ingful and should not change much. Yet, in our
case, we need to properly train a large amount of
randomly initialized parameters. Moreover, the
aggregation network and the GAT are added in-
side the pre-trained model (more specifically, they
are added to the BART encoder) instead of ap-
pended after BART. Essentially this nullifies the
pre-trained parameters on the decoder side, impos-
ing additional challenges to the fine-tuning task.
Nevertheless, the BART+Aggregation model still
outperforms the vanilla BART model, and the per-
formance is further improved by adding the GAT
(i.e., BART+Aggregation+Graph).

⋄ Training from scratch vs. fine-tuning Figure 5
plots the training and validation perplexity (ppl)
of the training-from-scratch approach and the fine-
tuning approach. From Figure 5a and Figure 5b, we
can see that by employing the aggregation network,
Transformer+Aggregation fits the data better and
exhibits enhanced generalization. The training and
validation ppls are further significantly improved
by incorporating the graph attention mechanism,
i.e., by using Transformer+Aggregation+Graph,
we achieve even better performance.

Notice that in Figure 5c, BART+Aggregation out-
performs BART+Aggregation+Graph in terms of
training ppl, which is different from the training-
from-scratch approach. As indicated by Figure 5d,
BART+Aggregation shows clear sign of over-fitting.
This is because even though pre-trained language
models contain rich semantic information, much of
it is considered “noisy” for query rewriting. Thus
feature enhancement initiated by the graph atten-
tion mechanism is needed.

⋄Model size vs. performance Figure 6 illustrates

the relation between model size and performance,
where we decrease the embedding dimension (cor-
respondingly the FFNs’ hidden dimensions) and
the number of layers. We can see that even with
1/8 of the parameters, model performance does
not decrease much. Moreover, our model is more
than 20% smaller than a BERT-base model (85M
vs. 110M), rendering online deployment more than
possible.

⋄ Query length vs. performance Figure 7 demon-
strates model performance regarding length of the
instant query. We can see that the BLEU score grad-
ually decreases when the length increases. This is
because long queries are often very specific (e.g.,
down to specific models or makes), making the
rewriting task harder.

D Detailed Algorithm
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(a) Transformer (train). (b) Transformer (valid). (c) BART (train). (d) BART (valid).

Figure 5: Training and validation perplexity using Transformer and BART as backbone.

Figure 6: Model performance (in BLEU scores) vs. model size. The
model size (in millions of parameters) are shown above the bars.

Figure 7: Query length vs. rewrit-
ing quality.

Algorithm 1: Context-aware query rewriting.
Input: D: dataset containing sessions; Initial parameters for the Transformer encoder and the

Transformer decoder; Initial parameters for two graph attention mechanism (Eq. 2):
GATt→q, GATq→t; Initial parameters for the aggregation network (Eq. 3); K: the number
of updates on the session graph; N : the number of rewritten queries for each session.

Output: A list that contains N generated queries for each session in the dataset.
Rewritten results: rewritten = {};
for each session in D do

/* Encode input data. */
Compute source representation Hs and history representation Uh using the Transformer

encoder;
/* Apply graph attention. */
Obtain initial representations G0t , G0q ;
for k = 1 · · ·K do
Gkt = GATq→t(Gk−1

q ,Gk−1
t );

Gkq = GATt→q(Gkt ,Gk−1/2
q );

end
Set history representation {hi}Nt+Nh

i=1 = GKt ∪ GKh ;
/* Apply aggregation network. */

Compute session representation Hsess from Hs and {hi}Nt+Nh
i=1 using Eq. 3;

/* Generate rewritten queries. */
Generate N rewritten queries {qi}Ni=1 using the Transformer decoder and a beam search

procedure;
rewritten← rewritten ∪ {qi}Ni=1;

end
Output: The rewritten queries.
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Abstract

We train language models (LMs) with fed-
erated learning (FL) and differential privacy
(DP) in the Google Keyboard (Gboard). We
apply the DP-Follow-the-Regularized-Leader
(DP-FTRL) (Kairouz et al., 2021b) algorithm
to achieve meaningfully formal DP guarantees
without requiring uniform sampling of client
devices. To provide favorable privacy-utility
trade-offs, we introduce a new client partici-
pation criterion and discuss the implication of
its configuration in large scale systems. We
show how quantile-based clip estimation (An-
drew et al., 2021) can be combined with DP-
FTRL to adaptively choose the clip norm dur-
ing training or reduce the hyperparameter tun-
ing in preparation for training. With the help of
pretraining on public data, we train and deploy
more than twenty Gboard LMs that achieve
high utility and ρ−zCDP privacy guarantees
with ρ ∈ (0.2, 2), with two models addition-
ally trained with secure aggregation (Bonawitz
et al., 2017). We are happy to announce that all
the next word prediction neural network LMs
in Gboard now have DP guarantees, and all fu-
ture launches of Gboard neural network LMs
will require DP guarantees. We summarize our
experience and provide concrete suggestions
on DP training for practitioners.

1 Introduction

FL and Gboard LMs. In cross-device federated
learning (FL), client devices collaboratively train a
model without directly exchanging their local data
(Kairouz et al., 2019). Google Keyboard (Gboard)
was an early adopter of FL to train models that im-
prove the user experience, following data minimiza-
tion principles (Bonawitz et al., 2021) to protect
users’ privacy from some risks. Language mod-
els (LMs) are trained with FL to support various
features in Gboard, including Next Word Predic-
tion (NWP), Smart Compose (SC), and On-The-
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Figure 1: Gboard features supported by language mod-
els: NWP for next word, SC for inline suggestion, and
OTF for candidates re-ranking.

Fly rescoring (OTF). As illustrated in Fig. 1, NWP
(Hard et al., 2018) uses an LM to suggest a word,
which is triggered after a previous word is com-
mitted; SC provides longer inline suggestions to
accelerate typing, which can be triggered per char-
acter when the confidence is high; OTF is used
to re-rank the candidate words generated during
typing before a word is committed.
Models, metrics and tasks. We train LMs
with the same neural network (NN) architecture
described in (Hard et al., 2018): a one-layer
LSTM/CIFG of 670 hidden neurons, with in-
put and output word-based embeddings of dimen-
sion 96. OTF LMs use a larger vocabulary (∼
30K words) compared to NWP LMs (∼ 10–20K
words); the number of parameters for models with
a 10K/20K/30K vocabulary is 2.4M/4.4M/6.4M,
respectively. SC is a downstream task that reuses
NWP LMs without any retraining from data. We
train NWP LMs and OTF LMs from populations of
devices categorized by language and location. For
example, en-US NWP denotes the task of training
NWP model on data generated by devices using
English in the United States.

Federated Averaging (FedAvg) (McMahan et al.,
2017) and variants (Wang et al., 2021) are pop-
ular FL training algorithms in practice. In each
communication round, the server will orchestrate
a small subset of client devices for training and
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Figure 2: System overview of federated learning of Gboard language models with differential privacy and secure
aggregation.

aggregate the resulting model deltas to update the
global model. In a successful round, the system
guarantees the number of clients participating in
training is at least as large as the configured report
goal (Bonawitz et al., 2019). A model is typically
tested and deployed after training for several thou-
sands of rounds. Top-1 in-vocab accuracy is used
to track the utility during training and additional
metrics for A/B testing are introduced in Sec. 3.

DP and DP-FTRL. Differential privacy (DP) can
be combined with FL to provide a formal guar-
antee that the trained model will not memorize
specific users’ data, which provides stronger pri-
vacy protection by executing data anonymization
principles (Bonawitz et al., 2021; Wang et al.,
2021). Ramaswamy et al. (2020) applied DP-
FedAvg (McMahan et al., 2018; Geyer et al.,
2017), a variant of DP-SGD (Abadi et al., 2016)
for user/client-level DP, to train production LMs
in FL. Ramaswamy et al. (2020) demonstrated
anonymization via empirical auditing techniques
by Carlini et al. (2019) but did not provide a for-
mal DP guarantee. Achieving a strong formal DP
guarantee for DP-FedAvg would require privacy
amplification-by-sampling, which necessitates sam-
pling clients uniformly at random on each round.
However, a cross-device FL system has limited
control over client sampling as devices have to
satisfy local criteria such as being charging and
connected to an unmetered network to be eligible
for participation (Bonawitz et al., 2019; Balle et al.,
2020). In contrast, we deploy a recent algorithm,
DP-FTRL (Kairouz et al., 2021b), allowing us to
achieve strong privacy and utility for production
models without uniform sampling assumptions.

Contributions. We discuss our strategy and expe-
rience of training Gboard LMs with FL and DP. We
introduce an algorithm that enables adaptive clip-
ping (Andrew et al., 2021) in DP-FTRL (Kairouz
et al., 2021b) (Sec. 2.1), which can reliably esti-
mate the clip norm to reduce hyperparameter tun-
ing. We discuss the impact of scaling up computa-
tion and limiting client participation (Sec. 2.2), and
identify the algorithm and system configurations
for the regime of strong privacy and utility. We
also successfully apply pre-training (Sec. 2.3) to
improve privacy and utility, which is (to the best of
our knowledge) the first time pretraining is applied
to training a DP model directly from users’ data.

We combine DP-FTRL with secure aggrega-
tion (SecAgg) to further strengthen the data min-
imization properties of our approach (Sec. 2.4).
Fig. 2 provides a system overview of the techniques
for training Gboard language models with feder-
ated learning and differential privacy. Finally, we
summarize concrete suggestions for practitioners
training differentially private models to deploy in
production in (Sec. 2.5), and present and analyze
twenty Gboard LMs trained with formal DP guar-
antees (Sec. 3). We are happy to announce that
all the next word prediction neural network LMs
in Gboard now have DP guarantees, and all future
launches of Gboard neural network LMs will re-
quire DP guarantees.

2 DP FL in Practice

2.1 DP-FTRL and adaptive clipping
As described in Alg. 1, we apply DP-FTRL in FL
by modifying the FedAvg algorithm: clip the model
update ∆, and add noise when updating the global

630



Algorithm 1 Federated DP-FTRL with adaptive clipping

input : report goal m, learning rate for model weights on client ηc and on server ηs, momen-
tum β = 0.9, noise multiplier for model delta z∆, total number of rounds T , restart rounds
R = {128 + 1024i, i = 0, 1, . . .}, quantile based norm estimation C0 , target quantile γ = 0.5 ,

learning rate for norm ηγ = 0.2 , noise stddev for clip estimation σb = m/20

Initialize model θ0, momentum buffer ∆̄0 = 0,
clip norm Cθ = C0

Initialize tree Tθ with z∆, Cθ, and Tb with σb
for each round t = 0, 1, 2, . . . , T do
Qt ← (at least m users for this round)
for each user i ∈ Qt in parallel do

(∆t
i, b

t
i)← ClientUpdate(i, θt, ηc, Cθ, C

t)
//Update model weights with noise addition
∆̃t = 1

mPrivateSum
(
Tθ,

∑
i∈Qk ∆k

i , k ∈ [0, t]
)

∆̄t = β∆̄t−1 + ∆̃t, θt+1 ← θ0 + ηs∆̄
t

//Estimate quantile-based norm

b̃t = 1
mPrivateSum

(
Tb,
∑

i∈Qk b
k
i , k ∈ [0, t]

)

Ct+1 ← C0 · exp
(
−ηγ(b̃t − tγ)

)

//Restart and adjust clip norm
if t ∈ R then
Cθ ← Ct+1

Restart tree Tθ and Tb with updated Cθ

function ClientUpdate(i, θ0, η, Cθ, C)
θ ← θ0

G ← (user i’s local data split into batches)
for batch g ∈ G do
θ ← θ − η∇`(θ; g)

∆← θ − θ0

b← I||∆||≤C

∆′ ← ∆ ·min
(

1, Cθ
||∆||

)
//Clipping

return (∆′, b)

0 500 1000 1500 2000 2500
Rounds

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Ev
al

 A
cc

Adaptive
Fixed

Pretrain
Acc-0.16

(a) Evaluation accuracy

0 500 1000 1500 2000 2500
Rounds

1
2
3
4
5
6
7
8

Cl
ip

 N
or

m

Adaptive
Estimated

Fixed

(b) Clip norm

Figure 3: DP training of the en-GB NWP model. Adap-
tive clipping performs similar to fixed clipping, while
achieves slightly weaker guarantees. Pre-training sig-
nificantly reduces the number of rounds to reach the
utility target, and achieves stronger guarantees.

model. Two additional hyperparameters are intro-
duced for DP: the clip norm C, which bounds the
norm of ∆, and the noise multiplier z, which de-
termines the standard deviation zC for the added
Gaussian noise. We discuss clip norm in this sec-
tion and defer the discussion of noise multiplier and
other privacy related hyperparameters to Sec. 2.2.

Andrew et al. (2021) introduced an adaptive clip-
ping method that automatically adjusts the clip
norm each round by privately estimating the norm
of the model delta at a targeted quantile. How-
ever, adaptive clipping cannot be directly applied
to DP-FTRL as the tree-based noise addition in DP-
FTRL assumes a fixed clip norm across rounds. We
integrate adaptive clipping in DP-FTRL through

restarts, where the quantile estimate Ct is continu-
ally tracked but only becomes an active clip norm
Cθ upon tree restarting. As both the aggregated
model delta ∆̃t and the quantile b̃t use tree-based
noise, we can directly use the privacy accounting
in (Kairouz et al., 2021b) by applying the noise
transformation in Thm. 1 in App. A.

In practice, Alg. 1 slightly inflates the noise for
the model from zC to z∆C and requires restarts
that complicate the privacy accounting for DP-
FTRL. Moreover, we find that a fixed clip norm can
achieve comparable or slightly better model utility,
and is more robust in experiments with large report
goal. For example, adaptive clipping for the de-DE
NWP model experiences catastrophic failure and
makes no progress in the first 1000 rounds.

Nevertheless, adaptive clipping can reduce hy-
perparameter tuning for many tasks when privacy
budget allows. Fig. 3 shows the evaluation accuracy
and corresponding clip norm for DP training the en-
GB NWP model with report goal 6500 and noise
multiplier 7. The adaptive clip curve starts from a
small initial clip norm to avoid catastrophic failure
due to large initial noise and eventually catches up
on accuracy. The estimated clip norm (quantile
γ = 0.5) stabilizes and we can fix the clip norm
to 5 based on the estimated value. The clip norm
is relatively insensitive, especially when tuning to-
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gether with the server learning rate. However, clip
norm can have a wide tuning range across tasks
and models, and quantile-based estimation is still
useful for estimating a clip norm to be fixed.

2.2 DP parameters and system configuration

The privacy guarantees of DP-FTRL (Kairouz et al.,
2021b) are affected by several factors: noise multi-
plier z, number of total rounds T , max participation
(MaxP) of a client, and min separation (MinS) of
rounds between the participation of the same client.
The noise multiplier is a conventional parameter
for controlling privacy-utility trade-off: large noise
achieves strong privacy guarantees but can poten-
tially hurt the utility. Achieving the same utility
with smaller rounds T can significantly improve
the privacy guarantees. Next, we discuss the ef-
fect of MaxP and MinS, and the privacy-utility-
computation trade-off for system configuration.
Client participation. DP-FTRL achieves strong
privacy if each client only participates once dur-
ing training, or the number of client participation
is limited when a client can participate multiple
times. Two parameters are introduced to charac-
terize client participation for DP-FTRL: the maxi-
mum participations (MaxP) of a client in all train-
ing rounds and the minimum round separation
(MinS) between any single client’s two participa-
tions. MaxP and MinS are correlated as MaxP
is upper bounded by rounds T divided by MinS.
In general, for fixed rounds T , decreasing MaxP
and increasing MinS can lead to stronger privacy
guarantees without changing utility. In addition,
Cho et al. (2023) suggests potential advantage of
increasing MinS for utility.

When using the worst-case MaxP estimated by
rounds T divided by MinS, Fig. 4c shows increas-
ing MinS can achieve stronger privacy measured
by smaller zCDP values. However, the maximum
MinS is limited by the population size divided by
the number of clients per round lower bounded by
the report goal. For example, when the report goal
is 6500 for small population of around 106, MinS
has to be smaller than 153 rounds, so strong privacy
guarantees are difficult to achieve when training for
3000 rounds. While we cannot measure the precise
population size in the FL system due to client dy-
namics, we estimate the population size of various
Gboard tasks as ranging from 0.8 million to 16.6
million in Tab. 1.
Report goal. We study report goal for privacy-

computation trade-off based on a hypothesis used
in (McMahan et al., 2018; Kairouz et al., 2021b;
Xu et al., 2022): for sufficiently large data, the
utility is approximately non-decreasing if the noise
multiplier and clients per round (lower bounded
by report goal) proportionally increase. We pro-
vide empirical justification to this hypothesis by
comparing the evaluation accuracy of two training
runs: one with a report goal of 500 and noise mul-
tiplier of 0.54, versus another of report goal 6500
and noise multiplier 7. On more than three Gboard
language tasks, we observed that the final utility
remains similar, or slightly better for larger report
goals. Moreover, using a larger report goal speeds
up learning at the beginning of training. Based on
the hypothesis, we plot Figs. 4a and 4b by linearly
increasing report goal and noise multiplier, and
assuming the MinS is set to the maximum possi-
ble value (population divided by report goal) for
strong privacy. Though a large report goal can
limit the MinS, it generally leads to stronger pri-
vacy guarantees for reasonable population size and
total rounds.
System configuration. According to Figs. 4a
and 4b, we choose a large report goal of 6500 sup-
ported by the large scale FL systems and aim for
maximum MinS for DP-FTRL. To control MinS in
practice, a timer is introduced on clients in the FL
system so that a client will only become eligible
to participate in training (again) after a certain pe-
riod of time has passed. McMahan and Thakurta
(2022) used a timer period of 24 hours to train
the es-ES NWP model, which led to an observed
MinS of 313. The MinS of es-ES is upper bounded
by 4.21M/6500 ∼ 647 and can be potentially im-
proved by increasing the timer period. We increase
the timer period in the unit of 24 hours due to the
uneven diurnal participation pattern (Yang et al.,
2018; Zhu et al., 2022), and generally observe that
MinS can proportionally increase with the timer pe-
riod before reaching the possible maximum. How-
ever, there are many factors in the FL system that
may affect the wall clock training speed, which
makes it challenging to optimize the timer period
to maximize MinS.

2.3 Public pretraining

We explore pretraining on public data for produc-
tion models, which were shown to substantially
improve model utility in DP simulations (Li et al.,
2021; De et al., 2022; Xu et al., 2022; Wang et al.,
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Figure 4: The effect of population size, number of rounds, report goals, and min separation on DP-FTRL privacy
guarantees. For a fixed number of rounds to achieve utility target, increasing report goal and min separation can
achieve stronger guarantees measured by smaller zCDP.

2023). We pretrain a model for each Gboard lan-
guage task using the multi-lingual C4 dataset (Raf-
fel et al., 2019; Xue et al., 2020) collected from
public web pages. Fig. 3a shows that pretraining
can reduce ∼ 1000 rounds to reach a given utility
threshold under the same noise multiplier, which
can significantly improve the privacy guarantees as
shown in Fig. 4.

We additionally observe that: (1) it is challeng-
ing to fine-tune from a pretrained model when the
word embeddings are shared for input and output
to reduce the parameter size of LMs for on-device
deployment; (2) the accuracy may decrease in the
first a few rounds of fine-tuning; (3) pretraining
helps with diminishing marginal returns: at some
point further pretraining does not necessarily im-
prove the final performance. Therefore, we use
models with separate input and output embeddings
and pretrain with half of the C4 dataset for Gboard
LMs.

2.4 Combining with secure aggregation

Secure aggregation (SecAgg) (Bonawitz et al.,
2017) ensures that the central server can only ac-
cess the aggregated update from a large set of
clients, preventing inspection of individual client
updates. We combine SecAgg and DP-FTRL to
provide strong data minimization and anonymiza-
tion protection (Bonawitz et al., 2021). To avoid
the suboptimal privacy cost from the `2 norm in-
crease of the discretized vector in SecAgg, we
follow the protocol of (Kairouz et al., 2021a) for
discretizing, flattening, and modularly clipping1

the client model updates—this introduces mini-
mal norm inflation later accounted in DP-FTRL.
The large report goal requirement for strong DP

1In our current implementation, there is a very small
chance that modular operator in SecAgg will inflate the sensi-
tivity. The problem will be fixed by an additional element-wise
clipping of the flattened vector.

guarantees is challenging for SecAgg in practice,
which requires a slightly different system config-
uration. The SecAgg training speeds we observe
are still notably slower, and we leave for future
work potential improvements such as compression
for communication efficiency (Chen et al., 2022),
new DP methods to reduce report goal (Choquette-
Choo et al., 2022), and embedding compression to
reduce round time (Shu and Nakayama, 2017).

2.5 Recommended strategies and practices

We summarize our strategy for training Gboard
LMs with DP. (1) Pre-train the model on public
datasets if possible. (2) Choose the maximum noise
multiplier that meets the utility target based on
small report goal simulation experiments on pub-
lic datasets that is similar to the production task.
(3) Based on the target number of rounds and esti-
mated population, linearly increase the report goal
and noise multiplier to meet the privacy target, and
choose a large report goal supported by the system.
If the privacy target is unachievable, fix the report
goal to maximum, and increase the noise multi-
plier to target on a model with suboptimal utility.
(4) Estimate the possible maximum MinS based on
chosen report goal and estimated population, and
configure the timer period to approach the MinS;
use previous experience of model training speed if
applicable. (5) If the hyperparameters (e.g., learn-
ing rates) are known from previous experiments
or simulation on public datasets, apply DP-FTRL
with adaptive clipping (Alg. 1) without manual tun-
ing to try meet the privacy and utility goals. Note
that Alg. 1 needs to account the noise inflation and
restart for privacy guarantees. (6) If Alg. 1 fails or
stronger privacy and utility are desirable, we can
run a few small report goal experiments with Alg. 1
that tune quantile γ and server learning rate ηs, se-
lect the best learning rate, and fix the clip norm
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based on the estimation; and run DP-FTRL with
large report goals. (7) SecAgg can be used for all
experiments, and precise MaxP and MinS are com-
puted by post-processing for privacy accounting.

3 Deploying DP LMs

A/B test metrics. We introduce metrics in A/B test
to measure the utility of Gboard LMs. (1) Picked
Rate (PRate): the ratio of picked candidates among
the NWP predictions; or SC predictions when it is
triggered. (2) Accuracy (Acc): the ratio of candi-
dates matching the final committed words among
the NWP model predictions. (3) Trigger Rate: the
ratio of words with SC triggered among all com-
mitted words, which is an important metric when
PRate is fixed. (4) Word Modified Ratio (WMR):
the ratio of words being modified during typing or
after committed; improvement is shown by reduc-
tion. (5) Word Per Minute (WPM): the number of
committed words per minute.
Privacy guarantees. Same as (McMahan and
Thakurta, 2022), the zero-one device neighbor-
ing relationship ((Kairouz et al., 2021b, definition
1.1)) is adopted for DP. For user’s with a single
device, device-level DP corresponds directly to
user-level DP. Our privacy guarantee holds for all
well-behaved clients during training, and we do
not account for privacy cost of modest amount of
hyperparameter tuning. DP is measured by the
zero-Concentrated DP (zCDP) (Bun and Steinke,
2016) guarantee that has been used by US cen-
sus bureau (US Census Bureau, 2021), and can be
easily converted to (ε, δ)-DP. We use the privacy
accounting in (Kairouz et al., 2021b, appendix D)
implemented in Tensorflow Privacy (TFP Authors,
2022), and follow the guidelines outlined in (Pono-
mareva et al., 2023, Sec. 5.3) to report detailed
narratives of privacy guarantees in App. C.
Experimental setup. We use the implementation
in App. B, and apply the strategy in Sec. 2.5 to
train Gboard LMs with DP. We present NWP re-
sults in Tab. 1, and OTF results in Tab. 2. As
Smart Compose (SC) reuses NWP LMs, SC has the
same DP guarantees as NWP models by the post-
processing property (Dwork et al., 2014). Follow-
ing es-ES NWP model in (McMahan and Thakurta,
2022), we choose noise multiplier 7 and report
goal 6500 based on simulation in (Kairouz et al.,
2021b) on public StackOverflow dataset (TFF Au-
thors, 2022b). We pretrain the models on public
datasets and configure the timer period to control

client participation, separately for different tasks.
We use DP-FTRL with adaptive clipping and small
report goal 500 to tune server learning rate and
estimate the clip norm. Interestingly, we observe
the learning rate and clip norm to be consistent for
various Gboard LMs, and tuning seems to be unnec-
essary. DP-FTRL with fixed clip and large report
goal is used to run the final model for deployment.
Result analysis. All NWP and OTF models in
Tabs. 1 and 2 are trained with stronger guarantees
(smaller zCDP) compared to zCDP > 2.6 used by
US Census Bureau (US Census Bureau, 2021). For
five NWP models in Europe (DE, GB, FR, IT, PT),
the DP NN models significantly improve the utility
compared to previous N-gram models. On en-US,
pt-BR and en-IN, DP NN models also achieve com-
parable, or slightly better utility compared to their
non-private versions as the strong models. SecAgg
is successfully applied to en-US and es-ES, and
can achieve good privacy-utility trade-off with a
smaller number of rounds, likely due to the system
configuration that results in more clients per round.
However, SecAgg is also notably slower. There is a
general positive correlation between the estimated
population size and privacy guarantees.

However, only a few tasks approach the pos-
sible maximum MinS for strong privacy guaran-
tees, which highlights the challenge of both estimat-
ing population and controlling client participation.
Longer training rounds are often used for NWP
(compared to OTF) as the non-private NN baselines
are strong, and to improve the downstream SC per-
formance. As an example, we train es-ES NWP
for 1900 rounds with a pretrained model, while the
previous models (McMahan and Thakurta, 2022)
is trained for 2000 rounds without pretraining. Our
es-ES NWP model slightly improves the utility
measured by PRate and Acc, and improves the
zCDP bound from 0.81 to 0.35 due to the larger
MinS by timer configuration. We highlight that
our es-ES model at round 1240 already achieves
similar NWP utility and a strong privacy guarantee,
but the utility of SC keeps improving with train-
ing. Compared to the previous model in (McMahan
and Thakurta, 2022), our model improves the SC
trigger rate by 4.23% at round 1240, and 9.51% at
round 1900.

4 Concluding remarks

We discuss our experience and summarize our strat-
egy for training production Gboard LMs with FL
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NWP Rounds
Utility Privacy Est.

Pop. (M) BaseModel
PRate(+%) Acc(+%) MinS/MaxP/Timer zCDP

de-DE 930 8.28 12.49 212 / 4/ 48h 0.48 3.24

N-gram
en-GB 980 3.26 7.72 226 / 4 / 72h 0.48 2.38
fr-FR 1280 3.78 8.50 180 / 5 / 72h 0.89 2.79
it-IT 1620 3.98 9.86 303 / 5 / 72h 0.71 3.32
pt-PT 530 3.99 7.82 54 / 8 / 48h 1.86 0.83
es-ES 1900 0.29 0.48 526 / 3 / 144h 0.35

4.21 zCDP 0.81
es-ES* 1750 0.32 0.56 349 / 4 / 144h 0.52
en-US 2800 -0.39 0.11 371 / 7 / 48h 1.31

13
No-DP NN

en-US* 1360 -0.30 0.15 622 / 2 / 144h 0.25
pt-BR 3600 0.18 0.29 909 / 3 / 144h 0.45 16.6
en-IN 1290 0.19 0.40 170 / 6 / 96h 1.14 7.72
es-MX 1980 -0.15 0.29 343 / 5 / 96h 0.64 9.96
es-AR 640 0.25 3.50 90 / 5 / 96h 0.84 4.09 Mix

Table 1: Live A/B tests of DP NWP models. Utility shows the improvement from previously deployed models;
privacy shows the key parameters and corresponding device-level zCDP; all models are trained by DP-FTRL with
report goal of 6500 and noise multiplier of 7; en-US*/es-ES* are trained with SecAgg in addition to DP; the base
model in AR is a mix of N-gram and No-DP NN models.

OTF Rounds
Utility Privacy

WMR(-%) WPM(+%) MinS/MaxP/Timer zCDP DP-ε(δ = 10−10)

de-DE 1170 1.01 0.59 206 / 5 / 48h 0.89 9.01
en-GB 1220 1.99 0.38 206 / 5 / 72h 0.89 9.01
es-ES 1280 1.03 0.60 197 / 5 / 48h 0.89 9.01
fr-FR 1300 1.83 0.67 290 / 4 / 72h 0.61 7.31
it-IT 1360 1.39 0.80 188 / 5 / 48h 0.89 9.01

ru-RU 870 0.72 0.34 327 / 3 / 48h 0.32 5.13
pt-PT 430 1.71 0.32 54 / 7 / 48h 0.99 9.56

Table 2: Live A/B tests of DP OTF models. Utility shows the WMR decrease and WPM increase; privacy shows
the key parameters and corresponding zCDP bound; all models are trained with DP-FTRL with report goal of 6500
and noise multiplier of 7; estimated population for ru-RU is 6.63M and other tasks can be found in Tab. 1.

and DP. We propose an algorithm applying adap-
tive clipping (Andrew et al., 2021) in DP-FTRL
(Kairouz et al., 2021b) to reduce the hyperparamter
tuning. We discuss the impact on privacy and utility
of several important factors: the clip norm, report
goal, client participation, and pre-training. Our
study highlights the importance of system and algo-
rithm co-design for differential privacy in practice,
the challenges of tuning in FL systems, and op-
portunities to improve the scalability and stability
of FL with DP and/or SecAgg. More than twenty
LMs with formal DP guarantees are trained and
launched to support Gboard NWP, SC, and OTF
features, including en-US and es-ES NWP models
additionally with SecAgg. Our experience demon-
strates the possibility of training DP models for
practical applications when a large scale system is
available for large scale data. Therefore, Gboard is

introducing and enforcing a new policy: DP has to
be applied in all future training and launching of
Gboard LMs.
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A Privacy accounting for adaptive clipping

Theorem 1 (Privacy Accounting for Adaptive Clipping (Andrew et al., 2021)). One step of DP-FTRL with
adaptive clipping using σb noise standard deviation on the clipped counts

∑
bti and z∆ noise multiplier

on the vector sums
∑

∆t
i is equivalent to one step of non-adaptive DP-FTRL with noise multiplier z if we

set z∆ =
(
z−2 − (2σb)

−2
)−1/2.

B Implementation.

We use the open source implementation of DP-FTRL in Tensorflow Privacy (TFP Authors, 2022) integrated
with Tensorflow Federated (TFF Authors, 2022a) as a DP aggregator for federated learning. Conceptually,
DP-FTRL adds noise to the summation of updates across rounds, i.e., PrivateSum in Alg. 1. Instead
of tracking the noise and summation separately, PrivateSum is implemented to only track the noise and
updates θ̃t−1 by adding the residual of noise between round t and round t− 1. This design makes it easy
to integrate with various optimizer choices, for example, momentum that is important for utility; and also
allows ephemeral access of model deltas without directly storing unnoised states.

C Reporting privacy guarantees

This section clarifies the nuances of the reported DP guarantees following the guidelines outlined in
(Ponomareva et al., 2023, Sec. 5.3)

1. DP setting. This a central DP guarantee where the service provider is trusted to correctly implement
the mechanism.

2. Instantiating the DP Definition
(a) Data accesses covered: The DP guarantee applies to all well-behaved clients2 in a single training

run. We do not account for hyperparameter tuning in our guarantees. Public multilingual C4
data (Raffel et al., 2019; Xue et al., 2020) is used for pre-training.

(b) Final mechanism output: Only the final model checkpoint is released for production launches,
however the mechanism’s output is technically the full sequence of privatized gradients, and
so the guarantee also applies at this level, and hence all intermediate models are protected
(including those sent to devices participating in federated learning).

(c) Unit of privacy. Device-level DP is considered, i.e., the notion of adjacency is with respect
to arbitrary training datasets on each client device, and the device might have an arbitrarily
large local dataset containing arbitrary training examples. For user’s with a single device, this
corresponds directly to user-level DP; for devices shared with multiple users, this provides
a stronger notion of DP than user-level; for a user with multiple devices that happen to both
participate in training the model, the notion is weaker, but group privacy can be used to obtain a
user-level guarantee.

(d) Adjacency definition for “neigbouring” datasets: We use the zero-out definition (Kairouz et al.,
2021b). This is a a special form of the add-or-remove definition, where neighboring data sets
differ by addition/removal of a single client. In the absence of a client at any training step, we
assume that the client’s model update gets replaced with the all zeros vector. This assumption
enforces a subtle modification to the traditional definition of the add/remove notion of DP which
allows neighboring data sets to have the same number of records.

3. Privacy accounting details
(a) Type of accounting used: Both ρ−zCDP (Bun and Steinke, 2016) accounting, and PLD account-

ing (DP Team, 2022) for (ε, δ)−DP are used.
(b) Accounting assumptions : Each client only participates limited times during the training, and

there are at least a min-separation number of rounds between two consecutive participation of a

2Clients that faithfully follow the algorithm including participation limits. Due to the design of the algorithm, a mis-behaved
client does not adversely affect the DP guarantee of any well-behaved clients.
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client, i.e., MaxP and MinS as discussed in Sec. 2.2. Client participation is enforced by a timer
on clients in the cross-device FL system.

(c) The formal DP statement: The launched Gboard LMs have ρ−zCDP range in (0.2, 2). We
also transform zCDP to (ε, δ)−DP by PLD accounting (DP Team, 2022): given δ = 10−10, the
smallest zCDP ρ = 0.25 corresponds to DP ε = 4.49; the largest zCDP ρ = 1.86 corresponds
to DP ε = 13.69.

(d) Transparency and verifiability: We open sourced our core implementation code in TensorFlow
Federated and Tensorflow Privacy. Key portions of the cross-device FL system are also open
sourced.
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Abstract

Most natural language tasks in the radiology
domain use language models pre-trained on
biomedical corpus. There are few pretrained
language models trained specifically for radi-
ology, and fewer still that have been trained
in a low data setting and gone on to produce
comparable results in fine-tuning tasks. We
present RadLing, a continuously pretrained
language model using ELECTRA-small (Clark
et al., 2020) architecture, trained using over
500K radiology reports, that can compete with
state-of-the-art results for fine tuning tasks in
radiology domain. Our main contribution in
this paper is knowledge-aware masking which
is a taxonomic knowledge-assisted pretraining
task that dynamically masks tokens to inject
knowledge during pretraining. In addition, we
also introduce an knowledge base-aided vocab-
ulary extension to adapt the general tokeniza-
tion vocabulary to radiology domain.

1 Introduction

Radiology reports are radiologist interpretations of
medical images such as X-Rays, CT, Ultrasound
and MRI scans. Healthcare professionals rely on
these reports to monitor and diagnose patients. A
radiology report typically includes several sections
(Kahn Jr et al., 2009), among which the most im-
portant ones are the following:

1. CLINICAL SECTION. This section describes
afflictions of the patient that prompted the
study, past diseases and symptoms.

2. COMPARISON. This refers to previous imag-
ing studies of the patient with which the radi-
ologist is comparing the current image.

3. FINDINGS. This section includes qualitative
and quantitative descriptions of abnormalities
if present, along with the radiologist’s diag-
nosis or differential diagnosis regarding the
observations.

4. IMPRESSIONS. This section summarises the
FINDINGS section. The radiologist notes ma-
jor abnormalities and their recommendations.

5. MISCELLANEOUS. This consists of other in-
formation like patient information, imaging
modality.

The post-BERT era (Devlin et al., 2018) of con-
textualized pretrained language models (PLMs)
has drastically reduced the need for expensive and
hard-to-find human annotated data for biomedi-
cal NLP. Biomedical PLMs are usually trained
on biomedical publications (Gu et al., 2020; Lee
et al., 2020; Gururangan et al., 2020; Peng et al.,
2019; Alsentzer et al., 2019; Lin et al., 2021; Yuan
et al., 2022; Luo et al., 2022) and have facilitated
drug discovery and healthcare informatics. Despite
sharing the same concepts, challenges remain in
adapting these models to radiology reports. This
is because the contents, context and structure of
biomedical publications are significantly different
from those of the radiology reports. Radiology re-
ports are terse, and concept-dense. It is shown that
models pretrained on radiology reports improve
performance in downstream clinical NLP tasks as
opposed to models pretrained on biomedical pub-
lications (Yan et al., 2022; Smit et al., 2020; Dai
et al., 2021). While this is encouraging, we iden-
tified some research challenges as well as encoun-
tered issues in adapting these PLMs to industrial
setting:
Research challenges. Random masking in masked
language modeling (MLM) is known to have con-
text understanding issues(Song et al., 2020). This
is exemplified in tasks like relationship extraction
(Jain et al., 2021) in radiology reports. Figure 1
shows an example sentence from CheXpert (Irvin
et al., 2019). The entities ‘Pneumonia’ and ‘lungs’
are related concepts, but current state-of-the-art
PLM-based methods fail to identify their relation
in the sentence.
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Figure 1: A difficult relationship extraction problem
in radiology report, taken from RadGraph relationship
extraction dataset (Jain et al., 2021). The shaded arrow
shows corresponding RadLex entities being connected
via the property Anatomical_site.

Industry adaptation issues. Industry adaptation
issues emanate from data and model sizes. Training
datasets available for industry are generally small.
Use of public datasets like MIMIC-IV (Johnson
et al., 2020) is not feasible for industry research due
to license restrictions. Large PLMs like PubMed-
BERT (109 million parameters) and best perform-
ing RadBERT variant(125 million) have latency is-
sues in industrial deployment, with low throughput
when deployed in low memory settings. Reduc-
tion in parameters by quantisation or distillation
reduces efficiency which is less than ideal.

We believe that context understanding problem
can be avoided with the help of domain knowl-
edge. In radiology domain, an excellent source
of domain knowledge is the taxonomical knowl-
edge base RadLex (Langlotz, 2006), which cu-
rates radiology lexicons. For the sentence in Fig-
ure 1, current PLMs misclassify the relationship.
However, a look at RadLex for the entity ’Pneu-
monia’ reveals its Anatomical_site property to be
’Lungs’. The RadLex property Anatomical_site
and the RadGraph relation ‘Located_at’ are anal-
ogous. Infusing this knowledge into PLMs adds
more context and domain knowledge and thus in-
creases prediction capabilities. In this paper, we
introduce RadLing, the first radiology language
model based on ELECTRA-small architecture with
13.7 million parameters trained with the help of
RadLex. Our major contributions in this paper are:

(a) Domain-specific vocabulary extension where
we have modified existing tokenization meth-
ods with help of RadLex,

(b) Knowledge base-aided continuous pretraining
objective that abets better context understand-
ing, and

(c) Smaller high performance radiology language
model.

2 Related Work

Radiology Report Understanding and Radiology
summarization are the most-addressed NLP tasks
that are related to the field of radiology. Radiology
summarization involves generating a summary of a
radiology report, which can help clinicians quickly
understand the key findings without having to read
the entire report (Karn et al., 2022). Radiology
Report Understanding involves extracting informa-
tion from a radiology report, such as the type of
imaging study, problem list generation, etc. This in-
formation can then be used to assist with diagnosis
and treatment planning.
Radiology report understanding using MLMs.
Yan et al. (2022) has used MLM with several pre-
trained PLMs like BERT, RoBERTa(Liu et al.,
2019) and Clinical BERT (Huang et al., 2019) to
train on 4.4 million radiology reports. These mod-
els show high performance in NER, RE, QA, abnor-
mal classification and summarisation. In contrast,
we aim to train with knowledge graph pretraining
objectives that might help learn with much smaller
dataset with 545k reports, and achieve comparable
results for NER, RE and Abnormals classification.
Other biomedical pretraining objectives. En-
tityBERT (Lin et al., 2021) used entity masking
pretraining objective to infuse domain knowledge.
This pretraining objective can mask context in ra-
diology reports, and hence we improved on this
by using RadLex. Section segmentation is another
radiology-specific pretraining objective proposed
in BiRadsBERT (Kuling et al., 2021) which we
have adapted to our work RadLing-SS. We plan
to use fewer sections in keeping with our training
dataset structure and test the architecture for our
training data.
Biomedical Knowledge Graph infusion. KeBi-
oLM (Yuan et al., 2021) applies text-only encod-
ing layer to aggregate entity representation. They
use MLM, entity detection and entity linking as
pretraining objectives and surpassed state-of-the-
art in biomedical NER and RE. BioKGLM(Fei
et al., 2021) has compiled large biomedical knowl-
edge graph as well as introduced a separate post-
training procedure between pretraining and fine-
tuning where they experimented several strategies
using knowledge embedding algorithms to inject
domain knowledge. In contrast, our work RadLing
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Figure 2: Schematic details of the methods outlined in this paper. We perform Preprocessing, followed by
tokenization, continuous pretraining and fine tuning. For continuous pretraining, this figure depicts the architecture
used for the three pretraining objectives: Masked Language modeling, Section segmentation and Knowledge-aware
masking. For fine-tuning, we have four tasks: Question Answering, Abnormal report classification, Named Entity
Recognition and Relationship Extraction. Radiology report picture courtesy: (Liang et al., 2022) Created with
BioRender.com

attempts to use existing radiology domain-specific
knowledge graph RadLex and pretraining objec-
tives that are better suited to the structure of train-
ing data.

3 Methods

Our methods consists of preprocessing, tokeniza-
tion and continuous pretraining. In addition, we
have outlined the downstream tasks we have used
to evaluate RadLing models. An overview of our
approach is presented in Figure 2.

3.1 Dataset

We have 545K reports in our training dataset, with
over 9.7M sentences and 87M words. The reports
have been collected from various medical institu-
tions in the United States and India. We have a high
volume of reports for radiograph images taken for
head and chest regions (see Appendix Figure 3).
We have a high volume of CT and Xray modalities

compared to MRI or Ultrasound (see Appendix Fig-
ure 5). We preprocessed the dataset using standard
techniques, which we describe in more detail in the
Appendix Section A.1.

3.2 Tokenization

We extend existing vocabulary for ELECTRA so that
meaningful tokens in radiology domain are added.
We have modified AVocaDo (Hong et al., 2021)
tokenisation to include only domain-specific words
in the new vocabulary. We perform Wordpiece to-
kenization on our corpus to form the set of new
tokens Tcorpus. The vocabulary of BERT contains
set of tokens TBERT . We find the tokens that be-
long to Tcorpus−TBERT and call them Tcandidate.
We query RadLex to check whether the tokens in
Tcandidate represent any concept in RadLex. In
case the word is present in RadLex, we append
the token to the new set of tokens Tnew. Since the
reports are anonymized, the names, dates and sev-
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eral other patient identifiers are replaced by fixed
special tokens, such as ‘[date]’, ‘[person]’, ‘[loca-
tion]’, ‘[time]’ and ‘[removed]’. We also include
these sets of tokens Ts into our vocabulary. Our
new vocabulary TRadLing = TBERT +Tnew +Ts.

The addition of significant number of tokens to
the existing vocabulary has been seen to introduce
catastrophic forgetting or overfitting of model to
the new tokens (Hong et al., 2021). We adopt the
regularization method in AVocaDo during continu-
ous pretraining to prevent these issues. Total loss
during training is a combination of the loss of the
pretraining objective and regularization term Lreg
(See Appendix Section A.2).

3.3 Continuous Pretraining objectives

We train RadLing using ELECTRA-small (Clark
et al., 2020). ELECTRA uses generator and dis-
criminator networks to perform ‘replaced token
detection’ (RTD) task. RTD is a pretraining task
where the model learns to differentiate between real
input tokens and plausible but artificially created re-
placements. The generator is a small MLM model
that replaces some corrupted (masked) input tokens
by sampling tokens from its vocabulary distribu-
tion. The discriminator (ELECTRA) is pretrained to
predict whether each token is a replaced token or
original token. The advantage of RTD is better lan-
guage understanding with relatively small amount
of pretraining data. In our work, we have exper-
imented with three pretraining or self-supervised
objectives: Masked language modeling, Section
Segmentation, and Knowledge-aware masking.
Masked Language Modeling (RadLing-MLM):
In keeping with the original paper (Devlin et al.,
2018), for every input sequence, we have randomly
masked 15% of the tokens in the text.
Section Segmentation (RadLing-SS): Section
segmentation pretraining task follows (Kuling et al.,
2021) and uses the discriminator to classify sen-
tences belonging to one of the five report sections:
CLINICAL SECTION, FINDINGS, IMPRESSIONS,
COMPARISON and MISCELLANEOUS1.
Knowledge-aware masking (RadLing-KG):
Knowledge-aware masking utilizes RadLex to
intelligently mask (Figure 4) so that context
information is preserved. RadLex-KG uses four
steps to achieve this: (a) Named entity extraction
and entity linking, (b) Categorization of the

1We use Spacy(Honnibal et al., 2020) for section segmen-
tation.

entities, (c) Entity masking according to their
categories, and (d) Regularization during training.

From the 15 sub-classes of entities that make
up RadLex, we have used the classes "anatomi-
cal entity", "clinical finding", "procedure", "imag-
ing observation" and "RadLex descriptors" in this
study. Each term in this class can optionally have
63 properties, among which we have only used
Anatomical_site.
Named entity extraction and entity linking:
Most of the contextual information of a radiology
report is contained in three sections: CLINICAL

SECTION, FINDINGS and IMPRESSIONS. We detect
spans of the named entities using SciSpacy (Neu-
mann et al., 2019) in these sections of the report.
Then, using the NCBO annotator tool2, we nor-
malize the entities so that we can query RadLex
and retrieve information about the ancestors and
properties of these entities.
Categorization of the entities: We classify the
entities into three types: Symptom, Anatomy and
Observation. Observations refer to different clini-
cal findings in the patient. The normalized entities
are classified to these categories using the follow-
ing heuristics3:

1. Those that RadLex recognizes as "symptom"
are classified as Symptom.

2. Those that RadLex recognizes as ‘anatom-
ical entity’, ‘anatomical descriptors’ and
‘anatomically-related descriptor’ are classified
as Anatomy.We also include ‘location descrip-
tor’ class into this category, although they are
merely positional qualifiers and don’t repre-
sent anatomy.

3. Those that map to the following RadLex sec-
tions are classified as Observation: ‘clinical
finding’, ‘procedure’, ‘imaging observation’,
‘size descriptor’, ‘normality descriptor’, ‘tur-
bidity descriptor’, ‘stage of healing descriptor’
and ‘composition descriptor’.

Entity masking. We mask entity tokens based on
their entity category. We randomly choose one of
the following masking options for each sequence:

2https://github.com/ncbo/ncbo_annotator
3There are entities that may have words classified to differ-

ent categories. For example, ‘basilar atelectasis’ has ‘basilar’
belonging to Anatomies and ‘atelectasis’ belonging to Obser-
vations. In these cases we split the entity into its constituents
and consider them separately for masking.
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1. Mask entity tokens identified as Anatomy in
the CLINICAL SECTION and FINDINGS of the
report. Mask entity tokens identified as Symp-
tom in FINDINGS and IMPRESSIONS.

2. Mask entity tokens identified as Observation
in the FINDINGS of the report. Mask entity
tokens identified as Symptom in FINDINGS

and IMPRESSIONS.

3. Mask entity tokens identified as Anatomy in
the CLINICAL SECTION and IMPRESSIONS of
the report. Mask entity tokens identified as
Symptom in FINDINGS and IMPRESSIONS.

4. Mask entity tokens identified as Observation
in the IMPRESSIONS of the report. Mask entity
tokens identified as Symptom in FINDINGS

and IMPRESSIONS.

Each anatomy in a radiology report is associated
with a corresponding observation usually. These
masking options ensure that context is not masked
altogether in a sequence. In addition, if multi-
ple words comprise an entity, we have randomly
masked either all or a subset of the tokens compris-
ing the entity. We only consider the masking option
that will lead to masking at least 15 % of the total
number of tokens. If no masking option meets that
criteria, we randomly select one of the four options
and mask the corresponding entities. The rest of
the 15% quota is filled up by tokens corresponding
to non-entities.
Regularisation: In addition to the discriminator
loss in ELECTRA, we introduce a novel regularisa-
tion loss where we decrease the penalty for gener-
ating a token that belongs to an Observation that
pertains to the same Anatomy. This is done by
checking the property Anatomical_site of both the
linked entity and generated entity or verifying if
they belong to the same subclass in ‘body-system-
specific disorder’ in RadLex. The regularisation
loss is denoted by LKG, and is explained in the
Appendix Section A.3.2.

4 Experimental Results

4.1 Finetuning Tasks

We evaluated our pretrained models on four finetun-
ing tasks: (a) Named Entity Recognition (NER): ex-
tracting radiology-specific anatomies and observa-
tions. (b) Relationship Extraction (RE): extracting
relationships between anatomies and observations.

Model NER-M NER-C RE-M RE-C Class RadQA
RadBERT 0.91 0.90 0.97 0.93 0.99 69.09
PubMedBERT 0.86 0.89 0.78 0.69 0.98 60.08

RadLing-MLM 0.89 0.89 0.98 0.94 0.98 60.96
RadLing-SS 0.89 0.88 0.96 0.94 0.97 60.23
RadLing-KG 0.92 0.92 0.98 0.94 0.99 62.55

Table 1: Downstream task Results: For Named
Entity Recognition (NER), Relationship Extraction
(RE) and Abnormal classification (Class) tasks, macro
F1 is reported. For Radiology Question Answer-
ing (RadQA), F1 score is reported. NER-M=NER-
MIMIC, NER-C=NER-CheXpert, RE-M=RE-MIMIC,
RE-C=RE-CheXpert.

(c) Abnormal classification: classifying reports into
normal and abnormal based on the presence or ab-
sence of pathologies, and (d) Radiology Question
Answering: providing answers to questions based
on radiology reports. We have used RadGraph
dataset (Jain et al., 2021) for NER and RE tasks,
RadQA dataset (Soni et al., 2022) for Radiology
Question Answering, and (Demner-Fushman et al.,
2016) for abnormal classification. The datasets for
these tasks are explained in details in Appendix
Section A.5.

In this section, we present the results from all
three RadLing models, which were each fine-tuned
on downstream tasks after being pretrained on
three different self-supervised objectives (see Sec-
tion 3.3).
NER. RadLing-MLM and RadLing-SS do compar-
atively well on RadGraph test dataset with refer-
ence to the state-of-the-art model RadBERT, with
F1 scores of 0.89. RadLing-KG however does bet-
ter than all the other models with F1 score of 0.92.
Similar results are seen for CheXpert test dataset,
and RadLing-KG performs better than other mod-
els with F1 of 0.92. The breakdown of F1 scores
in table 2 show that RadLing-KG outperforms the
other variants in all the classes, and has significant
improvement in the underrepresented class Obser-
vation:Uncertain.
Relation Extraction. Both RadLing-MLM and
RadLing-KG outperform the state of the art in re-
lationship extraction task, with F1 scores 0.98 and
0.94 on MIMIC and CheXpert test datasets, respec-
tively. Meanwhile, RadLing-SS falls a little short
with F1 of 0.96 for MIMIC test dataset. The dataset
imbalance does not affect the performance of these
models for the underrepresented class [3]. Radiolo-
gist benchmark macro F1s for this task are 0.91 and
0.704 for MIMIC-CXR and CheXpert respectively,
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and our models have surpassed it.
Abnormal Classification. RadLing-KG matches
the high performance of RadBERT in this task,
with a macro F1 of 0.99, accuracy 99.3% and AUC
of 0.995.
Question Answering. For RadQA dataset,
RadLing-KG performs the best among the RadLing
model variants at F1 of 62.55 and Exact Match of
49.78, but this is lower than the state of the art
(69.09 for RadBERT).

4.2 Discussion

RadLing is one of the first models that has been
trained on a radiology report dataset, and the first to
use ELECTRA. RadLing-KG is the first radiology
PLM to use RadLex in its training. For this reason,
there are not many benchmarks we can compare
our results with. Knowledge-aware masking has
led to better results in almost all downstream tasks
compared to RadBERT. However, RadLing-MLM
has comparable performance, and we attribute the
robustness to ELECTRA architecture. The choice
of ELECTRA in our experiments is influenced by
its unique architecture that has been shown to yield
high performance with low data (Clark et al., 2020),
making it perfect for industry setting. RadLing-
KG improves the performance in underrepresented
classes for both NER and RE significantly, where
all other models perform poorly. To provide an ex-
ample, uncertain observations comprise only 4.7%
of the NER training data. Now, for a sentence
“mild basilar atelectasis without definite focal con-
solidation.", “focal consolidation" is an uncertain
observation. Models other than RadLing-KG are
not able to capture the whole text as an uncertain
observation. Similarly, for relationship extraction
task, ‘suggestive of’ reflects 4.7% of the training
data. A sentence like “Findings are suggestive of
mild pulmonary edema with basilar atelectasis" has
two ‘suggestive of’ relations : 1. ‘Findings’ and
‘edema’, 2. ‘Findings’ and ‘atelectasis’ However,
models other than RadLing-KG finetuned for re-
lationship extraction are unable to detect both of
these, especially the latter relationship. We surmise
that knowledge infusion is a key factor in these
stellar results. ELECTRA has been shown to have a
lack of uniformity and alignment where two closely
related sentences may have more different repre-
sentations (Meng et al., 2021). We hypothesize that
this might be one of the main factors contributing
to low F1 scores for RadQA. However, we also

note that RadLing-KG attempts to counteract this
effect and improves on both Exact match and F1.

5 Conclusion

In this work we have explored a cost-effective
method to train a high performing radiology PLM,
RadLing with a small dataset. RadLing models
took 2 days to train on Tesla V100 SXM2 machines
with 8 GPUs and 16 GB memory per GPU, which
using larger models like ELECTRA-large required
5 days. We developed a knowledge-aware mask-
ing strategy to use RadLex to infuse context into
radiology PLMs to train RadLing-KG. This led
us to the following observations. First, ELECTRA

architecture, without any special pretraining objec-
tives, is able to produce good results with most of
the downstream tasks. In a task like relationship
extraction, it even outperforms Radgraph radiolo-
gist benchmarks. Second, RadLing-KG is the best
performing RadLing variant, and outperforms the
downstream task benchmarks in all the tasks except
QA. Third, Domain specific vocabulary is helpful
in better performance of models. In addition, in
tasks that use cross attention like vision-language
tasks or explainable AI, having unfragmented ra-
diology tokens is helpful. For example, BERT
fragments biomedical terms like ‘Thalamus’ into
‘Tha’, ‘##lam’, ‘##us’, thereby losing the domain-
specific meaning, whereas in our work, due to do-
main specific tokenization, the word ’Thalamus’ is
retained. Fourth, Infusion of RadLex information
counteracts ELECTRA limitations in QA dataset.
Finally, we have tested the model on proprietary
NER datasets and RadLing-KG has yielded 0.92-
0.93 macro F1 on less represented anatomies like
neck, while for the highly represented anatomies,
F1 is as high as 0.98. This actually shows the po-
tential of using RadLex in radiology pretraining.
Thus, in a real world setting with high imbalances
in datasets, RadLing-KG is more robust.

In future we would like to explore more ways
to infuse knowledge by (a) Using text description
of context like (Yuan et al., 2021), (b) Retrieving
context from biomedical knowledge graphs like
SNOMED 4 and UMLS, and (c) more robust knowl-
edge embedding methods. We would like to exper-
iment with larger datasets and models, and work
with more downstream radiology applications.

4https://www.nlm.nih.gov/healthit/snomedct/index.html
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MIMIC CheXpert
Model ANAT OBS:DP OBS:U OBS:DA ANAT OBS:DP OBS:U OBS:DA

RadLing-MLM 0.97 0.94 0.75 0.98 0.97 0.98 0.72 0.95
RadLing-SS 0.97 0.94 0.72 0.98 0.97 0.98 0.68 0.95
RadLing-KG 0.98 0.95 0.8 0.98 0.98 0.98 0.81 0.96

Table 2: Downstream Task Results: Named Entity Recognition (NER) on RadGraph (Jain et al., 2021). Macro F1
scores reported on two test datasets: MIMIC and CheXpert. ANAT refers to Anatomy, OBS refers to Observation,
DP: Definitely Present, U: Uncertain, DA: Definitely Absent.

MIMIC CheXpert
Model Modify Located At Suggestive Of Modify Located At Suggestive Of

RadLing-MLM 0.99 0.98 0.96 0.96 0.93 0.92
RadLing-SS 0.98 0.97 0.94 0.95 0.94 0.9
RadLing-KG 0.99 0.98 0.97 0.96 0.95 0.92

Table 3: Downstream Task Results: Relation Extraction on RadGraph macro F1 scores. Macro F1 scores reported
on two test datasets: MIMIC and CheXpert for 3 relation types: Modify, Located At and Suggestive Of.

Limitations

There are a few limitations pertaining to the train-
ing data we used. Some of them are listed below.

1. RadLing has been trained on English reports
only, and therefore will not work out of the
box in a multilingual setting.

2. There is data imbalance with respect to imag-
ing modalities and anatomies covered by our
training data. For example, regions like ex-
tremities, neck, spine and shoulder are un-
derrepresented in the dataset, and expected
understanding of observations related to those
regions may be limited.

3. There needs to be a study on the diversity of
the patients and radiologist expertise repre-
sented in the data, and how it impacts the per-
formance of the model for underrepresented
communities.

4. Different radiologists (and radiology depart-
ments) have different preferences and styles of
writing reports. In addition, clinical referrals
sometimes dictate to what extent some details
are documented the report e.g. the Clinical
statement. There was no study on the consis-
tency, uncertainty or information richness of
the report.

Asides from the training data, there may be space
and time throughputs of the model which could
make them unsuitable for at-the-edge applications
with limited bandwidth.
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A Appendix

A.1 Preprocessing
Preprocessing of the anonymized radiology reports
corpus consists of the following tasks:

(a) Regex-based cleaning and normalization:
Some of the reports have been converted to
text using optical character recognition (OCR).
This led to common OCR errors like misspelled
character substitutions and insertion of spuri-
ous characters. We used manual identification
of common errors, followed by Regex-based
substitutions for these errors.

(b) Section identification: We follow a Regex-
based method to split the text in a radiology
report into the five sections.

(c) Section-based chunking: BERT-like transform-
ers can use maximum 512 tokens as sequence
length (Michalopoulos et al., 2022). We made
sure that an entire section of a report is in one
section, and divided the report into chunks to
fit this restriction.

A.2 AVocaDo tokenization
In AVocaDo, a contrastive learning framework is
employed, and the regularization term Lreg is cal-
culated using the cosine similarity between the sen-
tence encoding outputs from the general PLM and
the PLM with a domain-adapted tokenizer as be-
low:

Lreg(h
(l)
A ,h

(l)
P ) =

1

B
log

B∑

i=1

exp( sim(h
(l)
A,i,h

(l)
P,i)/τ∑B

j=1 exp
( sim(h

(l)
A,i,h

(l)
P,j)/τ

,
(1)

where h
(l)
A,i and h

(l)
P,i are l-th layer outputs from

the general (P) and adapted (A) PLM encoders for
each sentence xi in a batch of sentences x of size
B. sim(·) refers to cosine similarity between the
encodings, and τ is the softmax temperature.
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Figure 3: Radiology reports dataset anatomy split

A.3 Losses in Continuous pretraining
objectives

This section discusses the loss functions we have
used for each of our pretraining objectives.

A.3.1 Masked Language Modeling.

This objective has the separate losses for the gen-
erator and discriminator of ELECTRA, denoted
by LMLM (x, θG) and LDisc(x, θD) respectively.
They are accompanied by the regularisation term
from 1, and calculated as follows:

LMLM (x, θG) = λALreg+

E
(∑

i∈m

− log pG(xi|xmasked)
)

LDisc(x, θD) = λALreg+

E
( n∑

t=1

−1(xcorrupt
t = xt) logD(xcorrupt, t)

−1(xcorrupt
t ̸= xt) log(1−D(xcorrupt, t))

)
,

(2)

where pG is the probability of generating a par-
ticular token xi given the masked token xmasked,
D(·) is a sigmoid output of the discriminator that
predicts whether the token is “real", λA is a regu-
larisation parameter, which is set to 1.

A.3.2 Knowledge-Aware Masking
The regularisation loss for knowledge-aware mask-
ing is denoted by LKG, and calculated as follows:
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Figure 4: Illustration to show a case where random
masking masks all context. Knowledge aware masking
masks either anatomy or observation, preserving the
context.

LKG(x, θD) =

E
( n∑

t=1

−1
(
PA(xcorrupt

t ) ∈ PA(xt)
)

logD(xcorrupt, t)

−1
(
PA(xcorrupt

t ) /∈ PA(xt)
)

log(1−D(xcorrupt, t))
)
,

(3)

where PA(·) stands for the anatomical site prop-
erty of the observation. The final loss for the dis-
criminator is calculated as

LKG
disc = LDisc + λKGLKG (4)

where λKG is the knowledge graph regularisation
parameter, and is set to 1 for our experiments.

A.4 Experimental setup
We have trained RadLing using Tesla V100 SXM2
machines, with 8 GPUs and 16 GB memory per
GPU. The base model is ELECTRA-small which
has 14M parameters, 12 layers and 256 hidden size.
RadLing-MLM was trained in 230 steps, using
learning rate 3e-5, AdamW optimizer and polyno-
mial decay schedule with warmup. RadLing-SS
needed 220K steps while RadLing-KG was trained
in 235K steps.

The best performance for NER was achieved af-
ter 6 training epochs with learning rate 4e-5, and
AdamW optimizer with RadLing-MLM, after 13
steps with RadLing-SS and 9 steps with RadLing-
KG. Relationship extraction model was finetuned
on RadLing-MLM for 8 epochs with 5e-5 learn-
ing rate and AdamW optimizer; 14 epochs with
RadLing-SS and 9 with RadLing-KG. Abnormal
classification took 19 steps with RadLing-MLM, 10
steps with both RadLing-SS and RadLing-KG with
2e-4 learning rate, dropout 0.2 and AdamW opti-
mizer with 1e-7 epsilon. RadQA finetuning took 8

Figure 5: Radiology reports dataset modality split

epochs with 2e-4 learning rate, maximum sequence
length 384, document stride 128, maximum query
length 128. All of these models have been trained
with early stopping and patience of 3 epochs, and
best model selected based on validation loss. For
comparison of the results we have used RadBERT-
RoBERTa-4m for RadBERT, and the finetuning
follows that of RadLing. PubMedBERT results are
collected for NER and RE from (Jain et al., 2021).
Finetunining for RadQA and Abnormal classifica-
tion follows finetuning for RadLing and RadBERT.

A.5 Fine-tuning task details
The different finetuning tasks in this paper are
described in this section.

Named Entity Recognition. The named en-
tity recognition task that we chose to finetune our
model on focuses on extracting the anatomy and ob-
servations information from the unstructured radi-
ology reports. RadGraph (Jain et al., 2021) dataset,
annotated by board-certified radiologists, is a col-
lection of annotated training data from MIMIC-
CXR dataset and test data from both MIMIC-CXR
and CheXpert(Irvin et al., 2019) dataset. The
anatomies in this schema consists of two concepts:
Anatomy and Observation. Anatomy refers to body
parts referenced in the radiology reports. Observa-
tions refer to the visual findings noted by the radiol-
ogist in the medical images (e.g., nodules or opaci-
ties), and pathophysiological processes (diseases)
that the radiologist has mentioned (e.g., pneumo-
nia). Observation is further divided into three uncer-
tainty levels: definitely present, uncertain and defi-
nitely absent. Training and validation datasets are
created by annotating 500 radiology reports from

650



MIMIC-CXR datasets, while test dataset comprises
50 annotated radiology reports from MIMIC-CXR
and CheXpert collections. There are 12,388 and
2191 entities in the training and validation datasets
respectively. In the test set, there are 1293 and 1473
entities in MIMIC-CXR and CheXpert respectively.
Overall, we have an imbalanced dataset with less
than 5% uncertain observations. The evaluation
criteria is class-level and aggregate macro F1 and
micro F1. Radiologist benchmark macro F1s for
this task are 0.981 and 0.894 for MIMIC-CXR and
CheXpert respectively.

Relationship extraction. RadGraph dataset also
contains relationships between the annotated enti-
ties. Relationship extraction refers to the classifica-
tion of the entity–entity relations given the context
of the report. The schema contains three possi-
ble relations: ‘Suggestive Of’, ‘Located At’, and
‘Modify’. Suggestive Of is a relation between two
observations that indicate that the first observation
indicates the likelihood or leads to the second one.
For example, Streaky densities at the lung base
might suggest pneumonia’ means the observation
‘streaky densities’ at the lung base indicates that the
patient might have pneumonia. Located At is a re-
lation between an observation and anatomy. In the
above example, ‘streaky densities’ are ’Located At’
the anatomy ‘lung’ base. Modify is a relation be-
tween two anatomies or two observations where the
first entity is a qualitative or quantitative descriptor
of the second entity. There are 9251 relations in
the training dataset, 1638 in the validation dataset,
902 in MIMIC-CXR test dataset and 1107 in CheX-
pert dataset. This dataset is imbalanced with < 6%
of relations being ‘Suggestive of’. The evaluation
metrics for this dataset are macro F1 and micro F1,
both on an aggregate level and for each relation-
ship class. Radiologist benchmark macro F1s for
this task are 0.91 and 0.704 for MIMIC-CXR and
CheXpert respectively.

Abnormal classification. This dataset has been
collected from 2 large hospital systems within the
Indiana Network for Patient Care database. It
contains narrative chest x-ray reports for poste-
rior–anterior (PA) chest x-ray examinations. The
dataset(Demner-Fushman et al., 2016) contains
3996 de-identified reports, manually and indepen-
dently annotated by two coders trained in medical
informatics. Acute or chronic disease findings, im-
planted medical devices, or surgical instruments
are classified as not normal in this dataset. This

dataset also coded in and normalised the abnormali-
ties present in the reports. There are 2564 abnormal
reports and the rest are normal. The evaluation met-
rics for this dataset are macro- and micro-F1 on
test dataset.

Radiology Question Answering. This down-
stream task is an extractive Question Answering
application in radiology domain. We use RadQA
dataset (Soni et al., 2022) made from 1009 reports
sourced from MIMIC-III- (Johnson et al., 2016)
database, by sampling 100 patients with 1–36 ra-
diology reports. Question creation for this dataset
follows a novel approach of basing questions only
on clinical referrals of physicians that prompted the
radiography being done instead of the whole report.
This focuses on the questions that the physicians
are the most interested in, as well as the answers to
which would most likely be contained in the report.
The answer annotations are done by annotators
with the full radiology report, with them needing
to annotate from Findings and Impression sections.
Annotations have been carried out using haystack
by expert annotators. There are 6148 questions
in the dataset, among which 1745 are unanswer-
able. The rest of the answers are extractive and
have median and average lengths of 7 and 16.2
respectively. The evaluation of this dataset uses
standard Machine Reading Comprehension (MRC)
(Gardner et al., 2019) metrics, i.e., stricter metric
Exact match (EM) and F1 where word level match
is calculated between reference and predicted an-
swers.
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Abstract
In a typical call center, only up to 8% of callers
leave a Customer Satisfaction (CSAT) survey
response at the end of the call, and these tend to
be customers with strongly positive or negative
experiences. To manage this data sparsity and
response bias, we outline a predictive CSAT
deep learning algorithm that infers CSAT on
the 1-5 scale on inbound calls to the call center
with minimal latency. The key metric to max-
imize is the precision for CSAT = 1 (lowest
CSAT). We maximize this metric in two ways.
First, reframing the problem as a binary class,
rather than five-class problem during model
fine-tuning, and then mapping binary outcomes
back to five classes using temperature-scaled
model probabilities. Second, using soft labels
to represent the classes. The result is a produc-
tion model that supports key customer work-
flows with high accuracy over millions of calls
a month.

1 Introduction

1.1 Motivation
Call centers have been using CSAT surveys to mea-
sure Customer Satisfaction for decades. Like most
CSAT surveys, those our company provides are
delivered either on the line at the end of a call or
in response to an SMS message. In the survey, the
customers are asked to rate their customer service
experience on a 1-5 scale, with 1 being very dis-
satisfied and 5 being very satisfied, respectively.
However, we found that for a typical call center,
only up to 8% of callers leave a CSAT survey re-
sponse1. Since only a small fraction of customers
leave a survey response, managers and coaches of
traditional call centers are missing important infor-
mation. Specifically:

1. The mean CSAT score suffers from response
bias, as customers with a strongly positive or

1for the 691 call centers in our dataset with at least 50
CSAT survey responses, the 10th and 90th percentile of survey
response rates were 0.3% and 8%, respectively.

negative experience are far more likely to take
the time to respond (Table 1).

2. When the customer has a sub-optimal experi-
ence but does not leave any feedback, the call
center may not be able to proactively take nec-
essary actions in a timely manner to improve
customer experience.

To address these issues, we have developed and
present here an algorithm that infers CSAT scores
on call center calls with high accuracy and low
latency. At the moment of writing, our predictive
CSAT feature is fully deployed at scale and has
rated over 50 million calls.

1.2 Intended Uses of predictive CSAT
At our company, predictive CSAT is used for coach-
ing purposes, to maintain and improve overall cus-
tomer experience and to create new opportunities
for analytics.

In “Coaching Hub” we provide coaches with
material for both recognition of agents and im-
provement in the form of two lists, with calls rated
with predicted CSAT scores of 5 and 1 respec-
tively. Therefore, the precision of classes 5 and
1 is critical - it’s necessary that the calls in these
lists are reliably satisfied and dissatisfied, respec-
tively. Since satisfied calls outnumber dissatisfied
calls by a wide margin, the precision of class 1
has long been our limiting factor and therefore our
primary focus.

Maintaining and improving overall customer ex-
perience is crucial for our users. Users such as call
center managers, coaches, and agents use predicted
CSAT to proactively identify dissatisfied customers
moments after the call ends by reviewing calls with
predicted CSAT scores of 1 or optionally 2. This
enables users to follow up with customers and po-
tentially save their accounts.

Predicting CSAT also creates new opportunities
for analytics. We examine which factors are most
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associated with dissatisfied calls, where the pre-
dicted CSAT score is 1 or 2. For example, we might
report that calls associated with hold times longer
than 10 minutes are associated with a higher per-
centage of dissatisfied calls in a call center. In this
way, we offer data-driven recommendations to im-
prove CSAT for this call center. In interviews with
our target users (call center coaches and managers),
we learned that a certain amount of error tolerance
is acceptable when inferring CSAT scores. Conse-
quently for these 3 applications, it’s acceptable if
the model predicts a 1 and the customer left a sur-
vey response of 2. This motivates our introduction
in the System Overview section of precision* and
recall* which are metrics with an error tolerance of
1.

1.3 Constraints

Our solution space is constrained in the following
ways:

• High precision of class 1: As discussed above
in section 1.2, this metric is our primary fo-
cus, being central to Coaching Hub’s lists of
coachable calls and being the minority class
relative to class 5. Thus, it is important for
our model to have high precision in predicting
calls for the lowest CSAT class.

• Latency: The predicted CSAT score is in-
cluded in a call summary that is shown to
the user 10 seconds after the call, and avail-
ability within 10 seconds at least 99.9% of the
time is a hard requirement for all features dis-
played in the summary. This holds even if the
transcript is many thousands of words long.
Since we deploy this model on CPU to con-
trol cost and availability, this was non-trivial
to achieve.

The typical, out-of-the-box deep learning solu-
tion for solving multiclass classification problems
is to allow each distinct label as a possible output of
the neural network, and train using a loss function
such as cross-entropy loss over the set of all la-
bels. As a shorthand, we refer to this approach here
as “5-way classification”. However, this approach
does not lend itself well to meeting constraints 1
and especially 2.

The main contribution of this paper is to present
a combination of two techniques, which were
adapted for this problem to solve both constraints:

CSAT Rating Number of labels
1 39k
2 9k
3 8k
4 17k
5 222k

Total 296k

Table 1: The CSAT survey distribution favors the ex-
tremes. This phenomenon is well known in the contact
center space and is explained by reporting bias: since
taking a survey takes time and effort, customers that are
strongly motivated by a very positive or very negative
experience are more likely to leave a response than cus-
tomers with a relatively normal experience

1. Binary classification + fan-out: We reframe
the 5-class prediction problem as a binary clas-
sification task during model training and then
map temperature-scaled model probabilities
back from 2 to 5 classes during inference time
(‘fan out’).

2. Soft labels: We introduce a modified label
smoothing approach that achieves superior ac-
curacy for this ordinal classification task.

2 Related Work

There are few research studies on predicting
customer satisfaction (CSAT) scores on contact
center conversations using transcripts generated by
an Automatic Speech Recognition (ASR) model.
In Bockhorst et al., 2017, they developed a system
that not only utilizes call transcripts transcribed
by an ASR model but also other non-textual data
such as call duration, queue, in-queue waiting
times, utterance level sentiment scores, and various
customer data. Overall, there are 5,501 features
in the training dataset. The author’s model is
trained to predict a metric called Representative
Satisfaction Index (RSI) which is the average
of four different survey scores. In the end, their
framework involves two models, namely a rank
scoring and an isotonic regression model. In a
more recent study, Auguste et al., 2019 used the
Net Promoter Score (NPS) to predict customer
satisfaction on chat conversations. A promoter
score can be defined as a rating that customers
give to indicate how likely they are to promote
a company. Out of a scale of 0 to 10, customers
with ratings of 9 or 10 are considered promoters
whilst those with ratings of 0 to 6 are considered

653



detractors. NPS is calculated as the difference
between promoters and detractors and companies
want this metric to be positive and as high as
possible. They compared macro F1 scores across
different classification methods and their best
method yielded a macro F1 score of 53.8%, which
they noted that is a rather limited performance.
Other studies that looked at predicting CSAT
on contact center conversations proposed using
information extracted from raw audio signals such
as acoustic, emotions, and prosodic features. (Park
and Gates, 2009; Zweig et al., 2006; Vaudable and
Devillers, 2012; Devillers et al., 2010)

Contact center managers are usually interested in
picking out calls with a low CSAT score for either
coaching purposes or for identifying opportunities
to take meaningful interventions in a timely man-
ner to improve customer experience. Hence, it’s
important to identify these calls with a relatively
high degree of precision. Label smoothing is a reg-
ularization technique introduced by Szegedy et al.,
2016 that has been successfully used to improve
accuracy of the Inception architecture on the Im-
ageNet dataset. In Müller et al., 2019, it is noted
that label smoothing has been adopted in training
procedures of other state-of-the-art image classifi-
cation models (Zoph et al., 2017; Real et al., 2018;
Huang et al., 2018). In another domain such as
speech recognition, Chorowski and Jaitly, 2016
used label smoothing to reduce word error rate on
the WSJ dataset. Additionally in machine trans-
lation, Vaswani et al., 2017 was able to slightly
improve the BLEU score

3 System Overview

3.1 Dataset

We only used the call transcripts as input to the
model. The transcripts are produced by our com-
pany’s proprietary Automatic Speech Recognition
(ASR) models. This simplifies model deployment
and helps latency as the model can be run as soon
as a transcript is available, without waiting for any
additional features, and it was sufficient to obtain
high accuracy. We then preprocessed transcripts
of contact center conversations to create training,
validation and test sets.

The labels collected were CSAT survey re-
sponses left by customers. Labels were aggregated
into a single dataset rather than many separate
company-specific datasets. Surveys were either

run at the end of the call (“please stay on the line
for a brief survey. . . ”) or sent to customers as an
SMS message. Survey responses have a customer
satisfaction (CSAT) rating of 1-5, where 5 is the
highest satisfaction. Table 1 shows the distribution
of CSAT customer ratings over our dataset.

Additionally, we excluded callers that were
present in the training set from the validation and
test sets2 to prevent contamination of these sets 3.

3.2 Model Fine-tuning

We used the Big bird4 model hosted on Hugging-
face5(Wolf et al., 2020) for all experiments. We
chose Big bird (Zaheer et al., 2020) as our model ar-
chitecture because it is a transformer-based model
capable of handling long sequences (up to 4096
tokens) with low latency in our production environ-
ment. Specifically, its memory requirements scale
linearly in the number of tokens rather than quadrat-
ically as many transformers-based models do. If
transcripts exceeded 1536 tokens6 in length, only
the last 1536 tokens of the conversation were used
and the preceding were discarded; this occurred in
16% of transcripts. This allowed us to keep latency
and cost under control at inference time.

We trained all models using cross-entropy loss
and a learning rate of 10e−5 with early stopping.
The metric we chose to evaluate the checkpoints is
motivated by the user experience around CSAT, as
detailed in section 1.2.

As a result, the precision of class 1 is more im-
portant than the precision of other classes, or than
recall, and an error tolerance of 1 is acceptable for
our intended use cases. Therefore, we introduce the
metric “precision*”, i.e., the precision with an error
tolerance of 1. We also formally define a modified
version of true positive and false positive (denoted
tp* and fp* respectively)7 which is necessary in

2The final size of the validation and test sets were 2996
and 2943 calls, respectively

3We also excluded the data of one company from the valida-
tion and test set because its CSAT distribution was so unusual
(99% of responses were 1s and 2s) we suspect a misconfigura-
tion of the survey for that company.

4https://huggingface.co/google/
bigbird-roberta-base

5https://huggingface.co/
6tokens: a part of a sentence, usually a word, but can also

be a subword (non-common words are often split in subwords)
or a punctuation symbol

7Where CSATp denotes the predicted CSAT, CSATs de-
notes the CSAT survey response, and class c ∈ (1, 2, 3, 4, 5).
As an example using class c=2, TP2* is the count of predicted
CSAT = 2 where survey CSAT ∈ (1, 2, 3)
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defining precision*.

TP∗
c = |CSATs ∈ (c± 1) ∧ CSATp = c| (1)

FP∗
c = |CSATs /∈ (c± 1) ∧ CSATp = c| (2)

FNc = |CSATs = c ∧ CSATp ̸= c| (3)

Precision∗ =
TP∗

TP∗ + FP∗ (4)

Recall∗ =
TP∗

TP∗ + FN
(5)

For the purposes of picking the best model check-
point for any experiment, we measure the F-beta
metric with β = 0.5 on class 1 with a tolerance of
1 and define it as follows:

F ∗
β =

(1 + β2)× Precision∗ × Recall∗

(β2 × Precision∗) + Recall∗
(6)

Using beta = 0.5 achieves our goal of weighing
both precision and recall while giving precision
more importance than recall.

3.3 Binary Classification + Fan-Out
First, we mapped the CSAT labels to the 0-1 range.
For example, when using hard labels, the CSAT la-
bel vector [1, 2, 3, 4, 5] is remapped to [0, 0, 0, 1, 1].
Since the remapped vector contains 2 classes, we
can train a binary classifier. At inference time,
we first rescale the fine-tuned model output, log-
its with temperature scaling. Temperature scaling
simply divides the logits by a single parameter that
is fitted on a held-out validation set so the model
probabilities are better calibrated (Guo et al., 2017).
Typically, for a classification task, the logits from
a model are passed through a softmax function to
get final class probabilities. Instead, we use the
low-CSAT class probability to “fan-out”, i.e. we
map this probability ∈ [0, 1] back into 5 classes
using 4 class thresholds. For example, if the class 5
threshold is 0.15, then a model probability (of low
CSAT) of 0.01 corresponds to a 5, while a model
probability of (of low CSAT) 0.16 maps to a 4. We
illustrate this fine-tuning and inference method in
Figure 1.

The algorithm we devised to infer the class
thresholds is the following. As explained previ-
ously, class 1 F ∗

0.5 is our primary metric. Thus we
set the class 1 threshold first in a way to optimize it.
Specifically, we use a loop to search the parameter
space of class 1 threshold values and pick the one
that optimizes class 1 F ∗

0.5 on the validation set.
Then we repeat this process with the thresholds

that separate classes 5-4, 2-3, and 4-3 (the priority
is determined by user workflows) to optimize class
5 F ∗

0.5, class 2 F ∗
0.5 and then class 4 F ∗

0.5. Once the
4 thresholds are set, the 5 classes are defined by
them. Here’s a real example of threshold values:
[0.92, 0.45, 0.09, 0.03], and these separate classes
1-2, 2-3, 3-4 and 4-5 respectively.

3.4 Soft Labels
The traditional label smoothing equation is

yLSk = yk(1− α) + α/K (7)

where K is the number of label classes, yk is a
one-hot encoded label vector and α is the hyperpa-
rameter that determines the amount of smoothing
(Müller et al., 2019).

Our motivation for trying label smoothing is the
ordinal nature of CSAT classes. That is, a call with
a survey response of ‘2’ is a low CSAT call, but not
as strongly as a ‘1’, and more strongly so than a
‘3’. So when using binary classification as detailed
above, it’s natural to try label smoothing with a
higher level of smoothing for the center classes.
We also refer to labels that have been smoothed
as “soft” labels. In Table 2 we show the values
of α we used for different classes, reserving the
weakest α for the outermost classes (1,5) and the
strongest α for the center class (3). Aside from
using these multiple values of α , we implemented
label smoothing to train the model in the standard
way.

CSAT Class α Soft Labels
1 0.02 0.99
2 0.2 0.90
3 1 0.5
4 0.2 0.1
5 0.02 0.01

Table 2: Different smoothing values were applied to
each of the 5 CSAT classes that resulted in the soft
labels used for training

3.5 Experiments
We conducted a total of 24 experiments, each ex-
ploring a different permutation of the experimental
conditions. The conditions are shown in Table 3.

This setup allowed us to explore multiple experi-
mental conditions while generating variability for
statistical analysis but limiting the number, cost
and carbon footprint of our experiments.
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t3=0.09, t4=0.03

Figure 1: The overall training and inference method used

Experimental Condition Cardinality Set
Type of Classification 3 Binary Soft Labels / Binary Hard Labels / 5-way classification

Punctuation 2 Included / None
Dialog Tags 2 Included / None

Casing 2 Lowercase / Uppercase

Table 3: Our 24 experiments corresponded to every permutation of these experimental conditions

4 Results and Discussion

4.1 Type of Classification

On precision and “precision*” of classes 1 and 5,
soft labels binary classification performed best (
figure 2 and table 4. All 8 t-tests of binary soft
labels vs the other two have p-values < 0.05). Fur-
thermore, within the binary classification + fan out
approach, soft labels worked better than hard labels
on almost every metric. It had higher precision
on every class (most important for our users), and
better on recall for 3

5 classes.
5-way classification had the highest precision on

center classes by a wide margin. It also produces
the strongest recall for classes 1 and 5, probably
because the binary classification approaches opti-
mize for precision of these 2 classes the most. In
terms of overall accuracy (with a tolerance of 1),
binary soft labels and 5-way classification were sta-
tistically tied (90.4% vs 90.6% respectively), with
binary hard labels trailing slightly (89.2%).

4.2 Conclusion

In this paper, we propose an approach to maximize
the precision of certain classes in the context of an
ordinal classification problem. We show that for

our application it makes sense to cast the problem
first as binary classification and restore the 5 out-
put classes using probability thresholds. We also
show that the use of soft labels outperforms that of
hard labels in our setup. This approach can benefit
applications where ratings can be formulated as
ordinal classes and where some classes are empha-
sized over others in the primary user workflows.
We also show that the problem of CSAT prediction
is amenable to modern deep learning techniques
with high accuracy using the transcript as the sole
input to the model.

5 Limitations

• We use only the transcript as input to the
model. This implies the model wouldn’t know
that a hold was long unless the customer said
“that was a long hold” or something to that
effect. The transcript usually contains lan-
guage indicating the hold is taking place “may
i place you on hold?”, “thanks for holding”,
etc, but rarely indicates the exact duration of
the hold. Similarly, the model doesn’t know
the wait time unless the customer complains
explicitly about it.
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Metrics Binary Hard labels Binary Soft labels 5-way-classification
Class 1 Precision* 77.9% 83.4% 78.0%
Class 2 Precision * 57.3 63.8 82.9%
Class 3 Precision * 23.7 35.9 79.7%
Class 4 Precision * 78.5 80.3% 94.9%
Class 5 Precision * 94.5% 95.3% 92.5%
Class 1 Precision 68.5% 74.2% 69.5%
Class 2 Precision 5.8% 5.6% 19.4%
Class 3 Precision 6.7% 11.7% 50.5%
Class 4 Precision 12.4% 14.1% 55.0%
Class 5 Precision 88.5% 89.7% 86.7%

Class 1 Recall 58.0% 55.5% 65.2%
Class 2 Recall 7.7% 10.7% 3.1%
Class 3 Recall 6.4% 13.2% 14.4%
Class 4 Recall 9.2% 15.4% 11.9%
Class 5 Recall 91.7% 90.7% 96.9%

Table 4: Precision*, precision and recall for each class
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Figure 2: Class 1 Precision as a function of Classifica-
tion Type

• Predicted CSAT is available 10 seconds after
the end of the call. New applications become
possible if predicted CSAT is made available
continuously throughout the call since a man-
ager would be able to “whisper” (advise the
agent on the call without the customer hear-
ing), message or barge (jump into the call as a
3rd party). An important concern if predicted
CSAT is computed repeatedly will be man-
aging the cost and carbon footprint, possibly

by using a small model as an initial gating
function.

• If a call center doesn’t collect CSAT surveys
through our company, their accuracy will be
impacted as they won’t be reflected in the
training or test set. We ensure customers un-
derstand this by training our agents to explain
it and including it in help center documenta-
tion.

6 Ethics Statement

• We have read and abide by the ACL Code of
Ethics 8.

• Data Privacy: We follow the data privacy
measures in place at our company which in-
clude scrubbing personal identifiable informa-
tion (PII) from customer data and restricting
our use of customer data to improvements to
the services we provide them. We did not rely
on any external annotations.

• Intended Use by Customers: In the product
we highlight both high and low CSAT calls
for review by a supervisor to ensure employ-
ees receive a mix of positive and constructive
feedback. Since supervisors review calls, they
can adjust incorrect classifications produced
by the model.

8https://www.aclweb.org/portal/content/acl-code-ethics
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• Potential bias: We sample subpopulations
of users and their customers and evaluate in-
ternally to ensure the model outputs are not
biased against specific groups.

• Carbon Footprint: We minimized the carbon
footprint of our experiments while meeting
the need for variability required by statistical
analysis. We achieved this by running 24 ex-
periments, each with different experimental
conditions, rather than running multiple ex-
periments with different random seeds within
each of the 24 conditions. In total the experi-
ments described in this paper represented less
than 500 hours of computation on a single
V100 GPU.

7 Acknowledgements

We thank personA for setting up some data tables
used to generate some of the analyses presented
here, and personB for his idea to use CSAT classes
2, 3 and 4 for lower confidence predictions. We
also thank personC and personD for advice on pre-
processing and model training, and personE for
help reviewing this paper.

References
Jeremy Auguste, Delphine Charlet, Geraldine Damnati,

Frederic Bechet, and Benoit Favre. 2019. Can we
predict self-reported customer satisfaction from inter-
actions? pages 7385–7389.

Joseph Bockhorst, Shi Yu, Luisa Polania, and Glenn
Fung. 2017. Predicting self-reported customer sat-
isfaction of interactions with a corporate call center.
In Machine Learning and Knowledge Discovery in
Databases, pages 179–190, Cham. Springer Interna-
tional Publishing.

Jan Chorowski and Navdeep Jaitly. 2016. Towards bet-
ter decoding and language model integration in se-
quence to sequence models. CoRR, abs/1612.02695.

Laurence Devillers, Christophe Vaudable, and Clément
Chastagnol. 2010. Real-life emotion-related states
detection in call centers: a cross-corpora study. In
INTERSPEECH 2010, 11th Annual Conference of
the International Speech Communication Association,
Makuhari, Chiba, Japan, September 26-30, 2010,
pages 2350–2353. ISCA.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. CoRR, abs/1706.04599.

Yanping Huang, Yonglong Cheng, Dehao Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V. Le, and

Zhifeng Chen. 2018. Gpipe: Efficient training of
giant neural networks using pipeline parallelism.
CoRR, abs/1811.06965.

Rafael Müller, Simon Kornblith, and Geoffrey E. Hinton.
2019. When does label smoothing help? CoRR,
abs/1906.02629.

Youngja Park and Stephen C. Gates. 2009. Towards
real-time measurement of customer satisfaction us-
ing automatically generated call transcripts. In Pro-
ceedings of the 18th ACM Conference on Informa-
tion and Knowledge Management, CIKM ’09, page
1387–1396, New York, NY, USA. Association for
Computing Machinery.

Esteban Real, Alok Aggarwal, Yanping Huang,
and Quoc V. Le. 2018. Regularized evolution
for image classifier architecture search. CoRR,
abs/1802.01548.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Christophe Vaudable and Laurence Devillers. 2012.
Negative emotions detection as an indicator of di-
alogs quality in call centers. In 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5109–5112.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontañón,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big bird: Transformers for
longer sequences. CoRR, abs/2007.14062.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V. Le. 2017. Learning transferable archi-
tectures for scalable image recognition. CoRR,
abs/1707.07012.

G. Zweig, O. Siohan, G. Saon, B. Ramabhadran,
D. Povey, L. Mangu, and B. Kingsbury. 2006. Au-
tomated quality monitoring for call centers using
speech and NLP technologies. In Proceedings of

658

https://doi.org/10.1109/ICASSP.2019.8683896
https://doi.org/10.1109/ICASSP.2019.8683896
https://doi.org/10.1109/ICASSP.2019.8683896
http://arxiv.org/abs/1612.02695
http://arxiv.org/abs/1612.02695
http://arxiv.org/abs/1612.02695
http://www.isca-speech.org/archive/interspeech_2010/i10_2350.html
http://www.isca-speech.org/archive/interspeech_2010/i10_2350.html
http://arxiv.org/abs/1706.04599
http://arxiv.org/abs/1706.04599
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1906.02629
https://doi.org/10.1145/1645953.1646128
https://doi.org/10.1145/1645953.1646128
https://doi.org/10.1145/1645953.1646128
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/ICASSP.2012.6289070
https://doi.org/10.1109/ICASSP.2012.6289070
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012
https://aclanthology.org/N06-4011
https://aclanthology.org/N06-4011
https://aclanthology.org/N06-4011


the Human Language Technology Conference of the
NAACL, Companion Volume: Demonstrations, pages
292–295, New York City, USA. Association for Com-
putational Linguistics.

659



Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 660–667

July 10-12, 2023 ©2023 Association for Computational Linguistics

Accurate Training of Web-based Question Answering Systems with
Feedback from Ranked Users

Liang Wang∗

Boston University
Department of Mathematics

and Statistics
leonwang@bu.edu

Ivano Lauriola
Amazon Alexa

lauivano@amazon.com

Alessandro Moschitti
Amazon Alexa

amosch@amazon.com

Abstract

Recent work has shown that large-scale anno-
tated datasets are essential for training state-of-
the-art Question Answering (QA) models. Un-
fortunately, creating this data is expensive and
requires a huge amount of annotation work. An
alternative and cheaper source of supervision
is given by feedback data collected from de-
ployed QA systems. This data can be collected
from tens of millions of user with no additional
cost, for real-world QA services, e.g., Alexa,
Google Home, and etc. The main drawback
is the noise affecting feedback on individual
examples. Recent literature on QA systems
has shown the benefit of training models even
with noisy feedback. However, these studies
have multiple limitations: (i) they used uniform
random noise to simulate feedback responses,
which is typically an unrealistic approximation
as noise follows specific patterns, depending on
target examples and users; and (ii) they do not
show how to aggregate feedback for improving
training signals. In this paper, we first collect
a large scale (16M) QA dataset with real feed-
back sampled from the QA traffic of a popular
Virtual Assistant. Second, we use this data to
develop two strategies for filtering unreliable
users and thus de-noise feedback: (i) ranking
users with an automatic classifier, and (ii) ag-
gregating feedback over similar instances and
comparing users between each other. Finally,
we train QA models on our filtered feedback
data, showing a significant improvement over
the state of the art.

1 Introduction

Large pre-trained language models, e.g., based on
The Transformer neural network (Lin et al., 2022),
have recently improved Natural Language Process-
ing and Information Retrieval in several tasks, e.g.,
document classification (Chaudhary et al., 2020),
Question Answering (QA) (Garg et al., 2020), neu-
ral retrieval (Karpukhin et al., 2020).

∗Work done during an internship at Amazon Alexa.

Transformer models can be conveniently pre-
trained on large-scale unlabeled web data through
general task-agnostic unsupervised objectives, e.g.,
Masked Language Model (MLM) and Next Sen-
tence Prediction (NSP), making the networks able
to be easily specialized on various downstream
tasks (Devlin et al., 2019). However, they still re-
quire labeled training data (expensive to produce)
to be adapted on the target domain. Recent re-
search in QA has shown that the more data is used
for fine-tuning the models, the better is the final per-
formance (Huber et al., 2022). For instance, Garg
et al. (2020) showed and measured the benefits
of using large-scale labeled web datasets, Google
NQ (Kwiatkowski et al., 2019), for training their
answer selection ranker. The authors divided the
fine-tuning stage into two steps: transfer and adapt
(TANDA). In the first step, the pre-trained Trans-
former is tuned on general out-of-domain large-
scale QA data. Then, the resulting model is further
trained on the target domain. However, building
large-scale annotated resources is costly in terms
of expert annotator work and annotation time. To
reduce costs, various strategies to generate cheap
training data have been recently explored, includ-
ing data augmentation (Pappas et al., 2022; Riabi
et al., 2021), distant supervision (Lin et al., 2018;
Zhao et al., 2021), and active learning (Kratzwald
et al., 2020).

A rather different approach is based on the avail-
ability of feedback data, i.e., the QA system output
(typically an answer) is evaluated by users. These
question/answer (q/a) pairs can be used for further
improving the training of QA systems (Li et al.,
2022; Campos et al., 2020). User feedback can,
thus, be used to build large and cheap training data,
especially when the QA system constitutes the back
bone of commercial applications such as virtual as-
sistants, e.g., Google Home, Alexa, Siri, to which
million questions are asked every day. Unfortu-
nately, feedback data is affected by noise, i.e., the
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individual feedback over a q/a pair has high proba-
bility to be incorrect. Indeed, users are not expert
annotators, and they often provide judgments with
lack of knowledge, subjectivity, and specific pref-
erences. For instance, some users may return a
positive feedback to a wrong answer that sounds
funny. Therefore, feedback data may be ineffective
for further training accurate models: in some cases,
it can even degrade the accuracy of models trained
on small datasets labelled by expert annotators.

How to obtain effective training data labelled
with feedback is an interesting open problem. For
example, Rebbapragada and Brodley (2007) and
Sun et al. (2007) provide weights to the training
instances according to a mislabeling probability.
However, to the best of our knowledge, previ-
ous work used artificially generated datasets, e.g.,
by adding random uniform noise to labeled cor-
pora (Campos et al., 2020). This does not represent
the characteristics of real users’ generated traffic,
as the noise distributes differently with respect to
different questions (according to categories, seman-
tics, pragmatics, trends, etc.). Users have indeed
different attitudes and behaviors, and they may in-
teract differently with the responses of a QA sys-
tem. Approximating the error probability distribu-
tion of feedback is a main challenge, preventing
weighting methods to be effective.

To study this problem, we first collect and ana-
lyze a large-scale users’ feedback dataset (16M q/a
pairs) sampled from the traffic of a popular virtual
assistant. Then, we propose two effective solu-
tions to reduce the label noise and improve training
performance: (i) we use an automatic classifier,
trained on off-the-shelf answer selection data to
automatically grade the reliability of users. Then,
we select training examples using the most reliable
users. (ii) We cluster together similar questions so
that we compare the answer from different users
and again rank them based on how much they are
close to the majority judgments. Our experiments
show that both proposed methods improve state-
of-the-art models much more than using noisy and
unfiltered data.

2 Related work

Training QA systems with feedback data after mod-
els deployment received considerable attention in
the past years. Campos et al. (2020) for instance,
simulated a scenario where an initial deployed
machine reading model is continuously trained

through feedback responses, showing promising
sandbox performance. Authors simulated feed-
backs as positive whenever the answer span pre-
dicted by the system matches the gold span exactly,
and negative otherwise. A similar scenario was
considered by Li et al. (2022), where feedback was
collected through crowdworkers. The authors them-
selves pointed out the limits of these studies as the
results were based on artificial data distribution.

Other authors explored feedback such as ex-
planation of incorrect responses by chatbots (Li
et al., 2016; Weston, 2016). However, the feedback
in these studies is automatically generated using
heuristics. Similarly, Rajani et al. (2019) collected
human explanations for commonsense QA in the
form of natural language sequences, and used the
data to improve existing models with state-of-the-
art performance.

The main weakness of previous work is that most
of existing analyses (i) are based on artificially gen-
erated data (Campos et al., 2020; Li et al., 2022,
2016; Weston, 2016) or (ii) use crowdsourced work-
load (i.e., annotators) to simulate real feedback data.
As a consequence, these approaches are not suitable
for industrial scenarios since they do not consider
noise distribution of real users’ generated data. In
contrast, our work is based on real user data from
a virtual assistant, which provides answer using
a web-based QA system. Our results are general-
izable to most industrial scenarios targeting open
domain QA.

3 Operational setting

We consider the task of selecting the correct an-
swer sentence among a set of candidates extracted
from web-documents retrieved for a given question.
Formally, let Σ∗ be the set of strings (or general
sentences) and Q ⊆ Σ∗ be the set of questions
according to a certain input distribution. Given
an input question q ∈ Q and a set of k sentences
{si}ki=1 ∈ Σ∗k (e.g., returned by a search engine),
the answer selector can be defined as a function
r : Q × Σ∗ → R, which assigns a probability
score to each q/a pair, r(q, si), and returns the an-
swer associated with the highest ranked pair, i.e.,
argmaxi=1...k r(q, si). We use the state-of-the-art
model for answer sentence selection (Garg et al.,
2020; Lauriola and Moschitti, 2021), which imple-
ments r with a Transformer model. This encodes
an input pair (q, si) as [CLS] q [SEP] si [EOS] and
returns the associated score through a classification
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head on top of the [CLS] token.

3.1 Internal Feedback Dataset (IFD)

We use a popular virtual assistant to collect a large
internal dataset constituted by: (i) open domain
user questions, (ii) their answers selected from
web-documents by a QA system, and (iii) feed-
back provided by users to the answers. We first
pre-processed the data by de-identifying the users.
Then, we limited the sample to questions asked
in 2022. Finally, we removed questions asked by
users who provided feedback to less than 4 an-
swers. Overall, we collected a dataset, D, of 16M
tuples, (qi, si, fi, uj), where qi is an open-domain
question, si is the answer generated by the virtual
assistant, fi ∈ {−1,+1} is the binary feedback
returned by the user, and uj is the user id. In the
remainder of this paper, we refer this resource as
Internal Feedback Dataset (IFD).

Please note that, as the questions are from real
users, for several internal and external regulations,
we cannot release the resource for public research.
To improve replicability of our findings, we provide
empirical results on the impact of our approach and
data on public benchmarks.

4 Training with de-noised Feedback

The standard approach to de-noise training exam-
ples is to assign them different weights according
to their reliability. Finding these weights for indi-
vidual feedback instances is an open problem. We
propose two methods: The first is based on a com-
pletely new idea (to our knowledge): we observed
that different users have different accuracy in as-
sessing the correctness of answers. Since manually
labeling millions of users is not feasible, we use
an automatic answer selector classifier, trained on
off-the-shelf data. The second approach is based
on standard collaborative filtering applied to user
clusters, which are created by comparing questions
using state-of-the-art text similarity techniques.

4.1 User Relevance Score

We provide a Relevance Score (RS) to users in two
steps: First, we measure the agreement between
the user annotation and an automatic answer se-
lection model, r, which provides a probability of
correctness of the answers for the target questions.
More formally, the agreement/similarity between
the classifier score and the associated feedback is
r(qi, si)·fi, where r(qi, ai) ∈ [−1,+1] is the score

and fi ∈ {−1,+1} is the binary user feedback. In-
tuitively, the higher is the agreement the higher is
the probability that the feedback is correct.

In the second step, we computed RS of an user
as the average of the agreement scores computed
on all examples he/she gave a feedback. In short,
we assign RS to the user uj , defined as:

RS(uj) =

∑
(qi,si,fi,uj)∈Duj

r(qi, si) · fi
|Duj |

where Duj ⊂ D is the set of tuples for which
the user uj gave a feedback, i.e., Duj =
{(qi, si, fi, uk) ∈ D : k = j}.

Finally, to obtain accurate training data we con-
sider the annotation of only reliable users. These
are obtained by ranking users with RS and discard
those having a score below a certain threshold. We
build r using a state-of-the-art Electra-large model
trained for answer sentence selection as described
by (Garg et al., 2020).

4.2 Collaborative filtering
Our second filter is based on the intuition that users
have different knowledge and they may provide
accurate feedback to certain type of questions and
low quality feedback to others.

Broadly speaking, the feedback assigned by
other users to a given answer can provide some
insights on the quality of a target user. If a user
tends to disagree with the majority of feedback for
a given question, then we can filter out the user as
their judgment cannot be considered reliable.

Let X be user-question matrix where the ji-th
entry, i.e., X[j,i] ∈ {−1, 0,+1}, contains the feed-
back of the user j to the question i. +1 positive
feedback, −1 negative, 0 missing. By construction,
the i-th column, that is, X[:,i], contains all feedback
collected for a given question. We define the voted
feedback, f̄i, for the question, i, as the average of
non-missing judgments, which can be easily com-
puted as the ratio between the L1 and L0 norm of
the i-th column vector: f̄i =

∥X[:,i]∥1
∥X[:,i]∥0 . Eventually,

let f̄ be the voted feedback vector ([f̄1, f̄2 . . .]).
We define the reliability of the user j as the aver-
age proximity between its feedbacks and f̄ , that is,
X[j,:]f̄

⊤.
Similarly to the previous approach, we use this

reliability score to rank users and to filter those
with a score below a certain threshold.

The main issue with this approach is the sparsity
of the user-question matrix. Typically, questions
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are unique word sequences, and thus the amount of
questions with feedback from different users is low.
In order to overcome this limitation, we extend the
collaborative approach by aggregating questions
(i.e., columns), which are semantically identical or
at least similar. We define a cluster of questions, ck,
as the set of semantically equivalent questions, and
we represent the user-cluster interactions through
a matrix Xc. The jk entry of the user-cluster rela-
tions matrix, that is Xc

[j,k] contains the feedback of
the user j for a question in the k-th cluster. If a user
provides feedback to multiple questions belonging
to the same cluster we average the them.

We find question clusters using a standard k-
means algorithm, where the semantic distance be-
tween questions is computed with a Transformer
model. We used a RoBERTa-large model trained
on various semantic similarity tasks1 and further
fine-tuned on Quora Question Pairs, a popular
dataset for question-question similarity tasks. Ex-
amples are encoded as [CLS] question [SEP] an-
swer [EOS]. The representations developed in the
last Transformer layer associated with the [CLS] to-
ken are then used to compute the distance between
two questions. For simplicity, we used the standard
euclidean distance function.

During a preliminary experimentation phase, we
set the number of clusters to 50,000. This value
represents a good trade-off between quality of the
clusters (i.e., we do not have unrelated questions,
which look similar, in the same cluster) and the
amount of feedback per cluster. We observed that
more than 95% of the clusters have at least 100
pieces of feedback.

5 Empirical assessment

We divided our experiments in 3 groups: First,
we analyze the quality of our filtered data through
manual evaluation. Then, we show that the massive
amount of noisy feedback can improve the perfor-
mance of QA models already trained on large-scale
high-quality annotated data. Finally, we analyze
the impact of the de-noising strategies described in
the previous sections.

5.1 Qualitative evaluation

The first step of our analysis concerns the eval-
uation of the proposed filtering strategies. Both
filters rank the users according to their likelihood

1The checkpoint is available here https://huggingface.
co/sentence-transformers/all-roberta-large-v1

Sample top 10% bottom 10%
Random 0.49
Relevance filtering 0.73 0.36
Collaborative filtering 0.53 0.38

Table 1: MCC computed between expert annotators and
various samples of feedback, including random sample
and top/bottom 10% of the rank produced by our filters.

probability of being good annotators. Hence, users
in the top of the rank provide higher quality data
compared to users in the bottom of the rank.

To evaluate this assumption, we ranked all tuples
from IFD according to relevance and collaborative
scores and we randomly sampled 200 tuples from
the top and the bottom 10% of the ranks. Then,
we manually analyzed these samples to evaluate
and quantify the amount of label errors (noise).
We used expert annotators and the Matthews Cor-
relation Coefficient (MCC) (Chicco and Jurman,
2020) to measure the agreement between users’
feedback and annotators’ labels. This value ranges
between -1 (totally uncorrelated) and 1 (perfectly
correlated). The higher is the value of MCC on
the sample, the higher is the alignment between
feedback labels and annotators’ judgments (that we
consider as gold standard), and consequently the
quality of the feedback data. Compared to other
metrics, e.g., accuracy or F1, MCC is not affected
by class-skewness. We also computed the same
score on a random sample from the original unfil-
tered dataset for further comparison.

The results in Table 1 shows that, notwithstand-
ing the limits and simplicity of the proposed filter-
ing strategies, they are clearly able to correctly rank
tuples, placing noisy examples lower in the rank.
The samples annotated from the top 10% of the
ranks have indeed a higher MCC score compared
to the tuples sampled from the lower 10%. Also,
the relevance filtering seems to work better.

5.2 Training with noisy feedback
Datasets We consider two popular annotated
datasets for answer sentence selection tasks:
ASNQ (Garg et al., 2020) and WikiQA (Yang
et al., 2015). ASNQ is a large-scale resource de-
rived from Natural Questions (Kwiatkowski et al.,
2019). For each input question, candidate answer
sentences are extracted from a selected wikipedia
page. The dataset consists of 20M labeled q/a
pairs, making it one of the largest existing re-
sources for this task. WikiQA is a curated small
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Configuration P@1 MAP MRR
IFD 66.9 78.7 79.8
ASNQ 83.1 88.0 89.4
WikiQA 75.5 83.6 85.0
IFD ;WikiQA 81.9 88.0 89.1
ASNQ ;WikiQA 84.4 88.8 90.4
ASNQ ;IFD ;WikiQA 86.1 90.4 91.5

Table 2: Preliminary evaluation of IFD. Sequential fine-
tuning is denoted by ;. Models are tested on WikiQA.

resource consisting of 3,047 questions and 29,258
q/a pairs. Similarly to ASNQ, sentences were ex-
tracted from Wikipedia abstracts associated with
each input question. In our setting, we consider
(i) WikiQA as low-resource target domain, where
we test our models, (ii) ASNQ as large-scale anno-
tated resource to improve the QA performance on
WikiQA (as described by Garg et al. (2020)), and
(iii) IFD to study the impact of feedback data on
the target domain.

Model selection We start from an Electra-base
(110M parameters, 12 layers) public checkpoint.
During the training, we set (i) the batch size to
1024 q/a pairs, (ii) the max sequence length for the
input of the Transformer to 128 tokens, (iii) the
max training epochs to 5 for ASNQ and IFD, and
to 10 for WikiQA, and (iv) a constant lr schedule
with linear warm-up of 0.1 epoch. We used Wik-
iQA validation set to monitor the validation loss
after each epoch and, in case, terminate the train-
ing, and to select the optimal learning rate, with
values [1, 2, 5] × 10−[5,6]. We used ASNQ, IFD,
and WikiQA to train the models with different con-
figurations described in the next sections, and we
used the test split of WikiQA as final test set. For
each experiment, we train and evaluate models 3
times and average the final results computed on the
test set.

Training We evaluated the following training
strategies:

• 1-step training - We fine-tune a public Trans-
former checkpoint on IFD, ASNQ, or WikiQA and
test the models on WikiQA. This allows us to iso-
late and quantify the impact of large noisy data
(IFD), large high-quality data (ASNQ), and limited
but in-domain data (WikiQA).

• 2-steps training - Inspired by recent research in
answer sentence selection (Garg et al., 2020), we
first train models on large datasets, i.e., IDF or

ASNQ, and then we further fine-tune the models
on the target domain (WikiQA).

• 3-steps training - We sequentially fine-tuned
the model on (i) ASNQ, (ii) IFD, and (iii) Wik-
iQA. This experiment shows that, even in scenarios
where large amount of labeled data is available for
training, feedback helps the model and improves
the final accuracy.

The results of these experiments (see Table 2)
show multiple keypoints: First, large resources do
not necessarily improve the performance if their
quality is poor, e.g., small but high-quality in-
domain training data (WikiQA, 30k q/a pairs) per-
forms better than large noisy dataset (IFD). Second,
both ASNQ and IFD significantly improve the per-
formance on WikiQA when using sequential fine-
tuning approaches (lines 4-5). Not surprisingly, the
improvement of ASNQ is higher as it contains high-
quality annotations. Moreover, a last fine-tuning on
the target domain (WikiQA) always improves the
performance (lines 1-2 compared to 4-5). Finally,
the combination of high and low quality large re-
sources (line 6) further improves the performance.
Although IFD contains a considerable amount of
noise, it is still a valuable resource to improve the
performance of the model. Even thought a large
resource is available, i.e., ASNQ, feedback data is
still rather valuable.

5.3 Relevance and collaborative filtering
evaluation

We analyzed the impact of de-noising mechanisms
to improve the quality of data and consequently the
final performance. For each filter, relevance and
collaborative, we first compute the rank of users
as described in Section 4, then, we consider the
following filtered IFD versions:

Full We use the full set, regardless of the produced
ranks. This version of IFD represents the base-
line where the filtering is not used.

Top We use the top 10% of tuples from IFD ac-
cording to the rank of the filter. This allows
us to restrict the training to high-quality feed-
back.

Best We train models with 10%, 20%,
30%,. . . ,100% of IFD selected on top
on the rank of the filter. Then, we select the
model with lowest validation loss. This helps
finding an optimal trade-off between data
quantity and quality.
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Relevance f. Collaborative f.
Configuration P@1 MAP MRR P@1 MAP MRR
Full (100%) 80.4 86.2 87.7 80.4 86.2 87.7
Best (10-100%) 80.6 86.6 88.2 81.3 87.0 88.4
Random (10%) 78.2 85.1 86.7 78.2 85.1 86.7
Top (10%) 81.3 87.0 88.5 79.8 86.6 87.9
Full ;WikiQA 86.1 90.4 91.5 86.1 90.4 91.5
Best ;WikiQA 86.8 90.7 91.8 85.8 90.4 91.4
Ran. ;WikiQA 85.9 90.1 91.4 85.9 90.1 91.4
Top ;WikiQA 87.0 90.7 92.0 84.6 89.5 90.6

Table 3: Consistency and collaborative filtering - empirical results for the 4 sampling strategies. All models start
from a cehckpoint trained on ASNQ.

Random We use 10% of tuples from IFD ran-
domly sampled. This baseline emphasizes the
effect of the filter compared to the usage of
Top tuples. Both strategies indeed, Random
and Top, use the same amount of data.

For each subset and filter, we sequentially trained
an Electra-base on ASNQ and then on IDF (fil-
tered). Results in Table 3 show multiple key as-
pects: First, finding the optimal trade-off between
quantity and quality (Best) usually improves the
performance compared to the unfiltered IFD (Full),
suggesting that the filtering methods work as ex-
pected. The only exception occurs when using
collaborative filtering and fine-tuning models on
WikiQA. Note that this approach is computation-
ally expensive as we train a model for each possible
threshold (10%, 20%. . . ).

Second, using only the Top 10% of the data
further improves the results when adopting the rel-
evance filtering. This indicates that: (i) relevance
filtering works well and can be used to significantly
reduce the amount of data by a magnitude, while
improving the QA performance; (ii) collaborative
filtering shows some promising results only when
models are not fine-tuned on the target domain.
However, both approaches represent a solid base
for future research in this field. Note that these
results corroborate our manual analysis showed in
Table 1. Both experiments, manual rank evalua-
tion and models training, suggest that the relevance
filtering provides, compared to collaborative ap-
proach, a better rank and thus a better data filtering
and final performance.

6 Conclusion

Feedback data represents a huge and convenient
source of training data, which can be used to im-

prove the performance of deployed QA systems.
However, the noise affecting feedback can degrade
model performance. This paper introduces two
ML approaches to filter feedback data and to re-
duce the amount of noise. Our filters are based on
the assumption that users act differently from each
other. Thus, their behaviour induces different relia-
bility, which if modeled correctly can help to build
more effective training data. We used a large set of
question, answer, and feedback tuples (16M) sam-
pled from a commercial virtual assistant to validate
this hypothesis. Our extensive empirical assess-
ment clearly shows that filtered feedback can sig-
nificantly improve the performance of a deployed
QA system, even when the models are trained on
massive high-quality annotated resources.

Note that this work does not aim to compare dif-
ferent filtering methods to elect a superior approach.
We conjecture that the collaborative filtering can be
further improved, for instance by deeply analyzing
different clustering approaches or embeddings ex-
tractors. On the contrary, our goal is (i) to highlight
the importance and impact of using real feedback
data to improve the performance of industrial QA
models, and (ii) to provide insights for future re-
search directions. To the best of our knowledge,
this work represents the first analysis on real feed-
back data and its integration into model training.
These findings reveal promising directions to im-
prove deployed QA systems.

7 Limitations

This paper introduces two heuristic approaches to
filter noisy feedback data. Although we showed
that these simple methods improve the performance
of QA models, they have various limitations and
they represent only an initial step for future re-
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search on real feedback data.
The core of the relevance filtering is based on

the assumption that correct feedback occur when
the model and the user agree on the labels. This
approach may introduce a selection bias towards
tuples associated with "simpler" q/a pairs, which
are already well understood by the model and thus
potentially ineffective for training. Although the
model can easily discard q/a pairs whose feedback
are clearly different, the risk is that uncertain pairs
close to the classification boundary (i.e., model
score close to 0) are penalized and easily filtered
as they will receive a reliability score close to 0.

Regarding the collaborative approach, the main
limitation concerns the clustering strategy adopted
to aggregate questions. On one hand, we want to
reduce as much as possible the number of clusters
such that we have a sufficiently high amount of
feedback per cluster. This makes the proximity
computation between users and the voted feedback
vector robust.

On the other hand, the clustering may introduce
additional noise by aggregating different and non-
equivalent questions into the same cluster. This
aspect may reduce the reliability of the voted feed-
back vector.

Finally, as mentioned in the previous sections,
feedback data and q/a pairs used in this work come
from real users traffic. For this reason, we only de-
scribed the high-level approach of integrating feed-
back and we showed the impact on public bench-
marks. A harsh limitation is caused by the private
nature of the customer data, which cannot be re-
leased for public research.
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Abstract

In a task-oriented dialogue system, joint intent
detection and slot filling for multi-intent utter-
ances become meaningful since users tend to
query more. The current state-of-the-art stud-
ies choose to process multi-intent utterances
through a single joint model of sequence la-
belling and multi-label classification, which
cannot generalize to utterances with more in-
tents than training samples. Meanwhile, it lacks
the ability to assign slots to each corresponding
intent. To overcome these problems, we pro-
pose a Split-Parsing Method (SPM) for joint
multiple intent detection and slot filling, which
is a two-stage method. It first splits an in-
put sentence into multiple sub-sentences which
contain a single-intent, and then a joint single
intent detection and slot filling model is ap-
plied to parse each sub-sentence recurrently.
Finally, we integrate the parsed results. The
sub-sentence split task is also treated as a se-
quence labelling problem with only one entity-
label, which can effectively generalize to a sen-
tence with more intents unseen in the training
set. Experimental results on three multi-intent
datasets show that our method obtains substan-
tial improvements over different baselines.

1 Introduction

With the development of natural language technolo-
gies, the task-oriented dialogue system has become
a significant practical application. It is widely ap-
plied in many industrial scenarios. One critical
component in the task-oriented dialogue system is
Spoken Language Understanding (SLU) (Young
et al., 2013), which is further decomposed into
two sub-tasks, namely intent detection and slot fill-
ing (Tur and De Mori, 2011). The slot filling task
aims to convert the user utterance into a BIO la-
bel sequence of equivalent length. As for intent
detection, it is essentially a sentence classification

∗ Sheng Jiang and Su Zhu are co-first authors and con-
tribute equally to this work.

task which may have one or more labels. State-
of-the-art studies tend to solve these two sub-tasks
through a joint model (Goo et al., 2018; Liu et al.,
2019), since slots and intents are highly correlated.

Previous literature in SLU mainly focuses on
utterances with a single intent. Although classic
models (Qin et al., 2019) achieve remarkable per-
formances on those single-intent datasets, they ne-
glect the realistic situation where the user utterance
may contain multiple intents. Recently, researchers
switch their attention to multi-intent benchmarks,
such as MixATIS and MixSNIPS (Qin et al., 2020,
2021; Xing and Tsang, 2022a). An intuitive so-
lution is to replace the original multi-class intent
detection module into multi-label classification, see
Figure 1(a). More advanced methods attempt to im-
prove upon this backbone model. For example, Qin
et al. (2020, 2021) proposes AGIF and GL-GIN,
which both integrate the correlation between slots
and intents into model design. Nonetheless, the sep-
arate prediction of multiple intents and slots leads
to the failure of assigning appropriate slots to each
intent. This mis-allocation of slots to intents may
cause execution errors in a practical task-oriented
dialogue system. Furthermore, the generalization
capability of previous models is less investigated
regarding the number of intents. For instance, if
the model is merely trained on samples containing
1-3 intents, it would perform poorly on utterances
with more than 3 intents.

To this end, we propose a Split-Parsing Method
(SPM) for joint multi-intent detection and slot fill-
ing. SPM is a two-stage SLU system. At the first
stage, the utterance is split into sub-sentences, each
containing exactly one intent. These sub-sentences
are independent and together constitute the com-
plete semantic representation. At the second stage,
each sub-sentence is parsed by a traditional SLU
model designed for single-intent. In this way, each
slot is automatically aligned to their superior in-
tent in the sub-sentence. Eventually, all parsing

668



(a) One-stage SLU

(b) SPM, two-stage SLU

Figure 1: Architectures of (a) the previous one-stage SLU system and (b) our proposed two-stage Split-Parsing
Method (SPM). The utterance, “list LA and what class is fare code Q”, is selected from MixATIS dataset (Qin et al.,
2020).

results are aggregated through post-processing. As
illustrated in Figure 1(b), the utterance “list LA and
what class is fare code Q” is firstly split into two
sub-sentences. Next, each sub-sentence is fed into
the joint model of intent detection and slot filling to
obtain the corresponding intent and slots. The slot-
value pair “city_name=LA" is directly assigned to
the sub-sentence “list LA" with intent “atis_city".
Evidently, this method can effectively generalize
to complicated utterances with more intents.

The proposed SPM is evaluated on two public
English datasets (MixATIS and MixSNIPS, Qin
et al., 2020), and a customized Chinese dataset
which is collected from an in-vehicle dialog system.
Experimental results demonstrate that the SPM can
1) achieve nearly perfect performances on the sub-
sentence split task at the first stage, 2) attain stable
improvements compared to one-stage method re-
gardless of the model choice at the second stage,
and 3) generalize better towards examples contain-
ing more intents unseen during training.

2 Related Work

From Single to Multiple Intents To deal with ut-
terances with a single intent, most previous works
(Liu and Lane, 2016; Hakkani-Tür et al., 2016;

Zhang and Wang, 2016; Goo et al., 2018; Qin
et al., 2019; Liu et al., 2019; Wang et al., 2018;
Chen et al., 2019; Zhu et al., 2020) choose to
tackle the intent detection and slot filling tasks in
a multi-tasking manner. For sentences with mul-
tiple intents, several works (Gangadharaiah and
Narayanaswamy, 2019; Qin et al., 2020, 2021;
Xing and Tsang, 2022a,b) introduce a multi-label
classifier to individually predict each possible in-
tent. Recently, (Qin et al., 2021; Xing and Tsang,
2022a) proposed to model relationships between
intents and slots, which takes into account the in-
teraction between these two sub-tasks. However,
previous literature fails to predict the alignment be-
tween intents and slots. Thus, it cannot determine
which intent to assign for each slot. At the same
time, in practical application scenarios, we need
to design non-aligned slots. If we use a joint slot
tagger, it is impossible to align non-aligned slots
in multi-intent with their corresponding intents. In
this work, we propose a two-stage pipelined SLU
system to tackle the slot-intent assignment prob-
lem.

Generalization to More Intents The transfer
performances in more intents is rarely studied.
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Meng et al. (2022) proposed to use a sequence-to-
sequence model (Dialo-USR) to generate all sub-
sentences for joint multi-intent detection and slot
filling. However, it also suffers from the poor gen-
eralization capability when confronted with more
intents. Moreover, restricted by the auto-regressive
decoding process, such a generative model intro-
duces more overheads especially in the inference
speed. Thus, it is impractical to be deployed in
industrial scenarios. In contrast, we exploit a token-
level sequence labeling model to act as the sentence
splitting model, It shows better performances in
both the accuracy and inference speed at the first
stage.

3 Approach

The differences between the one-stage SLU system
and our proposed two-stage SLU system (SPM)
are illustrated in Figure 1. In the upper part, the
user’s multi-intent utterance is directly passed into
a joint model of multi-label intent detection and
slot filling, which is trained on multi-intent data. A
token-level slots sequence and multiple intents are
predicted, while it is not possible to assign each
slot to the corresponding intent, since alignments
between slots and intents are not modeled in this
method. The below sub-figure of Fig. 1 illustrates
our proposed method, where a multi-intent sen-
tence is first split into sub-sentences by our split
model (§3.1). These sub-sentences will be fed into
a joint model of intent detection and slot filling
separately. Thus, we can catch slot results for each
individual intent. Meanwhile, the joint model of
intent detection and slot filling exploited in the one-
stage SLU can be applied into SPM without any
change, which is much portable and easy-to-use.

3.1 Split Model

As shown in Fig. 2, to split a multi-intent sentence
into sub-sentences, we regard it as a sequence la-
beling problem. We treat each sub-sentence as a
separate slot (named as “snt”), and represent the
output sequence in the way of BIO tags. For ex-
ample, the annotation result of “list LA and what
class is fare code Q" should be “B-snt I-snt O B-
snt I-snt I-snt I-snt I-snt I-snt" in Fig. 2. It should
be noted that annotations of conjunctions in multi-
intent sentences at the token level are assigned with
“O”.

The split model can be implemented as any
sequence labelling model, such as bidirectional

Figure 2: The sequence labeling model for the sentence
splitting task. The outputs only include 3 labels, namely
B-snt, I-snt and O.

Figure 3: Example for non-aligned slots in the Chinese
dataset

LSTM (Graves, 2012), Bert model (Devlin et al.,
2019). These sequence labelling models could po-
tentially perform better for longer multi-intent sen-
tences than those sentences in the training set.

4 Experiments

In this section, our SPM is trained and tested in
three datasets and compared with different baseline
models. From our experimental results in English
dataset, adding split models can improve slot per-
formance and our models shows better generaliza-
tion ability in more intents. The evaluation results
in Chinese dataset shows our SPM is faster and
generalize better compared with other two-stage
SLU system.

4.1 Datasets and Metrics

Regarding the English dataset, we conduct our ex-
periments on MixATIS and MixSNIPS (Qin et al.,
2020). For Chinese, we experiment on our cus-
tomized dataset from realistic production scenarios.
Detailed statistics are provided in Table 1. It is
worth mentioning that in our Chinese dataset, due
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to the needs of real scenarios, we have designed
some non-aligned slots. As shown in Fig. 3, the
slot “adjustment:temperature” is non-aligned and
necessary.

Datatset Language Train Validation Test
MixATIS English 13,162 756 828

MixSNIPS English 39,776 2,198 2,199
Ours Chinese 800,000 50,000 20,000

Table 1: Statistics of multi-intent SLU benchmarks.

The evaluation is based on multiple intent detec-
tion accuracy, sub-sentence accuracy, F1 score for
slot filling, and overall accuracy for the sentence-
level semantic frame parsing. Notably, to align
slots and intents, the slot F1 score in Chinese
dataset is base on slot intent index. However, fol-
lowing previous works, the slot F1 score is not
based on index in English dataset.

4.2 Implementation Details
In our two-stage SLU system, the basic task is
to train the sentence split model. Since our split
data is labeled based on token level, any sequence
labeling models can be trained directly as the split
model.

Split Labels Generation: Since the multi-intent
sentences in MixATIS and MixSNIPS are actually
generated by the combination of single-intent sen-
tences in ATIS (Hemphill et al., 1990) and SNIPS
(Coucke et al., 2018). We extracted and labeled
all sub-sentences from MixATIS and MixSNIPS
in token level BIO tags. For example, when the
utterance is “list LA and what class is fare code Q",
the output token-level tags should be “B-snt I-snt
O B-snt I-snt I-snt I-snt I-snt I-snt".

During the construction of Chinese multi-intent
dataset, we first extracted a certain number of
single-intent utterances from production scenarios
which are mainly in-car instructions.

Split Model: In our experiment, we use Bi-
Model (Wang et al., 2018) and Bert(Devlin et al.,
2019) as the split models in MixATIS and MixS-
NIPS. To compare with the sequence-to-sequence
split model (Meng et al., 2022) in Chinese utter-
ances, we also train Bert-based models( MiniRBT-
h256 (Cui and Yang, 2022), Bert-wwm (Cui et al.,
2021)) and mT5-small (Xue et al., 2020) for sen-
tence split.

Intent Detection and Slot Filling Model: For
the task of intent detection and slot filling, we di-
rectly use the open source model weights of AGIF

(Qin et al., 2020) and GL-GIN (Qin et al., 2021).
Also, we finetune the Bert model in the English
datasets and our Chinese dataset for intent detec-
tion and slot filling.

4.3 Baselines
In one-stage SLU systems, we compare our our
SPM with the following baselines: Bi-Model
(Wang et al., 2018), AGIF (Qin et al., 2020), GL-
GIN(Qin et al., 2021), ReLa-Net (Xing and Tsang,
2022b), Co-guiding Net (Xing and Tsang, 2022a)
and Bert (Devlin et al., 2019).

To assign slots to corresponding intents in one-
stage model, we also trained Bert in index label-
ing method. Slot labels based on index will have
a suffix (__MI_X) to indicate the intent number.
For instance, the index-based slots of the utterance
“list LA and what class is fare code Q" should
be “O B-city_name__MI_1 O O O O O O B-
toloc.cityname__MI_2". Therefore, the slot can
be aligned with the intent through the suffix of the
slot.

4.4 Results in English Datasets
Using our method, adding a split model before
intent detection and slot filling can help the orig-
inal slot models have better performance. In this
sub-section, we have evaluated our two-stage SLU
system in the test sets of MixATIS and MixSNIPS,
compared with different baselines. The first eval-
uation is in 1-3 intents and the second is in 3-5
intents.

Table 2 shows the intent detection and slot filling
results of our two-stage SLU systems and baseline
models in the original test sets of MixATIS and
MixSNIPS. From Table 2, we observe that:

1. Adding split models improves the perfor-
mance of baseline slot models to a certain extent.
For instance, in MixATIS, the one-stage AGIF
achieves 41.8 in overall accuracy, while it achieves
43.1 when we add the split model ad Bi-Model.

2. Our two-stage models are still competitive
compared with the one-stage models with the best
performance (Rela-Net and Co-guiding Net). Even
in MixSNIPS, the system with Bert-base (split
model and slot model) gets the best slot F1 96.0
and overall accuracy 83.2.

Since the test utterances in Table 2 only con-
tain 1-3 intents, we also want to verify whether our
SPM can achieve good performance in utterances
with more intents unseen in the training set. Based
on MixATIS and MIXSNIPS, we construct another
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Split Model Slot Model MixATIS MixSNIPS
Slot F1 Intent Acc Overall Acc Slot F1 Intent Acc Overall Acc

-

Bi-Model 85.5 72.3 39.1 86.8 95.3 53.9
AGIF 87.8 75.6 41.8 93.3 96.3 70.0

GL-GIN 88.3 76.3 43.5 93.8 95.6 71.0
ReLa-Net 90.1 78.5 52.2 94.7 97.6 76.1

Co-guiding Net 89.8 79.1 51.3 95.1 97.7 77.5
Bert_index 85.5 82.6 46.1 95.4 95.4 81.7

Bi-Model

Bi-Model 86.7 75.0 42.3 90.7 94.0 61.3
AGIF 88.3 77.3 43.1 93.0 95.5 68.9

GL-GIN 88.4 77.1 43.7 93.9 94.8 71.4
Bert-base 86.3 77.4 49.2 94.8 96.4 77.5

Bert-base

Bi-Model 86.7 75.2 42.4 89.5 93.7 57.7
AGIF 88.3 77.4 43.2 94.2 95.1 73.8

GL-GIN 88.4 77.2 43.7 95.1 94.2 76.2
Bert-base 86.3 77.9 49.3 96.0 95.9 83.2

Table 2: Results on the original test sets of MixATIS and MixSNIPS.

Split Model Slot Model MixATIS MixSNIPS
Slot F1 Intent Acc Overall Acc Slot F1 Intent Acc Overall Acc

-
AGIF 87.6 48.4 20.5 90.5 39.3 20.5

GL-GIN 88.8 39.0 17.6 92.5 28.4 16.7
Bert_index 88.0 14.9 7.5 93.9 16.7 12.4

Bi-Model

Bi-Model 88.4 62.9 24.9 86.6 49.8 20.4
AGIF 88.4 66.9 27.7 91.8 50.8 27.6

GL-GIN 89.1 66.4 27.3 92.9 50.3 29.5
Bert-base 88.5 68.6 29.6 92.6 50.9 33.7

Bert-base

Bi-Model 88.5 80.4 31.2 89.4 90.7 38.1
AGIF 88.5 85.5 34.8 94.5 92.1 58.5

GL-GIN 89.2 85.0 34.3 95.0 91.6 62.1
Bert-base 88.7 87.3 37.8 96.1 93.5 72.8

Table 3: Results on MixATIS and MixSNIPS with more intents (3-5).

Split Model Intents MixATIS MixSNIPS
Sub-sentence Acc Sub-sentence Acc

mT5-base

1-3

95.1 74.9
mT5-large 97.6 88.8

mT5-xl 98.1 98.6
Bi-Model 99.4 99.4
Bert-base 99.7 99.5

mT5-small
3-5

34.9 54.0
Bi-Model 86.4 67.4
Bert-base 99.2 99.6

Table 4: Sub-sentence accuracy results of different split
models in MixATIS and MixSNIPS with 1-3 intents and
3-5 intents

test set with 3-5 intents. The experimental results
in Table 3 show that our method has better general-
ization ability than the one-stage models in more
intents.

Table 3 shows the intent detection and slot filling
results on the multi-intent transfer test sets. The
multi-intent transfer test sets only contain the utter-

ances of 3-5 intents, which have never been expe-
rienced during the training of models. In Table 3,
we can observe that the one-stage SLU systems
perform poorly in the accuracy of slots and intents.
For instance, GL-GIN only gets 16.7 overall accu-
racy in MixSNIPS, while the two-stage SLU with
split Bi-Model and slot GL-GIN achieves 29.5. At
the same time, it can be seen from Table 3 that
the split model can still complete the sentence split
task to a certain extent on the utterances with more
intents. Especially when we use Bert as split and
slot models, the intent accuracy in MixATIS and
MixSNIPS are 87.3 and 93.5.

Interestingly, we found that the use of the pre-
training model as the split model has better perfor-
mance in both 1-3 intents and more intents. There-
fore, we evaluated the sub-sentence accuracy of the
split models. As shown in Table 4, sequence label-
ing models (Bi-Model and Bert) all achieve higher
sub-sentence accuracy than sequence-to-sequenec
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Split Model Slot Model Params of
Split Model

1-5 Intents 6-10 Intents Speed (split)
(ms/sentence)

Speed (split + slot)
(ms/sentence)Slot F1 Overall Acc Slot F1 Overall Acc

-
MiniRBT-index

-
97.74 84.51 74.57 5.33 - 166.60

Bert-wwm-index 98.24 88.72 71.57 4.10 - 290.48
mT5-small

MiniRBT
300M 98.46 93.61 95.71 78.79 41.10 330.06

MiniRBT 10.4M 99.46 95.76 98.99 88.35 0.99 291.01
Bert-wwm 110M 99.50 95.92 99.17 89.26 2.04 290.00

Table 5: Evaluation results and inference speed on Chinese multi-intent dataset.

Figure 4: Case study of two-stage SLU with slot model AGIF (A) and one-stage SLU with slot model AGIF (B),
blue denotes different slots, orange and green denote same intents

models (mT5). And this is more obvious in the ut-
terance with more intents, like Bert-base achieves
99.2 sub-sentence accuracy but mT5-small only
gets 34.9.

4.5 Results in Chinese Datasets

Our SPM still have advantages compared the other
two stage SLU system. Here we evaluate the split
model as the sequence-to-sequence model (Meng
et al., 2022)) and the sequence labeling model
(Bert) in slots and inference speeds. The sequence-
to-sequence model used in (Meng et al., 2022) is
mT5 (Xue et al., 2020). And the sequence labeling
models we used for split are MiniRBT (Cui and
Yang, 2022) and Bert-wwm (Cui et al., 2021). All
split models in Table 5 are trained in 1-5 intents.

Table 5 shows the intent detection and slot fill-
ing results on utterances with 1-5 intents and 6-10
intents. We can note that the model using sequence
labeling is higher in slot filling F1 and overall ac-
curacy than the model using sequence-to-sequence,
even mT5-small has much more parameters than
MiniRBT and Bert-wwm.

In terms of the generalization ability in more
intents, the use of sequence labeling as split model
is more advantageous. From Table 5, the slot F1
and overall accuracy when using mT5-small as split
model are 95.71 and 78.79, while for MiniRBT,
they are 98.99 and 88.35.

When comparing the inference speed, our mod-

els are also faster. Table 5 shows the time required
by different models to complete a complete slot
filling task on a multi-intent utterance, that is, the
time of sentence split and the slot filling for all
sub-sentences. In Table 5, each utterance needs
40.10 ms to split and slot filling if the split model is
mT5-small, however, for MiniRBT and Bert-wwm,
the time is only 0.99 ms and 2.04 ms. What’s more,
the added time of our method is negligible in the
whole process as shown in the right end of Table 5.

4.6 Case Study
To demonstrate how our two-stage SLU system
outperforms one-stage SLU systems, we present
the results of intent detection and slot filling of a
case with 4 intents in Fig. 4. Fig. 4 (A) shows the
correct slot labels and intent labels. The utterance
is split into 4 sub-sentences and each slot is aligned
with its intent. Meanwhile, as the intent increases,
the sentence length also grows. This would make
one stage model hard to detect enough intents and
accurate slots. For example, the detected intents of
Fig. 4 (B) miss the real first and last intents.

5 Future Work

Due to split-parse approach, when there are errors
in sentence segmentation, cumulative errors are
inevitable. The next step is to optimize for the
situation of cumulative errors. There are two di-
rections for optimization. Firstly, the accuracy of
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the sentence segmentation model can be further im-
proved to reduce the probability of cumulative er-
rors. Secondly, in the slot filling model, the model
can be designed to support utterances with 1-2 in-
tents. When the sentence split model incorrectly
splits multiple sub-sentences into one, a slot filling
model that supports multiple intents can correctly
tag slots and detect intents.

6 Conclusion

In our paper, we propose a two-stage SLU sys-
tem based on the split-parsing method. With plug-
ging our split model into the original SLU sys-
tem, the performance can be improved. Compared
with the commonly used one-stage SLU systems,
our method can better generalize in more intents
unseen in training. Meanwhile, the split-parsing
method can effectively align slots with their corre-
sponding intents in the segmented sentences. And
compared with other two-stage SLU systems using
sequence-to-sequence as the split model, our model
can achieve better performance of intent and slot
filling detection with higher inference speed.
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Abstract

Recently, the recognition of flat, nested, and
discontinuous entities by a unified generative
model framework has received increasing at-
tention both in the research field and industry.
However, the current generative NER methods
force the entities to be generated in a predefined
order, suffering from error propagation and in-
efficient decoding. In this work, we propose a
unified non-autoregressive generation (NAG)
framework for general NER tasks, referred to
as NAG-NER. First, we propose to generate
entities as a set instead of a sequence, avoiding
error propagation. Second, we propose incorpo-
rating NAG in NER tasks for efficient decoding
by treating each entity as a target sequence.
Third, to enhance the generation performances
of the NAG decoder, we employ the NAG en-
coder to detect potential entity mentions. Ex-
tensive experiments show that our NAG-NER
model outperforms the state-of-the-art gener-
ative NER models on three benchmark NER
datasets of different types and two of our pro-
prietary NER tasks.

1 Introduction

Named entity recognition (NER) is a fundamen-
tal task in the field of information extraction. It is
the basic task for many natural language processing
applications like dialogue systems, document anal-
ysis, and search engines. Currently, NER tasks can
be divided into three subtasks (Yan et al., 2021),
i.e., flat NER, nested NER, and discontinuous NER,
as illustrated in Figure 1. Recently, researchers
have grown interested in tackling the three sub-
tasks via a unified model architecture, which we
refer to as general NER models (Li et al., 2020; Dai
et al., 2020; Yan et al., 2021). Existing literature for
general NER models fall into the following three
categories: (1) span-based models (Yu et al., 2020a;

∗Equal contribution.
†Corresponding author: michaelwzhu91@gmail.com

Figure 1: Examples of the discontinuous / nested / flat
NER.

Bekoulis et al., 2018); (2) models based on care-
fully designed data structures like hyper-graphs
and shift-reduce parsers (Dai et al., 2020; Wang
et al., 2021b); (3) sequence-to-sequence (seq2seq)
models (Yan et al., 2021; Zhang et al., 2022).

Among the three branches of literature, the
seq2seq models (Yan et al., 2021; Fei et al., 2021)
have achieved SOTA performances. However, they
organize target entities into a single sequence ac-
cording to a predetermined order. This setting is
against the intuition that the target entities are es-
sentially an unordered set and results in an incorrect
bias (entity-order confounder) to the model (Zhang
et al., 2022). In addition, sequentially generating
target entities suffers from two disadvantages: (1)
low inference speed due to autoregressive decod-
ing; (2) Error propagation, i.e., errors generated by
the previous steps could misguide the current and
future generation steps.

In this paper, we propose a non-autoregressive
generation (NAG) framework for named entity
recognition, NAG-NER (as depicted in Figure 2).
Given an input sentence, the framework first en-
codes the sentence and detects where and how
many entities will start at each token of the input
sentence. Then, it asks the decoder to generate the
set of targeted entities accordingly. We conducted
extensive experiments on three benchmark datasets
(CADEC, ACE2004, CoNLL03) and two propri-
etary datasets we developed (referred to as CME
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Figure 2: The overall framework of our NAG-NER framework. Left: the encoder is tasked for obtaining high-quality
context representations for the input text, and entity start classification. Upper right: During training, the decoder
will take a sequence of ⟨m⟩ tokens, and generate the corresponding entity type label and the whole entity mention.
Lower right: During inference, the encoder first propose the entity starting words and #entities starting from these
words, and then the decoder will generate corresponding entity results.

and QER). The results validate that our method can
perform comparably to or outperform the previous
generative NER models while achieving significant
speedups.

To summarize, our main contributions include
the following:

• We propose NAG-NER, a novel non-
autoregressive entity generation framework
for general NER tasks. Distinct from the
seq2seq models, it avoids the entity-order con-
founder and error propagation by generating
multiple entity sequences simultaneously with
a pre-trained non-autoregressive generation
model.

• Experimental results show that our model
achieves SOTA performances while being ef-
ficient.

2 Related Work

Due to limited length, we include the related
works of NAG in Appendix A. We also include a
preliminary introduction of NAG in Appendix B.

2.1 Generative NER models

Generative models are investigated to solve dif-
ferent types of NER tasks in a unified model frame-
work. Straková et al. (2019) propose to transform

the BILOU labels (Ratinov and Roth, 2009) of
source tokens into a label sequence via heuristic
rules. Athiwaratkun et al. (2020) propose an aug-
mented natural language output format for flat NER
tasks, where the type tags of words are placed along
with the words to form a sentence-like target se-
quence. Tan et al. (2021) proposes to generate
entities as a set. However, this model directly gen-
erates entity position and type information via a
set generation framework, failing to employ the
text generation capabilities of pre-trained genera-
tive models. Yan et al. (2021) combine pre-trained
BART with a delicately-designed copying mech-
anism and achieve promising performance on a
wide range of NER benchmarks. Fei et al. (2021)
train an LSTM from scratch to generate the target
sequence and devise a novel memory-augmented
pointer mechanism to enhance the interactions be-
tween the current pointer and the prior recognized
entity mentions. Lu et al. (2022) transforms dif-
ferent information extraction task into a structured
extraction language and solve general information
extraction tasks with a unified text-to-structure gen-
eration framework. Zhang et al. (2022) point out
two kinds of incorrect bias (pre-context confounder,
entity-order confounder) in the generative NER
models and propose two data augmentation meth-
ods to address these biases, but this model still has
to generate all the entities sequentially.
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Our NAG-NER framework contributes to the lit-
erature by (a) we generate all the entities of a given
input sentence in parallel via a NAG model, re-
sulting in significant speedup and avoiding the pre-
context confounder; (b) our framework bypasses
the entity-order confounder since it generates a set
of entities in a single forward pass.

3 Methods

In detail, we formally introduce our framework
(Figure 2). We uniformly formulate the task of rec-
ognizing flat, nested, and discontinuous entities as
NAG-based entity sequence generation problems.
We will take a pre-trained NAG model consisting of
an encoder and a decoder as the model backbone.
Denote the tokenized (Sennrich et al., 2016) in-
put sentence with length L as S = [w0, ..., wL−1].
And the target output is the set of entity sequences
{(ESi, Ti)}Mi=1, where M is the number of entities,
ESi is the i-th entity consisting of li tokens, and Ti

is the type label of entity i.

3.1 Encoder
The pre-trained NAG encoder will encode the

input sequence S and output the contextualized
representations:

H = Encoder(S), (1)

where H ∈ RL×d and d is the hidden size of the
NAG model. Since the transformer-based NAG
model will provide the contextualized encoding of
tokens, we use the representations of each word’s
first subword token as the vector representation of
this word:

vj = H[startj ], (2)

where vj is the representation of the j-th word in
the original input sequence, startj is the index of
the first subword token of word j in sequence S.

3.2 Entity start classification
To motivate the encoder to gain a deep under-

standing of the input sentence and provide informa-
tion for the decoder, we ask the encoder to detect
where an entity will start and how many entities
will start at such a position.1 This task is formu-
lated as a multi-class classification task on each
word j predicting the number of entities nej that
starts at word j:

p(nej) = Softmax(vjWne + bne), (3)
1For discontinuous and nested NER tasks, multiple entities

could share the same starting words, as shown in Figure 1.

where p(nej) ∈ ROmax+1, Omax is the maximum
number of entities starting at the same word. Note
that nej = 0 means that no entity will start at word
j. This task is optimized with cross-entropy loss
Lne.

3.3 Entity generation

As shown in Figure 2, we ask the NAG decoder
to generate entity information for each word j
of the input. The non-autoregressive generation
(NAG) model is proposed (Gu et al., 2018) to
speedup autoregressive generation, which removes
the order dependency between target tokens Y and
can generate tokens of the target sentence simulta-
neously given input X:

PNAG(Y |X; Θ) =

l∏

t=1

P(yt|X; Θ), (4)

where l denotes the length of the target sentence.
The decoder of the NAG model needs to know the
targeted length before generation. A common prac-
tice is to treat length prediction as a classification
task, using the information from the encoder’s out-
put to make predictions. However, following Qi
et al. (2020), we will discard this length prediction
task by using a unified length for the output se-
quence and use the first generated end-of-sentence
token ⟨/s⟩ as the ending signal for the generated
sequence.

Denote the maximum entity length (in subword
level) as lmax ∈ Z+. During training, we sort
(in ascending order) the nej entities by their span-
ning length, that is, the length of the span that
envelops this entity.2 For each word j and each
n = 0, 1, 2, ..., nej − 1, we would like the decoder
to generate entity (ESj,n,Tj,n). In the negative
cases where no named entities are starting from
word j, ESj,n will be the subtokens of word j, and
Tj,n will be the non-entity tag ⟨O⟩. Thus, the input
and target output of the decoder are:

• Decoder input: a sequence of length lmax + 3
consisting of only the mask token ⟨m⟩ are fed
into the decoder;

• Targeted decoder output: the target output se-
quence is in the form of

⟨s⟩ ETj,n ESj,n ⟨/s⟩, (5)

2This is reflected on Figure 1, where the spanning length
of "Pain in hip" is smaller than that of "Pain in knees".
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where ESj,n is the subtoken sequences of this
entity, and ETj,n is the token added to the
NAG vocabulary that represents the entity
class tag Tj,n. The non-entity tag O corre-
sponds to the special token ⟨O⟩.

Note that since entities are of different lengths,
we will pad the target output sequence with the
padding token ⟨pad⟩ to length lmax+3 if necessary.

The model does not need to generate entity se-
quences on every word during inference. We can
take advantage of the entity start classification mod-
ule and decide which words are likely to be the
starting words of named entities. Formally, with
the threshold τs (0 < τs < 1) for entity start classi-
fication,

Sstart = {j | p(nej = 0) < τs}, (6)

where Sstart is the collection of indexes of detected
entity starting words, and the number of entities
is obtained by nej ← argmaxnej p(nej). Then
we will generate entity sequences by feeding the
decoder a sequence of length lmax + 3 consisting
of only the mask token ⟨m⟩ for each j ∈ Sstart

and each n < nej . After the decoder generates
an output sequence, the entity tag token ETj,n is
obtained as the second generated token, and the
token sequence from the third position till the first
⟨/s⟩ token is the generated entity token sequence.
If there is no ⟨/s⟩ token in the output sequence,
all the output tokens starting from the third posi-
tion will be considered the generated entity token
sequence.

Given a decoder input and targeted output se-
quences, we can calculate the generation loss Lg
of NAG, which is the average cross-entropy loss
on each token according to Equation 4. We will
discard the losses from ⟨pad⟩ tokens.

3.4 Positional embeddings for entity
generation

Note that the decoder receives input sequences
consisting of only mask tokens ⟨m⟩, and it does not
know where the entity starts and which contexts
it should pay more attention to during generation.
In addition, we should also inform the decoder
about the number of entities starting from the same
word so that the decoder can generate entities of
different spanning lengths instead of generating the
same entity. Thus, we introduce two positional
embedding to the decoder’s embedding layer:

• word start position embedding (WSPE): as
depicted in Figure 2, all the mask tokens of the
decoder input share the same word start posi-
tion index, that is, startj , the index of the first
subtoken of word j. Furthermore, the word
start position embedding vector is obtained by
looking up the positional embedding layer of
the encoder.

• number-of-entities position embedding
(NEPE): for each n < nej , n represents the n-
th entity, and the n-th shortest entity starting
from word j. We map n to a randomly ini-
tialized learnable embedding vector NEPEn.
This positional embedding is also shared by
all the tokens of the decoder input.

These two positional embeddings will be added to
the decoder’s original embedding layer.

3.5 Overall fine-tuning objective
During fine-tuning of NAG, the whole frame-

work of NAG-NER is optimized end-to-end, with
the total losses of entity start classification and en-
tity sequence generation:

L = Lg + Lne. (7)

4 Experiments

4.1 Evaluation datasets and metrics
To show that our proposed method can be used

in various NER subtasks, we conducted experi-
ments on three English open-sourced benchmark
datasets (CADEC, ACE2004, CoNLL03) and two
Chinese proprietary tasks (CME, QER). CoNLL03
and QER are flat NER tasks, CADEC is a discon-
tinuous NER task, and ACE2004 contains nested
entities. CME is a complex task containing both
discontinuous and nested entities. We include intro-
ductions and statistics of the datasets in Appendix
C.

For evaluation, strict evaluation metrics are ap-
plied, where an entity is confirmed correct only if
all of its words and its type label are recognized
correctly. Precision (P), Recall (R), and Micro F1
score (F1) are reported in the results.

4.2 Implementation Details
We employ the BANG model (Qi et al., 2020) as

the backbone for English tasks while we pre-train
a NAG model in Chinese based on the codebase of
BANG on our corpus containing 120 million docu-
ments in Chinese. For fine-tuning on each task, the
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special tokens corresponding to the entity type la-
bels (including the non-entity label ⟨O⟩) are added
to the vocabulary, and their embedding vectors are
randomly initialized. For optimization, we use the
AdamW optimizer (Loshchilov and Hutter, 2018)
with a linear learning rate schedule and 6% of the
optimization steps as warm-up steps. After each
epoch, we evaluate the fine-tuned model on the
development set and save the model checkpoints.
After fine-tuning ends, the best checkpoint will be
evaluated on the test set, and the test result will be
reported. Details of hyper-parameter tuning and
settings are included in Appendix D. We report the
average test performance on five random seeds.

4.3 Compared Methods

We mainly compare our model with SOTA gen-
erative NER models listed in Section 2. We also
compare our method with SOTA discriminative
NER models. See Appendix E for an introduction
to them.

For a fair comparison, since our NAG model is
in the base size, we run the baseline models with
BERT-base (Devlin et al., 2019) (12 encoder layers)
or BART-base (Lewis et al., 2019) (6 encoder layers
and 6 decoder layers).3 Lu et al. (2022) is run
with the implementation of PaddlePaddle4. All the
baselines are run with their open-sourced codes
with their suggested hyper-parameters.

4.4 Main results

Table 1 and Table 2 show the comparison be-
tween our model and other models in three bench-
mark datasets and two proprietary datasets.
Results on the open-sourced benchmark
datasets Table 1 demonstrates that on the
benchmark datasets, our method has clear advan-
tages over the previous SOTA generative methods
on complex discontinuous or nested NER tasks
CADEC and ACE2004. On these tasks, our
method also outperforms the models designated
for specific tasks, like Wang et al. (2021b). On the
flat NER tasks, although the previous generative
models slightly underperform the discriminative
models, our method can obtain results comparable
to the strong discriminative models, demonstrating
the broad applicability of our method.

3The Chinese version of BART-base is provided by https:
//huggingface.co/fnlp/bart-base-chinese.

4https://github.com/PaddlePaddle/PaddleNLP/
tree/develop/model_zoo/uie

Model
CADEC ACE2004 CoNLL03

F1 F1 F1
Discriminative NER models

Tang et al. (2018) 65.1 - -
Dai et al. (2020) [ELMO] 68.7 - -
Wang et al. (2021b) [BERT-base] 69.7 - -
Yu et al. (2020a) [BERT-base] - 85.6 92.4
Li et al. (2020) [BERT-base] - 84.2 92.7
Xu et al. (2021) [BERT-base] - 85.0 -
Shen et al. (2021) [BERT-base] - 85.7 92.7
Akbik et al. (2019) [BERT-base] - - 92.8
Wang et al. (2021a) [BERT-base] - - 92.8

Set Generation NER models
Tan et al. (2021) [BERT-base] - 85.6 92.4

Generative NER models
Straková et al. (2019) [BART-base] - 84.3 92.4
Yan et al. (2021) [BART-base] 68.7 85.2 92.5
Fei et al. (2021) [BART-base] 70.6 - -
Zhang et al. (2022) [BART-base] 70.8 85.2 92.7
Lu et al. (2022) [BERT-base] - 85.3 92.3
NAG-NER (ours) 71.3 85.9 92.8

Table 1: Results on the three NER benchmark datasets.
The results show that our NAG-NER method has clear
advantages on complex NER tasks while performing
comparably with the SOTA models on flat NER tasks.

Model
CME QED

F1 F1
Discriminative NER models

Yu et al. (2020a) [BERT-base] 88.9 -
Li et al. (2020) [BERT-base] 87.8 94.5
Shen et al. (2021) [BERT-base] 88.7 94.6
Akbik et al. (2019) [BERT-base] - 94.5
Wang et al. (2021a) [BERT-base] - 94.8

Set Generation NER models
Tan et al. (2021) [BERT-base] - 93.8

Generative NER models
Straková et al. (2019) [BART-base] 86.4 93.9
Yan et al. (2021) [BART-base] 88.6 94.2
Zhang et al. (2022) [BART-base] 88.5 94.3
Lu et al. (2022) [BERT-base] 88.8 94.4
NAG-NER (ours) 89.6 94.7

Table 2: Results on the two proprietary datasets, CME
and QER.

Results on the proprietary datasets The results
on the our proprietary dataset (Table 2) lead to
similar observations with Table 1. Our method
outperforms the baseline methods on the complex
task CME which contains both discontinuous and
nested entities. In addition, the performance of
our method on the flat NER task, QER, is also
comparable to the strong discriminative baseline
models.

4.5 Inference Efficiency

We compare the inference efficiency of our
method with the SOTA seq2seq ner model Yan
et al. (2021) and the SOTA set generation NER
model Tan et al. (2021) on two tasks: ACE04 and
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Methods
QPS

ACE2004 CME
Yan et al. (2021) [BART-base] 108 (1×) 11
Tan et al. (2021) [BERT-base] 227 (2.1×) -

NAG-NER (ours) 205 (1.9×) 63 (5.7×)

Table 3: Comparison of efficiency for three models,
using a NVIDIA RTX 3090 GPU. The results show
that our method can effectively speed up inference for
various NER tasks.

CME. We run each model repeatedly on a fixed
batch of samples containing four sentences for a
fair comparison. For ACE2004, the batch contains
86 tokens; for CME, the batch contains 892 tokens.
The efficiency is measured on an NVIDIA RTX
3090 GPU. We report the average number of sen-
tences processed per second (QPS) of each model
in Table 3. As shown in Table 3, our method is
significantly faster than the seq2seq NER model
and only runs slightly slower than Tan et al. (2021).
Note that our CME task has a much longer average
sentence length and a larger number of entities per
sentence. Thus the speedup effects of our NAG-
NER method on CME are much more significant
than on the ACE2004 task.

4.6 Ablation studies
We conduct an ablation study on ACE2004 and

CME to verify the effectiveness of different com-
ponents of NAG-NER. We consider three different
variations of our whole NAG-NER model whose
results are presented in Table 4:

• NAG-NER-1. In our main experiments (in
Table 2), we utilize a Chinese BANG model
to initialize our model for the CME and QER
tasks. This BANG model is pre-trained on our
Chinese corpus with 100 thousand steps under
a batch size of 1024. We now substitute this
pre-trained checkpoint with a less well-pre-
trained one (at 20 thousand steps). NAG-NER-
1 under-performs NAG-NER on the CME test
set, demonstrating that the quality of the pre-
trained NAG models can directly affect the
results of our method.

• NAG-NER-2, which is to drop the entity start
classification module. Thus, in this model, the
decoder has to generate entity sequences on
each word’s starting token. After dropping
this module, the F1 score drops slightly on
both tasks, showing that this module is benefi-
cial for filtering out noise and increasing the

Methods
ACE2004 CME

F1 F1
NAG-NER 85.9 89.6

NAG-NER-1 - 88.7
NAG-NER-2 85.3 88.9
NAG-NER-3 73.2 69.5

Table 4: Results of ablation study on the ACE2004 and
CME tasks.

Dataset Test set Yan et al. (2021) NAG-NER

ACE2004
All 85.2 85.9 (+0.7)

Overlapping 83.2 84.7 (+1.5)

CME
All 88.6 89.6 (+1.0)

Overlapping 83.4 85.8 (+2.4)

Table 5: Results of ablation study on the ACE2004 and
CME tasks.

precision of the decoder’s generation outputs.

• NAG-NER-3, which is to drop the WSPE and
NEPE positional embeddings in Section 3.4.
NAG-NER-3 can not obtain a reasonable per-
formance, demonstrating the necessity of in-
forming our decoder where the entity starts to
generate the entity mentions correctly.

4.7 Error analysis
To further demonstrate the advantage of our

method over Seq2Seq NER models, we now an-
alyze how our model performs when dealing with
overlapping entities. In Table 5, we report the F1
scores on the whole test set and the subset of over-
lapping entities for the ACE2004 and CME tasks.
We can see that compared with Yan et al. (2021),
our NAG-NER model significantly boosts the F1
score on the overlapping entities, showing that our
method is effective in recognizing complex entities.

5 Conclusion

In this work, we propose NAG-NER, a unified
generative model for various NER tasks based on
non-autoregressive generation (NAG). In NAG-
NER, different NER tasks are formulated as entity
set generation tasks. We employ the NAG encoder
to detect potential entity starts and the NAG de-
coder to efficiently decode entity sequences. Ex-
periments on three benchmark NER tasks and two
proprietary NER tasks demonstrate that our method
can outperform baseline generative NER methods
while achieving higher inference speed. We also
conduct ablation studies to demonstrate the neces-
sity of each module in our NAG-NER method.
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Limitations

In this work, we develop a unified model frame-
work that is applicable to different NER tasks.
Through experiments, we show the effectiveness
of our method on different NER tasks, both in En-
glish and Chinese. However, we recognize that
our method is not tested on NER tasks where the
input sequences are extremely long. In addition,
our method is not tested on few-shot scenarios. We
will investigate these issues in future work.

Ethics Statement

Our model is designated to recognize entities
in input sequences. We use two groups of tasks.
The three benchmark datasets CADEC, ACE2004,
and CoNLL03 are widely studied in the literature,
and our work does not introduce new ethical is-
sues. Since the two proprietary datasets are all
anonymized and only used for training models in
our institution, no ethical concerns are included in
our work.
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A Appendix of related work

A.1 Non-autoregressive Generation Models

Due to its advantages in efficiency, there is
a wide range of studies for NAG models (Gu
et al., 2018; Ghazvininejad et al., 2019; Qi et al.,
2020). Gu et al. (2018) is the first to propose NAG
paradigm to reduce the inference latency of text
generation. NAG is widely studied in machine
translation. Ghazvininejad et al. (2019) masks
and predicts a fraction of tokens that the model
is least confident about. Saharia et al. (2020) and
Libovický and Libovický and Helcl (2018) use
connectionist temporal classification to perform
latent alignment in NAR models. Bao et al. (2022)
employs the discrete latent variables to capture
word categorical information and invoke an ad-
vanced curriculum learning technique, alleviating
the multi-modality problem of NAG in machine
translation tasks. Recently, several groups aim to
apply NAG to a wider range of tasks. Qi et al.
(2020) designs and pre-trains a monoligual Trans-
former model with multiple attention streams that
can be used both as an AG model and a NAG model.
They apply their pre-trained models on summariza-
tion, machine reading comprehension and dialogue
response generation, and show that NAG models
can achieve competitive performance with around
15 times speedup. Li et al. (2022) develops an
early exiting based strategies for monoligual NAG
pre-training.

Our work complements the literature by: (a) we
successfully apply NAG models in named entity
recognition tasks; (b) we propose a span set gener-
ation task for pre-training a NAG model which is
more suitable for downstream NER tasks.

B Appendix: Preliminaries on NAG

B.1 Autoregressive generation

The autoregressive generation (AG) models
achieve the state-of-the-art performance on a wide
range of text generation tasks like machine trans-
lation (Song et al., 2019; Sun et al., 2020), sum-
marization (Lewis et al., 2019), image captioning
(Stefanini et al., 2021). We now use machine trans-
lation to introduce the AG method. Given a source

sentence X = (x1, x2, ..., xn) and the target sen-
tence Y = (y1, y2, ..., ym), an AG model with pa-
rameters Θ decomposes the target distribution of
translations according to the chain rule:

PAG(Y |X; Θ) =
m∏

t=1

P(yt|y<t, X; Θ), (8)

where y<t denotes generated previous tokens be-
fore the t-th position. During the training process,
the AG model is usually trained via the teacher-
forcing strategy that uses ground truth target tokens
as previously decoded tokens so that the output of
the decoder can be computed in parallel. During
inference, the AG model still needs to generate
translations one-by-one from left to right until the
token ⟨/s⟩ that represents the end of sentence. Al-
though AG models achieve SOTA performances on
text generation tasks, its autoregressive decoding
method dramatically reduces the decoding speed
and becomes the main bottleneck of its efficiency.
In addition, some literature argues that autoregres-
sive decoding is prone to error propagation Gu and
Tan (2022).

B.2 Non-autoregressive generation

To improve the inference speed of AG models,
the non-autoregressive generation (NAG) model
is proposed (Gu et al., 2018), which removes the
order dependency between target tokens and can
generate tokens of the target sentence simultane-
ously:

PNAG(Y |X; Θ) =
m∏

t=1

P(yt|X; Θ), (9)

where m denotes the length of the target sentence.
Generally, NAG models need to have the ability
to predict the length because the entire sequence
needs to be generated in parallel. A common prac-
tice is to treat it as a classification task, using the
information from the encoder’s output to make pre-
dictions. Qi et al. (2020) discard the length pre-
diction module and use the first generated end-of-
sentence token ⟨/s⟩ as the ending signal for the
generated sequence.

Because NAG is only conditioned on source-side
information, but AG can obtain the strong target-
side context information provided by the previously
generated target tokens, NAG models generally
have a performance gap compared to AG models.
NAG is first studied in machine translation and
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Statistics
CADEC ACE04 CoNLL03

Train Dev Test Train Dev Test
# Sentences 6077 760 759 6200 745 812 14041 3250 3453

Avg sent. length 14.1 14.2 14.2 22.5 23.0 23.0 13.7 13.5 13.6
# Entities 5052 631 634 22204 2514 3035 23326 5902 5613

#types of entities 1 1 1 7 7 7 4 4 4
# Nested entities - - - 10149 1092 1417 - - -

# Discontinuous entities 543 64 68 - - - - - -

Table 6: Statistics of the three benchmark NER datasets.

recently NAG is rapidly closing the performance
gap against AG models via novel NAG-style pre-
training (Qi et al., 2020; Bao et al., 2022). NAG is
also applied to other generation tasks like summa-
rizaiton (Li et al., 2022), automatic speech recogni-
tion (Deng et al., 2022).

C Datasets

C.1 Open-sourced benchmark datasets

Discontinuous NER datasets We follow Dai
et al. (2020); Yan et al. (2021) to use the CADEC
dataset5 in our experiment. Since only the Adverse
Drug Events (ADEs) entities have discontinuous
annotation, only this type of entity is considered
and the other 4 types of entities are discarded.
Nested NER datasets For Nested NER subtask,
we adopt the ACE20046 dataset. This dataset con-
tains corpuses of newswire, broadcast news and
telephone conversations. It contains 7 entity cate-
gories: “PER”, “ORG”, “LOC”, “GEP”, “VEH”,
“WEA” and “FAC”. In experiment conducted on
ACE2004, we use the same data split as Muis and
Lu (2017); Yu et al. (2020a), the ratio between train,
development and test set is 8:1:1.
Flat NER datasets We adopt the CoNLL03
(Sang and Meulder, 2003) datasets. It is a flat
NER dataset with a news corpus and has annotated
4 types of entities as “PER”, “LOC”, “ORG” and
“MISC”. For CoNLL03, we follow Lample et al.
(2016); Yu et al. (2020a) to train our model on the
concatenation of the train and development sets.

C.2 Our proprietary datasets

In this work, we run experiments on two of our
proprietary datasets we collect to develop our infor-
mation extraction or question answering systems.
Chinese medical entity (CME) dataset This
dataset is collected from medical records. The col-

5https://data.csiro.au/collection/10948v003
6https://catalog.ldc.upenn.edu/LDC2005T09

lection of these medical records are agreed by the
owner, and the data are completely anonymized be-
fore being used by the data scentists. This dataset
contains 15 entity types, and contains both nested
and discontinuous datasets.
Query entity recognition (QER) dataset This
dataset is collected from queries from an online
question-answering system. The data collection is
agreed by all the users. This dataset considers 7
types of entities and it is a flat NER task.

Statistics of the two datasets are listed in Tabel
7.

D Appendix for experimental settings

D.1 Hyper-parameters settings

We run our experiments on NVIDIA Tesla V100
GPUs. The maximum entity length lmax is set to 8
for all the three Enghlish benchmark datasets, and
16 for our two proprietary tasks. The maxmimum
number of entities starting from the same word
Omax is set to 5. We manually tune the hyper-
parameters including maximum learning rate (max-
LR), epochs, maximum tokens per batch, dropout
rate, threshold τs for each dataset. Specifically,
we trial different values of each hyper-parameter
within the hyper-parameter search space for ten
times and the hyper-parameter values that results
in the best performance on the development set are
chosen. The search space of each hyper-parameter
and the final hyper-parameter configuration are re-
ported in Table 8.

E Appendix: Introduction to
discriminative NER models

Models for Discontinuous NER Tang et al.
(2018) use LSTM-CRF to recognize continuous
and discontinuous adverse drug reaction mentions.
Dai et al. (2020) is a transition-based method that
utilizes shift-reduce parsers to identify discontinu-
ous entities. Wang et al. (2021b) solve discontin-
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Statistics
CME QER

Train Dev Test Train Dev Test
# Sentences 84328 10540 10540 54390 6800 6800

Avg sent. length 231 232 232 14.3 14.1 14.5
# Entities 1813052 227664 227652 70712 8845 8862

#types of entities 15 15 15 7 7 7
# Nested entities 112458 13463 12968 - - -

# Discontinuous entities 63281 6590 6438 -

Table 7: Statistics of the two proprietary NER datasets.

Hyper-param Search space CADEC ACE2004 CoNLL03 CME QER

Epochs { 30, 50, 75 } 75 50 75 30 50
Max-LR {1e-5, 2e-5, 5e-5, 1e-4} 2e-5 5e-5 2e-5 1e-5 2e-5

batch size {1, 2, 4, 8, 16} 4 8 4 16 16
dropout rate {0.1, 0.2, 0.3, 0.5} 0.3 0.3 0.1 0.1 0.2

τs {0.2, 0.3, 0.5, 0.7, 0.9} 0.2 0.5 0.3 0.5 0.3

Table 8: The hyper-parameter settings for each task in our experiments.

uous NER via the maximal clique discovery algo-
rithm based on graph theory.

Models for Nested NER Yu et al. (2020b)
formulate NER as the dependency parsing task.
Li et al. (2020) adopt the pointer-based span ex-
traction strategy widely adopted in machine read-
ing comprehension (Zeng et al., 2020). Xu et al.
(2021) treat nested NER tasks as multi-class clas-
sification of spans and solve it with a multi-head
self-attention mechanism. Shen et al. (2021) is a
two-stage entity extraction model which first gener-
ates candidate spans and then labels the boundary-
adjusted span proposals with the corresponding
categories.

Models for Flat NER Akbik et al. (2019) dy-
namically aggregate contextualized embeddings of
each encountered string and use a pooling operation
to obtain a contextualized word representation from
all contextualized instances. Yu et al. (2020b) and
Li et al. (2020) can be used to solve both nested and
flat NER tasks. Wang et al. (2021a) use the input
sentence as a query to retrieve external contextual
information with a search engine and concatenate
the sentence with external contexts.
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Abstract

Misspelled search queries in e-commerce can
lead to empty or irrelevant products. Besides
inadvertent typing mistakes, most spell mis-
takes occur because the user does not know
the correct spelling, hence typing it as it is pro-
nounced colloquially. This colloquial typing
creates countless misspelling patterns for a sin-
gle correct query. In this paper, we first system-
atically analyze and group different spell errors
into error classes and then leverage the state-
of-the-art Transformer model for contextual
spell correction. We overcome the constraint
of limited human labelled data by proposing
novel synthetic data generation techniques for
voluminous generation of training pairs needed
by data hungry Transformers, without any hu-
man intervention. We further utilize weakly
supervised data coupled with curriculum learn-
ing strategies to improve on tough spell mis-
takes without regressing on the easier ones. We
show significant improvements from our model
on human labeled data and online A/B experi-
ments against multiple state-of-art models.

1 Introduction

An incorrectly spelt search query can return irrele-
vant products in e-commerce which hurts both the
business and experience for a user who is unable
to find the intended product. As per the latest En-
glish Proficiency Index report of written test data
from 100 countries, 1 only 29% countries are pro-
ficient in English. Our platform operates in Asian
countries like India which are ranked low in this
survey. As per the latest Indian census only ∼10%
of the Indian population is versed in the English
language thus causing high spell errors in the user
queries. Spelling errors are generally classified
as — typographic and cognitive (Toutanova and
Moore, 2002). Typographic errors emanate from
the typing mistakes on the keyboard which wors-
ens on mobiles due to smaller keypads. Cognitive

1https://www.ef.com/wwen/epi

errors happen when a user does not know how to
correctly spell a word. This leads to phonetic errors
like "cenityjer" for "sanitizer".

Edit-distance2 based spell corrections at
run-time are computationally expensive for higher
edit distances at web-scale. Also, this approach
typically works at an individual word level
(Norvig, 2009; Garbe, 2021; Whitelaw et al., 2009)
is not able to identify contextual mistakes like
"greeting cart". Human labeling being expensive
and time-consuming, these methods use a large
amount of user query reformulations as training
data for learning. Most of the web search work
relies on this for generating correct-incorrect word
pairs(Whitelaw et al., 2009; Gao et al., 2010).
Query reformulations alone fail to cover all kinds
of errors like phonetic (cognitive) ones - "metras"
vs "mattress" or edit/phonetic+word-compounding
like "ball pen" vs "bolpan" when the user herself
does not know the correct spelling. Fig. 1 shows
the distribution of different types of spell errors
on our platform over a sample of ∼ 23k queries
as classified by human judges. Inspired by the
low-resource machine translation research, the
latest spell systems create synthetic data to learn
Neural (Zhou et al., 2017; Jayanthi et al., 2020)
and statistical (Brill and Moore, 2000; Cucerzan
and Brill, 2004) models for spell correction. To
solve at internet scale, 3 billion search queries a
month from over 450 million users, we too create
a large amount of synthetic and user feedback data.
Given significant colloquial phonetic mistakes (1),
we develop a novel way of generating phonetic
mistakes besides edit-distance and compounding
ones. Along with the user query reformulations,
the user clicks on the spell-corrected queries also
provides another source of noisy labeled data.
Curriculum learning (Bengio et al., 2009; Elman,
1993) has shown to generate robust models which
show the improvements in their learning ability

2https://en.wikipedia.org/wiki/Levenshtein_distance
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Figure 1: Spell Error Distribution

when they first learn on simpler tasks followed by
tougher tasks. We devise a few simple curriculums
to improve accuracy on tougher mistakes. Using
Transformers, the main contributions of our work
are:
(i) Generating large synthetic and weakly super-
vised labelled data for different spell mistakes
including novel deep learning models for phonetic
mistakes.
(ii) Curriculum learning to improve on tough error
classes like edit/phonetic+word-compounding
without degrading performance on the easier ones.

We report the effectiveness of our approach
ReparoS (Reparo-Spell) through offline evaluation
as well as online A/B experiment on user queries
with significant improvements. In the following
sections, we discuss related work followed by ap-
proach, the experiments, and finally the results.

2 Related Work

Context-free word-based spell checkers in web
search have been commonly implemented in two
ways: edit distance (Damerau, 1964) and statistical
noisy channel. Damerau-Levenshtein edit distance
finds the correct words by editing ’k’ characters
of the input word. On the other hand, statistical
noisy channel methods (Kernighan et al., 1990)
assume that the user inadvertently introduces some
noise through keyboard errors. Brill and Moore
improves the standard noisy channel model. Rule-
based systems like Soundex(Knuth, 1973) and
Metaphone(Atkinson, 2009) generate a phoneme
sequence for a given word to match against the
phoneme sequence of the correct word. Context-
aware spell checkers (Whitelaw et al., 2009) incor-
porate the surrounding words to improve the cor-
rection. However, this approach still corrects each
word individually and is not able to address word-

compounding spell mistakes. Machine Translation
( (Hasan et al., 2015)) based approaches treat a cor-
rect query as a translation of the misspelled query.
Zhou et al. use an RNN with encoder-decoder
architecture that improves upon the statistical ap-
proaches. To avoid expensive human-labeled data,
it’s become common to generate copious amounts
of synthetic labeled data (Etoori et al., 2018; Jayan-
thi et al., 2020) for model training. NeuSpell
(Jayanthi et al., 2020) formulates spell correction
as a sequential labeling problem where a correct
word is labelled as itself and a misspelled token is
labeled as its correction. These approaches suffer
due to synthetic data being mainly edit-distance
based errors. Simple phonetic based corrections
have been explored as well (Yang, 2022), (Brill
and Moore, 2000). NeuSpell also ignores the com-
pounding errors which form more than 25% of the
spell errors. Our approach overcomes these by us-
ing state-of-art context-aware Transformer models
with curriculum learning, user feedback-based data
and synthetic data sets for different types of spell
mistakes. In the following sections we describe
data generation methods for training, model details
followed by experiments and discussion.

3 Data generation

3.1 Spell Error Classes

In this section, we describe various error classes
based on the patterns we observe in our e-
commerce search logs. Broadly, any spell error
can be classified as below:
Edit: These are induced by performing the follow-
ing character operations on a correct word: (i) dele-
tion (“nike” → “nke”), (ii) adjacent swap(“nike”
→ “nkie”), (iii) replacement like from neighbour-
ing characters on the keyboard (“nike” → “bike”),
(iv) insertion (“nike” → “nioke”).
Compounding: These errors are induced by the
wrong usage of space ("back pack" vs "backpack").
Phonetic: When users write a query based on their
pronunciation. This challenging class of errors
(37%) is full of variations due to accents influenced
by the regional, colloquial languages of the users
("shart", "sart" → "shirt").
{Edit/Phonetic}+Compounding: This is when
edit or phonetic errors exist simultaneously with
the compounding errors. For example, "air cooler"
→ "yercular", "dry fruits" → "drayfrut"

Figure 1 shows the distribution of various error
classes based on monthly search queries received
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Figure 2: Pipeline for inducing phonetic errors

on our platform. Phonetic errors are highest and
can have numerous forms like shirt spelt shart,
sart etc based on user’s regional accent. Contex-
tual spell correction is important too, for example,
"pan" in "bol pan blue", needs correction to "pen"
but not in "tea pan".

3.2 Synthetic Data Generation

We generate training data based on the error
classes defined in the previous section. From our
e-commerce search logs, we extract a seed set
of clean (correctly spelt) queries on which we
induce all types of errors. The clean queries are
selected on the basis of their high volume and
query CTR (Click Through Rate on the search
result page). Errors are induced at word-level and
then subsequently put back in the original query to
generate the incorrect-correct training query pairs.
Edit-Distance Error: This is done by using one
or more of the operations as discussed in detail
in the section 3.1. We want frequent errors made
by users to have a higher representation in our
training data. Hence, we replace the correct word
in query with its incorrect form with a probability
proportional to its Brill-Moore Error Model(EM)
score (Cucerzan and Brill, 2004).
Error Model (EM):We first acquire training triplets
(intended word, observed word, frequency) from
the user query logs (Whitelaw et al., 2009). Given
a target correct word w and input word s, we
then use this noisy-channel word error model to
compute the probability P (s|w) as described by
Brill and Moore.

Phonetic Error: We leverage the fact that the
users do a mental transliteration of the word from
their native pronunciation to the English (Suzuki
and Gao, 2012; Boyd, 2009). Although we focus
on Hindi script here as it is the native language
of 57% of the Indian population, this approach
generalizes across any language. We first use our
multilingual e-commerce product catalogue data
that is already translated from English to Hindi and

Figure 3: Pipeline with synthetic & weakly supervised
data

extract the transliterated word-pairs for particular
fields like brand names and model names. We
next train a character level sequence-to-sequence
translation models for the transliteration tasks
(English to Hindi and Hindi to English) using
Transformer (Vaswani et al., 2017) architecture.
To generate synthetic phonetic word-level mistakes,
we first transliterate the user typed English word
into a Hindi (Devanagari 3 script) word(s) using
the transliteration model described above. We
then augment the transliterated Hindi word(s) and
generate more noisy Hindi candidates by adding
the most commonly occurring Hindi spell mistakes
in the Devanagari script. These language-specific
mistakes are learned separately from Hindi search
queries (user query reformulations in the same
user session). These native words are then back
transliterated to English. Figure 2 shows the
an example of how different misspelt forms of
the word "mobile" are obtained via this method.
Besides, transliteration we also use Soundex
(Knuth, 1973), Metaphone (Atkinson, 2009) to
generate phonetic candidates. In only edit-distance
based erroneous word generation, the number of
incorrect candidates explodes combinatorially as
the length of the input word and number of edits
increase which prevents generating many potential
incorrect user spellings. Also, the random edit
distance mistakes can generate a lot of garbage
mistakes and negatively impact the model learning.
The data generated by our phonetic method thus
addresses these problems in a principled manner
mimicking the user mistakes.
Spell Query Chain Errors: Many a times users
type an incorrect spelling and subsequently correct
themselves in just the next query they type. We
make use of such query chains to get the spell
reformulations. To ensure minimal noise we use
the LLR and PMI (Jones et al., 2006) measures

3https://en.wikipedia.org/wiki/Devanagari
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on co-occurring queries along with other checks
like CTR of input and target query. We add
edit-distance based guardrails to avoid generating
drastically different query. Besides edit-distance
query pairs, we also obtain compounding [("pen-
drive","pen drive"), ("iphonepro", "iphone pro")]
errors here. Note that this method mines the user
logs for the entire pair of (incorrect, correct query)
which is unlike the earlier methods that induce
errors on correct queries.
Edit/Phonetic+Compounding Error: This
method combines the edit/phonetic errors that we
described earlier and compounds the words. For
example, for a correct bi-gram compound word
"ball pen" this method generates “bolpan” from
the individual mistakes on unigram tokens "ball"
and "pen" which intermediately generates mistakes
such as “bol" and "pan” respectively. These tokens
are then joined to obtain the final incorrect unigram
form "bolpan".

We finally use all the correct to incorrect word
dictionaries generated above and use them to create
noisy/misspelled queries for a given set of clean
queries.

We also collate a substantial chunk of (correct,
correct) query pairs so that the model learns not
to overcorrect (Zhu et al., 2019; Movin, 2018) in
cases when it is undesired.

3.3 Weakly Supervised Data

Another set of data is collected from the interactive
user click feedback. These are user queries where
our spell system intervenes to correct the input and
generates a potentially correct query to fetch the
search results. We collect the (user query, system
corrected query) to form a training pair based on
the CTR of the corrected query. Note that this
data is be obtained after deploying one version of
the spell model. With regular model retraining,
this method also helps us to continuously learn on
changing query patterns and mistakes.

4 Model and Training Details

We formulate the problem of query correction as a
Neural Machine Translation (NMT) problem (Zhou
et al., 2017), where for a source sequence (incor-
rectly spelt query) the task is to predict the spell
corrected query. An NMT model learns the con-
ditional probability p(y1, .., yT ′ |x1, .., xT ) where
(x1, .., xT ) is the input query and (y1, .., yT ′ ) is

the target correct query. Note that the input query
length T may differ from the output length T

′
due

to splitting mistakes (space as a character) by users.
We use Transformer (Vaswani et al., 2017) neural
architecture that is superior (as shown in results sec-
tion) due to bidirectional self-attention, multi-head
attention and uses best neural tricks of batch nor-
malization, resnets with encoder and decoder layer.
Our choice to use Transformer was also because
we found pre-trained (on in-domain data) models
like BART (et al, 2019) (combining BERT (Devlin
et al., 2018) and GPT) was slightly inferior to sim-
ple Transformer model which is most likely due
to BART/BERT kind of models requiring longer
contexts. Hyperparameter and latency details are
included in the Appendix.

4.1 Curriculum Learning
Bengio et al. demonstrate the effectiveness of
curriculum learning for neural language modeling
tasks. Our results demonstrate that it can also help
in the spell correction task. We create a curricu-
lum strategy of first training on noisier but simpler
data of synthetic query pairs. This is followed
by fine-tuning the model on a smaller number of
more complex errors ({edit+phonetic} with com-
pounding). Another curriculum is fine-tuning with
weakly supervised query pair data obtained from
user click feedback which is also relatively cleaner.
After training on noisier synthetic data, as a next
step of the curriculum, we fine-tune our model on
this cleaner weakly supervised data. We present the
improvements brought in by the curriculum learn-
ing in the results section as compared to learning
a model using all the data at once without needing
any human labelled data.

4.2 Training and Eval Datasets
Our e-commerce catalog has ∼50 heterogeneous
categories like clothing, electronics etc. For each of
these categories, we glean top-20 percent queries
(by frequency and click rates) over one month and
treat them as clean queries. This created a seed
set of 300K clean queries which we fed into the
synthetic data generation pipeline described in sec-
tion 3.2. We generate∼270M synthetic query pairs
with all kinds of mistakes. In theory, user queries
may have multiple misspelled words but our analy-
sis showed that ∼90% queries have mistakes in up
to two words per query which we incorporated in
our synthetic data generation pipeline too. To ob-
tain the weakly supervised data, we first deployed
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Model Training Data Imp Reg
GoogleSWBS (statistical web search) (Whitelaw et al., 2009) in-house synthetic data 33.96 82.45
Seq2Seq-BiRNN (Zhou et al., 2017) in-house synthetic data 34.86 91.1
NeuSpell-BERT (Jayanthi et al., 2020) neuspell data 12.19 58.55
NeuSpell [in-domain BERT] neuspell data generation methods applied on in-house data 25.3 83.6
NeuSpell [in-domain BERT] in-house synthetic data 32.6 84.2
ReparoS-Base in-house synthetic data 37.63 90.72
ReparoS-C1(fine-tune ReparoS-Base) ed/ph + comp 42.81 86.63
ReparoS-C2(fine-tune ReparoS-C1) user click feedback (weak supervision) 46.09 91.62

Table 1: Accuracy (%) comparison of different models on Improvement and Regression datasets

the first version of the model and logged the user
interaction with the model output. Whenever the
system spell corrects a given user query and user
accepts it by clicking on the products (indicated by
query CTR) from the altered query, we consider
that as a positive correction. We collected this data
for a month and used the same to fine-tune the sub-
sequent versions of our model. This fine tuning
process allows for continual learning of the model
from user feedback. A more detailed continual
learning with knowledge distillation is our future
area of work. For evaluation, we obtain 72K hu-
man labelled query pairs. This data is created by
stratified sampling from unique head/tail queries
(queries sorted in descending order of frequencies
in a month and split into 2 equal quantiles: head
and tail). These are then labeled by the human
judges who provide the corrected queries for the
input set. We measure the performance separately
on 2 types of sub-datasets called Regression and
Improvement. The regression set consists of 90%
head and 10% tail queries and is hence predomi-
nantly clean. This ratio is inverted for the improve-
ment set where 90% are tail (tough queries) and
has a lot of spell mistakes.

5 Results and Discussion

We conduct both offline and online evaluation of
our models.
Offline evaluation: Table 1 shows the results of
multiple baselines on the Improvement and Regres-
sion data sets. Row 1 compares the performance
of ReparoS with a statistical model GoogleSWBS
(Whitelaw et al., 2009) that corrects at a word-level.
We improved this model to correct the entire query
using beam search (Freitag and Al-Onaizan, 2017)
(to avoid combinatorial explosion of candidates)
and a language model. In Row 2, Zhou et al.
train a bidirectional RNN based sequence to
sequence model with encoder/decoder architecture
for NMT. Row 3-5 has NeuSpell (Jayanthi et al.,

2020) that is bidirectional encoder-only model
with sequence labeling task for each input token.
Jayanthi et al. provide a toolkit where different
models (ELMO, CNN-LSTM, BERT) can be
plugged while the last two layers remain constant.
We chose their best performing variant with BERT,
i.e., Neuspell-BERT for comparison. In Row 3,
we evaluate unmodified NeuSpell model on our
evaluation sets and observed poor performance. To
provide a better domain adaptation, we plugged
in our in-house trained BERT model that is
pre-trained on e-commerce search queries. Row 4,
5 show the performance of this model. In Row 4,
we use the data generation methods suggested by
Jayanthi et al. on our data and then train this model.
Although we see an increase in the numbers but
still not better than the other models. Row 5
shows the results when we train this NeuSpell
model plugged in with in-domain BERT with our
data generation techniques. This also is the best
performing configuration among all the NeuSpell
experiments. The results also demonstrate the
improvements due to our data generation methods
as the seed queries/words for Row 4 and 5 were
same. Additionally, we observe that seq-to-seq
model (RNN, Transformer) is better than sequence
labeling one. Another limitation of NeuSpell
due to sequence labeling is that it can’t handle
compounding errors like iphonepro to iphone
pro. It’s evident that our diverse synthetic data
generation techniques are effective and lead to
significant improvement even with a simple 1 layer
enc/dec (ReparoS-Base) transformer compared
to deeper pre-trained models like BERT and
NeuSpell. Adding candidates from our novel
phonetic transliteration model was beneficial and
led to a total absolute gain of 2-3% at query level
consistently across the models and 7.5% accuracy
improvement at the word candidate level.

Effect of curriculum learning: While ReparoS-
Base itself is good than the competent baselines,
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Treatment Control ∆Page-
CTR

∆Cart-
Add

∆Null-
Search

∆Corr-
ections

∆Click-
back

ReparoS-
Base

Google-
SWBS

0.13% 1.02% 0% 2.92% -1.56%

ReparoS-
C2

ReparoS-
Base

0.06% 0% -6.94% 7.65% -3.43%

Table 2: A/B results against control @5%significance

our error analysis showed that it still couldn’t ad-
dress the complex edit/phonetic + compounding
spell errors. This led us to design a few new cur-
ricula to improve. Our first curriculum ReparoS-
Base-1, was to simply add more of complex
edit/phonetic+compounding training samples. This
resulted in marginal improvement over ReparoS-
Base. However, with a different curriculum of
only fine-tuning ReparoS-Base on tougher mis-
takes (model ReparoS-C1) we observe that the per-
formance increases significantly on the Improve-
ment Set where most of the mistakes lie, however,
there’s a drop in the Regression Set performance
when compared to the ReparoS-Base and ReparoS-
Base-1. On analyzing this further, we observed that
this was due to the over-correction problem where
the model is aggressively altering correct queries
in the regression set. Hence, we change the cur-
riculum and in ReparoS-C2 we find that a further
fine-tuning on weakly supervised user feedback
data improves upon all the variants significantly on
both the data sets. This is intuitively due to rela-
tively more frequent queries in the Regression Set
on which receiving implicit user-feedback through
clicks is possible at scale. Thus adding this new
curriculum helped acheive the best performance.

Online evaluation: In production, we adopt
a 2-step architecture by adding an ML ranker
(Yang, 2022) that does the final candidate
selection (from multiple candidates from the
ReparoS/GoogleSWBS). This multi-stage setup
empirically produced better results than just fine-
tuning the NMT model since top-10 accuracy of
ReparoS-C2 is 76.31% on Improvement Set and
98.08% on Regression Set. This helped all the
models (and ReparoS more due to their better top-k
accuracy) and is removed from results discussion
for brevity.

Table 2 reports the online performance of
ReparoS-Base against its control bucket of
GoogleSWBS (our first deployed in-house produc-
tion model) and later ReparoS-C2 against the con-
trol bucket of ReparoS-Base.

In both the A/B tests, 20% of the users were ran-
domly assigned to each bucket (control and treat-
ment) and the experiments were run for 3 weeks
each to achieve statistical and practical significance.
ReparoS-C2 is the currently deployed model serv-
ing the entire search traffic of our app for more
than 9 months. At our scale, 0.01% is quite a sig-
nificant change in PageCTR. Both ReparoS-Base
and ReparoS-C2 show a reduction in click backs
while increasing spell system coverage as well as
the Search results page CTR. ReparoS-C2 also re-
duced the Null Searches drastically while ReparoS-
Base improved the number of cart adds by the users.
These results demonstrate the effectiveness of both
the versions of ReparoS across multiple user and
business metrics.

6 Conclusion

We presented the generation of large synthetic and
weakly supervised labeled data for different types
of user spell mistakes including a creative deep
learning model to generate the phonetic mistakes.
We then presented a sequence-to-sequence deep
Transformer based Spell model with curriculum
learning on tough spell mistakes and user feedback
data that demonstrates superior performance than
state-of-the-art statistical and neural spelling cor-
rection models. Our solution is currently deployed
on an India’s e-commerce platform and serves over
billions of queries per month from over 450 million
users across 100% zip codes of India. With new
users with varying literacy rates joining our plat-
form every day, spell correction remains a tough
problem to solve. We found that deeper NMT mod-
els result in better performance but are impractical
(in the current state due to higher latencies) to de-
ploy in production to serve real-time user requests.
Hence our future work is to focus on model prun-
ing, quantization, and knowledge distillation and
continual learning to reduce latencies for deploy-
ment and improve upon our current system.
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8 Appendix

8.1 Experimental Setup

For model training, we used GPU set-up (NVIDIA
Tesla V100-SXM2) while for inferencing in the
user path we used CPU set-up (Intel x_86, 64 bit,
2.1GHz, VM with KVM Hypervisor). After hyper-
parameter tuning, we used 8 attention heads, and
128 hidden dimensions with Adam Optimizer with
learning rate set to 1.0 and β1 = 0.8, β2 = 0.998,
ϵ = 1e− 8. We used sentencepiece (Devlin et al.,
2018) (Kudo, 2018) to generate a subword vocab-
ulary of size 8K. Beam-width was set to 10 in the
decoder phase. OpenNMT (Klein et al., 2017) was
used for training due to its CTranslate utility 4 for
faster inference (brought down CPU inference time
for 1 layer model to < 7ms from 25ms per query
at single concurrency. For fine-tuning we set learn-
ing rate to 0.0001 and all the model parameters are
updated during the training.

8.2 Latency/Accuracy trade-offs with deeper
models

While deeper models improve the accuracy, they
also take more time in inference which is criti-
cal in live systems like search query spell correc-
tion. Table 3 summarizes the comparison of deeper
models on time taken for inference on both GPU
(NVIDIA Tesla V100-SXM2) and CPU(Intel x_86,
64 bit, 2.1GHz, VM with KVM Hypervisor) set-
ups along with the corresponding model metrics.
Please note that for NeuSpell, we have used the

4https://github.com/OpenNMT/CTranslate2

Model CPU
time

GPU
time

Imp Reg set

NeuSpell[in-domain BERT]
(12-encoder layers)

71 20 32.6 84.2

ReparoS-C2 (1-encoder and
1-decoder layer)

6.67 7.85 46.09 91.62

ReparoS-C2 (4-encoder and
4-decoder layers)

16.43 18.19 51.27 92.83

ReparoS-C2 (6-encoder and
6-decoder layers)

56.08 27.92 52.6 93.14

Table 3: Accuracy(%) vs latency trade-off as depth of
the models increase. Time is reported in ms.

12 layer in-domain BERT to match NeuSpell’s in-
built out-of-domain BERT which also has 12 layers
of encoders. For ReparoS, the number of encoder
and decoder layers were always kept equal. Due
to higher latencies on CPUs (the typical econom-
ical serving infrastructure of choice) observed on
deeper models, we eventually chose ReparoS-C2
with one layer of encoder/decoder.

8.3 A/B Metrics
• PageCTR: Click through rate of Search Re-

sults Page

PageCTR = #Pages with at least 1 click
#Total Pages shown

• CartAdd: Number of products per user visit
(to the search page) being added by the users
to the cart to purchase

CartAdd = #Search V isits with product added to cart
#Total user visits to search page

• NullSearch: It represents ratio of search result
page with no results to total search results
pages shown

NullSearch = #Pages with no results
#Total Pages shown

• Corrections: It represents the number of times
spell system changed a user query and has
to be looked in conjunction with the other
metrics.

Coverage = #Spell system changed original query
#Total searches

• Clickback: It measures events where user tells
the system to show results for his/her origi-
nal query by clicking ’show results instead
for <original query>’. Hence, a reduction in
Clickback and NullSearch denotes improve-
ment.

Clickback = #clicks on ′results for originalquery′
#Total search requests

694

https://doi.org/10.18653/v1/2022.ecnlp-1.9
https://doi.org/10.18653/v1/2022.ecnlp-1.9


Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 695–706

July 10-12, 2023 ©2023 Association for Computational Linguistics

"Let’s not Quote out of Context": Unified Vision-Language Pretraining for
Context Assisted Image Captioning

Abisek Rajakumar Kalarani and Pushpak Bhattacharyya
Department of Computer Science and Engineering, IIT Bombay, India

{abisekrk, pb}@cse.iitb.ac.in

Niyati Chhaya and Sumit Shekhar
Adobe Research, India

{nchhaya, sushekha}@adobe.com

Abstract

Well-formed context aware image captions and
tags in enterprise content such as marketing
material are critical to ensure their brand pres-
ence and content recall. Manual creation and
updates to ensure the same is non trivial given
the scale and the tedium towards this task. We
propose a new unified Vision-Language (VL)
model based on the One For All (OFA) model,
with a focus on context-assisted image caption-
ing where the caption is generated based on
both the image and its context. Our approach
aims to overcome the context-independent (im-
age and text are treated independently) nature
of the existing approaches. We exploit con-
text by pretraining our model with datasets
of three tasks- news image captioning where
the news article is the context, contextual vi-
sual entailment, and keyword extraction from
the context. The second pretraining task is a
new VL task, and we construct and release two
datasets for the task with 1.1M and 2.2K data
instances. Our system achieves state-of-the-
art results with an improvement of up to 8.34
CIDEr score on the benchmark news image cap-
tioning datasets. To the best of our knowledge,
ours is the first effort at incorporating contex-
tual information in pretraining the models for
the VL tasks.

1 Introduction

Large enterprises have several teams to create their
content for the purpose of marketing, campaigning,
or even maintaining a brand presence. Multimodal
assets, particularly images are an integral part of
this. The scale and the speed at which one needs to
create and update content, especially to ensure per-
sonalization requires several resources, which in
turn acts as a hindrance to the success of the enter-
prise. Opportunistic updates are critical for success
in the current competitive marketing and advertis-
ing scenario. Ensuring that every multimodal asset
associated with any piece of enterprise content has

Figure 1: An example image with its context. Text in
blue and green can be inferred from the image and the
context respectively. Text in red requires both the image
and the context.

an appropriate caption and tag is not possible given
the scale. While apparently a nuanced aspect of
any image, the caption serves as the key informa-
tion carrier of what the image is all about, in turn
ensuring the right recall (ability to find) for the
content that contains this image. If an image has
a well-formed caption, that captures the context
accurately – it also makes the document accessible.
Making enterprise content accessible is an impor-
tant metric for large organizations as they strive to
be inclusive. The scale and the quick turn-around
time demanded for the content creation cycle re-
sults in the lack of correct tagging and captions
of images (multimodal assets), in turn an eventual
lost of revenue and a target customer base. We pro-
pose a method towards automated context-aware
captioning of images targeted to reduce the tedium
and this critical gap in the enterprise authoring and
content creation process.

Large-scale pretraining of language models (De-
vlin et al. 2019; Brown et al. 2020) has witnessed
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great success in many downstream NLP tasks. This
success has inspired multi modal pretraining for
image-text, image-only, and video-text tasks. Cur-
rently, building unified models that jointly learn
multiple vision-language tasks is gaining a lot of
attention and has shown promising results on many
VL tasks (Wang et al. 2022, Lu et al. 2020, Cho
et al. 2021, Wang et al. 2021).

The existing unified Vision-language models fo-
cus on tasks like image captioning (Stefanini et al.,
2022), visual question answering (Wu et al., 2017),
visual entailment (Xie et al., 2019), and image-text
retrieval (Wang et al., 2019) that consider the im-
age as a standalone entity. However, images are
typically accompanied by text that adds additional
meanings which are not utilized in these tasks as
shown in Figure 1. Also, the same image can mean
different things in different contexts. For exam-
ple, a picture of a football player being emotional
can mean they are celebrating a goal or are disap-
pointed with their shot, depending on the context.
Hence it is essential to consider the context of the
image for understanding it completely.

Traditional image captioning models do not use
contextual information. In news image captioning
(Biten et al., 2019), the generated caption contains
information extracted from both the news article
and the image. The news image captioning task is
a special subtask of context assisted image caption-
ing task that uses the news article as the contextual
information about the image. In our work, the task
names- news image captioning and context assisted
image captioning are hence used interchangeably.
Existing pretrained VL models lack the ability to
use contextual information as the pretraining tasks
do not contain long text associated with image-text
pairs. We propose a new unified VL model based
on the One For All (OFA) model, with a focus on
using the contextual information associated with
the image for real-world problems like news image
captioning.

As there are no existing VL classification task
that uses contextual information, we introduce a
new VL task called ‘Contextual Visual Entailment’.
Visual entailment (Xie et al., 2019) is a refined
image-text matching task that checks for the entail-
ment of the caption with the premise image. Visual
entailment deals with only the descriptive charac-
teristics of the image. In our contextual visual
entailment task, both the image and the context of
the image are treated as the premise, and the en-

tailment of the caption is predicted with respect to
both.

Our contributions are:

• A new unified VL model pretrained for key-
word extraction, contextual visual entailment,
and news image captioning with a focus on us-
ing contextual information which has not been
explored before.

• State-of-the-art results on the GoodNews and
NYTimes800k datasets with an improvement of
8.34 CIDEr points on the GoodNews dataset.

• A novel VL classification task where the context
information surrounding the image is utilized for
detecting the entailment of the caption with the
image.

• Release of two datasets1- a large synthetic dataset
consisting of 1.1M Image-Caption pairs with
context and a more challenging dataset with man-
ually annotated negative samples consisting of
2.2K instances for the proposed contextual vi-
sual entailment task.

2 Related Work

Image Captioning was initially conceived as a cap-
tion retrieval or template filling task. It involved
matching the query image with a predefined set of
captions or identifying the objects in the image to
place them in predefined templates (Farhadi et al.
2010; Li et al. 2011; Kulkarni et al. 2013). The
advancements made with deep learning based tech-
niques in machine translation inspired the commu-
nity to adopt similar techniques for image caption-
ing where images were fed to the encoder and the
decoder generated caption as a sequence of words
(Farhadi et al. 2010; Li et al. 2011; Kulkarni et al.
2013). Attention allows decoder to focus on differ-
ent parts of the input and hence it was incorporated
to generate words focused on important regions of
the image in both sequential models (Xu et al. 2015;
Lu et al. 2017; Anderson et al. 2018; Huang et al.
2019) and transformer based models (Cornia et al.,
2020). In recent years, the models are trained on
huge datasets with several millions of image-text
pairs for image captioning (Li et al. 2020; Su et al.
2020; Radford et al. 2021). However, in all these
works images are treated as standalone entities and
their context is not taken into account.

News Image Captioning deals with the genera-
tion of captions for news images. The news articles

1Code and data are available at: https://github.com/
abisekrk/context-assisted-image-captioning
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contain the context of the image and they are taken
into account during the caption generation process.
Biten et al. (2019) propose an encoder-decoder
model with attention over both image and news
article encodings to generate news image captions.
It generates captions with placeholders for named
entities and fills those placeholders by choosing
named entities from the news article. Chen and
Zhuge (2019) model it as a query-based summa-
rization problem where the news image acts as the
query and the news article is the source text to be
summarized. Tran et al. (2020) use transformers
with separate encoders for extracting image fea-
tures, object features and faces present in the im-
age. The decoder receives the input from all three
encoders to generate caption. Liu et al. (2021) use
a visual selective layer that learns to align the im-
age features with the text in the news article to
generate captions. Yang et al. (2021a) discuss the
journalistic guidelines followed while writing news
image captions in journals and incorporate them
in the generation process. Zhang et al. (2022) use
prompt tuning to finetune pretrained models for
news image captioning.

Unified Vision-Language (VL) modeling is
a new paradigm that involves creating a unified
framework for multiple vision-language tasks, al-
lowing models to be trained on a range of datasets
constructed for a range of tasks. ViLBERT (Lu
et al., 2019) extends the BERT (Devlin et al., 2019)
architecture to work with visual inputs. Lu et al.
(2020) propose a multi-task training approach with
12 VL datasets on 4 broad tasks. VL-T5 (Cho
et al., 2021) combines multiple VL tasks as text
generation tasks using pretrained models for im-
age features. UniT (Hu and Singh, 2021) unifies
cross-modal tasks by using a modality specific en-
coder and a shared decoder. UFO (Wang et al.,
2021) proposes to use the same transformer archi-
tecture as the encoder for both image and text in VL
tasks. UniTAB (Yang et al., 2021b) supports VL
tasks with bounding boxes by encoding the text and
box output sequences to shared token sequences.
OFA (Wang et al., 2022) abstracts all VL tasks into
sequence-to-sequence problems.

Existing unified VL models do not consider
the context of the image in their pretraining tasks.
Our unified model is pretrained with tasks that in-
clude contextual information and hence it achieves
state-of-the-art results on news image captioning
datasets.

3 Dataset

We pretrain our model on a large pretraining
dataset and evaluate its performance on benchmark
datasets for news image captioning.

3.1 Pretraining Datasets
We use Visual News (Liu et al., 2021) and KPTimes
(Gallina et al., 2019) datasets for constructing our
pretraining datasets.

Visual News dataset was compiled by collect-
ing news articles from four news agencies: The
Guardian, BBC, USA Today, and The Washing-
ton Post. It only includes the articles with high
resolution images and where the caption length is
between 5 and 31 words. It is diverse with dif-
ferences in properties like average caption length,
article length, and distribution of named entities
across news agencies.

KPTimes dataset was constructed by crawl-
ing over 0.5 million news articles, mainly from
New York Times. The metadata associated with
field- "news_keywords" and "keywords" form the
gold standard keyphrases . The three pretraining
datasets are constructed from these datasets.

News Image Captioning: We removed dupli-
cate captions, and news articles without images,
and captions from Visual News dataset. The
cleaned dataset consists of 11, 97, 000 data in-
stances with image, news article, and the caption.
These are split as 11, 17, 697 for training, 40, 000
for validation, and 40, 000 for test sets respectively.

Contextual Visual Entailment is a binary clas-
sification problem, so it is required to construct
both positive and negative pairing of the image,
and caption with the context. For the data instances
where the caption entails the image and the context,
the original image, the caption, and the context
from the training split of the above news image
captioning dataset are used (P). We use the follow-
ing operations to generate the inconsistent pairs in
our dataset:

1. Choose a random caption different from the cor-
rect caption (N-I).

2. Replace the named entities in the correct cap-
tion with named entities from randomly chosen
caption (N-II). For example, the caption ‘John
Garrison performing in Berlin, April 2015’ will
be changed to ‘Mark Pattinson performing in
London, April 2015’.

3. Keep the named entities of the original caption
intact but replace the remaining content with a
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Figure 2: An overview of our unified Vision-Language model pretrained for the three subtasks- context assisted
image captioning, contextual visual entailment, and keyword extraction.

random caption that has the same type and the
same number of named entities (N-III). For ex-
ample, the caption ‘John Garrison performing
in Berlin, April 2015’ will be changed to ‘John
Garrison waiting in queue for filing tax returns
in Berlin, April 2015’.

Named entity recognition is done with SpaCy
(Honnibal and Montani, 2017) in our experiments.
SpaCy allows the detection of 18 different named
entities. We only use the named entities labeled
as ‘PERSON’, ‘FAC’, ‘ORG’, ‘GPE’, ‘LOC’, and

‘EVENT’ that represent a person, building/airport,
organization, geopolitical entities, location, and
event respectively, as they occur more frequently.

The N-I class of negative captions will have
different information and different named entities
from the original caption. The N-II class will have
same information as the original caption but will
contain different named entities. The N-III class
of captions will have same named entities but will
convey different information. The final dataset has
1005925, 55884, and 55884 instances in the train,
validation and test split respectively. We also create
a separate manually annotated challenging dataset
for evaluation.

In addition to synthetically creating a dataset
for pretraining, we create and release a manually
annotated challenging dataset for the task of con-
textual visual entailment consisting of 2.2K data
instances. The negative captions in this dataset are
created manually by changing a word or a small
phrase from the original caption, such that its mean-

ing changes significantly without much difference
in the sentence structure. For example, ‘Support-
ers marched peacefully during the protest’ will be
changed to ‘Supporters marched violently during
the protest’. The negative examples created in these
ways will ensure that the models need to learn the
relationship between image, caption, and context
to identify the entailment correctly. This is used
to test the model’s knowledge of image-caption
entailment at a more finer level.

Annotation Details: The annotations were per-
formed by two annotators proficient in English.
One is a master’s student and the other is a bache-
lor’s student in Computer Science and Engineering.
They were provided with examples of negative cap-
tions before annotation. The image links, caption,
and context were shared in Google Sheets for anno-
tation. The annotators were only asked to select a
word or phrase from the caption and replace it with
a new word or phrase. The modified captions were
exchanged and verified by each other.

3.1.1 Keyword Extraction

The dataset for the keyword extraction task is con-
structed from KPTimes dataset after removing du-
plicate news articles. The news article forms the
input to the system and the sequence of keywords
form the output. The final dataset has 259902,
10000, and 10000 data instances in the train, vali-
dation and test split respectively. The training data
from these three datasets are combined to generate
the pretraining dataset with 2.3M data instances.
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Dataset Model B-4 MET. ROUGE CIDEr Named Entities
P R

GoodNews

GoodNews 1.86 13.75 20.46 17.57 8.23 6.06
Transform and Tell 6.05 10.30 21.40 54.30 22.20 18.70
Visual News 6.10 8.30 21.60 55.40 22.90 19.30
JoGANIC 6.83 11.25 23.05 61.22 26.87 22.05
NewsMEP 8.30 12.23 23.17 63.99 23.43 23.24
OFA 6.41 10.63 23.59 67.19 23.06 19.04
Ours 7.14 11.21 24.30 72.33 24.37 20.09

NYTimes800K

Transform and Tell 6.30 10.30 21.70 54.40 24.60 22.20
Visual News 6.40 8.10 21.90 56.10 24.80 22.30
JoGANIC 6.79 10.93 22.80 59.42 28.63 24.49
NewsMEP 9.57 13.02 23.62 65.85 26.61 28.57
OFA 6.91 10.77 22.70 61.81 27.14 22.51
Ours 7.54 11.27 23.28 66.41 28.11 23.25

Table 1: Experimental results on the GoodNews and NYTimes800K datasets compared with other models. P and R
denote the precision and recall of generating named entities. B-4 indicates BLEU-4 and MET. indicates METEOR.

3.2 Benchmark Datasets

The performance of models trained on the pre-
training datasets is evaluated on two benchmark
datasets- GoodNews (Biten et al., 2019) and NY-
Times800K (Tran et al., 2020). We follow the train,
validation, and test splits from the original work for
both datasets. The GoodNews dataset has 424, 000,
18, 000, and 23, 000 in training, validation, and test
split respectively. The NYTimes800K dataset has
763, 000 training, 8000 validation, and 22, 000 test
instances in the dataset.

4 Our Model

Unified Vision-Language (VL) modeling has
shown great promise in multiple VL tasks. Hence,
we use a unified model for all three tasks- context
assisted image captioning, contextual visual entail-
ment, and keyword extraction. Figure 2 shows an
overview of our unified VL pretraining strategy.
We use the OFALarge (Wang et al., 2022) architec-
ture. OFA is a task and modality agnostic model
that unifies all vision-language, vision-only, and
language-only tasks using a sequence-to-sequence
learning framework. We use ResNet152 (He et al.,
2016) and VQGAN (Esser et al., 2020) to obtain
visual tokens for the given image. The text (context
and caption) is tokenized by byte-pair encoding
(BPE). A single unified vocabulary is used for both
visual and linguistic tokens. Transformers are used
as encoders and decoders and all vision-language
tasks are abstracted to seq-to-seq conversion tasks
with specific instructions created for each task, sim-
ilar to the OFA pretraining.

The pretraining of our model involves three
tasks- News image captioning, contextual visual
entailment, and keyword generation. For news im-
age captioning, we convert the image, caption, and
context into a sequence of input tokens and gener-
ate the caption as a sequence of tokens conditioned
on these input tokens. For keyword generation, the
news article is tokenized as the input sequence and
the keywords are generated by the model as the
output sequence. Contextual visual entailment is
a classification task, so the input sequence to the
model is the image, caption, and context tokens
and the model is trained to generate ‘Yes’ or ‘No’
as the output indicating if the caption entails the
image and context or not respectively.

The model is trained to reduce the cross entropy
loss. For the input sequence x consisting of visual
and text tokens and output y, the loss is given as:

L =

|y|∑

i

logPθ(yi|y<i, x)

where yi is the text token to be predicted and yi−1,
yi−2 are tokens predicted so far.

5 Experiments

The experimental details for pretraining and fine-
tuning for context assisted image captioning are
discussed here.

5.1 Pretraining

We used OFALarge architecture for pretraining our
model. The model has 472M parameters with 12
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Model BLEU-4 METEOR ROUGE CIDEr
BLIP-2 + GPT-3 2.06 8.48 13.22 17.12
OFA 6.41 10.63 23.59 67.19
OFA + Captioning + Contextual Visual Entailment 6.90 11.01 23.83 69.97
OFA + Captioning + Keyword Extraction 6.69 10.81 23.44 67.83
OFA + Captioning 6.85 10.90 23.70 68.93
Our Model (Without Context) 2.24 5.34 14.45 18.04
Our Model + NE 6.95 11.06 23.98 70.03
Our Model 7.14 11.21 24.30 72.33

Table 2: Ablation study results on the GoodNews dataset. NE denotes fine-tuning done with named entities
extracted separately. ‘OFA + X’ denotes pretraining of OFA done with X task. ‘Our Model’ refers to the model
pretrained on the three tasks with context information.

encoder and 12 decoder layers. The weights were
initialized with the publicly available OFALarge

checkpoint to retain the knowledge from other VL
tasks. The model was pretrained on the 2.3M data
instances from the pretraining datasets.

All 3 tasks were abstracted into sequence-to-
sequence task. For the instances of news image
captioning dataset, the instruction was “What does
the image describe based on the text <context> ?",
where <context> holds the tokens from the news
article. For contextual visual entailment, the in-
struction was “Is the text <caption> consistent with
the image and the text <context> ?", where <cap-
tion> and <context> contain the text tokens from
the caption and the context. For the keyword ex-
traction task, the instruction given was “What are
the keywords in the article <context>?".

5.2 Context Assisted Image Captioning

Our unified model pretrained model for the
three tasks was finetuned on GoodNews and NY-
Times800K datasets for the task of context assisted
image captioning. The image resolution was fixed
at 384∗384 and the news article was clipped to 512
tokens. The maximum caption length was fixed at
30. We use a batch size of 8 for training. We
train the model with early stopping and choose the
model that achieves the best CIDEr score on the
validation set. The best-performing model is then
tested on the unseen test data and the results are
summarized in Table 1.

5.3 Training Details

The experiments were done with the OFALarge ar-
chitecture. For both pretraining and finetuning, the
image resolution was fixed at 384 ∗ 384. The input
token length was restricted to 512 tokens while the
output was restricted to 30 tokens. The dropout

ratio was set to 0.1. We used Adam optimizer
(Kingma and Ba, 2014) with 0.9 and 0.999 as the
β values with ϵ = 1e− 08 and warm-up ratio was
set as 0.06. We used an initial learning rate of
1e − 5 with polynomial decay. We used a beam
size of 10 during the test inference with tempera-
ture 0.98. We also used mixed precision training to
speed up the training process.

5.4 Frozen Image Encoder + Frozen LLM

LLMs and large-scale pretrained VL models have
shown great zero-shot performance in many down-
stream applications. We use BLIP-2 (Li et al.,
2023) for getting zero-shot image captions for the
GoodNews dataset. These captions are generated
without contextual information and are descrip-
tive in nature. These captions are passed to a
LLM along with contextual information to gen-
erate context assisted image captions. We use
text-davinci-003 model in the GPT-3 family
(Ouyang et al., 2022). The prompt for generat-
ing the caption was "Add contextual information
to the caption. Caption: <sample caption> Context:
<sample context>". We randomly sampled a cap-
tion, and context pair from the training dataset of
the GoodNews dataset and used it as an example in
the prompt. The contextual captions are predicted
for caption and context pair in the test set. The
results are discussed in Table 2.

5.5 Ablation Study

In order to analayse the importance of the three
pretraining tasks we used, we pretrained the OFA
model using three different subsets of the pretrain-
ing tasks. We pretrained the model with only “Cap-
tioning and Contextual Visual Entailment" tasks,
with only “Captioning and Keyword Extraction"
task and with only “Captioning" task and compared
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their performance with the model trained on all the
three tasks.

Previous works in news image captioning (Liu
et al. 2021; Yang et al. 2021a; Zhang et al. 2022)
have shown that extracting named entities from the
context and feeding them to the decoder helps gen-
erate correct named entities in the caption. Hence,
we also try injecting named entities into the prompt
while finetuning the model. We use SpaCy for iden-
tifying and extracting named entities. We update
the prompt as "what does the image describe about
the names <named entities> based on the text <con-
text>?" during finetuning. We clipped the named
entity tokens to 64 and restricted the context to
512 tokens as done in previous experiments. We
also perform experiments without using the con-
textual information with our pretrained model in
the traditional image captioning setting, to analyze
the usefulness of the contextual information. The
results are summarized in Table 2.

6 Results and Analysis

Our model achieves state-of-the-art results on both
GoodNews and NYTimes800K datasets. The OFA
model finetuned on benchmark datasets also shows
good performance. This shows the ability of OFA
to adapt to new tasks and the correctness of our
instructions for finetuning. However, it can be
seen that due to the lack context information in the
pretraining tasks used in OFA, the model doesn’t
produce substantially better results compared to
the current SOTA models. Our model pretrained
on the three tasks shows a 5.14 CIDEr score im-
provement over the OFA model on the GoodNews
dataset which is an 8.34 CIDEr score improvement
over the current SOTA model. The model also
achieves a SOTA result of 66.41 CIDEr score on
the NYTimes800K dataset.

The average length of news articles in Good-
News and NYTimes800K dataset are 451 and 974
words respectively. The larger article length in
NYTimes800K dataset is the reason for the CIDEr
scores being closer to the current SOTA as the con-
text length in our experiments is restricted to 512
tokens. We also obtain comparable performance
in precision and recall of named entity generation
despite not feeding the named entities directly to
the model like in the previous works.

The BLIP-2 model has shown great promise in
zero-shot image caption generation. We use BLIP-
2 to generate descriptive captions and feed those

captions as input to the GPT-3 model along with the
context to generate the final context assisted cap-
tion. The BLIP-2 + GPT-3 model generates fluent
captions but it does not contain the relevant infor-
mation based on the image features as indicated
by the poor performance on evaluation metrics in
Table 2. This indicates that it is essential to train
with both image and context together.

Our pretraining tasks indirectly direct the model
to capture named entity information from the con-
text. However, earlier works on news image cap-
tioning show that extracting named entities and
feeding them directly to the model can help it gen-
erate better captions with correct named entities.
Our pretrained model showed a slight decrease in
performance when named entity information is pre-
sented to it in the prompt. This is because the
named entity tokens take up valuable space in the
512 tokens allowed for the context, leading to in-
formation loss gained from the context. Also, since
only 64 tokens are allowed for named entities, not
all the important entities in the news article are
presented in the prompt and it disadvantages the
model in both ways.

We also pretrained the OFA model with a subset
of the three pretraining tasks to identify the impor-
tance of each task in pretraining. The models pre-
trained with a combination of two tasks and with
only the captioning task performed poorly com-
pared to the model pretrained on the three tasks.
This shows the importance of training with all three
tasks. Between the two two-task pretrained models,
the model that used contextual visual entail task
performed better, indicating the usefulness of the
task we introduced.

7 Summary and Conclusion

In this work, we proposed a new unified VL model
that uses contextual information of images that has
not been utilized in pretraining before. We intro-
duce a new VL classification task called contex-
tual visual entailment and pretrain a model with
three subtasks that uses long text along with im-
age and caption. Our model achieves new state-of-
the-results on benchmark datasets for news image
captioning and highlights the importance of using
contextual information in pretraining.

In the future, we aim to deploy our model to al-
low context-aware caption generation which could
be used in enterprise authoring and many other
content creation processes.
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A.1 Dataset Details
Table 3 provides the summary of the three datasets
used for pretraining.
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Train Val Test

Pretraining
Keyword Extraction 259902 10000 10000
Contextual Visual Entailment 1005925 55884 55884
News Image Captioning 1117697 40000 40000

Benchmark GoodNews 424000 18000 23000
NyTimes800K 763000 8000 22000

Table 3: Summary of the statistics of the datasets used for pretraining and benchmarking.

Model Overall
Acc. Pre. Rec. F1

w/o context
1) CLIP + FNN 61.30 61.61 60.00 60.79
2) CLIP + Transformer 60.00 59.83 60.87 60.34
3) Ours 66.96 69.70 60.00 64.49

w/o image
4) CLIP + FNN 59.13 61.54 48.70 54.37
5) CLIP + Transformer 56.96 56.25 62.61 59.26
6) Ours 65.22 66.67 60.87 63.64

w/ context
7) CLIP + FNN 64.35 63.64 66.96 65.25
8) CLIP + Transformer 65.65 63.64 73.04 68.02
9) Ours 73.04 79.78 61.74 69.61

Table 4: Experimental results on the manually annotated contextual visual entailment dataset, where w/o context,
w/o image and w/ context indicate experiments done without context (Image + Caption), without image (Caption +
Context), and with context (Image + Caption + Context).

A.2 Additional Experiments

Our pretrained model achieves state of the results
on news image captioning task. In addition, it per-
forms very well on the other two pretraining tasks.
The contextual visual entailment is a new task in-
trouduced by our work and hence we propose base-
lines for comparing the results of our model. We
compare our model’s performance on keyword ex-
traction against standard works.

A.2.1 Contextual Visual Entailment
We propose a two baselines for contextual visual
entailment, where the image and text features are
extracted from pretrained networks. The features
are obtained from a pretrained CLIP (Contrastive
Language–Image Pre-training) model. CLIP (Rad-
ford et al., 2021) was trained on large scale image-
text corpus to minimize contrastive loss such that
the text embedding and the image embedding will
have higher cosine similarity if the text describes
the image perfectly and low when the text incor-
rectly describes the image.

CLIP and FNN model
In our CLIP embedding based models, the represen-
tation for image, caption, and context is obtained
from a pretrained CLIP model.

The CLIP and FNN model, uses a simple
early fusion strategy in which the image, caption,
and context embeddings from CLIP are concate-
nated and fused with feed-forward neural networks.
The three input embeddings are concatenated and
passed to a two-layer feedforward neural network
for combining the information. An output layer
predicts the entailment label. The experiments are
repeated without the context information and then
again without the image features as input to study
their impact on entailment detection.

CLIP and Transformer model

The fusion of image-text information using trans-
formers has helped achieve good performance on
many standard vision-language tasks (Zhou et al.
2020; Chen et al. 2020; Wang et al. 2022 ). The
CLIP and Transformer model uses transformer
Vaswani et al. (2017) encoders with multi-head
attention to combine these multimodal information.
A transformer layer receives the input features from
the image, caption, and context and generates the
combined representation for the information. The
outputs from the transformer layers are pooled to a
single dense layer followed by a classification layer
to perform the final binary classification.

We summarize the results of our experiments
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Model F@10
FirstPhrases 9.2
MultipartiteRank 11.2
CopySci 11
CopyNews 39.3
Ours 40.6

Table 5: Results of Keyword extraction task on KPTi-
mes dataset. F@10 represents the F1 score at the top N
= 10 keyphrases

on the manually annotated contextual visual entail-
ment data in Table 4 and compare it with the results
produced by our pretrained model.

A.2.2 Keyword Extraction
We use our pretrained model to perform keyword
extraction as a sequence to sequence task where the
output is the set of keyword tokens. We use similar
hyperparameters to caption generation for keyword
generation. We finetune the pretrained model for 5
epochs and report the results on KPTimes dataset
in Table 5.

A.3 Examples
Figure 3 shows examples from the GoodNews
dataset and compares the caption generated by each
model.
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Figure 3: Some examples from our dataset along with the captions generated by each model.
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Abstract

This paper presents a method for building a
personalized open-domain dialogue system to
address the WWH (WHAT, WHEN, and HOW)
problem for natural response generation in a
commercial setting, where personalized dia-
logue responses are heavily interleaved with
casual response turns. The proposed approach
involves weighted dataset blending, negative
persona information augmentation methods,
and the design of personalized conversation
datasets to address the challenges of WWH in
personalized, open-domain dialogue systems.
Our work effectively balances dialogue fluency
and tendency to ground, while also introduc-
ing a response-type label to improve the con-
trollability and explainability of the grounded
responses. The combination of these meth-
ods leads to more fluent conversations, as evi-
denced by subjective human evaluations as well
as objective evaluations.

1 Introduction

A personalized dialogue (PD) system is capable
of generating user-customized responses based on
long-term memory about the user’s persona, lead-
ing to more trustworthy and engaging conversa-
tions (Ranjbartabar et al., 2021; Xu et al., 2022).
In our study, persona attributes cover comprehen-
sive user-related information, such as personality,
behaviors, preferences, and experience.

The key to enhanced user engagement in a PD
system lies in finding a persona that is contextu-
ally relevant and appropriate, on which a model
is grounded to generate a natural response. How-
ever, as shown in the example in Figure 1, PD
systems usually need to select relevant persona at-
tributes from a given subset of N persona attributes,
which is usually provided by external memory or
retrieved from the user persona pool. Considering
the fact that the agent’s response is usually anno-
tated with associated oracle persona information

Hi! Are you feeling better from your cold?

hi ~

I’m completely over my cold! thanks

Good to hear that! What are you up to?

User’s Persona

𝜌! : My job is a doctor
𝜌" : I enjoy surfing
𝜌# : I have a cold

Persona
Retriever

𝜌$ : I have 2 cats
𝜌% : I am a fan of BTS
𝜌& : I love sushi

[𝜌!,𝜌", … ,𝜌#] 

𝜌! 𝜌" 𝜌$

𝜌% 𝜌&

Retrieving

✓ Select to ground

𝜌'

✗ ✗

✗ ✗ ✗

Dialogue Context

Persona Subset 1

Persona Subset 2

Figure 1: A sample of personalized conversation
grounded on user persona. For every agent utterance,
the persona attributes to be grounded in the response are
retrieved by a retrieval model. Then, the agent make a
decision about generating personalized response given
dialogue context and retrieved persona subset.

in the training dataset, deciding what persona at-
tribute to select in each turn during model inference
is a non-trivial problem. (We will refer to this prob-
lem as the "WHAT to ground" problem hereafter.)
Another aspect to consider in a PD system is that
under certain dialogue contexts, it is better not to
generate a personalized response given retrieved
persona attributes in order to create a more natu-
ral interaction (the second response in Figure 1).
As shown in the example, it is usually difficult for
the retrieval module to determine whether to use
persona information for response generation. We
also need a model to decide when to ground per-
sona information with a given persona subset for
every turn (We will call this the "WHEN to ground"
problem hereafter).

Given such a challenge, designing a user-based
persona-aware PD system capable of generating
engaging and human-like personalized responses
requires addressing the "WHAT," "WHEN," and
"HOW" (WWH) questions: 1) What personal infor-
mation should be grounded given the conversation
context, 2) When to generate responses using per-
sonal information, and 3) How to make natural and
human-like personalized response.

1
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Inference Phase

LLM

d 𝜌 c

I am so bored !

<PRTL> How about going surfing?

<CTRL> do you have a go-to beach for 
surfing?

User Persona

RTL

𝜌1 : My job is a doctor
𝜌2 : I enjoy surfing
𝜌3 : I have a cold

…

Large-scale Language Model (LLM)

Demographic 
Information (d)

Persona
Attributes (𝜌)

Dialogue
Context (C) 𝑦!, 𝑦",… , 𝑦#

𝑦!, 𝑦", … , 𝑦#, [EOS]

𝑊𝑒𝑖𝑔ℎ𝑡! 𝑊𝑒𝑖𝑔ℎ𝑡$ 𝑊𝑒𝑖𝑔ℎ𝑡%&! 𝑊𝑒𝑖𝑔ℎ𝑡%

𝑫𝑪𝒂𝒔𝒖𝒂𝒍𝒋𝑫𝑪𝒂𝒔𝒖𝒂𝒍𝟏 𝑀𝑆𝑃𝐷&' 𝑀𝑆𝑃𝐷(&'

Response Type 
Label (RTL)

Response 
Type Label

𝜌4 : I have 2 cats
𝜌5 : I am a fan of BTS
𝜌6 : I like sushi

Response 

Train Phase
Dialogue Context

That sounds good~ 

Persona Subset 1

Persona Subset 2
Persona
Retrieval

Generate Response w/ RTL

Negative Persona Attribute/Subset Augmentation

Blending datasets

► Negative Persona Attribute Augmentation
• [𝜌)*+] → [𝜌)*+, 𝜌,-.#, … , 𝜌,-.$%#]

► Negative Persona Subset Augmentation
• Personalized Response: [𝜌)*+, 𝜌,-.#, … , 𝜌,-.$%#] for 𝑴𝑺𝑷𝑫𝑷𝑹
• Non-Personalized Response: 

• [𝜌,-.#, … , 𝜌,-.$] for 𝑴𝑺𝑷𝑫𝑵𝑷𝑹
• [ ∅ ] for 𝑫𝑪𝒂𝒔𝒖𝒂𝒍

Figure 2: The overall framework of our proposed personalized dialogue system

Most previous research on personalized dia-
logue systems has focused on generating natural
responses in ideal personalized conversation set-
tings (Liu et al., 2020; Dong et al., 2022; Xu et al.,
2022; Fu et al., 2022), where issues related to heav-
ily interleaving personalized responses with casual
dialogue turns are not considered. However, we
believe that these are significant problems that need
to be addressed in real-world personalized conver-
sational systems.

Large-scale Language Models (LLMs) such as
GPT-3 have shown outstanding capabilities in vari-
ous Natural Language Understanding (NLU) tasks
and especially, in-context learning (Brown et al.,
2020). However, the inherent abilities of LLMs
alone are insufficient to effectively address the
WWH problems in real-world service environ-
ments. Moreover, it is very tricky to generate
natural and engaging personalized responses and
sophisticatedly control the output of the model
in multi-turn/session scenarios, relying solely on
prompt engineering.

In addressing the research gap and real-world
challenges, we propose a method that controls the
inclination of models to generate personalized re-
sponses. Our technique blends persona-augmented
datasets to construct a personalized dialogue sys-
tem, thus enabling human-like natural conversa-
tions. Our approach involves the following steps:

1) We create a Multi-Session Personalized Con-
versation (MSPC) dataset. This trains the model
to ground the provided persona information effec-
tively for a personalized response. 2) We control
the model’s persona-grounding level by adjusting
the blending weights of the conversational datasets.
Furthermore, we enrich the dataset with negative

samples of persona subsets at the turn level for
model fine-tuning. 3) To enhance both generation
quality and the controllability and interpretability
of persona-grounded generation, we use a turn la-
bel. This label indicates whether a turn is person-
alized or casual and serves as one of the inputs.
Ultimately, we build a personalized dialogue sys-
tem by fine-tuning an 18-billion parameter large
language model (LLM). This LLM has a high level
of understanding of conversation history, the ability
to generate high-quality responses, and the capac-
ity to focus effectively on given inputs, including
users’ personas.

We also propose four grounding type categoriza-
tions to allow for analysis of the model’s ground-
ing patterns and detailed performance in subjec-
tive evaluation using sensibleness and specificity,
which complements the objective evaluation based
on groundedness, and fluency.

2 Related Work

Since the release of the PersonaChat dataset
(Zhang et al., 2018), methods to generate personal-
ized responses that are consistent with or grounded
on a persona have been extensively studied (Lee
et al., 2021; Liu et al., 2020; Xu et al., 2021, 2022).
Most of the studies focus on addressing the WHAT
and HOW challenges by the use of diverse model
architectures, modules, and training frameworks
(Fu et al., 2022; Dong et al., 2022).

With respect to the How, Liu et al. (2020) pro-
pose an RL-based approach for generating person-
alized dialogue with rewards for mutual persona
perception. Wu et al. (2019) and Fu et al. (2022)
employ variational methods to generate personal-
ized and knowledgeable response generation. Song
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Conversation (Episode – 4 Sessions)

Session 4Session 3Session 2
U: 오늘따라 예약이 많네...  (There are so many reservations today...) 
A: 예약이라면 네일아트 예약을 말하는 거야? [𝝆𝟒]

(You mean nail art reservations? )
U: 응 너무 바빠서 밥 먹을 시간이 없을 것 같아 ㅠ

(Yeah, I’m too busy to have lunch :( )
A: 그럼 점심으로 간단하게 뭐라도 시키는 건 어때?

(How about ordering some food for a quick lunch? )
U: 괜찮은 생각이네! 지금 주문해야겠다.  (That's a good idea! I should order it right now.)
A: 너 엄청 배고플텐데 얼른 주문해!  ( You must be really hungry. So order quickly!)
U: 응. 내가 좋아하는 떡볶이도 같이 시켰어! ㅋ

(Yeah. I also ordered Tteokbokki, which is my favorite! LOL) [𝝆𝟔]
A: 맛있겠다~ 퇴근하고는 뭐 할거야? 

(That sounds great~ What are you gonna do after work? )
U: 넷플릭스나 좀 보고 있을려고!! (I'm planning to watch Netflix!!) 
A: 로맨스 영화 볼꺼야? ( Are you going to watch a romance movie? )  [𝝆𝟏]
U: 아니, 요새 미드에 빠졌어 ㅋㅋ 여튼 얼른 먹고 다시 일하러 가야겠다! [𝝆𝟕]

(No, I've been hooked on American dramas lately. Anyway, I'll quickly eat and get back 
to work! )

A: 맛있게 먹고 남은 하루도 힘내! (Enjoy your meal and have a great rest of the day!)

Session 1

User Persona Attributes
User Demographic Information

Age: 20’s 
Gender: Female

𝝆𝟏 : 로맨스 영화를 좋아해요. (I love romance movies.) 
𝝆𝟐 : 테니스를 배우고 있어요. (I am learning tennis.) 
𝝆𝟑 : 남자 친구가 있어요. (I have a boy friend.) 
𝝆𝟒 : 네일 아티스트로 일하고 있어요. (I work as a nail artist.) 
𝝆𝟓 : 나는 김밥 좋아해요. (I like Kimbap.)

User Persona Attributes

New User Persona Attributes

𝝆𝟔 : 떡볶이를 좋아해요. (I like Tteokbokki.) 
𝝆𝟕 : 미드를 즐겨요. (I enjoy watching America dramas.) 
(* New persona attributes are added in next sessions.)

Figure 3: An example of a session from our proposed MSPD dataset. The left figure represents a dialogue between
the user (U) and the agent (A), where red text and information within brackets indicate the agent’s personalized
responses (PR) and the index of a corresponding persona attribute. Blue text and content within brackets represent
the user’s new persona and its corresponding persona index. The right figure contains details about persona attributes,
including the user’s demographic information

et al. (2019) addresses both WHAT and HOW by
generating persona-grounded responses via CVAE
with a selected persona from a memory. Xu et al.
(2022) and Bae et al. (2022) also tackle the same
problems via a persona retrieval module and a gen-
erator module.

However, to the best of our knowledge, there
has been no work on addressing all three WWH
questions in PD system. Therefore, considering the
crucial importance of addressing the WWH issues
in a commercial system, we propose novel meth-
ods to tackle all three WWH questions, which are
mission-critical for a commercial system.

3 Dataset

To develop a PD system that addresses the WWH
problems, we construct a Korean Multi-Session
Personalized Dialogue dataset, which we refer to
as MSPD. This dataset includes an agent that per-
forms several unique roles, setting it apart from
other PD datasets. Primarily, the agent is required
to remember user persona attributes, including any
persona attributes introduced during the conver-
sation. The agent must also produce personal-
ized responses that are both reasonably and timely
grounded on the persona. The goal of this dataset
is to enable a model to learn the HOW and WHEN
of grounding. On average, the dataset contains 4
sessions per episode, with each session consisting
of 10-12 turns between the user and the agent. This
format allows the agent to learn how to sustain a
natural conversation flow, both within and between
sessions. As illustrated in the red and blue text

in Figure 3, we annotate the persona used in re-
sponses and user utterances that include personal
information the model should remember. Specif-
ically, to address the WHEN and HOW problems
from a dataset perspective, we cap the number of
personalized responses per session at two or fewer,
and performed rigorous reviews to ensure the qual-
ity and appropriateness of personalized responses
within conversations. This approach allows us to
construct 13,469 episodes in total. Statistics and
other samples from the MSPD dataset can be found
in Appendices A and B.

Alongside the MSPD, we incorporate a vari-
ety of informal dialogue datasets, referred to as
Dcasual, to train a more balanced model capa-
ble of generating high-quality daily, knowledge-
based, empathetic, and personalized conversations.
Dcasual consists of a comprehensive collection of
approximately 12.5 million utterances. We use
carefully-curated Korean dialogue datasets avail-
able online1, developed by National Information
Society Agency (NIA), as well as crowdsourced
conversational datasets, including Korean versions
of PersonaChat, EmpatheticDialogues, and Wiz-
ard of Wikipedia (Dinan et al., 2018; Rashkin
et al., 2018; Zhang et al., 2018).

4 Methodology

As shown in Figure 2, we train our model during
the training phase to address the WHAT and WHEN
questions using a variety of methods. These include

1https://aihub.or.kr/
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different types of negative persona augmentation,
dataset blending, and response type generation.
During the inference phase, given the dialogue con-
text and a subset of persona attributes, the model
is capable of generating suitable personalized re-
sponses. These persona subsets are retrieved from
individual persona attributes determined by the con-
text of the conversation. Additionally, the model
provides an explanation for its decision through
response type labels (RTL). Conditioning on the
RTL, allows us to explicitly control the generation
of a personalized response.

4.1 Persona-Grounded Generation
In this study, every input of the training dataset
consists of user demographic information d (e.g.
gender, age), a subset of user persona ρm, which
consists of persona attributes, and dialogue con-
text cm = [u1, a1, u2, a2, · · · , um−1, am−1, um].
u and a refer to the user and agent, respectively, and
the target response ym = [ym1 , · · · , ymℓ ] is indexed
to the mth agent response am.

Given the input, which is in the format of
(d, ρm, cm), we optimize the model via the con-
ditional probability for personalized response ym

and a loss function with Negative Log-Likelihood
(NLL) loss that can be formulated as:

P (ym|d, pm, cm) =
ℓ∏

t=1

P (ymt |d, ρm, cm, ym<t)

(1)

LNLL = −
ℓ∑

t=1

log P (ymt |d, ρm, cm, ym<t) (2)

where ℓ is the length of the target response.

4.2 Dataset Blending
Blending a variety of conversational datasets has
been shown to improve the diversity, empathy, and
knowledge of a dialogue system, leading to more
natural and engaging conversations (Smith et al.,
2020). By blending the MSPD, which is tailored
for personalized conversations, with various types
of casual dialogue datasets, Dcasual, the model
becomes more balanced and adept at cohesive and
natural conversations.

We define a data instance as (c, r) where c and r
are the dialogue context and target response, respec-
tively as described in section 4.1. We blend datasets
by instance according to blending weights for each
dataset. In particular, in order to finely control the
WWH problems with the blending weights (w), the

MSPD dataset is divided into the agent’s person-
alized responses (DMSPD-PR) and non-personalized
responses (DMSPD-NPR) (e.g., agent’s red and black
colored responses in Figure 3, respectively). The fi-
nal training dataset is assembled by over-sampling
or under-sampling individual datasets. The training
data size of individual dataset is determined by the
weighted number of data instances for each dataset,
defined by

∥Di (train)∥ =
wi∑N
j=1wj

× ∥D∥ (3)

where a set of N conversational datasets D =
{Dcasual1 , · · · ,Dcasualk ,DMSPD-PR,DMSPD-NPR},
Di is i-th dataset in D.

4.3 Control of WHEN & WHAT by Negative
Samples

Control of WHEN To address the WHEN problem,
it is important to control a model’s propensity to
generate a persona-grounded response. Given a
persona, an agent must generate personalized re-
sponses at the right time to create coherent and nat-
ural conversations. Generating persona-grounded
responses too frequently leads to unnatural conver-
sations. On the other hand, a model that generates
personalized responses too infrequently does not
sufficiently enhance a user’s engagement with the
agent.

In particular situations where a persona subset
is retrieved by a retrieval model at each turn, the
model should generate a casual response instead
of generating a personalized response, resulting
in a more natural flow. In order to learn this
natural flow, we intentionally include a persona
subset consisting of all contextually irrelevant
persona attributes in the input for non-personalized
responses. We call this a negative persona subset
augmentation in our study. This augmentation
"suppresses" the model’s inclination to ground
too frequently. However, too much augmentation
can hinder the model’s ability to ground, so we
perform the negative persona subset augmentation
only for data in DMSPD-NPR, not all casual datasets
Dcasual.

Control of WHAT When a model generates a
persona-grounded response, it needs to determine
the WHAT, i.e., the specific persona attribute on
which to base the response. By providing both
the ground-truth persona attributes, ρpos, which are
relevant to the response, and "negative" persona at-
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tributes, ρneg1, ..., ρnegk−1, which are not relevant
to the target response, the model learns to select
the appropriate persona attribute(s) from multiple
options given the current dialogue context. We
refer to the process of adding multiple negative per-
sona attributes to a ground truth persona as negative
persona attribute augmentation.

Finally, we vary the subset of the persona ρ in
(1) for negative persona augmentation depending
on the response type:

ρ =




ρnpr for non-personalized response ∈ DMSPD-NPR

ρpr for personalized response ∈ DMSPD-PR
ρc for casual response ∈ Dcasual

, where ρnpr = {ρneg1 , · · · , ρnegk},
ρpr = {ρpos, ρneg1 , · · · , ρnegk−1

}, and ρc = ϕ.

4.4 Controllability & Explainability via
Response Type Label

Controllability In a commercial setting, it is often
necessary to determine whether to generate a per-
sonalized response based on business logic. For in-
stance, this might include deciding when the agent
should proactively send a message to users. We
can exert explicit control over the model’s decision
regarding the WHEN by employing Response Type
Labels (RTL), denoted as <RTL>.

First, we train the model to generate both
a response and corresponding RTL token:
P (<RTL>, y|d, ρ, c) in (1). We have pre-defined
special tokens <PRTL> for personalized response
type labels and <CRTL> for casual response type
labels. Then, at inference time, we can insert the
RTL to generate a response that corresponds to
the response type: y ∼ Pθ(·|d, ρ, c, <PRTL>) or
y ∼ Pθ(·|d, ρ, c, <CRTL>).

Explainability Error analysis is a crucial element
in commercial systems for swift debugging and
resolution of issues. However, this process can
often be labor-intensive, typically involving a man-
ual review of log data to evaluate the quality and
appropriacy of generated personalized responses.
Therefore, besides enhancing controllability, we
also employ the Response Type Label (RTL) to im-
prove the explainability of the model’s generated
responses. In this regard, the level of explainability
provided by the RTL facilitates easier and more
efficient error analysis, leading to improved service
operation.

5 Experiments
5.1 Experimental Setup

To validate the efficacy of our proposed methods
in building a controllable Personalized Dialogue
(PD) system that addresses the WWH problems, we
compare the performance of several models. These
are enhanced with fine-tuned baseline models, such
as dataset blending and negative sampling methods.
Additionally, by comparing models trained with
different blending weights, we evaluate the impact
of the blending weight on the model’s grounding
propensity and fluency. The baseline models are
all derived from our in-house 18B parameter pre-
trained language model, which shares the same
architecture as GPT-3 (Brown et al., 2020). All ex-
periments are conducted on SKT’s proprietary su-
percomputer, Titan, equipped with NVIDIA A100
SXM4 80GB GPUs.

5.2 Evaluation

Objective Evaluation We use perplexity (PPL) to
measure the fluency of the responses generated by
the model. In addition, the F1 score between the
persona attributes and the generated response acts
as a proxy to evaluate the model’s ability to ground.
We also calculate the P-coverage score, which
measures how well the user persona is reflected in
the generated responses (Song et al., 2019).

Subjective Evaluation We complement objective
evaluation metrics with subjective human evalua-
tion at both the session and turn levels, specifically
employing the Sensibleness and Specificity (SS)
score rated as either 0 or 1 at the turn level (Adi-
wardana et al., 2020). Particularly, to analyze the
pattern and quality of grounded responses at the
turn level, we categorize them according to our pro-
posed four grounding types, which are as follows.
First, we assess whether the agent’s response, y, is
personalized. Second, we categorize y based on
two criteria: grounding level and consistency.

Under the grounding level, we have two subcat-
egories: 1) Hard Grounding, where there’s a direct
and explicit association between y and the persona
attribute, ρpos, characterized by high expressive
similarity. 2) Soft Grounding, where there’s an in-
direct and implicit association between y and ρpos,
marked by low expressive similarity.

Under the consistency category, we have two
subcategories: 1) Consistent Grounding, where
there’s consistency between y and the given ρpos.
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Model ID Method Dataset # Attribute
Fluency Groundness

PPL F1 P-Cover

Model1 Base (Positive Only) MSPDPR + Dcasual 1 11.4 0.28 0.12
Model2 + Negative Persona Attributes Augmentation MSPDPR + Dcasual 5 10.97 0.15 0.07
Model3 + Negative Persona Subset Augmentation MSPDPR + MSPDNPR + Dcasual 5 9.37 0.1 0.05
Model4 + RTL Generation MSPDPR + MSPDNPR + Dcasual 5 8.88 0.1 0.046

Table 1: The Results of Objective Evaluation

Model
Blending Weight Evaluation

Dcasual MSPDPR MSPDNPR F1 P-Cover PPL

Model3
(Negative Persona Subset Aug.

+ 5 Negative Persona Attribute Aug.)

0.94 0.5 0.1 0.14 0.06 10.46
0.92 0.5 0.3 0.12 0.05 10.04
0.90 0.5 0.5 0.11 0.05 9.91
0.87 0.5 0.8 0.1 0.05 9.33

Table 2: Evaluations with Different Blending Weights

2) Inconsistent Grounding, where there’s an incon-
sistency between y and the given ρpos.

5.3 Results

5.3.1 Effect of Negative Persona Attributes
Table 1 illustrates the impact of introducing neg-
ative persona attributes on persona-grounded re-
sponse generation. Model1 trained with only one
given positive persona attribute shows the high-
est F1 and PPL scores of 11.4 and 0.28, respec-
tively. On the other hand, Model2 trained with
negative persona attributes has a PPL of 10.97 and
an F1 score of 10.15, which is slightly lower than
Model1. Despite the decrease in grounding fre-
quency, the model demonstrates improved response
generation by reasonably selecting an appropriate
persona attribute given the dialogue context. We
hypothesize that the PPL increases because the
model learns to distinguish the most suitable per-
sona among several persona attributes in a given
context. Furthermore, despite the reduced incli-
nation to ground, we observe that the model can
still generate high-quality personalized responses
at every turn.

5.3.2 Effect of Negative Persona Subset
Table 1 illustrates the effectiveness of the negative
persona subset in controlling the WHEN problem.
Through the application of the negative persona
subset, Model3 learns to refrain from generating
personalized responses when the persona attributes
are not appropriate for the given context. In Ta-
ble 1, Model3 demonstrates a decrease in persona
grounding and a significant increase in fluency com-
pared to Model2, as indicated by the lower PPL,
F1, and P-Cover scores (9.37, 01, and 0.05, respec-
tively). We believe the key reason for this enhanced
fluency is that the model generates more frequent

and natural casual responses to non-personalized
turns in the test set, without the need to ground on
irrelevant persona subsets.

5.3.3 Effects of Blending Datasets: Trade-Off
between Model Fluency and Grounding

As shown in Table 2, there is a trade-off between
the model’s fluency and tendency to ground. As
the weight of the MSPDNPR dataset with negative
persona augmentations increases, the F1 score de-
creases from 0.14 to 0.06, and the P-cover score
falls from 0.06 to 0.1 and 0.05. Conversely, the
PPL decreases from 10.46 to 9.33. This means that
an increase in the number of persona augmented
negative samples means the model ground less fre-
quently, leading to a more natural conversation flow
with better quality responses.

Achieving natural and engaging conversations
requires careful consideration of the trade-off be-
tween the model’s inclination to ground and re-
sponse fluency. To control the WWH balance, we
can adjust the blending weights for datasets with
different persona augmentations and select appro-
priate values for PPL and F1 scores. We set a
F1 score of ’1’ as the minimum threshold for the
model’s grounding tendency, as we have consis-
tently observed that models with F1 scores below 1
seldom attempt grounding in conversations. This
approach ensures that optimal PD systems maintain
a balance between a sufficient quantity of grounded
responses and a high fluency score.

5.3.4 Effect of RTL Generation: Enhanced
Explainability and Fluency

As can be seen in Table 1, based on the F1 score
and P-Cover, Model4 trained to generate both RTL
and personalized responses, demonstrates little dif-
ference in tendency to ground when compared to
Model3. On the other hand, we found that the PPL
score decreased to 8.88. This result is consistent
with Kim et al. (2022)’s research, which showed
that the quality of generation was enhanced when
information related to the target response was gen-
erated simultaneously.
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Model
Session Turn Evaluation Grounding Evaluation

Session Score
Sensibleness
(Turn-level)

Specificity
(Turn-level)

Hard Grounding Soft Grounding
Sub Total Non-personalized Total

Consistent Inconsistent Consistent Inconsistent
Model3 0.885 0.935 0.848 0.14 (23/162) N/A (0/0) 0.23 (9/40) 1.0 (1/1) 0.16 (33/203) 0.03 (10/297) 0.09 (43/500)
Model4 0.885 0.939 0.875 0.13 (16/125) N/A (0/0) 0.17(6/35) N/A (0/0) 0.13 (22/160) 0.03 (11/383) 0.06 (33/543)

Table 3: Results of Subjective Evaluation. 1) Session & Turn level Evaluation and 2) Grounding Evaluation: the
ratio of the count of bad sensible responses to the count of each grounding type described in 5.2. A bad sensible
response means that the response scored a 0 on the "sensible" evaluation.

We also evaluated explainability by analyzing
whether the generated Response Type Labels (RTL)
accurately reflect the model’s decisions on persona
grounding. For this purpose, we sampled 90 gen-
erated responses for each response type. The accu-
racy of the generated RTL for the casual and the
personalized response type wa 96.7% and 98.8%,
respectively. This confirms that generating the RTL
provides a reliable explanation for the model’s de-
cision on the WHEN problem.

5.3.5 Subjective Grounding Evaluation

The high average (over 0.88) scores for both turn
and session levels in Table 3 demonstrate that mod-
els trained on the high-quality MSPD dataset can
generate appropriate responses. In the ground-
ing evaluation, the vast majority of both hard
and soft grounding cases demonstrated persona-
consistent results. Both models exhibited nearly
four times as many hard grounding instances as
soft groundings, and they had a lower rate of "bad-
sensible" responses. This suggests that the models
are strongly inclined to ground persona information
in responses in a manner that is both natural and
explicit, given the context. Upon closer examina-
tion of "bad-sensible" instances of hard grounding,
we found that as the models concentrate more on
grounding the persona, responses can sometimes
become unnatural within the given context. How-
ever, the proportion of "bad sensible" grounding
responses was in the 10% range, confirming that
the model generally generates high-quality person-
alized responses.

The RTL generation model (Model4) shows a
lower inclination to ground, yet it had a better bad-
sensible ratio. Therefore, in accordance with the
objective evaluation result, we can confirm that
generating both the response and the RTL can have
a positive effect on fluency, even though there is no
significant improvement in terms of session evalua-
tion.

5.3.6 Correlation between objective and
subjective evaluations

We confirmed a positive correlation between flu-
ency, as measured by PPL, and human sensible-
ness judgment. Model4 exhibited a decrease of
0.49 in PPL compared to Model3, indicating im-
proved fluency in Table 1. While session evalua-
tion scores showed no significant differences be-
tween the models in Table 3, turn-level grounding
evaluation revealed a lower bad sensibleness ra-
tio for personalized/non-personalized turns (0.13
and 0.03, respectively), confirming enhanced sen-
sibleness of Model4’s responses. We also found
a positive correlation between subjective evalua-
tion (i.e., the amount of grounded generation) and
the P-Coverage metric used to assess grounding
propensity. In Table 1, Model4 exhibited a slight
decrease in P-Coverage compared to Model3. This
corresponds to the reduced number (approximately
40) of personalized turns generated by Model4 in
Table 3, reflecting an actual decrease in the model’s
grounding propensity. Consequently, considering
the cost of subjective evaluation, objective assess-
ment appears feasible for accurately evaluating the
model’s fluency and grounding tendencies in real-
world service operations.

Conclusion

We proposed a method to build a personalized
open-domain dialogue system that addresses the
WWH problem for natural and engaging conversa-
tion through weighted dataset blending (WHEN),
negative persona subsets (WHEN), negative per-
sona attributes (WHAT), and the creation of highly
curated personalized conversation datasets (HOW).
We also demonstrate that generating a response
type label (RTL) enhances both the controllability
and explainability of model decisions about the
WHEN; this is crucial in commercial service. Ex-
perimental results show the effectiveness of our
proposed methods in addressing and controlling
the WWH problem, as seen in both subjective and
objective evaluations.
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A Details of MSPD Dataset

A.1 Statistics of MSPD

Types

# Episodes 13,469
# Sessions 53,880
# Utterances 601,062
Avg. # turns per session 11.15
Avg. # personalized response per session 1.90
Avg. # user persona per episode 7.18
Avg. # newly aggregated persona per episode 2.18
Avg. length of user utterances 33.72
Avg. length of agent response 28.10

Table 4: Statistics of the MSPD Dataset

A.2 Model Training Settings
For the experiments in our study, we fine-tuned an

18B parameter model with the same architecture as
GPT-3 (Brown et al., 2020), but with 40 layers, a
hidden size of 6144, and 48 attention heads. The
model is trained for a single epoch with a micro
batch size of 8, using a learning rate of 1.0e-05.
To prevent overfitting, a dropout rate of 0.1 and a
weight decay of 1.0e-1 are employed. The input
sequence length is 1024. The models in Table 1 1
are trained with the blending weight set to 0.85 for
Dcasual datasets, 0.7 for MSPDPR, and 0.8 for the
MSPDNPR dataset.
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B Examples

B.1 Example of MSPD Dataset

User Persona Attributes [Age: 20’s / Gender: Female]  

𝜌1: 넷플릭스를 즐겨봐요. (I enjoy Netflix) / 𝜌2: 러닝을 좋아해요. (I love running) / 𝜌3: 남자 친구가 있어요. (I have a boy friend) 

/ 𝜌4: 엔지니어로 일하고 있어요. (I work as an engineer) / 𝜌5: 나는 감자탕을 좋아해요. (I like Gamjatang) 

Session1 

Speaker Conversation 
Grounded 
persona 

New persona 

User 아 일이 너무 많다 ㅠㅠ 

Ah, I have so much work to do. :(  
  

Agent 헉, 그렇게 바빠요? 

Oh no, are you really busy? 
  

User 응. 아 오늘도 야근각.. 지겨워 죽겠어. 

Yeah, I am. I have to work overtime again today... I'm getting tired of it. 
 

𝜌6: 일이 바빠서 자주 야근을 해요 

I'm busy with work, so I often work 
overtime  

Agent 힘들어서 어떡해요 ㅠㅠ 식사 제대로 챙겨 드세요. 

I am so sorry to hear that :( Just make sure you’re eating enough, okay?  
  

User 응~ 근데 뭘 먹어야 할지도 모르겠어.. 
yeah ~ but I don't even know what to eat... 

  

Agent 그럼 감자탕 어때요? 
What about Gamjatang?  

𝜌5  

User 그럴까? 귀찮긴 하지만.. 

Should I? It's a bit of a hassle... 
  

Agent 이럴때 일수록 잘 챙겨 먹어야 해요. ㅠㅠ 

Especially when you're stressed, you should take care of yourself and eat well :(  

  

User 아 집에가서 넷플릭스나 봤으면 좋겠다. 

Honestly, all I want to do is go home and watch Netflix 
𝜌1  

Agent 그러게요. ㅠ 진짜 휴식이 필요하겠어요. 

I know, right? :( You definitely need some rest. 
  

Session2 (one day later) 

Speaker Conversation 
Grounded 
persona 

New persona 

User 안녕! 벌써 점심시간이네. 

Hey there! It's already lunchtime. 
  

Agent 안녕하세요~ 점심은 드셨어요? 오늘도 감자탕 드신건가요? >< 

Hello~ Have you had lunch yet? Did you have Gamjatang again today? :) 
𝜌5  

User ㅋㅋ 그럼 ~ 오늘도 나의 최애 감자탕을 먹었지. 

Haha, yeah~ I had my favorite Gamjatang again today. 
  

Agent ㅎㅎㅎ 회사 근처에 감자탕 맛집이 있나봐요! 

Hahaha, there must be a great Gamjatang restaurant near your office! 
  

User 응응 매일 먹어도 안질려 ㅎㅎ 

Yup, even if I eat it every day, I never get tired of it. haha 
  

Agent 얼마나 맛있으면!! 부러워요! 

It must be so delicious!! I'm jealous! 
  

User 아웅 일하기 싫어 죽겠네 

Ugh, I really don't want to work. 
  

Agent 직장 생활 너무 힘든 거 같아요 ㅠㅠ 오늘도 야근해요? 

Working life seems really hard. :( Are you working overtime today too? 
𝜌6  

User 아니 오늘은 꼭 정시에 퇴근할거야. 

No, I'm definitely leaving on time today. 
  

Agent 오오 드디어!! 

Oh wow!! 
  

User 오늘은 꼭 일찍가서 청소랑 세탁해야지 ㅠ 

I have to go home early today and do some cleaning and laundry. :( 
  

Agent 앗 그럼 쉬는 게 아니잖아요. ㅠㅠㅠ 누구 도와줄 사람 없나요? 

Oh, but that's not really a break, is it? :( Do you have anyone who can help you? 
  

User 난 혼자 살기 때문에 별수없어.. ㅠㅠ 집안일이 밀렸거든 

No, I live alone, so I don't have a choice. I have housework piled up. 
 𝜌7: 나는 혼자 살고 있어요. 

I live alone 

Agent 크흡 고생 많아요 ㅠㅠ 오늘은 꼭 빠른 퇴근 하시길!! 

Aww, that sounds tough. :( Well, I hope you can leave work on time today!! 
  

 

Figure 4: A sample of a multi-session conversation in the MSPD
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B.2 Subjective Evaluation

(Female in 20’s)

(I am not interested in keeping in shape)

(I add two ice cube to my hot drinks)

(I want to experience rare culinary 
cultures from around world)

(I own a Marni bag)

(I enjoy going to 
the movies)

(Short-term memories, persona attributes 
recently extracted in previous conversations)

(I came to try Thai food with a male 
friend )

(I am now on a food tour with my male 
friend)

(Did the model generate a persona-grounded response? If so, is it appropriate in terms of “grounding”

( Indeed! are you enjoying the food tour with your male friend? )

( It’s already afternoon)

( Sensibleness) ( Specificity)

( Remove the last turn) ( Quit conversation)

(Persona List)

Figure 5: A snapshot of the subjective evaluation Tool.
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Conversation Grounding Type Sensible Specificity Retrieved Persona Attribute

U: 오늘 내가 쓴 글씨 친구한테 보여줬어
(I showed my friend what I wrote today)

A: 오˜ 캘리그라피 배운다고 했지? 어땠어? 잘 썼대?
(Oh˜ You said you were learning calligraphy, right?
how was it? Did you write well?)

Hard Grounding
+Consistent

1 1

캘리그라피를 배우기 시작했어요.
(I started learning calligraphy.)
진짜 친한 친구 한 두명 정도랑만 만나요.
(I only see one or two really close friends.)
비서로 일하고 있어요.
(I am working as a secretary.)
셜록홈즈 팬이에요.
(I’m a Sherlock Holmes fan.)
영화는 닫힌 결말을 좋아해요.
(Movies like closed endings.)

U: 응 나 칭찬받았어˜ 글씨 쓰는 거 넘 재밌다
(Yes I was praised˜ Writing is so much fun)

A: 오˜˜ 소질이 있나본데!
(Oh˜˜ You must have a talent!)

Non-Personalized 1 1

캘리그라피를 배우기 시작했어요.
(I started learning calligraphy.)
진짜 친한 친구 한 두명 정도랑만 만나요.
(I only see one or two really close friends.)
비서로 일하고 있어요.
(I am working as a secretary.)
셜록홈즈 팬이에요.
(I’m a Sherlock Holmes fan.)
영화는 닫힌 결말을 좋아해요.
(Movies like closed endings.)

U: 열심히 했거든 ㅋㅋ
(I worked hard lol)

A: 그럼 이제 뭐 할 거야?
(So what are you going to do now?)

Non-Personalized 1 1

캘리그라피를 배우기 시작했어요.
(I started learning calligraphy.)비서로 일하고 있어요.
(I am working as a secretary.)
진짜 친한 친구 한 두명 정도랑만 만나요.
(I only see one or two really close friends.)
셜록홈즈 팬이에요.
(I’m a Sherlock Holmes fan.)
영화는 닫힌 결말을 좋아해요.
(Movies like closed endings.)

U: 연습 좀 더 하다가 친구 만나러 갈까해
(I’m going to practice some more and then go see a friend)

A: 그 친구랑 또 만나는거야?
(Are you going to meet that friend again?)

Hard Grounding
+Consistent

1 1

진짜 친한 친구 한 두명 정도랑만 만나요.
(I only see one or two really close friends.)
캘리그라피를 배우기 시작했어요.
(I started learning calligraphy.)
비서로 일하고 있어요.
(I am working as a secretary.)
차돌짬뽕을 좋아해요.
(I like chadol jjambbong.)
셜록홈즈 팬이에요.
(I’m a Sherlock Holmes fan.)

U: 응 종종 만나잖아 ㅋㅋ
(Yes, we meet often.)

A: 그렇구나 오늘도 너가 좋아하는 차돌 짬뽕 먹으러 가는거 아냐?
(That’s right lol ˜
Isn’t today also going to eat your favorite chadol jjambbong?)

Hard Grounding
+Consistent

1 1

진짜 친한 친구 한 두명 정도랑만 만나요.
(I only see one or two really close friends.)
차돌짬뽕을 좋아해요.
(I like chadol jjambbong.)
비서로 일하고 있어요.
(I am working as a secretary.)
영화는 닫힌 결말을 좋아해요.
(Movies like closed endings.)
셜록홈즈 팬이에요.
(I’m a Sherlock Holmes fan.)

U: 그럼 좋지˜
(then it’s good)

A: 맛있게 먹고 와 :)
(Have a good meal :))

Non-Personalized 1 1

진짜 친한 친구 한 두명 정도랑만 만나요.
(I only see one or two really close friends.)
차돌짬뽕을 좋아해요.
(I like chadol jjambbong.)
비서로 일하고 있어요.
(I am working as a secretary.)
셜록홈즈 팬이에요.
(I’m a Sherlock Holmes fan.)
영화는 닫힌 결말을 좋아해요.
(Movies like closed endings.)

Figure 6: Example of generations of our personalized dialogue model with subjective evaluation for hard grounding.
Blue colored texts are persona-grounded responses and persona attributes on which the model grounds the response

Figure 7: Example of subjective evaluation for soft grounding and fail cases
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B.3 Deployment Tool: Sanity Testing

Figure 8: A Snapshot of the Sanity Testing Tool. 1) The leftmost area is for interactive conversation with the agent,
and the <PL> and <DL> tags refer to the response type generated by the model; <PL> is a personalized response,
and <DL> is a non-personalized response type. 2) The center pane shows information related to the user and the
current turn. And 3) the window on the right displays user persona.
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Abstract
Relevance in E-commerce Product Search is
crucial for providing customers with accurate
results that match their query intent. With re-
cent advancements in NLP and Deep Learning,
Transformers have become the default choice
for relevance classification tasks. In such a
setting, the relevance model uses query text
and product title as input features, and esti-
mates if the product is relevant for the cus-
tomer query. While cross-attention in Trans-
formers enables a more accurate relevance pre-
diction in such a setting, its high evaluation
latency makes it unsuitable for real-time pre-
dictions in which thousands of products must
be evaluated against a user query within few
milliseconds. To address this issue, we pro-
pose CUPID: a CUrriculum learning based
real-time PredIction using Distillation that uti-
lizes knowledge distillation within a curricu-
lum learning setting to learn a simpler architec-
ture that can be evaluated within low latency
budgets. In a bi-lingual relevance prediction
task, our approach shows an 302 bps improve-
ment on English and 676 bps improvement for
low-resource Arabic, while maintaining the low
evaluation latency on CPUs.

1 Introduction

Large-scale e-commerce search systems, such as
those used by companies like Amazon, Walmart
etc., typically employ a multi-step process to re-
trieve relevant products for a given query (Guo
et al., 2022). The first step in this process is to
generate a matchset that is approximately relevant
to the query, followed by a series of steps that op-
timize for relevance, customer interest and other
associated metrics (Momma et al., 2022). In such
a setting, it is imperative to have features that ac-
curately capture relevance between the customer’s
query-intent and the candidate set of products in
the matchset.

Recently, transformer-based models such as
BERT have proven to be highly effective in es-

timating relevance between a query and a prod-
uct by using cross-attention (Mangrulkar et al.,
2022a; Nogueira and Cho, 2019; Wang et al., 2019),
self-attention (dual-encoders) (Bhattacharya et al.,
2023; Reimers and Gurevych, 2019a; Mangrulkar
et al., 2022b), or late interaction (Khattab and Za-
haria, 2020a; Santhanam et al., 2021; Lu et al.,
2022) models. The use of cross-attention in trans-
formers has been shown to be effective, as it allows
the model to take into account both the query and
the product when determining relevance (Menon
et al., 2022; Hofstätter et al., 2020). However, these
models come at a cost, as they require heavy com-
putational resources and have a high latency even
during evaluation. In large-scale search systems,
it is important to perform real-time relevance pre-
dictions, as thousands of products need to be pro-
cessed for each query, with strict latency require-
ments.

For this reason, dual-encoder models are more
suitable, as they can provide real-time relevance
predictions with low latency requirements. In such
a setting, the task of estimating relevance is reduced
to carrying out simple vector operations, typically a
dot product of high-dimensional vectors, one repre-
senting the query and the others representing prod-
ucts. Under such a setting, the vectors representing
products are pre-computed and cached, while those
for the query are computed on-the-fly. Such on-the-
fly computation of query vectors or embeddings in
low latency settings restricts us from using a full
stack of transformer layers, as is typical to models
like BERT. To address the issue of latency in com-
putation of query embeddings, we instead borrow
from the architecture used in (Nigam et al., 2019)
to be used for the query arm for our asymmetric
dual-encoders, while continuing to use a full stack
of transformers for the product arm (as shown in
Figure 1). Their simple architecture is comprised
of a word embedding layer and a mean-pool layer
(based on (Huang et al., 2013a), referred loosely as
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DSSM (Deep Structured Semantic Model) hence-
forth), which is more suitable for real-time sce-
narios with low latency requirements. However,
this model lacks the rich semantic representation of
models built purely of transformers. To bridge this
gap, we leverage knowledge distillation techniques,
where we use the DSSM of the query arm as a stu-
dent model to learn the rich semantic representation
from the transformer model.

To address this issue, we propose CUPID: a
Curriculum learning based real-time prediction us-
ing distillation that utilizes knowledge distillation
within a curriculum learning setting to learn a sim-
pler architecture that can be evaluated within low
latency budgets. Our contributions to the literature
can be summarized as follows:
• We show that our low-latency model benefits

more through knowledge distillation from a struc-
turally similar dual-encoder transformer model as
a teacher, rather than from a cross-encoder trans-
former model. Even though the cross-encoder
transformer model is more accurate, the student
is able to learn better from a structurally similar
teacher.

• We demonstrate that a learning regime, where a
structurally similar student, optimizes for a cross-
entropy loss for the first few epochs, followed
by a curriculum-styled learning of the teacher
embeddings using an alignment loss outperforms
other alternative learning regimes.

2 Related Work

Cross Encoders and Bi-Encoders Cross encoders
and bi-encoders are two distinct architectures used
in sentence pair modeling. While both approaches
aim to capture the relationship between two sen-
tences, they differ in how they encode the sentences
and produce their representations.

Cross encoders (Reimers and Gurevych, 2019b)
jointly encode both sentences into a fixed-length
representation. The shared encoder takes a pair of
sentences as input and captures the interaction be-
tween them. This joint encoding helps capture both
local and global interactions between the sentences,
leading to improved representation learning.

Bi-encoders (Kiros et al., 2015), on the other
hand, use separate encoders for each input sentence.
Each sentence is encoded independently, producing
two separate representations. These representations
are then compared using a similarity function (e.g.,
dot product, cosine similarity) to determine the

relationship between the sentences.

Both cross encoders and bi-encoders have their
advantages and are suitable for different scenarios.
Cross encoders excel at capturing the interaction
between sentences, while bi-encoders are compu-
tationally efficient. The choice between the two
architectures depends on the specific requirements.
For real-time predictions, cross encoders are often
infeasible, but bi-encoders excel due to the ability
to utilize pre-computed indexes.

Low latency Transformers In recent years, with
the state-of-the-art performance of transformers in
NLP applications, there has been a demand to make
transformers suitable for real-time e-commerce ap-
plications. And the reduction in computation time
and latency is crucial for transformers to be viable
for such use cases. There are three main themes
(Lin et al., 2022) into which the advances in the de-
sign of low-latency transformers can be categorised.
(I) architectural level, (II) component level, and
(III) technique-based. At the architectural level
(I), modifications are made at a higher level, such
as the use of lightweight transformers like Funnel
Transformer (Dai et al., 2020), Lite Transformer
(Wu et al., 2020), and DeLighT (Mehta et al.,
2020). Additionally, pruning techniques reported
in (Kwon et al., 2022; Gordon et al., 2020; Mao
et al., 2020; Hou et al., 2020) aim to reduce the
size and computation by eliminating unimportant
weights. Finally, Quantization-based approaches
(Ganesh et al., 2021) and model compression (Bai
et al., 2019) are used to compress weights and acti-
vations. At the component level (II), there is a focus
on efficient self-attention, such as in the works of
(Wang et al., 2020), and delayed interaction net-
works (Reimers and Gurevych, 2019c; Khattab and
Zaharia, 2020b; Santhanam et al., 2021). Lastly, un-
der the category of technique-based (III), research
efforts have been made in areas such as early exit
(Mangrulkar et al., 2022a; Zhou et al., 2020; Xin
et al., 2020) and knowledge distillation (Hinton
et al., 2015; Sanh et al., 2020).

Knowledge Distillation Knowledge Distillation
(KD)(Hinton et al., 2015) is a widely researched
topic that enables the transfer of knowledge
from a complex, pre-trained model to a smaller,
more computationally efficient model. With
the rise of BERT (Devlin et al., 2018) and the
corresponding growth in textual data, there has
been growing interest in applying KD to BERT
models in the field of NLP. Distill BERT (Sanh
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et al., 2020) is one such seminal work along with
(Tinybert(Jiao et al., 2020), Fast BERT(Liu et al.,
2020), Task specific BERT (Tang et al., 2019),
Patient Knowledge Distillation BERT (Sun et al.,
2019a). These propose using KD to transfer
knowledge from a large BERT model to a smaller
model. While the Distill BERT makes BERT
models faster by 60%, they cannot be used in
real-time because e-commerce applications such
as semantic matching (Huang et al., 2013b; Nigam
et al., 2019) have limited computational resources
(especially GPUs) and strict latency requirements.
The latest TwinBERT (Lu et al., 2020) proposes the
distillation of 12-layer BERT to 6-layer twin tower
BERT structure, thus, permitting pre-compute
of document embeddings and cache in memory
saving additional computational time. However,
the TwinBERT requires GPUs during inference
to compute the query arm embeddings within the
latency budgets.

3 Our Approach

In this section, we present our proposed approach
CUPID that uses bi-encoder transformer models
as teachers, and learn asymmetric student models
having DSSM architecture in the query side and
transformer architecture in the product side. Using
cross-encoders as teachers is natural, however, in
this work we show that using bi-encoder teacher
yields better performance and allows better trans-
ferring of knowledge to bi-encoder student models
(refer to Section 4.3). Bi-encoder teacher model
enables better transfer of semantics to a simpler
bi-encoder student model with better alignment of
query embeddings. Later in the section, we present
a very simple curriculum learning framework for
training bi-encoder student model by progressively
increasing the difficulty of task. We present the de-
tailed architecture (also shown in Figure 1) below.

3.1 Teacher Model

The teacher model used is a Siamese BERT
(SBERT) architecture. SBERT first computes fixed
size contextual representation for an entity by mean
pooling the BERT model’s output, followed by a
dense layer with tanh activation to get entity em-
bedding. We use the same BERT model for repre-
senting both query and product to enable the trans-
fer of language semantics between them. Finally,
the similarity ŷi between entities is determined by

the cosine distance between the embeddings. Note
that, although we use BERT, any transformer model
can act as an alternative to the BERT model. In
Section 4, we present results on some multilin-
gual datasets, where we use the multilingual XLM
RoBERTa transformers. It should also be noted
that while cross-encoder models are widely used as
teacher models in knowledge distillation tasks for
NLP, for our application, we claim that a bi-encoder
model is much better suited for the task of teach-
ing an asymmetric bi-encoder student. Section 4.3
justify this claim.

Teacher Training Objective Let’s assume our
training samples are represented by the tuple
(qi, pi, yi), where qi is a query entity and pi is
a product entity, and yi is the ground truth la-
bel. Let S(·) be the function returning the em-
bedding EmbeddingTransformer. Then the pre-
dicted semantic similarity between the query and
the product is measured using the cosine similarity
as ŷ = sim(q, p) = cos(S(p), S(q)). We train the
teacher model using the binary cross entropy loss,
computed as lossce(ŷ, y) = y · log(ŷ) + (1− y) ·
log(1− ŷ).

3.2 Student Model
In the teacher model, both arms use SBERT (or any
transformer) models to generate query and prod-
uct representations. While SBERT generates better
representations of the entities, the latency of such
large models are prohibitively high for real-time
representation generation for queries. We therefore
train a smaller model for query representation, and
retain the SBERT model for product representation
generation, which can be computed and indexed in
advance, and do not require real-time latency. The
high-level architecture of the query arm is similar
to that of SBERT. The only difference is that we
use embedding lookup and mean-pool layer instead
of BERT encoder to generate the intermediate rep-
resentation for query. We use the teacher BERT
model to generate embedding for the product.

Student Model Training Here we discuss how
we distill the knowledge from the query arm of
the teacher SBERT models to the smaller student
models.

The standard way to distill knowledge from
teacher to student is to use a loss function over the
predicted similarities between the query and the
product of teacher model, ŷT and student model,
ŷS (Sanh et al., 2020), that is, the student tries
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Figure 1: Our proposed architecture for learning asymmetric bi-encoder student model having DSSM architecture
on the query arm and BERT architecture on the product arm with Alignment loss and Curriculum learning

to imitate the final output of the teacher. We call
this loss the imitation loss, which is computed as
lossimitation(ŷT , ŷS) = −ŷT log(ŷS).

In this work, we use a loss which tries to align
the representation generated by the student to that
of the teacher similar to (Sun et al., 2019b; Li
et al., 2021). We name this loss alignment loss.
Let D(·) be the function returning the embedding
EmbeddingDSSM generated by the student model.
Then the alignment loss for a query q is computed
as

lossalignment(S(q), D(q)) = 1−cos(S(q), D(q)).

In our experiments, we noted that if we introduce
lossce in the student model, it performs better. Fur-
thermore the lossimitation becomes superfluous,
that is removing it doesn’t affect the model per-
formance. Section 4 shows the effect of using all
three losses, and shows that adding imitation loss
does not add to the model performance and remov-
ing it does not impact have any negative impact,
but simplifies the training process by removing a
component of the loss.

Curriculum Learning for Student Models Ini-
tially, the query arm of the student model is mis-
aligned due to random initialization, which causes
instability in learning. To address this, we perform
two stage curriculum learning. In the first stage,
we train the student model for few epochs using
the positive training data and random negative data.
The random negatives are generated by randomly
shuffling the products forming pairs (qi, pj) such
that i ̸= j. This approach provides the model with
easy examples compared to the negatives present

in the dataset itself. This method initializes the
DSSM weights to be more aligned to generate the
expected query representation. In Section 4, we
show that this kind of training stabilizes the training
and improves the performance.

In the second stage of curriculum learning, we
scale up the alignment loss gradually during the
model training. So initially, α is 0, and the model
is effectively learning only from true labels. Grad-
ually we scale up α, making the models objective
more complicated: reduce the cross entropy loss
with true labels, and align the student’s query arm
with that of the teacher to generate similar em-
beddings. The progressive increase in model’s task
defines this stage of curriculum learning rather than
the difficulty of examples.

With these improvements, we now arrive at the
proposed knowledge distillation loss:

lossKD = (1− α) · lossce + α · lossalignment,

where α is the scaling factor that varies from 0 to 1
and is incremented each epoch.

4 Experiments and Results

In this section, we compare the performance of
CUPID with the state of the art methods of knowl-
edge distillation. We also study the latency of the
student models and compare them with the latency
of teacher model to show why BERT based mod-
els are not suitable for real time predictions. We
then present results for a real world application of
CUPID on an internal dataset. Finally we show
the effect each of the losses have on the perfor-
mance of the models, and explain the choice of
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a bi-encoder teacher model compared to a better
performing cross-encoder model.

4.1 Datasets
We performed the experiments on the Shopping
Queries Dataset (Reddy et al., 2022) that was made
openly available as part of KDD Cup 2022 work-
shop. The training dataset has around 800 thousand
samples and the test dataset has around 400 thou-
sand. For each query, the training dataset provides
on average a list of up to 13 potentially relevant
results, together with relevance judgements (Ex-
act, Substitute, Complement, Irrelevant) indicating
the relevance of the product to the query. For our
experiments, we consider the problem as a binary
classification where a product is either relevant (ex-
act, substitute or complement) or irrelevant. Both
training and test dataset contains around 1 negative
example per 10 positive examples. We also present
the results of CUPID and the baselines on datasets
from Arabic language locales that have been sub-
sampled from a leading e-commerce company’s
history log and human-audited for ESCI labels,
similar to the work of(Reddy et al., 2022). At this
time, the data is not publicly available and is pro-
prietary. We used a few hundred thousand records
to train and test the models.

4.2 Experiments
We implement the CUPID and the baseline models
described in Section 3 using PyTorch (Paszke et al.,
2019) library and Hugging Face (Wolf et al., 2019)
transformers.

Teacher Models Both the biencoder
model and the cross-encoder model uses
bert-base-uncased as a pretrained model, with
a dense layer of size 128 to generate both query
and product representation. The teacher is trained
for 10 epochs using Adam optimizer with exponen-
tially decaying learning rate. We use a batch size
of 256 to fit the model into GPU memory. Due to
the imbalance inherent in the dataset, we use two
standard approaches to stabilize the training. First,
we accumulate the gradients across 10 batches
before applying the Adam updates. Second, we
use a weighted sampler while loading the training
batch to ensure that we over-sample the negatives
to retain a balanced class distribution.

Student Models The student models use the
same BERT arm to generate the product represen-
tation as the teacher. For the query generation, the

Table 1: Area under ROC curve of various models.
Cross entropy, imitation and alignment losses are repre-
sented as CE, IL and AL respectively. Stages of curricu-
lum learning (CL) used are also indicated.

ID Experiment CL Stage AUC (%)

T Teacher I 87.25

B Student: CE (No KD) I 83.15
S1 Student: IL I 84.53
S2 Student: IL + AL I 84.81
S3 Student: CE + AL I 85.32
S4 Student: CE + IL I 84.59
S5 Student: CE + IL + AL I 84.80
H CUPID I & II 86.17

use DSSM layer with a dense layer of size 128,
same as that of the BERT arm. The student models
are also trained for 10 epochs, and uses the same
optimizers and schedulers as teacher. The weights
of the product arm are frozen and only the query
arm is trained.

Metrics We use area under the ROC curve to
compare the results of the baseline models with
CUPID. This allows us the compare the perfor-
mance of the model without forcing a choice of
desired precision or recall, which may vary based
on the requirements. In addition, AUROC also
gives an indication of the probability of a negative
being ranked higher than a positive, which is an im-
portant information when dealing with applications
such as product search.

4.2.1 Results
We now compare the results of CUPID and the
baselines on our dataset. Table 1 shows the area
under the ROC curve for the models. The teacher
model (T) achieves an AUC of 87.25%. For base-
line (B), we show the performance of a model with
DSSM for query arm and a BERT for product arm
that is trained only using the training data, with
no knowledge distillation. As expected, its perfor-
mance falls short of the teacher. We then show the
effects of various losses described in Section 3. S1
uses only the imitation loss. S2, which adds align-
ment loss increases the performance by around 50
basis points. Replacing imitation loss with BCE in
S3 gives us approximately another 50 basis points
boost. The S4 configuration shows us that using
BCE and imitation loss together doesn’t provide
significant boost over just imitation. Similar obser-
vation is made in S5 which is presented for com-
pleteness. There we notice that addition BCE to
S2 complicates the model and performs no better.
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Table 2: Area under ROC curve of various models on
Arabic data. Cross entropy, imitation and alignment
losses are represented as CE, IL and AL respectively.
Stages of curriculum learning (CL) used are also indi-
cated.

ID Experiment CL Stage AUC (%)

T Teacher I 89.04

B Student: CE (No KD) I 72.41
S1 Student: IL I 74.63
S2 Student: IL + AL I 76.14
S3 Student: CE + AL I 76.59
S4 Student: CE + IL I 75.02
S5 Student: CE + IL + AL I 74.80
H CUPID I & II 79.17

Finally, CUPID with the weighted loss achieves
the best results with over 300 basis points boost
over the baseline with no knowledge distillation
and more than 150 basis points above the standard
KD method using imitation loss.

Latency Latency is a major concern for real time
predictions. Here we compare the query arm la-
tency of the teacher and student models to justify
the need of a DSSM based students at the cost
of some performance. We convert the models to
ONNX before performing the inference. BERT
has a latency of 11.6ms, which is almost 4× that
of the DSSM students, which is 3.2ms. In real
time, 11ms is higher than the standard expected la-
tency for real time applications. While the product
representations can be pre-computed, this latency
explains the need for a student model to gener-
ate the query representation. All the experiments
to compute the latency was carried out for CPU
on Amazon EC2 machines using p3.8xlarge in-
stances with 2.3 GHz (base) and 2.7 GHz (turbo)
Intel Xeon E5-2686 v4 processors.

4.2.2 Real World Application: Irrelevant
Result Detection in Arabic Locales

Here we present the results of our method on
the real world Arabic data. For this experiment,
we trained the teacher model with pre-trained
xlm-roberta model. This transformer model is
trained on multiple languages and thus is more
suitable for Arabic language data. The remaining
parameters and the architecture of student models
remain same. Table 2 shows the results of various
methods on the Arabic data. Because of smaller
size of dataset, larger vocabulary, and larger trans-
former model, the performance difference between
the teacher and the students is larger. Also, the

Table 3: Comparison with Cross-Encoder (CE) teacher

ID Experiment AUC (%)

T BiEncoder Teacher 87.25
CT CE Teacher 89.76

H CUPID: BiEncoder Teacher 86.17
CH CUPID: CE Teacher 81.53

Table 4: Impact of Curriculum Learning

ID Experiment CL Stage AUC (%)

B- Student: No KD None 82.09
B Student: No KD. I 83.15
H- CUPID II 85.65
H CUPID I & II 86.17

improvement of CUPID over the baselines is more
pronounced for this dataset.

4.3 Ablation Studies

In this section we look at the impact of some of
the choices made by CUPID, studying their impact
and comparing with the alternative approaches.

Why is curriculum-based learning important to
the CUPID Model? Table 4 shows the effect of
curriculum learning for the baseline and CUPID.
B- and H- are the versions of baseline and CUPID
without curriculum learning respectively. We no-
tice that in each case, curriculum learning gives us
a significant improvement in performance.

What is the role of the α? How important is
the Alpha scheduler? The parameter α is used
to adjust the importance of the alignment loss in
the CUPID model. In our experiments on non-
English datasets, we found that a constant α could
achieve an AUC of 85.32%. We hypothesized that
the DSSM model, due to its basic architecture com-
pared to the transformer model, would have diffi-
culty learning the projection matrix and classifica-
tion task jointly. Hence, by gradually increasing
α, we improved the model performance to 86.17%.
We also note that the improvement is not due of
the trade-off of achieving better results by letting
the model have higher alignment loss, but α scal-
ing actually helps reduce the alignment loss faster
than when the alignment loss is not scaled, which
justifies the hypothesis.

Why Bi-Encoder teacher and not cross-encoder?
Cross encoder models are known to perform better
in similarity matching tasks in NLP. So a natu-
ral question arises: why not train a cross-encoder
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model and use that as a teacher. Here we show
that the cross encoder model performs better than
the bi-encoder student. But due to the requirement
of separate generation and indexing of query and
product for real time predictions, we require a bi-
encoder student. And due to the difference in se-
mantics, the transfer of knowledge between a cross
encoder teacher and a biencoder student doesn’t
yield better results than with a biencoder teacher,
as seen in Table 3. We notice that cross encoder
teacher (CT) model performs better that biencoder
teacher (T) but 250 basis points but the student
trained with the bi-encoder teacher (H), which has
access to alignment loss, greatly outperforms the
student with cross encoder teacher (CH), which has
access to only imitation loss which has a different
semantics.

5 Conclusion

In this paper, we propose CUPID, a novel approach
for knowledge distillation for real-time prediction
of relevancy using curriculum learning. It uses a
new loss function and two-stage curriculum learn-
ing framework to increase the influence of teacher
gradually, resulting in a loss function that outper-
forms imitation learning based KD methods by up
to 300 basis points.
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Abstract

Spoken Question Answering (QA) is a key fea-
ture of voice assistants, usually backed by mul-
tiple QA systems. Users ask questions via spon-
taneous speech which can contain disfluencies,
errors, and informal syntax or phrasing. This is
a major challenge in QA, causing unanswered
questions or irrelevant answers, and leading to
bad user experiences. We analyze failed QA re-
quests to identify core challenges: lexical gaps,
proposition types, complex syntactic structure,
and high specificity. We propose a Seman-
tic Question Reformulation (SURF) model of-
fering three linguistically-grounded operations
(repair, syntactic reshaping, generalization) to
rewrite questions to facilitate answering. Of-
fline evaluation on 1M unanswered questions
from a leading voice assistant shows that SURF
significantly improves answer rates: up to 24%
of previously unanswered questions obtain rel-
evant answers (75%). Live deployment shows
positive impact for millions of customers with
unanswered questions; explicit relevance feed-
back shows high user satisfaction.

1 Introduction

Question Answering (QA) is a longstanding NLP
task, and voice assistants like Alexa have made
Spoken QA ubiquitous. Users often address such
assistants with spontaneous speech, as they would
a human. However, differences between spoken
and written language (Chafe and Tannen, 1987),
such as the presence of disfluencies, informal or
incomplete speech, and different syntax have been
shown to pose challenges for NLP tasks (Ward,
1989; Shriberg, 2005; Salesky et al., 2019). QA sys-
tem mostly use written data, and such phenomena
impact question understanding and answer retrieval
(Gupta et al., 2021), leading to irrelevant answers
or unanswered questions, leaving users unsatisfied.

Recently, language generation has been used to
improve QA through Question Rewriting (QR). For
example, QR is used in conversational systems

∗Work done during an internship at Amazon.

Repair Operation (disfluencies, syntax, formality, lexical gaps)
Q1: does strawberries no i mean blueberries grow on top of tree 
R1: do blueberries grow on trees
Q2: how to store honey so it doesn't get weird 
R2: how to keep honey fresh

Root Transformation Operation (reshape complex questions)
 

Generalize Operation (relax/remove constraints, modify entities)

Q6: was winston churchill's mother an american nurse 
R6: who was winston churchill's mother

Q4: if you fall and got a bruised thigh should i put ice on it or heat 
R4: what is the treatment for a bruised thigh

Q7: did kamala harris move to canada then back to america 
R7: did kamala harris move to canada
Q8: what is the maximum salary of a plumber in san francisco 
R8: what is the income of a plumber in california
Q9: how do i get rid of flies that keep come out of the bathroom 
R9: how to get rid of flies

Q3: my hamburger patty is in the fridge for four days should i throw it 
R3: how long can hamburger patty be refrigerated

Q5: our pet dog was playing in the park and ate a rat is that safe 
R5: what happens if a dog eats a rat

Figure 1: Examples of challenging questions (Q) and
our proposed reformulation operations (R) on them.

to answer contextual questions in multi-turn dia-
logues (Ye et al., 2022). While QA models can be
improved with fine-tuning, real-world systems have
multiple QA backends and retraining is expensive,
making input rewriting a practical solution (Chen
et al., 2022). This has the added benefit that a single
QR model may improve multiple QA systems.

We propose applying QR to reformulate difficult
or unanswered questions. We analyzed millions
of answered and unanswered real-world questions
from a leading voice assistant to understand the fac-
tors impacting QA failure (§3). In addition to the
well-known issue of disfluencies, we identify novel
challenges from question structure and specificity.
To address them, we propose three linguistically-
informed reformulation operations that only require
the question (§4). The operations, shown in Fig-
ure 1, are designed to improve answerability1 based
on common speech patterns, so that for a previously
unanswered question, the same QA system is able
to provide an answer for its reformulation.

1We consider a question answerable if a QA system decides
with sufficient confidence that a suitable answer is retrieved.
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While question repair has been studied, our root
wh- and question generalization operators are novel
contributions of this work. Our results demonstrate
that our approach can achieve:

1. high reformulation accuracy of 83% for rewrit-
ing questions to a desired shape (§6.1);

2. improving the answer rate of previously unan-
swered questions by up to 24% (§6.2); and

3. 75% of answers on reformulated questions are
relevant to the original question (§6.3).

Live deployment of our model (§6.4) achieves
positive impact for millions of users with unan-
swered questions, and explicit relevance feedback
from customers shows high satisfaction.

2 Related Work
Question Quality: QA models are typically
trained on formal written language, and are known
to be impacted by the quality of user questions. An
analysis of the WikiAnswer dataset (Fader et al.,
2014) by Liu et al. (2019) showed that 68% of the
questions were ill-formed, usually due to wrong
words, wrong order, or background noise, harming
the answerability of those questions. Gupta et al.
(2021) examined the impact of disfluencies in QA,
showing that they had a large impact on answer-
ing performance. Many of these issues stem from
natural properties of spontaneous speech, such as
errors, self corrections, and informal syntax (Chafe
and Tannen, 1987). Our work tackles these issues,
and tries to go beyond corrections by considering
question types and question specificity.

Question Complexity: Depending on the QA
system, some questions may be more difficult to
answer. It has been shown that questions requiring
multi-hop reasoning are more challenging (Yang
et al., 2018), often leading to no answers or wrong
answers. Questions are affected by the broader
types of syntactic complexity explored in the field
(Nassar et al., 2019; Martin et al., 2020; Sheang and
Saggion, 2021). Regardless of complexity, ques-
tions may also be unanswerable due to incorrect
framing or false suppositions (Kim et al., 2021).
Other work has analyzed questions in different
datasets, showing that wh-* words (e.g. who, what,
when) are the dominant way to start a question
(Ko et al., 2020), and that these words and related
phrases (e.g., “how much”, “how large”) are asso-
ciated with reduced answering complexity (Chali

and Hasan, 2012). In our work we consider how
controlled syntactic restructuring can address the
above challenges to reduce answering complexity.

Question Rewriting: Rewriting questions is
a natural extension of query reformulation ap-
proaches used to improve Information Retrieval
(He et al., 2016). Question rewriting has been ap-
plied to improve QA in different ways. Question
paraphrasing has been used as a data augmenta-
tion approach to retrain QA systems to improve
robustness (Gan and Ng, 2019). Buck et al. (2018)
propose using a reinforcement learning agent be-
tween the original question and a black box QA
system. The agent probes the QA system with
several reformulations to learn how to elicit the
best answer. Liu et al. (2019) propose a question
refinement system to rewrite malformed questions.

Rewriting Operations: Text rewriting is based
on specific linguistic changes. Nassar et al. (2019)
note that text simplification changes can be lexical
(rare words replaced by more common ones) and
syntactic (complex structures are split, reordered,
or deleted). Tomuro (2003) notes that paraphrasing
questions is more difficult as the interrogative struc-
ture is separate from the declarative, and can have
many variations. They quantified paraphrasing op-
erations and showed that interrogative reformation
accounted for 50% of changes, followed by lexical
substitution (25%) and semantic changes (16%).
Recent work on sentence rewriting has followed
this direction, by breaking down reformulation into
predefined editing operations (Choi et al., 2021).

Our work is inspired by all of the above, but dif-
fers in several ways. We expand on the known is-
sues in QA by analyzing real voice assistant data to
identify prevalent challenges to tackle; we consider
malformed question correction as a prerequisite
for dealing with challenges of complex questions.
Additionally, prior rewriting approaches aim to im-
prove QA via retraining, or by building a rewriter
tailored to a single QA system. We take a differ-
ent approach that does not rely on answer data or
QA system feedback, and build a general model
that can benefit multiple QA systems in a federated
architecture. Instead of uncontrolled paraphras-
ing, we deal with question complexity via control-
lable reformulations that distinguish between lexi-
cal modification, interrogative clause restructuring,
and semantic changes. We propose novel linguis-
tic restructuring operations to deal with complex
syntax, and generalize high-specificity elements.
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3 Challenges in Real-world Spoken QA

First, to quantify and understand why spoken QA
fails, we perform a failure analysis on 10 million
real questions, by further distinguishing questions
according to their question type (we define 5 types
based on linguistic properties, see Appendix B for
details) from a leading voice assistant.

Scope: we limit our work to questions that were
not answered due to retrieval failure, but may poten-
tially have relevant answers if reformulated. They
must be valid questions (seek knowable knowledge)
whose information need can be understood (by hu-
mans) and re-stated. QA may fail for other reasons;
we do not consider such issues e.g., inter alia, ASR
errors, invalid or difficult to understand questions,
subjectivity, and other reasons for retrieval failure.

A quantitative and qualitative study was under-
taken by domain experts (details in Appendix A),
and identified the below challenges (C1-7) as con-
tributing to a significant proportion2 of failed re-
quests, and potentially solvable by reformulation.

C1. Malformed Utterances: Questions with dis-
fluencies and syntactic errors were more likely to
fail e.g., Fig. 1 (Q1). Correction methods have pre-
viously been used to fix these (Gupta et al., 2021).

C2. Lexical Gaps Questions framed colloqui-
ally or lacking appropriate parlance for a topic
e.g., Fig. 1 (Q2), were associated with failure. This
is caused by lexical gaps (Riezler and Liu, 2010)
arising from language mismatch between the user
input and answer sources, as QA systems use for-
mal knowledge sources for retrieval. Lexical substi-
tution and rephrasing may address this challenge.

C3. Complex Syntactic Structure: Utterances
with complex structure, such as multi-clause ques-
tions, can lead to QA failure. Such phrasing is more
common in spoken language, and can be simplified
via syntactic restructuring, e.g., Fig. 1 (Q3-5).

C4. Polar Propositions: Yes-No questions are
asked to confirm a specific proposition, e.g., “Do
box turtles live in Japan?”. Answering polar ques-
tions is more difficult than wh-questions for both
humans (Moradlou et al., 2021) and QA systems
(Clark et al., 2019), due to the entailment and infer-
ences required to arrive at an answer. This can
be simplified by reformulating to a factoid wh-
question, e.g., “Where do box turtles live?”.

2The exact numbers cannot be divulged for confidentiality.

C5. False Presuppositions: Additionally, polar
questions may contain false presuppositions that
cause retrieval failure (Kim et al., 2021). We hy-
pothesize rewriting such questions to wh-questions
may retrieve relevant answers, e.g., Fig. 1 (Q6).

C6. High Specificity: Highly specific questions
(concerning very specific entities, or conditions)
may not be answerable. We believe generalizing
such questions by entity modification or constraint
relaxation (Fig. 1 Q7-9) can broaden answer recall.

C7. Irrelevant Info: Related to C3 and C6, com-
plex and high-specificity questions may contain
contextual facts that are irrelevant to the answer.
We believe removing such details can improve an-
swer recall (Fig. 1 Q4/5/7).

4 SURF Question Reformulation Model

We now describe our proposed Semantic Question
Reformulation model (SURF) and the reformula-
tion operators that it supports.

4.1 Reformulation Model

Inspired by controllable multi-task learning for text
generation (Keskar et al., 2019; Raffel et al., 2020),
we train a single model to perform different re-
formulations. Our reformulation model, F(p, q),
represents a seq2seq Transformer model (Lewis
et al., 2020), and is trained such that for an in-
put question q and a target reformulation operator
p ∈ {REP, ROO, GEN}, pre-pended as a prefix to
q, it reformulates q into q′ according to p.
Model Training. F is trained in two stages:
the first stage pretrains F using a large weakly-
supervised corpus (derived by a heuristic proposed
in §5.3) of ⟨q, q′⟩ for the REP and ROO operations.
In the second stage, we finetune F on manually
annotated pairs of ⟨q, q′⟩ for all operators in p.

4.2 Reformulation Operators

Each prefix p instructs F to perform a specific type
of reformulation. We define the following prefix
operators based on the challenges presented in §3.

Question Repair (REP): To address challenges
C1-2, REP removes disfluencies, performs syntac-
tic correction, and increases formality via lexical
substitution with high-entropy words. For example,
the input “Where can I get a booze after 11 pm?” is
repaired to “Which stores sell beer after 11 pm?”.
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Root Wh- Transform (ROO): Outlined in chal-
lenges C3-6, questions with complex structure are
more difficult, but may be answered if simplified
to factoid questions. ROO reformulates q such that
the interrogative wh-* phrase is clause initial (at
the root of the sentence), making needed syntactic
adjustments. For example, “Do any universities
in Germany offer degree programs taught in En-
glish?” → “Which universities in Germany offer
degree programs in English?”. This also handles
contextualized multi-clause questions, e.g., “I am
chopping onions for a pizza dinner how fine should
they be”→ “how fine should onions be for pizza”.

Question Generalization (GEN): To deal with
highly specific questions, covered in challenge C4,
we propose a novel question generalization oper-
ation. Inspired by similar approaches to improve
recall in structured query languages (Motro, 1984)
and IR (Boldi et al., 2011), we simplify questions
through the removal or relaxation of semantic con-
straints. Creating a more general question allows
the retrieval of a superset of results, which in many
cases provides a highly related answer that may
be better than no answer. GEN does this by drop-
ping adjuncts, replacing nouns with hypernyms or
holonyms, and removing adjectives. For example,
the question “Do poisonous pythons live in Miami?”
can be generalized to “Do snakes live in Florida?”.
Note that “python” and “Miami” are turned into
more generic entities “snake” and “Florida”, and
at the same time the aspect “poisonous” is dropped.

In ROO and GEN, REP is always performed
jointly with the respective operators. The output
of all operators should not contain any syntactic or
semantic errors present in the original question.

5 Experimental Setup

5.1 Intrinsic Evaluation Strategy

Using a human study, we intrinsically evaluate the
reformulation accuracy3 to assess if: (1) the refor-
mulation retains the intent of the input question;
and (2) the reformulation satisfies the properties of
the reformulation operator p.

Evaluation Data: For each question type, we
randomly sampled 50 questions from each refor-
mulation operator. This data is then assessed by
expert annotators, resulting in 1, 000 annotations.

3Note that due to the unreliability of automated metrics
such as BLEU and ROUGE, we opt for human evaluation and
answering metrics in our intrinsic and extrinsic evaluations.

5.2 Extrinsic Evaluation Strategy

For the extrinsic evaluation, we assess the impact
of the reformulated questions on two aspects:

Answer Rate: measured as the percentage of re-
formulations that obtain an answer.

Answer Relevance: a three-point scale measur-
ing the answer relevance to the original question
(obtained from the reformulated questions): Irrel-
evant (0): answer is not related to q; Related (1):
answer is partially relevant;4 and Exact (2): answer
exactly satisfies question’s information need.

Evaluation Data: For the two aspects we mea-
sure, we consider the following evaluation datasets:

• Answer Rate: We randomly sampled 1M unan-
swered questions by our QA system (see Ap-
pendix F for additional details).

• Answer Relevance: on the same questions used
for intrinsic evaluation, the annotators also check
the answer relevance w.r.t the original question.

5.3 Training Data

Pre-training Data. We create a weakly-supervised
dataset of 1.2M samples, derived from the MQR
corpus (Chu et al., 2020), which provides tuples
of ill-formed and well-formed questions (c.f. §D).
To construct input tuples ⟨p, q⟩ for pre-training F ,
from a target question q′ we derive p as follows.
First, using the algorithm in Appendix B, we iden-
tify the question types of q and q′. If q and q′ have
the same type, then p = REP. If q′ is a root ques-
tion and q is not, then p = ROO. The GEN operator
is novel to our work and cannot be automatically
derived, and is part of the fine-tuning dataset.
Fine-Tuning Data. We sampled 3, 851 questions
and annotated reformulations, based on guidelines
listed in §E, for all operators in §4.2. We use 10%
of annotated data for validation; the rest is used
during the second stage of training to fine-tune F .

5.4 Reformulation Model Configurations

SURF: At inference time, our model5 can do dif-
ferent reformulations based on p. We analyze the
impact on question answerability from different
reformulation operators REP, ROO and GEN. Ad-
ditionally, we analyze the combination of ROO and
GEN, i.e., q is first reformulated by ROO, then the
resulting q′ is reformulated by GEN, denoted as

4e.g., it answers the question’s intent but the subjects may
be different, as may be the case of entities in GEN.

5Appendix C shows training and hyperparameter details.
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ROO+GEN. Note that the operators ROO, GEN,
ROO+GEN, all perform a REP operation as well
(see Section 4.2 for details).
Baseline: As a baseline model we consider an
ablation of SURF without its pre-training stage, as-
sessing its performance on the same four operators.
OPTIMAL: We consider the case where q is an-
swered if any of its reformulations p ∈ {REP, ROO,
GEN} obtains an answer. OPTIMAL represents the
upper bound performance of the QA system.6

6 Results and Discussion

We now turn to a discussion of the results for the
intrinsic (accuracy) and extrinsic (answer rate and
relevance) evaluation strategies.

6.1 Intrinsic Evaluation

Task Accuracy Answer Relevance

Irrelevant Related Exact

ROO+GEN 77% 26% (4.6%) 25% (4.5%) 48% (8.6%)
GEN 83% 29% (4.2%) 22% (3.2%) 49% (7.0%)
ROO 73% 36% (4.7%) 18% (2.4%) 46% (6.1%)
REP 80% 26% (2.5%) 15% (1.4%) 59% (5.5%)

Table 1: Evaluation results from the human study on
reformulation accuracy and answer relevance. For an-
swer relevance, in brackets are shown the extrapolated
estimations of the absolute percentages of answered
questions from Table 3 and their respective answer rele-
vance. ROO+GEN obtains the highest answer rate and
relevance with 13.1% or 131k questions.

Table 1 shows the human evaluation results
for reformulation accuracy. The best accuracy is
achieved for GEN, with 83% of the reformulations
being accurate. This is because GEN does not re-
quire changing the question type like ROO.

REP achieves second best accuracy. One reason
for the slightly lower accuracy than GEN, is that it
sometimes changes the question type (e.g. request
to root), which goes beyond the REP’s reformu-
lation scope. Although according to our intrinsic
evaluation strategy such cases represent inaccurate
reformulation, in practice this is benign as QA sys-
tems perform very well on root factoid questions.

Finally, we note that reformulations significantly
shorten the input questions and result in higher
type-token ratio (Appendix H). We list many exam-
ples of model input/output pairs in Appendix I.

6Live deployment latency requirements prohibit producing
all possible reformulations and running through a QA system;
therefore we try to determine the best single operator p offline.

Task Baseline SURF

No reformulation 0.00% 0.00%

REP 8.10% 9.41%
ROO 9.26% 13.18%
GEN 13.29% 14.34%
ROO+GEN 14.50% 17.92%

OPTIMAL 18.48% 24.15%

Table 2: Results for the baseline and SURF models using
different reformulation types on our test set.
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Figure 2: Answer rate of different reformulation tasks
grouped by original question types.

6.2 Extrinsic Answer Rate Results

Table 2 shows results for all reformulation tasks
and models. OPTIMAL represents the case where
for an input question at least one reformulation
operator gets answered by the QA system. Pre-
training yields consistent improvement in all tasks.
Our large weakly supervised ⟨q, q′⟩ data enables
learning the REP and ROO operations, leading to
an answer rate improvement for SURF-ROO with
13.18% over the Baseline of 9.26% (a 3.92% abso-
lute improvement). Figure 2 shows a breakdown
of the impact of the operators by question type.

Impact of Speech Errors: the REP operation,
which performs correction and makes question
more formal, shows a consistent answer rate im-
provement across all tasks and models, improv-
ing it by 9.4%. This demonstrated that for many
questions speech errors and framing cause retrieval
failure. In Figure 2 we note that REP provides a
consistent improvement across all question types.
This improvement is intuitive given that a core com-
ponent of QA systems is their ability to understand
questions before answering, hence any speech or
syntactic errors negatively impact answering.

733



Impact of Root Transformation: the ROO op-
eration repairs and reformulates the question to its
root form. It shows better performance than REP,
although it may change the original question type.
For SURF, the improvement of ROO over REP are
with 3.77%, contrary for baseline where the im-
provement is only 1.16%. This further highlights
the importance of the pre-training stage for SURF.
Figure 2 shows that for all question types, refram-
ing them as root questions significantly improves
the answer rate. ROO is the most effective operator
for polar questions, as they are particularly are hard
to answer (§3). For example, “Is Sherlock Holmes
a real person?” can also be answered via the alter-
native question “Who is Sherlock Holmes?”.

Impact of Generalization: the GEN operation
repairs and generalizes the original question to be
less specific. For SURF, GEN obtains 4.93% ab-
solute improvement over REP in terms of answer
rate, similar is improvement for the baseline with
5.19% (cf. Table 2). As we show in §6.3, most of
the provided answers to the generalized questions
are in fact relevant to the original question’s intent.

Impact of Joint Reshaping and Generalization:
ROO+GEN achieves the best performance across
all tasks. This is intuitive as questions are first cor-
rected for possible errors, then converted into a root
wh- structure, after which high specificity elements
are dropped to construct a more generic question
(cf. Figure 1, Q7,Q8, Q9). SURF-ROO+GEN only
has an 8% gap to the OPTIMAL performance. Fig-
ure 2 shows that for all question types, ROO+GEN

obtains the highest improvement in answer rate.
Comparing the answer rates of ROO+GEN and

OPTIMAL we make an interesting observation: al-
though ROO+GEN combines all operators in p, its
answer rate is still lower than OPTIMAL. This
shows that applying all operators is not desirable
for all questions. However, in practical settings,
processing questions separately with all operators
is not feasible due to the induced generation and
QA latency. Hence, our proposed solution repre-
sents a trade-off between deployment feasibility
and improvement in answer rate.

6.3 Answer Relevance Results

It is important to consider if the provided answers
to previously unanswered questions are relevant to
the user’s information need. Since SURF performs
numerous syntactic and semantic changes, there is
a risk that the reformulated questions will result in

answers that are not related to the user’s intent.
Table 1 shows the answer relevance results for

the different operators based on a human study
where answers are assessed for their relevance to q.

REP has the highest exact relevance with 59%
(cf. Table 1), but in absolute terms as shown in
Table 2 it obtains the lowest answer rate increase
of 9.41%. The other operators are more complex
and more likely to change the intent, the answer
relevance is shifted towards related and irrelevant
answers. For instance, ROO and GEN have the
highest irrelevant answers, with 36% and 29%, re-
spectively. This is intuitive given that the scope of
the original question is reduced in q′, which can
lead to unrelated answers. On the other hand, we
observe that ROO+GEN has the most answers that
are related to q, with 73% based on the human an-
notations, or 13.1% on the 1M test set (extrapolated
results). It also obtains the least irrelevant answers
as well as the highest answer rate, which we spec-
ulate is because the root wh- transformation and
generalization reduce answering complexity and
broaden recall, leading to a better pool of candidate
answers for the QA system. Furthermore, the differ-
ent operators are complementary (cf. Appendix G),
hence, their combination achieves the best result.

6.4 Live QA Deployment
The SURF-ROO model7 was deployed for real-time
reformulation of unanswered questions in a lead-
ing voice assistant. This live deployment enables
answering for millions of previously unanswered
requests. Each day we solicit explicit binary rele-
vance feedback from a portion of customers receiv-
ing answers of SURF reformulations, with metrics
exceeding or matching those reported in Table 1.

7 Conclusion

We tackled the problem of improving spoken QA,
and analyzed questions from live data to identify
key challenges that could be addressed with refor-
mulation. Based on this we proposed SURF with
novel linguistically-motivated reformulation oper-
ators to solve the identified challenges. Offline
experiments show the effectiveness of our novel
root transformation and generalization operations,
with up to 24% of unanswered questions being
answered via reformulations with high answer rele-
vance. Live deployment in a leading voice assistant
has positively impacted millions of requests.

7We chose the best single operation model due to the dou-
bled latency of ROO+GEN.
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We showed reformulation helps QA systems
adapt to spoken user questions. We presented key
insights from a deployed solution showing that per-
formance can be significantly increased, without
changing the underlying QA backends, by simply
improving questions in their syntax and semantics.

Limitations and Future Work

In this work we did not consider the following
aspects, which we discuss below and lay out direc-
tions for how to address them in future work.

Combining Reformulation Operations: The re-
formulation operators, except REP, which is ap-
plied jointly with other operators, are applied se-
quentially, in their given order, e.g. ROO+GEN.
This has two potential limitations that we aim to
address in future work. First, applying multiple op-
erators sequentially has the negative impact of in-
creased inference latency as the SURF model needs
to be applied multiple times, which can become
a bottleneck for systems that process large traffic
volumes. Second, by applying sequentially the re-
formulation operators, the likelihood of cascading
errors or the model making mistakes in terms of
the target reformulation shape increases. We aim to
address this limitation in the future by fine-tuning
the model to jointly perform multiple reformulation
operators in a single pass.

Large Language Models (LLM): In this work
we relied on BART (Lewis et al., 2020) as our
seq2seq model, and did not experiment with newer
multi-billion parameter LLMs. Recently we have
seen rapid progress in the space of LLMs, both in
terms of model size and their capabilities to per-
form various tasks (Chung et al., 2022). However,
we note that deploying LLMs is limited by their
high inference latency, particularly in high-traffic,
low-latency systems such as ours. Furthermore,
for experimenting with API-based approaches such
as ChatGPT and GPT-4, using these systems was
not possible due to data confidentiality. While we
will explore leveraging LLMs for this task in the
future, current experimental results show that even
smaller language models such as BART, with a suf-
ficient amount of training data, can be fine-tuned
to perform the task accurately.

Evaluation on Public Datasets: Our evaluation
focused on real-world unanswered user utterances
from voice assistants. We did not use public

datasets as currently available resources do not ac-
curately represent customer behavior at scale. How-
ever, the community is aware of this divergence,
and there are initial efforts in different NLP tasks to
create public datasets that represent real-world user
behavior. For example, in the the task of Named
Entity Recognition there has been recent work on
bridging the gap between academic datasets and
real-world problems by creating new resources that
represent contemporary challenges that are encoun-
tered in practice (Fetahu et al., 2023; Malmasi et al.,
2022). In future work we will consider evaluating
SURF on such datasets as they become available.
Furthermore, the findings from our work may be
used to create data that includes the challenges
we identified as part of our analysis (either by or-
ganically collecting such data, or simulating it to
generate synthetic data).

Multilingual Experiments: We only considered
English-language questions in this work, and it will
be of interest to consider how our approach can
be extended to other languages using multilingual
models. The evaluation of cross-lingual transfer
for this task is another open research area.
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Appendix

A Spoken QA Failure Analysis

We analyzed data to understand prevalent chal-
lenges in spoken QA failure. Unlike prior work,
which uses Machine Reading Comprehension
(MRC) datasets like SQuAD, we leverage real ques-
tions from a leading voice assistant.8

We performed a quantitative analysis, taking
two large random samples of answered and unan-
swered user queries, totalling 10 million unique
questions. For all questions, we compute several
sentence-level variables (length, type-token ratio,
TF-IDF) which are predictive of language complex-
ity (Mielke et al., 2019; Byrd and Srivastava, 2022;
Ennaciri, 2022), and measure their correlation with
whether the question was answered. We also hy-
pothesize that the question’s linguistic shape is im-
portant (see §2). Following prior work (Pomerantz,
2005), we define a syntactic question typology (Ta-
ble 3) and develop an accurate type classification
heuristic (c.f. Appendix B for details).

Table 4 shows the results. For confidentiality, we
only report correlations and relative differences be-
tween the answered and unanswered groups, whose
sizes cannot be disclosed. We note that longer ques-
tions and those with higher specificity (i.e., IDF)
are more likely to be unanswered. Higher TTR
(i.e., fewer repeated tokens) results in higher an-
swer rates, likely because repetition is associated

8We do not consider ASR challenges in this work, and only
deal with text transcripts.
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Type Description
Root wh-question The wh-phrase is clause-initial. (“Who is the

US president?”. “How large is an elephant?”)
Polar (Yes-No) Asks if a statement is true. (e.g. “Is it going to

rain tomorrow?”, “Can cats eat onions?”)
Open Open-ended how questions. (e.g. “How does

depression affect the body?”)
Request Direct request beginning with a verb. (e.g.

“Tell me the capital of Utah.”)
Other Any other utterance. (e.g. “watermelon health

benefits”, “sports softball in Denver”)

Table 3: A list of the types in our question typology.

Variable Pearson Correlation (r)

Token Length −0.25
Char Length −0.24
Type-Token Ratio (TTR) +0.12
Mean of IDF scores −0.13
Sum of IDF scores −0.30
Sum of TF-IDF scores −0.31
Mean of TF-IDF scores −0.12
Question Type Difference w/ Answered

Root −10.4%
Polar +8.5%
Open +2.4%
Request −2.1%
Other +1.6%

Table 4: Top: Pearson correlation between question
characteristics and if it was answered (all p < 0.001).
Bottom: Distributional differences in question types
between the unanswered and answered questions.

with disfluencies. Question type also has a big im-
pact on answerability. Simple root wh-questions
are less prevalent in the answered subset, while po-
lar questions are much more frequent in the unan-
swered subset.

B Question Type Classification

We develop a rule-based algorithm to classify a
question into a predefined type (cf. Table 3).

Algorithm 1 shows our heuristic to determine the
question type. The algorithm is a rule-based and
applied in cascade, until there is a match between
question and type. The evaluation order is the same
as listed in Table 3, from top to bottom.

• Root: a question which starts with a wh-* or
some specific how- bigrams.

• Polar: A yes or no question starting with prede-
fined keywords.

• Open: Start with how, but not a root question.

• Request: They are a command to a QA system
and start with a verb.9

• Other: If anything else, sentences are labeled as
other.

Below are listed some of the input variables nec-
essary for Algorithm 1.

• wh-* or how-* bigrams: “what”, “where”,
“when”, “which”, “who”, “why”, “how much”,
“how many”, “how long”, “how old”, “how early”,
“how soon”, “how wealthy”, “how rich”, “how
big”, “how small”, “how tall”, “how short”, “how
heavy”, “how often”, “how late”, “how far”,
“how high”, “how fast”, “how quickly”, “how
close”;

• polar keywords: “do”, “does”, “did”, “can”,
“was”, “were”, “should”, “is ”, “isn”, “has”,
“have”, “are”, “aren”, “will”;

Algorithm 1 Heuristic for question types

Require: sentence s
if s starts with wh-* or how-* bigrams then

type← root
else if s starts with a keyword from polar key-
words list then

type← polar
else if s starts with “how” then

type← open
else if s starts with verb then

type← request
else

type← other
end if
return type

B.1 Heuristic Accuracy Evaluation

To evaluate the accuracy of our heuristic algorithm,
we randomly sampled 100 questions from each
question type from the testing set and annotated
whether the classified question type is correct. In
total, 500 questions were annotated and the overall
accuracy is 95%. The accuracy of each question
type is summarized in Table 5.

9We use spaCy for POS-Tagging.
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Question Type Accuracy (%)

Root 0.98
Polar 0.98
Open 0.95
Request 0.89
Other 0.95

Average 0.95

Table 5: Question classification heuristic accuracy
(based on human assessment), for each question type.

Original Question Type ROO REP

Root 0 544,440
Polar 23,201 200,942
Open 36,322 257,704
Request 15,405 450
Other 113,568 9,348

Total 188,496 1,012,884

Table 6: Distributions of question types in the weakly
supervised pre-training data for the ROO and REP oper-
ators.

C Model Implementation Details

For both our approach and the baseline, we adopt
BART (Lewis et al., 2020)10 as our reformulation
model F . As annotating the GEN task is not possi-
ble for all questions (as not all of them are general-
izable, e.g., “Who is Joe Biden?”), this results in a
smaller amount of training data for the GEN task.
To address this, we upsampled the generalized re-
formulations by 5x during training so that the num-
ber of generalization samples matches other types
of reformulations. We train it for up to 20 epochs
with a learning rate of lr = 1e− 6 and use Adam
as our optimizer, and batch size of 16. The training
is halted using early stopping, if the validation loss
is non-decreasing after 3 epochs.

D Pre-training Data

To prepare the weakly-supervised data for pre-
training, we first apply our question type heuristic
from Appendix B to classify the original questions
and reformulations in the MQR dataset.11 We then
automatically derive operator task labels from those
question types using the method described in §5.3.
This process yields 1.2M samples. Table 6 shows

10https://huggingface.co/facebook/bart-base
11https://github.com/ZeweiChu/MQR

the distribution of task labels and question types
in the data. As noted earlier, data for the GEN

operator cannot be reliably derived with weak su-
pervision on this dataset. The large majority of
the data contains repairs, as that is the intended
purpose of the MQR dataset. Table 7 and Table 8
list some example questions from the MQR dataset
with their assigned question types for the REP and
ROO operators, respectively.

E Annotation Guidelines

Here we describe in detail the question reformu-
lation annotation guidelines. First, the steps for
each reformulation operator are described, then a
general overview of annotation guidelines for the
entire annotation process is shown.

E.1 Instructions for REP

REP reformulations must:

• not contain repetitions, false starts, and self cor-
rections.

• be grammatically correct. For example, “Is Bill
Pullman have a son?” → “Does Bill Pullman
have a son?”.

• be impersonal and formal. For example, “Where
can I get a booze after 11 pm?” → “Which stores
sell beer after 11 pm?”.

• keep the original question type (e.g., root →
root).

E.2 Instructions for ROO

ROO question reformulations must satisfy the fol-
lowing constraints:

• The reformulation must be a root question as
defined in Appendix B. For example, “Is there
any easy way to make money online?” → “What
is the easiest way to earn money online?”.

• Reformulations must retain the intent of the orig-
inal question. In the above example, the question
type is changed from polar to root. However, the
answer to the reformulated root question can still
provide an answer to the original polar question.
Reformulations where the intent is changed are
invalid: “Can you freeze chicken that’s already
been thawed?” → “How long can chicken be
frozen for before going bad?”.

• The reformulation additionally should satisfy the
REP constraints, with the exception of altering
the question type.
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Question Source Type Reformulation Target Type

“where does spider live in?” root “where does a spider live?” root
“what is the oridgin of the word mosque?” root “where does the word mosque come from?” root

“how remember pronunciation of danish words?” open
“how can i remember the pronunciation
of danish words?”

root

“how can we make money from youtube?” open “how do people earn money from youtube?” root
“does the grammar generates the words?” polar “does the grammar generate the words?” polar
“can charity claim patent on medicine?” polar “can charities be granted patents on medicine?” polar
“winners in olympic in 2000?” other “names of olympic winners of 2008?” other
“at what tempature does alcohol freeze?” other “at what temperture does alcohol freeze?” other
“find out some advantages for setting up a partnership?” request “give 2 advantages of a business partnership?” request
“name three groups of polymers and
name one type of a composite?”

request “name three common polymers?” request

Table 7: REP examples of weakly-labeled pre-training data from the MQR dataset as labeled by our heuristics.

Question Source Type Reformulation Target Type

“how do you know if your local bike
club is worth paying for?”

open “what benefits do bike clubs provide?” root

“how do you forgive other people?” open “what’s the best way to forgive people?” root
“an example of enzyme mimic is ?” other “what are examples of enzymes and antibodies ?” root
“basic difference between compilers
and interpreters?”

other
“what are the differences between compilers
and interpreters?”

root

“explain the ending of batman arkham city to me” request “what happens in the ending of batman arkham city?” root

“unscrewing sliding window lock” request
“what tool works with this star-shaped screw
with a post in the middle?”

root

“do blackholes exist?” polar “why do black holes exist?” root
“is there any easy way to make money online?” polar “what is the easiest way to earn money from online?” root
“are there any good challenging puzzles?” polar “what are some good word puzzles?” root

Table 8: ROO examples of weakly-labeled pre-training data from the MQR dataset as labeled by our heuristics.

E.3 Instructions for GEN

GEN reformulations may slightly change the in-
formation that is sought in the original question
to something more general. This can be done by
removing parts of a question (adjuncts or other
clauses), and modifying referenced entities. Note
that we do not make parallel entity changes (e.g.
“Los Angeles” → “San Francisco”), but rather
perform vertical generalization (e.g., with hyper-
nyms or holonyms “Los Angeles”→ “California”).
There are different cases to generalize a question:

• The reformulation is less restricted than the orig-
inal question w.r.t some entity (e.g., “What do
pythons eat?” → “What do snakes eat?”);

• The reformulation is more general than the orig-
inal question regarding conditions/constraints
(e.g., “Who is the tallest person in the USA?”
→ “Who is the tallest person?”).

For any given question, multiple distinct gener-
alizations may be possible.

E.4 Overall Guidelines for Annotators
You will be given questions and asked to gener-
alize them or reshape them into other types. All

your reformulations must be done with respect to
the original question. An original question can be
generalized up to 3 times. Please complete the
following steps for each question:

• Question Validity (prior to any reformulation):

1. Judge whether the question seeks a valid
answer. A question is invalid if you are un-
able to understand the question’s intent. Or,
alternatively, you judge that the question is
unanswerable. This may be the case for per-
sonal questions (e.g. “do I have COVID?”).
If the question is invalid, remove question
from the training dataset.

• Perform REP reformulation:

1. Refer to §E.1 to make sure your reformula-
tion adheres to all REP constraints.

• Do ROO reformulation:

1. Refer to §E.2 to make sure your reformula-
tion adheres to all constraints.

2. If it is unfeasible to make the reformulation
without changing the question’s intent, leave
blank.

3. Do not reformulate root questions.
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• Do GEN reformulation:

1. Write down up to 3 generalized reformula-
tion of the original question. If possible, try
to perform different types of generalization.

2. Refer to §E.3 to make sure your reformula-
tion adheres to all constraints.

E.5 Sampling Strategy

To sample questions for annotation, we first filter
questions with fewer than 5 tokens or more than
13 tokens. Then we adopt the unseen strategy (Eck
et al., 2005) using bi-grams to select questions that
cover diverse topics. For each question, we collect
up to 3 different generalized reformulations, given
that a question can be generalized in different ways.

F Extrinsic Evaluation Data

To evaluate the performance of reformulations on
our QA system, we take a representative sample of
1M unanswered questions from the real traffic as
the test set, where the distribution across different
question types is kept to the real traffic distribution.
However, due to confidentially reasons, we cannot
reveal the exact question type distribution.

G Operator Contingency Tables

A natural question is whether different operators
are correlated, i.e., they lead to improved answering
on the same set of questions, or if they are comple-
mentary/orthogonal by improving non-overlapping
subsets of questions. To understand this relation-
ship we performed a cross tabulation analysis by
building 2x2 contingency tables comparing differ-
ent operators on our test set. Each operator is rep-
resented by a binary variable indicating whether
the reformulation by that operator resulted in the
unanswered question becoming answered.

Table 9 shows the results of this analysis for the
SURF model. We observe that there is substantial
degree of orthogonality between the operators, as
evidenced by cases where one operator fails and the
other succeeds, e.g., ROO can improve answering
on 6.98% of the data where REP fails to do so. The
largest correlation is between ROO and ROO+GEN,
while the lowest is between ROO and REP. All
operators are best complemented by ROO+GEN.
The trend is inline with the results shown in Ta-
ble 2, where ROO+GEN has the highest number of
answered reformulated questions.
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Figure 3: Relative change in token length after applying
the different reformulation operators.
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Figure 4: Relative increase in type-token ratio after
applying the different reformulation operators.

H Analysis of Reformulations Changes

We also consider how our reformulation operators
change the original questions in terms of length
and type-token ratio (TTR). Previously, in Table 4
of Appendix A we showed that these question char-
acteristics are correlated with answer rate. As a
follow up, we examined how the SURF reformula-
tions change these variables.

Figure 3 shows that SURF reformulations from
all operators significantly shorten the input ques-
tions, indicating that they result in simplified ques-
tions. The micro-averaged length reduction across
all question types for each operator is 9.9% for
REP, 4.7% for ROO, 15.5% for GEN, and 12.6%
for ROO+GEN. The average length of a question
reformulation by ROO increases only for open and
request question types, while it decreases in all
other cases. However, for open and request ques-
tion types, ROO makes the question more specific
(e.g., , “explain how to play football” is reformu-
lated into “what is the best way to play football?”
by ROO). Sometimes, ROO also makes polar ques-
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REP = 0 REP = 1 ROO+GEN = 0 ROO+GEN = 1
GEN = 0 83.80% 1.87% GEN = 0 77.81% 7.85%
GEN = 1 6.79% 7.54% GEN = 1 4.27% 10.07%
ROO = 0 83.61% 3.21% ROO = 0 80.28% 6.55%
ROO = 1 6.98% 6.20% ROO = 1 1.80% 11.38%

GEN = 0 GEN = 1 ROO+GEN = 0 ROO+GEN = 1
ROO = 0 80.27% 6.55% REP = 0 79.25% 11.34%
ROO = 1 5.39% 7.79% REP = 1 2.83% 6.58%

Table 9: Comparing the percentage of answered (1) and unanswered (0) questions between two operations in
crosstables.

tion more specific (e.g., , “is aspartame safe?” →
“what are the health risks of eating aspartame?”).

Regarding TTR, from Figure 4 we observe a
consistent TTR increase for all reformulation types.
This is consistent with the findings from Table 4,
where it was shown that TTR is positively corre-
lated with answer rate. The increase of TTR means
the reformulated questions are less likely to have
repeated tokens.

I Question Reformulation Examples

We show synthetic examples of question reformu-
lations output by our model in Table 10.
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Task Origin Reformulation

REP “why why are the dinosaurs go away from them” “why did dinosaurs go away?”
REP “how do tiger how do baby tigers speak” “how to communicate with baby tigers?”
REP “korean food new jersey” “what is the best korean food in new jersey”
REP “hey find me some vinegar potato salad recipes” “how to make vinegar potato salad”
REP “are bill pullman have a son” “does bill pullman have a son”
REP “what time of the year do all the lightning bugs come out” “when do lightning bugs come out”
REP “when is new movie about minions” “when will the next movie about minions be released”
REP “how much does it how long does it take to boil one and a half cups of

water”
“how long does it take to boil water”

REP “what’s the macros of rotisserie chicken” “what are the macros of a rotisserie chicken”

ROO “composer dona zetti” “who is the composer dona zetti”
ROO “does a lot of sugar will hurt your teeth” “why does sugar hurt your teeth”
ROO “hey find me vinegar potato salad recipes” “what are some good vinegar potato salad recipes?”
ROO “look up some macron recipes” “what are some macron recipes”
ROO “hey show me a marinade for pepper steak” “what marinade should be used for pepper steak”
ROO “are bill pullman have a son” “who is bill pullman’s son”
ROO “in an air fryer at what temperatures do i heat fully cooked bratwurst

and for how long”
“how long should bratwurst be cooked in an air fryer”

ROO “yes did steven spielberg go to films school” “where did steven spielberg go to film school”
ROO “how do you do reminder for my phone” “how to set up a reminder for a phone?”
ROO “again show me the recipe for pan seared steak” “what are some recipes for pan seared steak”

GEN “how long can fleas live without host” “how long can fleas live”
GEN “in 1901 who won the first nobel prize for physics” “who won the first nobel prize for physics”
GEN “are large feet assigned beauty some cultures” “are large feet assigned beauty”
GEN “did kamala harris ever move to canada than back to america” “did kamala harris move to canada”
GEN “how many playable characters are in lego star wars the skywalker saga” “how many playable characters are in lego star wars”
GEN “tell me what is the total number of people who ever lived on earth” “how many people have ever lived on earth”
GEN “price of a wheel for a two thousand five volvo s eighty” “what is the price of a wheel for a car”
GEN “is it good to put a watermelon that is not been peeled in the ice box” “is it good to put watermelon in the ice box”
GEN “how is it another way to defeat hurricane” “how to defeat a hurricane”

ROO+GEN “in an air fryer at what temperatures do i heat fully cooked bratwurst
and for how long”

“how long should bratwurst be cooked”

ROO+GEN “in 1901 who won the first nobel prize for physics” “who won the first nobel prize”
ROO+GEN “what is the average salary of a taxi driver from san francisco” “how much does a taxi driver earn in california”
ROO+GEN “in feet how long was the largest shark ever on the record” “what is the longest shark”
ROO+GEN “who is the actor’s name who plays eleven in stranger things” “who is the actor that plays eleven in stranger things”
ROO+GEN “what is a apple or lemon that starts with letter f.” “what is a fruit that start with f ”
ROO+GEN “does hair grow faster when it is warm or cold outside” “how fast does hair grow”
ROO+GEN “can you tell us some facts about patrick mahomes achievements” “what are facts about patrick mahomes”
ROO+GEN “if i workout for about ten minutes everyday how many days will it take

for me to lose a pound”
“how long does it take to lose weight?”

Table 10: Synthetic examples of reformulated questions according to the different reformulation operators.
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Abstract

Conversational NLU providers often need to
scale to thousands of intent-classification mod-
els where new customers often face the cold-
start problem. Scaling to so many customers
puts a constraint on storage space as well. In
this paper, we explore four different zero and
few-shot intent classification approaches with
this low-resource constraint: 1) domain adapta-
tion, 2) data augmentation, 3) zero-shot intent
classification using descriptions large language
models (LLMs), and 4) parameter-efficient
fine-tuning of instruction-finetuned language
models. Our results show that all these ap-
proaches are effective to different degrees in
low-resource settings. Parameter-efficient fine-
tuning using T-few recipe (Liu et al., 2022) on
Flan-T5 (Chung et al., 2022) yields the best
performance even with just one sample per in-
tent. We also show that the zero-shot method
of prompting LLMs using intent descriptions
is also very competitive.

1 Introduction

Intent classification is the primary natural language
understanding task for a virtual agent or a chatbot.
Providing intent-utterances for training intent clas-
sification models is a laborious process. In this
paper, we address this problem by exploring zero
and few-shot intent identification using Large Lan-
guage Models (LLMs) as well as instruction fine-
tuned models. Zero-shot and few-shot intent pre-
diction completely remove or substantially reduce
the work to provide intent-utterances, respectively.
We demonstrate that the following four approaches
work well in practice for zero/few-shot intent clas-
sification.

• Domain adaptation We use a sentence en-
coder that is pre-trained with our domain
knowledge and show that it performs well in
a few-shot setting compared to off-the-shelf
sentence encoders.

• Data Augmentation By supplementing
human-curated training data with LLM-
generated data to improve training data.

• Zero-shot intent classification High capacity
LLMs can be prompted creatively with intent
descriptions to do zero-shot classification.

• Parameter-efficient fine-tuning (PEFT)
Finetuning a small number of parameters
added to instruction finetuned LMs using only
a few examples

Here is the outline of the rest of the paper. In Sec-
tion 2 we describe the related work. In Section 3
we detail the datasets used. In Section 4 we de-
scribe the four approaches covered in this work
for zero/few-shot intent classification. Finally, we
conclude with observations in Sections 5 and 6.

2 Related Work

Recent work has successfully used domain adap-
tation and contrastive learning for few-shot intent
classification. One approach is to use embeddings
from a BERT model (Devlin et al., 2019) pretrained
on domain data to search for utterances belonging
to new intents in the domain (Yu et al., 2021). In a
similar vein, (Zhang et al., 2021) finetune a BERT
model on few-shot data using contrastive learning
which learns to discriminate between semantically
similar sentences. Our work on domain adaptation
differs from these mainly due to our setting which
involves serving thousands of customers. For le-
gal reasons, we cannot co-mingle data from these
customers to pre-train a single model. Instead, we
pre-train a sentence encoder based on an intent tax-
onomy and out-of-the-box intents, which consist
of human generated synthetic data. In this setting,
we can only train very lightweight models for each
customer, e.g. a dense layer on top of a pre-trained
sentence encoder.

Data Augmentation is another widely used tech-
nique to solve the problem of data scarcity. Recent
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Dataset Intents Train Size Test Size OOS Samples in Test
MASSIVE 60 11514 2974 No

OOTB-dataset* 27 1363 3099 No
Benchmark01* 9 270 300 Yes
Benchmark02* 13 390 420 Yes
Benchmark03* 31 930 960 Yes

Table 1: Statistics for intent classification datasets used in this paper. Datasets marked with an asterisk (*) are private,
internal benchmarking datasets. Train and Test Sizes correspond to the number of utterances in the respective splits.
OOS samples in test set indicates whether there are any out-of-scope samples in the test set.

work on data augmentation has focused on using
multiple methods to improve model performance
(Chen and Yin, 2022). LLMs like GPT-3 (Brown
et al., 2020) can be prompted to generate labeled
training data for intent classification (Sahu et al.,
2022). The quality of generated training data using
LLMs is highly dependent on the prompts. In this
work, we show various prompt-based approaches
that generate diverse data for training and boost the
performance of intent classifiers.

As the usage of conversational agents grows, it
is important for them to generalize to new intents.
Recent work has focused on performing zero-shot
intent detection on unseen intents and domains. Us-
ing knowledge from ontologies or attributes (Fer-
reira et al., 2015; Yazdani and Henderson, 2015)
can help in detecting and generalizing to new in-
tents. A more recent approach by (Liu et al., 2019)
makes modifications to capsule networks to gen-
eralize to unseen domains. Embeddings of intent
descriptions have also shown to be quite mean-
ingful in generalizing to new intents and services
(Ma et al., 2019). While these methods are ef-
fective, they all require training on an initial set
of intents. Large Language Models (LLMs) like
GPT-3 (Brown et al., 2020) and more recently in-
struction finetuned models like (Chung et al., 2022)
have shown good zero-shot performance on newly
seen tasks without any prior training data on those
tasks. In this work, we show that these models
are also effective for zero-shot intent classification
using just intent descriptions.

3 Datasets

We use public and private intent classification
datasets to benchmark different approaches. For
evaluation on public dataset, we use the English
train and test sets from MASSIVE for intent clas-
sification. MASSIVE contains utterances directed
at a physical device spanning 60 intents and 18 do-
mains. For more details on the MASSIVE dataset
(FitzGerald et al., 2022), we encourage readers to

refer to their paper. We also use private bench-
marking datasets internal to our company. These
datasets contain various intents and utterances in
the enterprise setting spanning 3 different domains:
IT Service Management (ITSM), HR and Customer
Service Management (CSM). The utterances are
inspired by interactions between humans and chat-
bots and are typically queries from goal-oriented
conversations where the user needs to resolve an
issue. Additionally, some of these datasets also
contain out-of-scope (OOS) utterances in their test
set i.e. utterances that do not belong to any intent,
in order to benchmark irrelevance detection of in-
tent classification models. Table 1 shows statistics
for different datasets used in our benchmarking.

4 Methodology

In this section, we describe the various methods we
evaluate for zero and few-shot learning.

4.1 Domain Adaptation

Domain and task-specific pre-training of language
model (Gururangan et al., 2020) has shown to sig-
nificantly improve classification accuracy in both
low and high resource settings. Techniques like
contrastive learning (Gao et al., 2021) (Feng et al.,
2022) are effective for improving the quality of
sentence encoders, specifically in low-resource set-
tings. Inspired by these ideas, we use a sentence
encoder trained on our domain-specific data along
with public datasets. Starting with the LaBSE
checkpoint (Feng et al., 2022) we train it further
by converting intent classification, paraphrasing,
etc, as sentence similarity tasks. We will refer to
this model as ELMSE (enterprise language model
based sentence encoder).

For training intent-classification models, we
freeze ELMSE weights and use its sentence em-
beddings as features for a trainable non-linear
dense layer for classification. We compare ELMSE
against other publicly available sentence encoders,
namely LaBSE, Multilingual Universal Sentence
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Dataset Intent Names Utterance

OOTB - dataset*

UpdateChangeRequest I could I update CHG1234567
TroubleshootSlowComputer My laptop is taking too long to load

SubmitARequest I need a new phone
IdentifyScheduledChanges What are the upcoming scheduled changes

CreateProblem report new critical problem

Benchmark01 - dataset*

GuestWifiAccess How do I get in the guest wifi
IdentifyScheduledChanges Can you pull up the list of scheduled changes

MyAssignedEquipment Show me my devices list
SearchKnowledgeBase I want information on policies

RepositoryAccess How can I access the shared drive

Benchmark02 - dataset*

EscalateITTicket increase priority of my incident
LocalAdminAccess Can I get authorization as local admin on my pc

RSAToken RSA login is not working
EmailSetup How do I configure outlook on my device

BillingInvoiceIssue I was billed twice but have no account

Benchmark03 - dataset*

SubmitARequest I request a new computer
RSAToken I have problem with authentication code

CreateChangeRequest I want to request a change
LocalAdminAccess How can I login as local admin

Feedback I have bad experience

Table 2: Few samples of intents and their respective utterances from the private internal benchmarking datasets.

Few-shot K model Massive Benchmark01 Benchmark02 Benchmark03

3

LaBSE 46 (1.7) 59 (2.9) 52 (2.7) 58 (3.1)
MUSE3 53 (2.8) 64 (3.8) 62 (2.7) 64 (1.3)
GTR-3b 59 (1.4) 76 (1.4) 70 (3.3) 78 (2.2)
ELMSE 57 (2.3) 77 (2.4) 63 (4.6) 74 (1.7)

5

LaBSE 58 (1.7) 65 (3.3) 59 (1.7) 67 (1.8)
MUSE3 61 (0.9) 70 (2.2) 66 (1.4) 70 (1.7)
GTR-3b 66 (1.2) 78 (1.0) 73 (1.7) 84 (1.0)
ELMSE 63 (1.1) 80 (1.7) 67 (2.6) 79 (1.2)

Table 3: Results for domain adaptation on 3 internal datasets along with MASSIVE comparing LaBSE, MUSE,
ELMSE, and GTR-3B models. The metric reported here is in-scope accuracy averaged over 5 different selections of
few shot data. Numbers inside parenthesis indicate standard deviation across the 5 selections

Encoder (MUSE) (Yang et al., 2020) and GTR-3B.
ELMSE is comparable in size to LaBSE and MUSE
while almost 30 times smaller than GTR-3b. We
simulate few-shot setting by randomly selecting
K utterances per intent from full datasets. We use
K=3,5,8,10,15,20 as well as the full dataset. We
report results on 4 datasets from Table 1. Since
OOTB-dataset was used for pretraining ELMSE,
we exclude it from few-shot evaluation.

4.1.1 Results for Domain Adaptation

Table 3 reports in-scope accuracy and standard de-
viation averaged of 5 random seeds for 3-shot and
5-shot classification. The results demonstrate that
domain adaptation is a very effective approach with
improvements of greater than 5 percent in most
cases when compared with models of similar size.
These results carry over as we increase the number
of few-shot utterances to more than 5 as shown
in Figure 1. The plots also show that the gap be-
tween ELMSE and LaBSE is much larger in a few-
shot setting and reduces as K increases. Moreover,

Figure 1: Comparison of ELMSE which is domain
adapted with sentence encoders which are not domain
adapted
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ELMSE is only 2-3% worse than GTR-3b which is
30 times larger model.

4.2 Data Augmentation

We use data augmentation to generate labeled data
for training starting with a seed set of 5 utterances
per intent. In this section, we explore different
ways of prompting GPT-3 and T5 (Raffel et al.,
2020). For evaluating the generated utterances, we
use them for training the same type of lightweight
classifier as described in 4.1 using ELMSE as the
sentence encoder. This section describes different
prompt-based approaches for data generation.

GPT-3 + Paraphrase : Following (Sahu et al.,
2022), we ask GPT-3 to generate 20 paraphrases
of utterances from the same intent taken from the
seed set. To encourage diverse generations, we set
high temperature and top_p values.

GPT-3 + Intent Descriptions : We describe in-
tents in the prompt and ask GPT-3 to generate 20
utterances for a particular intent. We find that de-
scribing all intents prevents hallucinations in the
generations.

Parrot T5 Paraphrasing : We use the Parrot
Paraphrase approach based on T5 (Damodaran,
2021) to generate 20 diverse paraphrased utterances
given seed set. Table 4 shows a few generations
from our prompt-based approaches.

4.2.1 Experimental Setup and Results

To evaluate the quality of generated utterances, we
use them to train intent classifiers. We evaluate
the performance of augmented dataset from each
approach as mentioned in Section 4.2.1 by train-
ing ELMSE classifier model for intent classifica-
tion task. We evaluate on 4 datasets and compared
against ELMSE few-shot baseline where K is set
to 5. We report the in-scope accuracy and stan-
dard deviation averaged over 3 different random
seeds. Table 5 shows the result for all approaches
using the data augmentation. Unless mentioned
explicitly, we do not add the seed set to the training
mix.

We find that using paraphrases from GPT-3 and
Parrot T5 Paraphraser give better results compared
to ELMSE Baseline even without the seed set. GPT-
3 Augmentations using Intent Descriptions does
not perform well but when combined with ELMSE
Baseline seed set gives better results. Moreover,

given a good quality seed-set, we see that data aug-
mentation using LLMs can boost the performance
of intent classification in few-shot setting.

4.3 Prompting Zero-shot Prediction

The given sentence needs to be mapped to exactly
one of the intents described below:
alarm_set: user wants to set an alarm
iot_cleaning: user wants to do some cleaning
...
play_podcasts: user wants to play a podcast or
rewind/repeat a particular episode in a podcast
none_of_the_above: if the user sentence is not about
any of the intents above
Sentence: wake me up at 7am
Intent: alarm_set

We use intent names and descriptions for prompt-
ing language models to perform zero-shot predic-
tion. The intent descriptions are prefaced with
instructions to predict the correct intent and the
test utterance is specified at the end. The output
is expected to be the correct intent label. Figure
4.3 shows an example prompt from the MASSIVE
dataset and the output from LLMs. For evalua-
tion, we check for the presence of intent names
in the LLM completion text as opposed to an ex-
act match and report the first intent predicted in
the completion. This is done to account for hal-
lucinations. If no intent names are present in the
completion text, we mark it as an “out-of-scope
prediction”. We create intent descriptions for 4
datasets: 3 internal benchmarking datasets and the
open-source MASSIVE dataset. We benchmark 2
language models using this type of prompt: GPT-3
(175B parameters) and Flan-T5-XXL (11B param-
eters), an instruction fine-tuned model.

Filtering Intents for LLMs Many conversa-
tional agents have a lot of intents, sometimes more
than 50. As the number of intents increases, the
prompt size increases which incurs higher latency
and cost (in case of token-based pricing models).
To restrict the length of the prompt, we use sentence
similarity to retrieve the top-5 intents and only use
those 5 intents in the language model prompt. Us-
ing sentence similarity needs a few training exam-
ples which makes this a few-shot approach. With
just 5 examples per intent, we get more than 0.85
recall for Top-5. To restrict the size of the prompt,
we do not pass the training examples to the LLMs.

Setup For GPT-3, we set the temperature to 0
and max tokens for generation to 20. We use the
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Approach Prompt Generated Text

GPT3 Paraphrase Aug.

Task: Create diverse utterances
by paraphrasing the following utterances:
schedule alarm to wake me up after 3 hours
alarm for ten am
wake me up on friday at five in the morning i need to catch the train
alarm me at eight am
please set alarm for today
Create 20 utterances:

Set an alarm for 10 o’clock.

Wake me up on Friday at 5am
so I can make the train.
...
Set a timer to wake me up
in three hours

GPT3 Aug. Using Intent Descr.

A virtual assistant serves multiple intents.
Below are the description of the intents:
alarm_set: user wants to set an alarm
iot_cleaning: user wants to do some cleaning
...
play_podcasts: user wants to play a podcast or rewind/repeat a particular
episode in a podcast
Generate 20 utterances for alarm_set intent:

Can you set an alarm for next week?
I need to set an alarm for a specific time
I want to set an alarm for a certain day
...
I’d like to set an alarm
for a certain hour

Table 4: Example prompts used in generating text for the corresponding approaches

Approach MASSIVE Benchmark01 Benchmark02 Benchmark03
ELMSE Baseline 63 (1.1) 80 (1.7) 67 (2.6) 79 (1.2)
GPT-3 w/ Paraphrase Aug. 63 (0.5) 84 (0.4) 71 (0.3) 81 (0.5)
GPT-3 w/ Intent Descriptions 51 (0.5) 76 (0.4) 69 (0.5) 76 (0.2)
Parrot T5 58 (0.4) 81 (0.2) 73 (0.4) 81 (0.4)
Seed Set + GPT-3 w/ Intent Descriptions 63 (0.8) 84 (0.4) 71 (0.3) 78 (0.9)
Seed Set + Parrot T5 63 (0.6) 79 (0.4) 68 (2.2) 76 (0.6)

Table 5: Results for Data Augmentation on 3 internal datasets along with MASSIVE comparing the performance on
multiple prompt-based approaches. We report the average in-scope accuracy and standard deviation averaged over 3
different random seeds

Dataset LLM Intents Model In-Scope Accuracy Out-of-scope Recall

MASSIVE (60 intents)

5 Flan-T5-XXL 68.6 -
GPT-3 69.2 -

60 Flan-T5-XXL 73.3 -
GPT-3 73.9 -

OOTB-dataset (27 intents)

5 Flan-T5-XXL 83.7 -
GPT-3 83.4 -

27 Flan-T5-XXL 86.3 -
GPT-3 84.9 -

Benchmark01 (9 intents)

5 Flan-T5-XXL 86.5 0.43
GPT-3 84.6 0.97

9 Flan-T5-XXL 86.5 0.48
GPT-3 89.3 0.67

Benchmark02 (13 intents)

5 Flan-T5-XXL 69.7 0.65
GPT-3 60.6 0.87

13 Flan-T5-XXL 69 0.7
GPT-3 61.3 0.67

Table 6: Results for zero-shot prediction on 3 internal datasets along with MASSIVE with GPT-3 and Flan-T5-XXL.
In-scope accuracy is the accuracy computed for test samples that belong to the intents in the dataset. Out-of-scope
recall is the fraction of out-of-scope test samples which were correctly identified as irrelevant by the model i.e., not
belonging to any of the intents

default setting generation settings for the Flan-T5-
XXL model and do not restrict the number of to-
kens to be generated. The results with filtering are
averaged over 3 runs using different random seeds
for sampling the 5 samples per intent.

Results Table 6 reports the accuracy for in-scope
intents and the recall for out-of-scope samples
where applicable (samples that do not belong to any
of the intents in the dataset). We find that prompt-
ing language models with intent descriptions for

zero-shot intent classification performs better than
few-shot learning using a classifier (Tables 3 and
5). Since this only needs intent descriptions, this
approach can generalize to new intents as well. Us-
ing the same prompt, Flan-T5-XXL is competitive
with GPT-3 in terms of in-scope accuracy and is
often better when presented a smaller number of
intents in the prompt. While the in-scope accuracy
is comparable, GPT-3 clearly outperforms Flan-T5-
XXL in terms of the out-of-scope recall, indicating
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Figure 2: Plots comparing in-scope accuracy of different Flan-T5 models using Parameter-efficient FineTuning
(PEFT) with the T-Few recipe. The dotted lines show the best results on each dataset from previously described
methods. The shaded regions show the standard deviation

that it is better at detecting irrelevant samples. We
attribute the strong performance of Flan-T5-XXL
(even though it is 16x smaller) to the multi-task
instruction finetuning on over 1800 datasets.

For the 3 internal datasets, we also find that using
more intents in the prompt works better only up to
a certain extent but have excluded the results for
the brevity of this paper. While the intent retrieval
method does not give perfect Top-5 recall, it helps
in keeping the prompt short and hence provides
lesser chances for the language models to give a
output a wrong label name. Moreover, filtering can
also improve the out-of-scope recall as in the case
of Benchmark02 dataset.

4.4 Parameter-Efficient FineTuning (PEFT)

Taking inspiration from the T-Few recipe (Liu et al.,
2022), we add and finetune IA3 adapters from
scratch in Flan-T5 models in a few-shot setting
which is similar to 4.1. We pick K=1,3,5 utterances
per intent. Since the Flan-T5 models are instruc-
tion fine-tuned, we use the same prompt from 4.3
and provide the intent name as the target string.
For MASSIVE and OOTB-dataset, we restrict the
number of intents in the prompt to 15 at training
time to prevent out-of-memory exceptions. At in-
ference time, we provide all intents in the prompt.
We use all 3 loss functions (language modeling,
unlikelihood and length normalized losses) and the

same hyperparameters as mentioned in the T-Few
paper. For more details about the T-Few recipe, we
encourage readers to refer to their paper.

Figure 2 compares the results of PEFT against
the best results from previously described methods.
Flan-T5-XL (3B parameters) consistently outper-
forms all other methods with just 1 training exam-
ple per intent. With a few more examples, Flan-
T5-Large (770M parameters) also outperforms all
other methods except Flan-T5-XXL on the OOTB
dataset. This shows that we can train significantly
smaller models which are easier to deploy and also
outperform LLMs like GPT-3 with just a few pa-
rameters using intent descriptions and a handful of
examples.

5 Observations

Comparing results across the 4 approaches, we
notice that all 4 approaches are effective in low re-
source settings. We find that domain adaptation is
a cheap option in terms of size of the models but it
still requires 5-10 training utterances per intent for
getting accuracy above 70%. Data Augmentation
using paraphrasing further helps in most cases by
2-4 percentage points. However, expanding to new
domains requires sentence-pairs data for training
the sentence encoder which can involve days of hu-
man labeling. Zero shot classification using intent
descriptions with LLMs and instruction finetuned

749



models performs even better than domain adapta-
tion with data augmentation and doesn’t require
any utterances to be configured per intent. How-
ever a good description for each intent is required.
Additionally, these models can be expensive to op-
erationalize. Inference on Flan-T5-XXL requires
using A100 GPUs. GPT-3 is not open-source and
based on a pricing model which can be expensive
to scale to thousands of customers. Parameter ef-
ficient fine-tuning (PEFT) of instruction finetuned
models like Flan-T5-XL and Flan-T5-Large offers
the best performance across all methods and often
by a large margin. Moreover, these models are only
a fraction of the size of GPT-3 and Flan-T5-XXL
and much easier to operationalize at scale with far
lesser compute resources.

6 Conclusion

In this paper, we addressed the task of zero and
few-shot intent identification using Large Lan-
guage Models (LLMs). We presented four ap-
proaches, namely domain adaptation, data augmen-
tation, zero-shot prediction with prompting, and
parameter-efficient fine-tuning. Our experimental
results demonstrate that LLMs and larger instruc-
tion fine-tuned language models are very effec-
tive in zero-shot setting with in-context prompting.
Smaller instruction finetuned models with adapters
are even better when adapter-finetuned on just 1 or
3 examples per intent. We hope these results are
useful for practical deployment of conversational
agents in low-resource settings as well as aiding
non-practitioners in building their intent classifica-
tion models. In the future, we plan to extend this
work by domain adapting smaller instruction fine-
tuned models in a multi-task setting and exploring
their zero-shot capabilities.
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Abstract
Voice assistants help users make phone calls,
send messages, create events, navigate and do
a lot more. However assistants have limited
capacity to understand their users’ context. In
this work, we aim to take a step in this direc-
tion. Our work dives into a new experience
for users to refer to phone numbers, addresses,
email addresses, urls, and dates on their phone
screens. Our focus lies in reference under-
standing, which becomes particularly interest-
ing when multiple similar texts are present on
screen, similar to visual grounding. We col-
lect a dataset and propose a lightweight general
purpose model for this novel experience. Due
to the high cost of consuming pixels directly,
our system is designed to rely on the extracted
text from the UI. Our model is modular, thus
offering flexibility, improved interpretability,
and efficient runtime memory utilization.

1 Introduction

With the advent of internet and smartphones, the
world came to our fingertips. And with the emer-
gence of voice assistants (VAs), everything became
even more accessible. VAs have become pervasive
in the smartphones as they offer natural means of
communication to the user. They able a user to per-
form tasks faster with natural language instead of
several taps, app switches, scrolls and typing. How-
ever, they are limited in their ability to understand
the user’s context.

Let us look at an example. In Fig. 1, a user wants
to share a number from a webpage to a friend. They
might do either of the following:

• memorize the number→ go to messages→
new message to friend → type the number
from memory→ send

• select the number→ copy→ go to messages
→ new message to friend→ paste→ send

One solution might be that the user can read out
the number to the VA. However reading out may be
cumbersome and unnatural as this is not how one

would communicate with a person standing next
to them. Further, it may create unwarranted ASR
errors, especially for texts like URLs or emails.
Our work explores how to make this simpler by en-
abling users to refer to screen elements in requests
made to voice assistants. References make conver-
sations more natural and succinct, thus allowing
the user to say: “Send the middle number to Tim”.

We conduct a user study to explore how users
would make requests involving screen elements.
Participants are shown screenshots, each contain-
ing multiple entities of a category (eg. 3 phone
numbers), and asked to type requests for a VA to
act on one of them. The study reveals that a ma-
jority of users (57%) prefer to use references like
“Send that office number to Tim’ instead of repeat-
ing the full text.

For supporting such experiences, voice assistants
need to resolve the references. In this work, we
focus on such reference resolution. Specifically,
we consider requests referring to phone numbers,
addresses, email addresses, URLs, date/time. We

Figure 1: Suppose a user wants to share a number on
their screen. We aim to support this in a natural and suc-
cinct way by enabling users to refer to screen elements
in interactions with Voice Assistants.
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choose these actionable text since,∼50% of screen
elements are texts (Zhang et al., 2021), and these
categories are commonly acted upon. Users of-
ten call or message numbers, share contact details,
navigate to addresses.

To understand and evaluate the task, we collect
ScreenRef, a dataset of 14k requests, with refer-
ences to actionable text or entities. ScreenRef
contains two collections. First, Descriptive Data,
which is based off screens with multiple similar
entities to get descriptive references like ‘call the
Apple Business Manager number’. This is simi-
lar to how visual grounding datasets (Kazemzadeh
et al., 2014; Mao et al., 2016) focus on images with
multiple objects of the same category to get chal-
lenging references. Second, Category level Data,
includes simpler references to a category without
disambiguating within a category, eg. ‘call this
number’. These are described in Sec. 4.

With the purpose of deploying in real world, it
is critical to design solutions with low latency. To
this end, we design Screen Reference Resolver, or
SRR, a modular attention based architecture for ref-
erence understanding. We focus on privacy, hence
our model is lightweight and executable on-device.
Our network re-uses existing signals available from
upstream including request embedding, and text
scraped from the UI. We also discuss a heuristic-
based baseline (designed for quick prototyping).

Overall, our main contributions are:

1. We explore a novel experience for Voice As-
sistant users to execute tasks on actionable
text on the phone screen by using references.

2. We conduct a user study to analyse users’ in-
teractions with entities on screen. This reveals
interesting insights about usage of references.

3. We design efficient data collection schemes
for collecting requests with references to ac-
tionable text on screen and collect a dataset.

4. To understand references to entities on screen,
we propose a heuristic-based baseline and a
modular attention-based network, SRR. The
model has a small memory footprint, low
latency, can run on device, and drastically
boosts performance compared to the baseline.

2 Related Work

Grounding to UI elements. Past works have ex-
plored mapping natural language commands to UI
elements for Chrome web pages (Pasupat et al.,

2018), grounding executable actions for UI nav-
igation (Li et al., 2020) and user interaction (Xu
et al., 2021). These works primarily focus on navi-
gational commands, thus target buttons, links and
input boxes. Our goal is to explore screen refer-
encing capability for common VA tasks, thus we
target ‘actionable text entities’ like phone num-
bers. Hsiao et al. (2022) propose ScreenQA with
questions about UI elements including text, which
could also benefit from UI grounding. Wang et al.
(2022); Rozanova et al. (2021) investigate LLM
abilities for UI grounding. Li et al. (2021); Li and
Li (2022) use vision and language transformers for
the task. However, we only use the screen texts
and no pixels directly. Our solution design focuses
on low latency, less memory and privacy-preserved
inference that can be run on device.

Voice assistants and Multimodal Interactions.
The power of replacing multiple low-level actions
by natural language has been explored for webpage
designing (Kim et al., 2022), image editing (La-
put et al., 2013). Users use VAs for controlling
screen content, particularly the visually challenged
(Vtyurina et al., 2019). Ljungholm; Luger and
Sellen (2016) discuss how lack of context under-
standing makes VA usage unnatural. Bolt (1980)
employed a point-and-speak approach for desktops.
Prior works have explored tracking user gaze for
multimodal interactions (Drewes et al., 2007), for
digital screens (Hutchinson et al., 1989; Mardan-
begi and Hansen, 2011) as well as for external,
real-world objects (Mayer et al., 2020). In this
work, we explore using language to reduce the low-
level actions needed to interact with certain text
categories on phone screens and thereby increase
the context understanding of VAs.

Grounding to objects and text in open
scenes. A related task to ours is visual ground-
ing (Kazemzadeh et al., 2014; Mao et al., 2016;
Yu et al., 2018), resolving references to physical
objects in scenes. The physical form and seman-
tics of text is much different, resulting in different
reference forms. Rong et al. (2019, 2017) look
at references to text in scenes. However, a lot of
their references are of the form ‘the text on . . . ’,
thus grounding requires less knowledge of text and
more of physical objects. Also, the major challenge
in open scenes is text localisation and recognition,
which is much simpler on phone screens. On the
other hand, screens are challenging as they contain
a lot more text. TextVQA, from Singh et al. (2019);
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Figure 2: Distribution of request types in the user study.
References using labels i.e. text within or around entity
are most common, followed by repeating full text. For
entities like addresses and URLs, repeating full text may
be cumbersome, hence references are more common.

Biten et al. (2019) could utilise grounding to text,
but doesn’t contain labels for this. Lastly, none of
these works cater to task-oriented dialog for text
on screen, which is our primary focus.

3 User Study

To understand how users would make requests
about entities on the screen, we conduct a user
study on Pollfish (pol). We use 4 screens for each
actionable text category (phone numbers, emails,
addresses, and URLs), and each screen has 3 in-
stances of the category (eg. 4 screens with 3 phone
numbers each). A total of 300 participants are se-
lected from across US, balanced for VA usage, gen-
der and English as first or other language. Overall,
4800 typed requests were collected.

The responses were reviewed by two researchers.
Using heuristics, three common types of requests
surfaced: 1. Full Text: “call 1-866-902-7144” 2.
Labels: using text other than full entity text “direc-
tions to the one in Portland” 3. Ordinals: “send
the third email address”. The data shows a heavy
preference towards the first two (Fig. 2). Intu-
itively, when browsing information, the eyes are
often scanning for a topic of interest. For instance,
“I need to call support”, explaining the label based
requests. Our hypothesis for the high use of full
text is that they didn’t want to rely on VA’s ability
to understand the context. Within references, using
the text in or around the entity is common and the
position is used sometimes. Note that our study
was performed on a limited set of users and for
a limited set of screens, but we uncover interest-
ing patterns on how users might request actions on
screen texts. It is important to keep in mind that
speaking full texts could be cumbersome, unnatural
and have speech recognition errors, especially for
entities like URLs.

Figure 3: Screen processing is done by upstream sys-
tems using data detectors to get entity categories. We get
texts with their location, and texts classified as phone,
email, address, date/time, URL that form the candidate
entities. Example entity: [text: +91 9998888, location:
[0.04, 0.36, 0.4, 0.03], category: Phone Number]. These
are the inputs to our grounding system.

4 Task and Dataset

Given a screen S (with OCR texts t), text entities
e1, ..., ek and a request r, the task is to select the
entity(entities) e ∈ e1, ..., ek being referred to in r.

We collect ScreenRef, a collection of requests
to Voice Assistants with references to actionable
text categories on screen (phone number, address,
email address, URL, date/time). Due to privacy
concerns on sharing a dataset with extracted phone
numbers/emails from web pages, we are unable
to share the dataset but we discuss the collection
protocol in detail (see samples in Fig. 4 and anno-
tation guidelines in Appendix A). We collect full
requests, not just reference phrases, since words
outside of the explicit reference phrase may hint
at the targeted entity. For instance, call this has
the reference this which is ambiguous, however the
request can be understood as referring to a phone
number. 20 annotators are recruited for our data
collections.

We first started with a simple collection protocol.
After extracting entities of our interest using data
detectors for a list of web pages, we show a web
page screen with one highlighted entity and ask
graders to provide a request referring to that entity.
This would get us a dataset of requests referring to
screen entities and their referred entity. However,
this ran into major issues. First, annotators would
often miss other similar entities on the screen and
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Figure 4: Samples from ScreenRef. Descriptive data is
collected using screens and has entities and texts from
the screen. Category-level data is collected without
screens and has an entity pool containing one dummy
entity from each of our scoped categories.

provide requests which are ambiguous, eg. “call
this number”, when there is more than 1 number
on the screen and only 1 of them is highlighted,
thereby resulting in an incorrect sample for the res-
olution task. Second, there were a large number of
duplicate requests (>40%). This may happen due
to several screens may have one entity and thereby
annotators may use simple references. Other issues
included the need of screens with entities to collect
any data, lack of representation of different refer-
ence types within the collected data and lack of
awareness of ambiguous requests.

The quality and efficiency concerns led us to de-
velop a new protocol in the form of descriptive and
category level data collections. Within descriptive
collection, we use a similar screen based collection
technique. However we restrict to screens with
more than one instance of a category in order to
collect challenging and diverse requests (similar to
visual grounding datasets like RefCOCO). Along-
side the target entity, we highlight all entities of
that category to reduce chances of erroneous am-
biguous requests. Within category level collection,
we do not use screens and the focus is on unique di-
verse requests with simple references. This split ad-
dresses the issues described above leading to more
efficient collection and better quality datasets.
Descriptive Data Collection. Though we aim to
support references on all apps on phone, this col-
lection is carried out with web pages due to their
varied layouts and ease of access. For a list of top

visited web pages, we extract texts by UI scraping
and get text categories using data detectors. This is
similar to running object detectors in open scenes.
In order to get challenging references, we only keep
screens with more than one entity from a category
(eg. 2 URLs).
One entity on the screen is highlighted as target
and users are asked to provide requests for that
(Fig. 7b). Guidelines provided in A.2. For quality
check, we run a verification to confirm the requests
are unambiguous: three independent annotators
are shown the screen and the collected request and
asked which entity from the screen is the request
referring to. Samples where at least 2/3 annotators
agree are kept, leading to ∼6% data drop.

Category-level Data Collection. This collection
targets simple references for a category (“phone
number - Call that number”, “URL - Open it”).
During screen mining, we observe that a lot of the
screens have only one entity from a category. In
these cases, users may prefer succinct simple refer-
ences instead of descriptive ones. Note that these
references do not use the screen layout. Hence, we
design this collection independent of screens. This
gives a simpler collection scheme that allows us to
scale to new categories and/or locales more quickly,
with reduced time and cost.
We show a category and ask annotators to give
requests, assuming that entity is on their screen.
The collection is carried out on shared spread-
sheets, one sheet per category (Fig. 7a) in or-
der to avoid duplicate requests across annotators.
Annotators are given automatic instant feedback
by COUNT_UNIQUE to encourage variations.
Through pilot annotation projects, we recognize
several constraints to ensure that the uniqueness
is not from spurious modifications, which are also
added to the guidelines. Detailed grading guide-
lines provided in A.1. For verification, 3 indepen-
dent annotators are shown a request and asked to
mark all categories it could refer to. This also gives
annotated multi-label samples i.e. requests that
are category ambiguous: “take me there” could be
referring to a URL or an address. Requests with
majority agreement are kept. After the requests
are collected, dummy entities, one of each scoped
category, are added to each request to form a data
sample. In a way, this makes the dataset more com-
plete and challenging than real screens which may
include only a subset of the entity categories. (Fig.
4).

755



(a) Requests across categories. (b) # of entities on screens. (c) # of entities with same category as gt.

Figure 5: Histogram of various factors in the Descriptive Data

5 Models

5.1 Heuristic-based Baseline
This is designed for quick prototyping and devel-
opment without much training data. We define a
set of hand-crafted rules using keywords from a
subset of the training data. The rules are applied in
sequence:

1. Phrase-match. Look for synonyms or verbs
or apps in the request that indicate the target
category (like ‘number’, ‘call’ indicate phone
number, ‘navigate’, ‘maps’ indicate address).

2. Location-match. Regex match to find posi-
tional or ordinal reference in request, sort can-
didates by coordinates and pick the entity at the
mentioned position.

3. Label-match. Locate the text on screen that
has maximum match to the request using a set
of string matching features like word overlap
(after removing stopwords). Pick the entity clos-
est to this text.

4. If none of the entities are selected above (like
“Share this”), score all entities identically.

5.2 Screen Reference Resolver
We design SRR, a modular attention-based net-
work for resolving references (Fig. 6). Inspired
by MattNet (Yu et al., 2018), the model contains
3 modules, each of which use a subset of signals
from entities, use soft attention to attend to rele-

Category-level Descriptive
Train Test Train Test

Total requests 4137 486 7993 1082
Unique requests 4123 486 6520 957
Multilabel 934 126 0 0
Tokens per request 7.78 7.95 7.46 7.65
Tokens per reference 2.09 2.06 4.25 4.31
Screenshots - - 336 42

Table 1: Statistics for all requests in ScreenRef

vant tokens of the request, and compute relevance
scores for each entity with the request. We focus
on two key dimensions crucial for deploying in an
industrial setup- first, memory footprint; second,
reusing the existing components in the pipeline.

We re-use the request token embeddings gener-
ated by the upstream embedder (like Bert (Devlin
et al., 2018)) and the text categories recognized by
upstream. The embedded request passes through
the weight compute block, an MLP followed by
softmax, that predicts weights for each module.
A request like “call the top phone number” could
give high weight to location and category mod-
ules, while “call the one in Palo Alto” could give
higher weight to the text and category modules.
Embedded tokens also go to the module-specific
embedder where soft attention is applied on the to-
ken embeddings to get embeddings independently
for the category and location modules. For “call the
top phone number”, category module could attend
more to ‘call’ and ‘phone number’, while location
to ‘top’. Modules produce scores by fusing entity
features with these embeddings. Module scores are
combined using the module weights to get the final
score for each entity. Specifically, the final score is
wcat × scat + wloc × sloc + wtext × stext. Let us
understand the three modules.
Category module. Entity categories (phone num-
ber, URL etc) are embedded using the same em-
bedder as the request. These are pre-computed for
all categories. During runtime, given an entity and
a request, the embedding for the entity category
is loaded and matched with the request embed-
ding from the module specific embedder. Both are
passed through separate MLP blocks, followed by
an inner-product to compute the matching score.
Location module. This takes in bounding boxes
of the entity and of other entities of the same
category (similar to (Yu et al., 2018)). Bound-
ing boxes of entities [x, y, w, h] are normalized by
K = max(Iwidth, Iheight), preserving the aspect

756



Figure 6: Architecture for the Screen Reference Re-
solver. It uses the embedded request, embedded entity
category, location features and text matching features to
predict a matching score for the entity and the request.

ratio and featurised as:
[
x

K
,
y

K
,
x+ w

K
,
y + h

K
,
w ∗ h
K2

]

These features are concatenated and passed through
an MLP. Embedding from the module specific em-
bedder is passed through a separate MLP, and lastly
an inner product gives the module score.
Text module. We do not embed the screen texts but
instead use string matching features. This choice is
made for three main reasons. First, we observe in
the user study users typically use the text and not
synonyms of the text present on screen when mak-
ing references. Second, our entities of interest, like
numbers, emails, URLs make little sense to embed
due to their content and presence of OOVs. Third,
screens can have a large number of texts. Embed-
ding so many texts in run time could cause compute
overhead. Hence, instead of embedding, we utilize
the texts by designing simple features like: is the
text fully contained in the request, word overlap
after removing stopwords, digit overlap. Along
with matching the request to the entity text, we also
match with the entity’s neighboring texts (sorted by
distance). All features are concatenated and passed
through an MLP to get the module score.

Since the Category-level data has multi-label in-
stances (eg. ‘take me there’ could refer to a URL or
an address), we use a threshold (a hyperparameter
obtained from fine-tuning on val data as 0.7) to
get final predictions. We add intermediate super-
vision on the module weights by annotating ∼500
samples each for ordinal references (labelled for
high weight to location module), references using
visible text (text module), and simple reference
(category module).

Modular nature offers memory efficiency, giving
an option to skip running some modules which get
very low weights for a request. It also provides
flexibility for varied reference resolution use cases,
eg. scenarios with only entity categories available.
Note that SRR is only 1MB in size, does not need
access to DOM or view hierarchy and hence can
work on any screen, in fact any context where rec-
ognized texts are available, including documents.

6 Results

Experimental Setup. Data is split into
train/val/test in 80/10/10 ratio. To avoid data leak
in Descriptive data, we split the data by screens,
thus all requests for a screen are in one set. Table 1
summarizes the overall statistics for the dataset. We
randomly pick a negative sample for each positive
sample and use binary cross entropy loss and Adam
optimizer with an initial learning rate of 4× 10−4.
Metrics. We use two metrics to measure perfor-
mance. First, exact match accuracy indicates
whether the predicted entities, after applying the
threshold, exactly match the true entities (if an addi-
tional entity crosses the threshold or one of the true
entities doesn’t, exact match is 0). Second, top-1
error indicates whether the entity with the high-
est score, regardless of threshold, is in the ground
truth entities. This is useful as often only the top
prediction is used by downstream.
Results. We summarize the results in Table 2.

Dataset Model Top-1 Err. EM

Category- Heuristic 6.5 87.5
level SRR 1.1 89.9

Cat. Oracle 0.0 100
No text Oracle 0.0 100

Descriptive Heuristic 25.0 74.2
SRR 14.2 78.7
Cat. Oracle 54.0 0.0
No text Oracle 32.6 45.5

Table 2: Top-1 Error and Exact Match accuracy of var-
ious systems on ScreenRef. SRR reduces the relative
top-1 error by 83% on category-level data and 43% on
Descriptive data compared to the heuristic baseline. Cat-
egory Oracle predicts all entities of the true category.
Exact Match going from 100 to 0 and top-1 error from
0 to 55 between the two subsets shows how they differ
by design. No text Oracle knows all simple and ordinal
references but not the text values.
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Modules in SRR
Category Location Text Top-1 Error

✓ ✓ ✓ 14.2
× ✓ ✓ 31.2
✓ ✓ × 33.7
✓ × ✓ 35.3
× ✓ × 49.7
× × ✓ 51.5
✓ × × 54.9

Table 3: Ablation Study results for the different mod-
ules in SRR namely category, location and text modules.
Top-1 Error on the Descriptive data is reported. The
observed loss in performance across all subsets under-
scores that all modules are critical for achieving high
performance.

Observe that the performance on Category data
is higher than on the Descriptive data, indicating
the challenging nature of the latter. SRR reduces
the relative top-1 error by 43% on Descriptive and
83% on Category-level data compared to the base-
line. The oracles know the true category hence get
perfect results on category-level data. Their low
performance on Descriptive reflects the importance
of all inputs, particularly screen texts. We carry out
an ablation study on the model (Fig. 3). It shows
that each attribute and thus each module is critical
in understanding the references.

7 Conclusion

We explore a new user experience of executing
actions on screen elements with Voice Assistants.
To make interactions more natural, we explore the
use of references. An important decision was what
UI elements to support. We decided to use texts that
are most commonly used for task oriented dialogue
and, commonly present on phone screens and easy
to classify. We collected a dataset of requests and
proposed solutions to understand references. This
is a step towards making Voice Assistants more
context aware, but there is a lot more context. We
hope that our work will motivate further research
towards this goal, and towards semantic visual text
referencing.

Limitations

Our work explores a dimension of context under-
standing by Voice Assistants but it is only a small
step. Firstly, we only consider 5 categories, while
screens have a myriad of other texts and visual

content. We do not include image context into our
reference understanding models. But users could
use them when formulating references to texts near
them. Using image captions or some pixels would
improve coverage. Our system leverages entities
extracted by upstream and hence is bounded by
the performance of that. Also our model evaluates
each entity separately while there may be benefit
in considering the entire screen holistically.

Ethics Statement

This work aims at improving user experiences with
voice assistants. By allowing users to refer to enti-
ties on screen, it reduces user friction and enables
a smoother and more natural experience. No voice
assistant usage log data was used and all requests
were collected by recruited annotators.
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A Appendix

A.1 Annotation Guidelines for Category Level
Request Collection

In this project, you will be shown an entity category
(phone number, url etc). Assume you see a partic-
ular instance of that entity on your screen. You
have to come up with various requests you would
say to a Voice Assistant to perform action on that.
The main idea is to provide varied natural ways of
interacting with that entity. The request should be
one which holds valid when looking at different
kinds of images containing that entity.

Consider you see that entity on the screen. Do
not assume any other information about that entity,
like what digits occur in the number or what place
is the address for (note to readers - such references
are the focus of the unambiguous request collection,
hence skipped here).

• Take me to the California address - Incorrect

• Call the number ending in 99 - Incorrect

• Take me to COUNTRYNAME address - In-
correct

• Call COMPANYNAME number - Incorrect

1. You are encouraged to use varied request for-
mulations with different ways of referring to
the entity as well as carrying out different ac-
tions on that entity. Example - Phone number

• place a call to that phone number
• dial this number
• add this to my contacts
• remind me to call here at 5
• send this to PERSON on text message

2. Constraints to follow -

(a) Enter requests only in column 1 and do
not change the values in column 2 in any
way.

(b) The number in the second column re-
flects the number of unique requests so
far.

i. When you enter a request and
the number does not increase, this
means that request is already present.
CHANGE the request.

ii. When you enter a request and the
number in column 2 increases by
1, you have successfully entered a
unique request. Move to the next
row.

(c) Do not make minor irrelevant varia-
tions. Replace proper nouns with upper-
case tags like “PERSON”, “COMPANY-
NAME”, “DAY”.

i. Incorrect -
• send this to Mom on text message
• send this to Dad on text message
• send this to John on text message

ii. Correct -
• send this to PERSON on text mes-

sage
• share the number with PERSON

(d) Use only lowercase letters in the re-
quest, apart from the proper noun re-
placements with all uppercase tags (PER-
SON, COMPANYNAME etc). Use these
only in a way that one can replace them
with any name without knowing the ac-
tual screen. The request should hold
valid for a variety of different screens
containing phone numbers.

i. Incorrect - Send this to PERSON-
NAME on text message - first letter
should be small

ii. Incorrect - copy PERSONNAME’s
number - assumes you see PERSON-
NAME

iii. Correct - send this to PERSON-
NAME on text message

iv. Correct - send PERSONNAME’S
number to this number - here PER-
SONNAME can be any person in
your contacts.
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(e) No fullstops after the request. 1. Incor-
rect - call this. 2. Correct - call this

(f) No trailing or leading whitespaces
should be added.

(g) Assume you see the entity in front of
you. Target the request to ask a VA to
act on the entity type mentioned. Do not
just add the entity type in the request
randomly. Do not assume anything more
about what you see. Invalid requests -

• tell me the number that just called
me - the request is not about a phone
number you are seeing - “did I just
receive a call from that number” is a
valid request

• is PERSON’s number in my missed
calls - the request is not about a num-
ber you are seeing - “is this number
in my missed calls” is valid

• get rid of COMPANYNAME’s num-
ber - You may not be seeing a com-
pany name- get rid of their number is
valid

(h) Use varied ways to refer to the enti-
ties. For instance, for ‘phone num-
ber’, You can use generic references like
“this”, “that” as well as phrases including
“phone number”, “contact number” etc.

• call that
• call this contact number
• call them
• call this number

(i) You need not explicitly use the phrase
mentioning the entity type always, spe-
cially if the intent conveys that. Example
- Email address

• draft a mail to this
• draft them a mail

(j) Use varied ways of referring to the entity
• generic phrases - this/that/it/them/....

etc
• specific phrases - email/email ad-

dress/address/contact/... etc

A.2 Annotation Guidelines for Unambiguous
Request Collection

Overview The goal of this task is to generate a
variety of requests for text in a screen. The requests
should be queries or requests you would make to

(a) Category Level Data Collection: First, annotators are
asked to provide category level requests in a spread sheet (Left).
Column2 of the sheet reflects the unique count so far, which
encourages varied requests for a diverse dataset. We define
constraints in the guidelines so that variations are not spurious
changes. Second, annotators are asked to verify the collected
requests to capture entity level ambiguity (Right). 3 annotators
are asked to verify each collected request.

(b) Unambiguous Data Collection: First, annotators are shown
a screen with multiple instances of a category (Left). One
is highlighted in a green box, while others in red boxes as
initially annotators tended to provide ambiguous references. An
annotator provides 3 different requests with references. Second,
the correctness of a request is verified by showing the screen
and request (Right). 3 annotators are asked to mark the referred
one.

Figure 7: Unambiguous and Category level Data collec-
tions protocols.

a voice assistant, based on the text. You will be
shown a screen with a green bounding box around
specific text. You will need to:

Write three uniquely referential requests
about the marked text for a voice assis-
tant

A.2.1 Green vs. Red Boxes
Screens will contain green and red boxes. The
green box contains the text for which you need to
write the requests. The requests for the text within
the green box need to uniquely identify it. Red
boxes mark the texts that are similar to the text
within the green box. For example, if an image has
three phone numbers, the red box will capture the
other two phone numbers. Do not write requests
for the text within the red box. They are intended to
serve as a guidance so that you don’t miss them out
and ensure you write uniquely referential requests
for the text within the green box.
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A.2.2 Request Guidelines
Imagine you are viewing that screen on your phone,
and were to ask a voice assistant about that text you
came across. What would you ask the voice assis-
tant regarding the text that you could not gather
just from looking at it? What additional actions
or requests would you ask the voice assistant to
execute in relation to the text that can be carried
out on your mobile device?

Keep in mind the following:

• Unique: Each request will require a refer-
ring expression that uniquely identifies the
detected text.

• Require a voice assistant’s help: Requests
should not be questions that a user can an-
swer simply by looking at the text. Example:
“Does this phone number contain 007 at the
end” is invalid.

• Mix it up: Requests can be a mix of ques-
tions about the text or action commands to be
executed on the text.

• Sound natural: Come up with requests that
would sound natural, coming from a user. Ver-
bally say the request out loud to ensure it
sounds natural and not too long.

• Make sense for a user to request a VA: Think
about whether the request would make sense
for a user to request, based upon the text
type/context of the screen, and what a user
would usually do on a device with that infor-
mation.

Uniquely Referential Use references that ensure
the request uniquely identifies the marked text. All
3 requests for a particular text need to be uniquely
referential. Use varied actions and request types.
Do not use the same reference across the requests.
Remember that the request needs to be uniquely
referential, not just with other similar texts marked
in red, but also with all content within the screen.
Example errors:

• Too General:

1. Call that
2. Text it to John
3. Save that to my notes

• Same references for all 3 requests:

1. Call the third number
2. Share the third number
3. Copy the third number to my notes
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Abstract

Customers interacting with product search en-
gines are increasingly formulating information-
seeking queries. Frequently Asked Ques-
tion (FAQ) retrieval aims to retrieve common
question-answer pairs for a user query with
question intent. Integrating FAQ retrieval in
product search can not only empower users to
make more informed purchase decisions, but
also enhance user retention through efficient
post-purchase support. Determining when an
FAQ entry can satisfy a user’s information need
within product search, without disrupting their
shopping experience, represents an important
challenge. We propose an intent-aware FAQ
retrieval system consisting of (1) an intent clas-
sifier that predicts when a user’s information
need can be answered by an FAQ; (2) a refor-
mulation model that rewrites a query into a nat-
ural question. Offline evaluation demonstrates
that our approach improves Hit@1 by 13% on
retrieving ground-truth FAQs, while reducing
latency by 95% compared to baseline systems.
These improvements are further validated by
real user feedback, where 71% of displayed
FAQs on top of product search results received
explicit positive user feedback. Overall, our
findings show promising directions for integrat-
ing FAQ retrieval into product search at scale.

1 Introduction

Product search engines help users find relevant
products across large product catalogues and
generate sales revenue for e-commerce compa-
nies (Grover and Teng, 2001). While such en-
gines are primarily designed to handle keyword
searches for products, customer behavior has
been changing with an increase in users asking
information-seeking service or product related
questions (Carmel et al., 2018; Gao et al., 2019).
However, most product search engines are not
effective at handling non-product search related
queries (e.g., “return a package"). Providing cor-
rect answers to these Frequently Asked Questions

Product 1

apple tv bluetoothQuery

 Question: How do I connect a Bluetooth device to my Apple TV?
 Answers:  On your Apple TV, go to Settings > Remotes and Devices >   
          Bluetooth. Your Apple TV will search for nearby Bluetooth      

    accessories. 

FAQ
Result

Product 2 Product 4

Product 5 Product 6 ...

Product
Search
Results

Is this answer helpful?

Product 3

Product 7

Figure 1: Our proposed aggregated search interface that
jointly displays top-1 FAQ and product search results
for queries with question intent.

(FAQs) (Gupta and Carvalho, 2019; Mass et al.,
2020) is essential to provide a positive pre- and
post-purchase experience, which can lead to im-
proved user retention and trust.

Product search and FAQ retrieval are typically
powered by independent retrieval systems. This
separation is often due to the challenges in com-
bining multiple answering sources (e.g. product
details and FAQs) into a holistic retrieval applica-
tion (Park et al., 2015; Christmann et al., 2022).
Furthermore, determining what answering source
can satisfy the user’s information need is challeng-
ing to perform at scale.

Hence, e-commerce websites tend to isolate FAQ
search functionality from product search. For ex-
ample, Apple offers vertical search where users
are required to navigate among different tabs (e.g.,
product search, support, store location).1 Such
designs require users to navigate multiple links,
which can lead to increased user effort and unsat-
isfactory shopping experiences (Siraj et al., 2020;
Nain and Awasthi, 2021; Su et al., 2018). There-
fore, we propose to integrate FAQ retrieval into
a product search engine, so that users can search
products and access FAQs seamlessly from an uni-
fied search interface.

1
https://www.apple.com/us/search/apple-tv-bluetooth
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A potential solution is aggregated search, which
refers to the task of searching and assembling in-
formation from a variety of sources and presenting
them in a single unified interface (Murdock and Lal-
mas, 2008; Wan et al., 2008; Lu et al., 2012). The
main challenge here lies in determining when and
how information from multiple verticals should be
presented effectively and efficiently.

When to Show FAQ Results? Query intent is
inherently ambiguous (Krovetz and Croft, 1992;
Song et al., 2007; Sanderson, 2008). Figure 1 illus-
trates an example where the users can use the same
query “apple tv bluetooth” to retrieve products, or
find information about Bluetooth connectivity. In
the latter case, the query is intended to express the
question, “How do I connect a Bluetooth device to
my Apple TV?”. We define a query that can be an-
swered by an FAQ entry as having question intent.
It is important to note that a query with question in-
tent may also have product search intent, as queries
can be inherently ambiguous.

Determining when a user query can be answered
by either product or FAQ search is tightly coupled
with predicting the user’s information need. Due
to query ambiguity, displaying answers from FAQ
sources for all searches causes high false positive
rates, due to the lack of question intent by the user.

Our analysis (cf. §5.1) from a leading e-
commerce site shows that if FAQs would be shown
to all queries, 98% of the FAQs would be irrele-
vant to user’s needs. As users mostly use product
search for shopping, injecting FAQ results that are
irrelevant or not needed causes significant friction
in the user experience. Furthermore, performing
FAQ retrieval for every query is inefficient (Tsur
et al., 2016) since only a small portion of traffic has
question intent (White et al., 2015).2 While we can-
not disclose the intent distribution of our data for
reasons of confidentiality, question intent represent
a minor portion of the overall query traffic.

To address the problems above, we train an intent
classifier that distinguishes when a query has ques-
tion intent, and thus, can be answered by an FAQ
source. In mixed retrieval scenarios, this allows
us to trigger FAQ retrieval and show FAQ results
only for queries with question intent, causing less
friction for users. In terms of efficiency, running
FAQ retrieval only on question intent queries signif-
icantly improves latency. Our experiments validate

2In the case of the Bing search engine only 10% of queries
were shown to have question intent.

that deploying intent classifier brings a 95% latency
reduction compared to baselines without the intent
classifier. Lastly, we demonstrate that existing tech-
niques such as upsampling are enough to achieve
satisfactory performance in classifying question
intent in imbalanced traffic.

How to Show FAQ Results? When a search
query has question intent, an interface that jointly
displays product search and FAQ retrieval results
is required. As in prior work on aggregating web
search results (Diaz, 2009), we integrate the top-1
FAQ result alongside product search results, as il-
lustrated in Figure 1, for the following two reasons.

First, since product search is the core function-
ality of e-commerce search engines, majority of
the space is dedicated to the ranked product list. If
we consider additional modalities such as mobile
search, space constraints are even greater. Display-
ing more FAQ results comes at the cost of reducing
the number of product results, which can lead to
reduced revenue (Feng et al., 2007). Second, com-
pared to product search, where users are required
to compare multiple options, question intents gen-
erally require less exploration since users already
have a specific request in their mind.

Given the above reasons, we need to optimize
the FAQ retrieval system for high precision at the
top ranks (i.e., Hit@1). Queries are usually short
and consists of several keywords. To achieve a high
precision for FAQ retrieval, we propose to rewrite a
query with question intent into a more specific natu-
ral language question. This rewriting process aims
to make the queries semantically and syntactically
more similar to the questions found in FAQs than
the original queries, inspired by previous studies
of query reformulation (Zhao et al., 2011; Zheng
et al., 2011; Yu et al., 2020). Our experiments
validate that through query reformulation we can
achieve significantly higher accuracy in retrieving
ground-truth question at first rank (Hit@1) with
more than 13% improvement when compared to
using original queries for FAQ retrieval.

Contributions We summarize our contributions
in this paper as follows:

• To our best knowledge, this is the first work to in-
tegrate FAQ retrieval and product search at scale.

• Our proposed intent-aware FAQ retrieval ap-
proach is a practical solution that significantly im-
proves performance compared to baseline meth-
ods. Our approach achieves a 13% higher preci-
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sion in the top-ranked results (Hit@1) and is 95%
more efficient than baseline methods.

• To evaluate our design from a user’s perspective,
we reviewed feedback from users who interacted
with a deployed version of our system. Results
showed that 71% of the rendered top-1 FAQ re-
sults (at the query level) received explicit positive
customer feedback when displayed along with
product search results.

2 Related Work

FAQ retrieval. The problem of FAQ retrieval has
been extensively studied. Early methods (White-
head, 1995; Sneiders, 1999) rely on exact keyword
matching in FAQs. Karan et al. (2013) propose
to derive lexical features such as n-gram overlap
and TF-IDF similarity from a query-FAQ pair, and
use these features to train a SVM model to classify
whether the query is relevant to an FAQ. Karan and
Šnajder (2016) combine the scores from BM25,
and a classical vector space model to rank the
FAQ based on its semantic similarity to the query.
More recently, deep learning methods have been ap-
plied to FAQ retrieval. Gupta and Carvalho (2019)
adapt a sentence matching model (Wang et al.,
2017) based on bidirectional LSTM to aggregate
question-to-query and question-to-answer similar-
ities. Building on the success of BERT in NLP
tasks, Sakata et al. (2019) and Mass et al. (2020)
have adopted BERT to rank answers or questions
of FAQs using user queries.

However, all of the experiments from early work
assume that the FAQ retrieval system is deployed
independently and all input queries have a ques-
tion intent. In our work, we evaluate our proposed
search interface in a more realistic setting by sim-
ulating search traffic queries with both product
search and questions intents (with significant im-
balance). We argue that this setting is more suitable
for studying the benefits of aggregated search inter-
faces (Murdock and Lalmas, 2008) in large-scale
e-commerce businesses.
Keyword-to-Question Generation. Generating
questions from search queries is an example of
query rewriting that is first used in community-
based question answering websites (e.g., Yahoo!
Answers, and Quora) to retrieve related ques-
tions. Zhao et al. (2011) propose a template-based
method to rewrite keyword-based queries into ques-
tions by first extracting a set of query-question

pairs from search engine logs. Then for each in-
put query, the most relevant templates are retrieved
to generate questions. A similar method is pro-
posed by Zheng et al. (2011), but the difference
is allowing users to refine the generated question
with generated refinement keywords. Ding and
Balog (2018) use a statistical model to synthesize
keyword-question pairs which are then used to train
a neural model (Gu et al., 2016). However, the
synthesized queries are noisy and additional filter-
ing mechanism has to be used to improve perfor-
mance. Recently, Iovine et al. (2022) proposed
a bidirectional keyword-question rewriting model
that leverages non-parallel data through cycle train-
ing. Their experiments showed that sequence-to-
sequence text generation models can perform the
keyword-to-question task with high accuracy, and
improve retrieval results in various scenarios.

Inspired by earlier keyword-to-question genera-
tion approaches, we utilize the state-of-the-art gen-
eration models to reformulate keyword queries into
questions for FAQ retrieval. Experiments show that
our reformulation model trained from human anno-
tated query-question pairs significantly improves
Hit@1 by 13% compared to using original query.

3 Method

Our intent-aware FAQ retrieval approach, shown in
Figure 2, consists of two main components: (1) an
intent classifier that takes a user query as input and
determines whether it has question intent and can
be answered by an FAQ; (2) a query reformulation
model which reformulates queries with question
intent into a natural language question that is used
for FAQ retrieval. Regardless of query intent, the
product search is always performed.3

3.1 Question Intent Classification

Unlike prior work on FAQ retrieval, we do not as-
sume that all input queries have question intent.
Instead, we train a binary intent classifier that takes
an input query and predict its intent into: (1) non-
question intent; (2) question intent. The intent
classifier corresponds to a fine-tuned RoBERTa
model (Liu et al., 2019) trained for the binary clas-
sification task. To handle class imbalance, we over-
sample the minority class (question intent) to ap-
proximate a balanced class distribution.

3Product search is beyond the scope of our work.
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Question Intent
Classifier

Product Search

Reformulation FAQ Retrieval

Query:
apple tv

bluetooth

Yes

How do I connect a Bluetooth
device to my Apple TV?

Rewrite Top-1 FAQ Result 

Search Result Page

Product Ranking Results

Figure 2: An overview of our proposed intent-aware FAQ retrieval approach. While product search is performed by
default, FAQ retrieval is triggered only for queries with question intent.

3.2 Query Reformulation
Once a query is classified as having question in-
tent, the query is reformulated into a natural lan-
guage question. We train a sequence-to-sequence
Transformer model (Vaswani et al., 2017) that re-
formulates the query into a question. The natural
language question is used for FAQ retrieval, which
are discussed in details in §4.1. The assumption
behind our method is that generated questions are
syntactically closer to FAQ questions than the orig-
inal keyword queries, which can bring additional
improvements in FAQ retrieval.

3.3 Proposed Intent-Aware FAQ Retrieval
As illustrated in Figure 2, once a query is identified
with question intent and is reformulated into a natu-
ral language question, the FAQ retrieval component
takes it as input and returns the top-1 FAQ result.
If a query does not contain a question intent, we
do not initiate the FAQ retrieval process and only
return product search results.

Our retrieval component ranks FAQ results
solely based on questions, without utilizing the
associated answers. The rationale behind this is
that a well-reformulated question should closely
match the ground-truth question of an FAQ entry,
allowing a simple ranking component to accurately
position the correct FAQ at the top position using
only the question as input. We claim that our intent-
aware FAQ approach can satisfy users’ information
needs whether they are looking for FAQs, qual-
ified products, or both, and therefore provides a
more convenient pre-purchase and post-purchase
experience.

4 Experimental Setup

In this section, we first discuss datasets used, fol-
lowed by implementation details of retrieval base-
lines, experimental settings and evaluation metrics.

4.1 Datasets

Intent Classification Dataset As the majority of
search queries issued to e-commerce websites are
focused on product search, annotations on random
samples of queries yield only a tiny fraction of
queries with question intent. This is not suitable for
our needs, as we require a training set that includes
a balanced distribution of intents. This challenge is
addressed by applying several cycles of (1) training
an intent classifier; (2) generating predictions on
a set of unseen queries; (3) select question-intent
queries with high probability (>0.9) for the next
annotation; (4) correct model predictions through
human annotations.

For the first cycle, when human annotations
were not yet available, we utilized an existing key-
word extraction algorithm (RAKE) (Rose et al.,
2010) on a publicly available product question cor-
pus (Rozen et al., 2021) to generate pairs of (ques-
tion, query with question intent). For example,
given a product question "How do I connect a Blue-
tooth device to my Apple TV" , we can extract
keywords "connect Bluetooth device Apple TV" as
the corresponding query with question intent. For
queries with shopping intent, we randomly sampled
queries from our traffic and applied a simple filter
(e.g., removing queries that start with a question
word). Based on these initial training samples, we
prototyped our first model and improved it through
subsequent human annotations. More details on
intent classifier training are summarized in §4.2.

Overall, our annotations resulted in 18,972
queries including 5,562 question-intent queries and
13,410 non-question queries. We allocate 50% of
the data as the training set, 25% as the validation
set, and the remaining 25% as the testing set. Note
that since there are multiple cycles of training and
annotation, the distribution of intent in this set does
not reflect the distribution of the real traffic.
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Query Reformulation Dataset From the intent
classification dataset, we randomly sample 1,500
question intent queries from the training set and
500 question intent queries from the testing set.
For each query, we ask annotators to reformulate
it into a natural language question. The resulting
1,500 query-question pairs form the training set
is used for training reformulation models, while
the remaining 500 pairs are divided evenly into
validation and testing sets.

FAQ Corpus For FAQ retrieval, we annotate
each query in the query reformulation test set with
a ground-truth FAQ, ensuring full coverage for the
test set in our experiments.4

4.2 Implementation Details for Our Method
Intent Classifier We fine-tuned RoBERTa large
model (Liu et al., 2019) on the intent classification
dataset (cf. §4.1). Due to significant class
imbalance, we upsampled (with repetition) the
question-intent queries until balanced distribution
of intents are satisfied (we cannot disclose the
exact sampling ratio). Standard cross entropy (CE)
loss is adopted. This model is trained for 8 epochs
with 2e-6 learning rate and 256 batch size, which
is distributed evenly on 8 NVIDIA K80 GPUs.
We use Adam as our optimizer and early stopping
(patience = 10) is used to prevent overfitting.

Reformulation Model We train two reformulation
models using BART-base (Lewis et al., 2019) and
T5-base (Raffel et al., 2020), respectively. Both
models take a user query with question intent as in-
put, and output its reformulated question. The CE
loss is adopted to train the models by maximizing
the likelihood of generating the human’s reformu-
lation. This model is trained for 10 epochs with
1e-5 learning rate and a single Tesla A100 GPU.
We use Adam as our optimizer, and batch size of
16. The training is halted using early stopping
(patience = 3). All intent classifier and reformula-
tion models are implemented using HuggingFace.5

4.3 Implementation Details for FAQ Retrieval
We evaluate our approach for FAQ retrieval on the
following ranking models of different complexity:

BM25 (Robertson et al., 2009) We use BM25
as an unsupervised FAQ retrieval model. All the

4We cannot disclose the performance on the full internal
FAQ database.

5
https://huggingface.co/

FAQ questions are indexed using Lucene.6 For a
user query, we retrieve top-50 documents based on
BM25 scores regardless of the query intent. It is
possible that some queries with non-question intent
may not return any results.

SentTrans (Reimers and Gurevych, 2019) We
adopt a sentence encoder model7 that is trained on
Google’s Natural Question corpus (Kwiatkowski
et al., 2019) to compute the similarity between
queries reformulations and FAQ questions. For
retrieval, we rank FAQ questions based on their co-
sine similarity against either the query or its rewrit-
ten question.

BERT (Devlin et al., 2019) We fine-tune a point-
wise ranker using BERT on our query reformula-
tion dataset to rank a query against all FAQs. For
a query, we treat the ground-truth reformulation
as the positive sample and randomly sample 100
reformulations of other queries as negative sam-
ples. Finally, the FAQ questions are ranked based
on the classification score w.r.t the query. Hinge
loss function is applied to train the model for 10
epochs with a batch size of 25.

BERT-Rerank (Dai and Callan, 2019) Directly
ranking all FAQs with BERT is computationally
expensive. A more efficient approach is to rerank
the top-k results of BM25 using BERT. In our ex-
periments, we test k with 10 and 50.

4.4 Simulating Intent Classification with
Retrieval Baselines

Although the FAQ retrieval approaches discussed
in §4.3 were not originally designed for intent clas-
sification, we include them as baselines to approxi-
mate false matches on real traffic. Specifically, we
evaluate the probability of FAQ results shown to
users who do not have the intent of seeking FAQs
(reflected by precision), as well as the likelihood of
FAQ results not appearing for users who are specif-
ically searching for FAQs (reflected by recall), in
the presence and absence of our intent classifier.
For BM25, we consider a query to have question
intent if it meets both requirements:

1. The number of returned FAQ results is more
than a threshold x;

2. BM25 score of the top-1 result is larger than
a threshold y.

6
https://lucene.apache.org/

7
https://www.sbert.net/docs/pretrained-models/nq-v1.html
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By default, we set x = 1 and y = 0, which
means at least one FAQ is returned for a question
intent query. To obtain optimal BM25 results, we
use the validation set for fine-tuning the thresholds
(x = 40, y = 5). Similarly for SentTrans, we
find the optimal cosine similarity threshold (0.6)
based on the validation set, and classify queries
with question intent if an FAQ is retrieved above
the threshold.

4.5 Evaluation Metrics
To measure the intent classification performance,
we report results on precision, recall and F1. We
report mean reciprocal rank (MRR) and Hit@1 to
evaluate the FAQ retrieval performance. Hit@1 is
the most critical metric since only the top-1 re-
trieved FAQ result will be displayed to users.

5 Experiments and Results

We study the following research questions:

RQ1: How much does using the question intent
classifier as a filtering step benefit the inte-
grated FAQ retrieval pipeline?

RQ2: How effective is query-to-question reformu-
lation for FAQ retrieval?

RQ3: How efficient is our intent-aware FAQ re-
trieval approach when integrated with a
product search engine?

5.1 Question Intent Classification
The intent classifier determines when to trigger
FAQ retrieval and display the FAQ results along-
side the product search results. Table 1 shows the
evaluation results on intent classification. For rea-
sons of confidentiality, we report results as relative
differences with the baseline method (BM25). The
details on approximating precision and recall for
baselines are summarized in §4.4. Since the evalua-
tion set is highly imbalanced, BM25 has the lowest
F1 score with the majority of queries being classi-
fied as question intent queries, leading to extremely
high recall and low precision. Even with optimal
thresholds, BM25 obtains only an F1 score that
is 48% lower than our method. Although Sent-
Trans outperforms BM25, it still falls significantly
behind our method. To answer RQ1, intent classi-
fier improves precision by 26% and recall by 51%
compared to the strongest SentTrans baseline.

These results indicate that question intent clas-
sifier is required because other baselines cannot
effectively distinguish queries with question intent.

Methods Precision Recall F1

BM25 0.00 0.00 0.00
BM25 (Optimal) +0.41 -0.60 +0.36
SentTrans (Optimal) +0.54 -0.54 +0.46
Our Method +0.80 -0.03 +0.84

Table 1: Results of question intent classification. Scores
are relative to BM25.

Retrieval Model Input Query Type MRR Hit@1

BM25
Original 0.00 0.00
Reformulation (BART) +0.07 +0.10
Reformulation (T5) +0.11 +0.17

SentTrans
Original +0.01 +0.01
Reformulation (BART) +0.08 +0.12
Reformulation (T5) +0.13 +0.19

BERT (pointwise)
Original +0.02 +0.02
Reformulation (BART) +0.04 +0.06
Reformulation (T5) +0.07 +0.09

BERT-Rerank (top-10)
Original +0.05 +0.07
Reformulation (BART) +0.10 +0.15
Reformulation (T5) +0.14 +0.20

BERT-Rerank (top-50)
Original +0.08 +0.08
Reformulation (BART) +0.10 +0.13
Reformulation (T5) +0.14 +0.19

Table 2: Results of FAQ retrieval by different retrieval
models and query types. Scores are relative to BM25
using the original queries.

5.2 FAQ Retrieval
For each retrieval system being compared, there
are three input types: (1) original query, (2) BART
reformulated query, and (3) T5 reformulated query.
Table 2 summarizes the FAQ retrieval results. Sim-
ilar to Section 5.1, we only report numbers relative
to the BM25 baseline where original queries are
used (first row in Table 2).

First, we observe that using the reformulated
query improves the performance of all FAQ re-
trieval systems in terms of MRR and Hit@1, which
answers RQ2. T5 query reformulations consis-
tently show better results than BART query refor-
mulations. Even for the most competitive BERT-
Rerank baselines, T5 can further improve Hit@1 by
more than 10%. The results indicate that our refor-
mulation method has the advantage of improving
the precision at top ranks. Although our reformu-
lation models are not designed to generate exact
questions from FAQs,8 they generate questions that
are sufficiently similar to the FAQs in our corpus.
As a result, they significantly improve the retrieval
performance.

8This is a challenging annotation task because workers
must match queries against our entire FAQ corpus.
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Second, Table 2 shows that reformulations al-
low BM25 to achieve comparable results with
strong BERT-Rerank baselines. Notably, BM25
with T5’s reformulated queries outperforms two
BERT-Rerank baselines using the original queries.
Yet, when using T5’s reformulations, BERT-Rerank
(top-10) achieves the best MRR and Hit@1 among
all methods, outperforming the original query by
13% in Hit@1, and 9% in MRR. Considering the
model’s complexity, the combination of BM25 and
the reformulation method is a promising FAQ solu-
tion in industry settings.

5.3 Efficiency Comparison

An important consideration in industry settings is
the efficiency of the proposed solution. We as-
sess the impact of our proposed solution in terms
of computational cost. As BERT Rerank (top-10)
with T5 reformulation yields the best results, we
compare its inference time with and without an in-
tent classifier. We measure the speed on a single
p3.8xlarge instance,9 with a batch size of 16.

Table 3 shows the inference time10 normalized
by the baseline that does not use an intent clas-
sifier. For RQ3, our proposed intent-aware FAQ
retrieval system that reranks top-10 results using
BERT and T5 reformulations can save on average
95% of inference time, which is a significant ben-
efit for real-world applications. We also observed
that despite adding an extra layer of inference from
reformulation model, the increase in latency is neg-
ligible since majority of queries are already filtered
out and only a small fraction of queries are refor-
mulated.

Pipeline Query Inference Time
BERT-Rerank (top 10) Original 1.0

Ours
Original 0.0404 (↓95.96%)
Reformulation (BART) 0.0446 (↓95.54%)
Reformulation (T5) 0.0461 (↓95.39%)

Table 3: Inference speed comparison on full query traf-
fic (including question intent and non-question intent
queries) with and without intent classifier. The infer-
ence time is normalized based on the time taken by the
method that does not utilize an intent classifier.

6 Online Deployment

Our intent-aware FAQ retrieval solution is deployed
and integrated into the product search interface of

9
https://aws.amazon.com/ec2/instance-types/

10The raw inference time cannot be disclosed.

a leading global e-commerce website. The live ver-
sion uses a much larger FAQ corpus than the ones
used here. When FAQ results are displayed, we
collect optional explicit user feedback on whether
the answer is helpful or not, as demonstrated in
Figure 1. Over one month of traffic was collected
from the US marketplace, showing that 71% of
the rendered FAQ results received explicit positive
customer feedback. The feedback results were ag-
gregated at the query level, allowing each query
to receive multiple positive feedback responses.
These findings demonstrate that our practical solu-
tion is not only effective in offline evaluation, but
also helpful to real users.

7 Conclusion

We proposed to integrate FAQ retrieval with prod-
uct search to address challenges in aggregated
search from an e-commerce perspective. Our ap-
proach first classifies queries with question intent,
which then reformulates into natural language ques-
tions that are used to retrieve FAQs. Offline exper-
imental results show that on the best-performed
FAQ retrieval system (i.e., BERT-Rerank (top 10)),
the proposed intent classifier saves a substantial
amount of inference costs (95%) and also improved
retrieval performance through query reformulation
by 13% on Hit@1. These improvements are also
reflected in online evaluation: over one month of
user feedback demonstrated that about 71% of the
rendered FAQ results were considered to be helpful.
Overall, the findings in this work suggest promis-
ing directions for e-commerce platforms to sup-
port FAQ retrieval at scale without disrupting cus-
tomer’s shopping experience.

Limitations and Future Work

One limitation of our approach is that we do not
display or rank multiple reformulations. It is possi-
ble that a query can be reformulated into multiple
possible questions. For example, the query “apple
tv bluetooth” can be reformulated into “How do
I connect a Bluetooth device to my Apple TV” or
“Does apple TV support Bluetooth”. In our future
work, we aim to explore the integration of multiple
reformulations into the FAQ retrieval process to fur-
ther enhance the overall user experience. Another
limitation is that we do not train an end-to-end FAQ
retrieval model. In the future, we plan to train the
FAQ retrieval model using the reformulations so
that the original query can directly be used.
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Abstract

Image ad understanding is a crucial task with
wide real-world applications. Although highly
challenging with the involvement of diverse
atypical scenes, real-world entities, and rea-
soning over scene-texts, how to interpret im-
age ads is relatively under-explored, especially
in the era of foundational vision-language
models (VLMs) featuring impressive general-
izability and adaptability. In this paper, we
perform the first empirical study of image ad
understanding through the lens of pre-trained
VLMs. We benchmark and reveal practical
challenges in adapting these VLMs to image
ad understanding. We propose a simple fea-
ture adaptation strategy to effectively fuse mul-
timodal information for image ads and further
empower it with knowledge of real-world enti-
ties. We hope our study draws more attention
to image ad understanding which is broadly
relevant to the advertising industry.

1 Introduction

As advertisements play an integral role in hu-
man society, image ad understanding has many
real-world applications such as ad targeting (Hus-
sain et al., 2017), visual metaphor understanding
(Abokhoza et al., 2019) and creative ad genera-
tion (Chilton et al., 2019; Akula et al., 2022). It is
also highly challenging due to several reasons, as
exemplified in Fig. 2. First, image ads consist of di-
verse visual elements including non-photorealistic
objects and atypical scenes synthesized creatively
that are beyond common academic datasets. Sec-
ondly, they involve knowledge of a large number
of real-world entities such as brands and products
where existing work (Su et al., 2018; Li et al.,
2022a) struggles to cover. Lastly, many adopt vi-
sual or multimodal rhetorics requiring reasoning
over diverse visual elements including scene-texts,
and sometimes even elude humans (Petridis and

˚ Work done in part during an internship at Google. Cor-
respondence to zjia@eng.ucsd.edu.

Figure 1: We propose to utilize external knowledge via
a brand understanding module and combine features of
different modalities via a lightweight attention-based
feature adapter to decode the correct messages of im-
age ads. The VLM baseline is confused and gives the
wrong one. All brand info is anonymized.

Chilton, 2019). However, image ad understanding
is relatively under-explored in the machine learning
community, especially in the presence of recently
developed foundational vision-language models
(VLMs) pre-trained using a tremendous number
of image and text description data.

The pre-trained VLMs are shown to have great
generalization capability, contain real-world knowl-
edge (implicitly), and can be adapted to a wide
range of downstream tasks in a data-efficient way
(Radford et al., 2021; Alayrac et al., 2022). It is
then natural to utilize VLMs for image ad under-
standing. In this paper, we perform the first empiri-
cal study of adapting VLMs to the task of decoding
the overall messages delivered by image ads, which
is usually formulated as visual question answering
(Hussain et al., 2017). Specifically, we examine
three popular pre-trained VLMs that are alignment-
based and are publicly available, namely, CLIP
(Radford et al., 2021), ALBEF (Li et al., 2021)
and LiT (Zhai et al., 2022). We examine zero-shot
performance as well as adaptation strategies and
reveal the practical challenges of applying VLMs
to image ads. We propose a simple feature adapta-
tion strategy that effectively utilizes VLM features.
We further propose to incorporate external brand
knowledge (real-world entities) that brings a signif-
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Figure 2: Example image ads with diverse visual el-
ements, atypical scenes and rhetorics to convey their
messages creatively. All brand info is anonymized.

icant performance boost.
Our contributions are three-fold. First, we em-

pirically find that the sheer scale of data & ca-
pacity of the model used in pretraining matters
the most for the performance of image ad under-
standing, partly due to VLM’s capability of stor-
ing real-world knowledge, which is not captured
well by the commonly used metrics for compar-
ing VLMs. Second, we reveal the practical chal-
lenges of adapting VLMs for image ad understand-
ing (i.e., overfitting to the limited training data &
supervision signals and high computation burden
of hard negative mining) and propose a simple solu-
tion (attention-based feature adaptation) that better
leverages VLM features than previous adaptation
strategies. Lastly, we propose to leverage exter-
nal knowledge for brand understanding that we
have empirically shown to further enhance image
ad understanding. Together with the aforemen-
tioned adaptation strategy, we call our approach
knowledge-augmented feature adaptation (KAFA).

2 Related Work

Image Ad Understanding Learning to automat-
ically interpret image ads was proposed by the Pitt
Image Ads Dataset (Hussain et al., 2017), where
each ad is annotated by a caption that answers
“what should I do according to the ad and why?”
Different from traditional image captioning, this
task is highly non-trivial as discussed at the be-
ginning of Sec. 1. While prior methods utilize
cultural connotations via external symbolic knowl-
edge (Ye and Kovashka, 2018), capture relations
between scene-texts and objects by GNNs (Dey
et al., 2021), and leverage pre-trained language
models to combine multimodel information (Kalra
et al., 2020), none have exploited vision-language
models (VLMs) and the knowledge of real-world
entities (i.e., brands). Besides the wide applications
in the ad industry, later work hints that the study

of image ads is relevant to much broader research
topics (Singh et al., 2019; Akula et al., 2022).

Foundational Alignment-based VLMs A re-
cent surge of collections of tremendous images
paired with text descriptions (Schuhmann et al.,
2022) enables alignment-based pretraining (i.e.,
contrastive learning) of foundational VLMs that are
efficient zero-shot or low-shot learners for down-
stream tasks. By learning to embed images and
texts into a shared semantic space, they handle
domain variations in an open-vocabulary manner
(which involves real-world knowledge). Among
these are CLIP (Radford et al., 2021), ALIGN (Jia
et al., 2021), LiT (Zhai et al., 2022) and BASIC
(Pham et al., 2021). Another line of work further
adopts masked language modeling, image caption-
ing loss, and object-level alignment, e.g., ALBEF
(Li et al., 2021), Florence (Yuan et al., 2021), CoCa
(Yu et al., 2022) and GLIP (Li et al., 2022b).

Transfer Learning of VLMs Transfer learning
of VLMs has become popular with the zero-shot
performance of CLIP in image classification tasks.
A direct approach is to (partially) fine-tune the
VLMs with (optionally) additional neural networks
tailored for downstream tasks, e.g., TAP-C (Song
et al., 2022), CPT (Yao et al., 2021), KAT (Gui
et al., 2021) and VL-Adapter (Sung et al., 2022).
Another approach that bypasses the need of tuning
the VLMs is prompt learning. For instance, CoOp
(Zhou et al., 2022b) and CoCoOp (Zhou et al.,
2022a) only tune learnable inputs to the VLMs.
The third approach that further reduces memory
and computation burden is feature adapters, where
VLM features of the inputs are pre-computed be-
fore transfer learning. Examples are CLIP-Adapter
(Gao et al., 2021), SVL-Adapter (Pantazis et al.,
2022) and Attention-Adapter (Zhao et al., 2022).

Knowledge-Augmented Image Understanding
Many image understanding tasks require real-world
knowledge beyond what can be captured by the
input data. For instance, FVQA (Wang et al.,
2017) and OK-VQA (Marino et al., 2019) require
models to process external fact-based knowledge;
TextVQA (Singh et al., 2019) asks to understand
named entities in the wild; the Pitt Dataset (Hussain
et al., 2017) involves recognition of large quanti-
ties of brands. Existing work incorporates exter-
nal knowledge either explicitly via structured or
unstructured knowledge base (Wang et al., 2015;
Gardères et al., 2020; Ye and Kovashka, 2018),
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or implicitly from knowledge stored in pretrained
models (Kalra et al., 2020; Kim et al., 2022), or
both (Marino et al., 2021; Gui et al., 2021).

3 What Really Matters for Pre-trained
VLMs in Image Ad Understanding?

The first insight of our empirical study is that the
sheer size of data and the model used in pretraining
is the key factor determining the performance of
VLMs for image ad understanding.

To promote reproducibility, we evaluate three
alignment-based VLMs (i.e., CLIP, ALBEF and
LiT) that are publicly accessible in a zero-shot man-
ner on the Pitt Dataset (Hussain et al., 2017), which
formulates ad understanding as image-to-text re-
trieval. We adopt the official evaluation protocol,
which asks the model to select one of the 3 cor-
rect messages conveyed by the image ad from a set
of 15 candidates (including 12 wrong messages)
for each of the 12805 test samples. Specifically,
given an alignment-based VLM, let us denote its en-
coders with normalized outputs as fIp¨q and fT p¨q
for image and text branches, respectively. Given
an image x and the ground truth texts y, the VLM
retrieves y from candidates Cpxq according to the
dot-product score fIpxq ¨ fT pyq. We then mea-
sure the performance of the VLM with 3 metrics
commonly used in the literature: accuracy (the per-
centage of images with any positive text retrieved
with rank one), rank (how the top retrieved positive
text is ranked averaged over all images), and the
mean rank (the mean rank of the all positive texts
averaged over all images).

With the results reported in Tab. 1, we have
several findings. First, the more data used during
the pretraining of a VLM, the better it generalizes
to the image ad domain. For a comparison, CLIP
has seen 400M image-text pairs, LiT 100M, and
ALBEF 14M. Second, the larger the capacity of
a model, the better it understands image ads. We
have evaluated different sizes of the CLIP model
beyond the three sizes shown in Tab. 1 and the trend
keeps the same. Third, commonly used metrics for
comparing VLMs, including zero-shot accuracy on
the ImageNet (Russakovsky et al., 2015) validation
set (for which LiT claims to outperform CLIP)
and image-to-text retrieval precision on Flickr30K
(Young et al., 2014) (for which ALBEF claims to
outperform CLIP), do not reflect the performance
of image ad understanding well.

We hypothesize that this is partly because image

Acc Ò Rank Ó m. Rank Ó
ViLBERT (Lu et al., 2019) 61.8 1.860 4.190
VS (v1) (Dey et al., 2021) 86.8 1.264 3.072
BERT-FT (Kalra et al., 2020) 89.7 1.230 2.982

ALBEF (Li et al., 2021) 57.6 2.220 4.935
ALBEF (ft. on Flickr30k) 64.2 2.242 5.125
ALBEF (ft. on MSCOCO) 64.0 2.002 4.651
LiT (L16L) (Zhai et al., 2022) 64.0 1.849 4.268
CLIP (ViT-B/32) (Radford et al., 2021) 88.1 1.213 2.937
CLIP (ViT-B/16) 92.2 1.123 2.694
CLIP (ViT-L/14@336px) 95.2 1.069 2.547

KAFA (ours) 97.4 1.033 2.391

Table 1: Zero-shot VLM performance on the Pitt
Dataset (Hussain et al., 2017) with its official eval pro-
tocol (3 positive texts and 12 negative ones for each test
image). The best CLIP model already surpasses previ-
ous state-of-the-art results (BERT-FT). The size of the
data and model used in VLM pretraining have a huge
impact on the results. See Sec. 3 for details of the met-
rics. For completeness, we also include the results of
our proposed method (KAFA) here.

ad understanding requires knowledge of real-world
entities (e.g., brands) which the pre-trained models
contain. Similar to the dramatic performance ad-
vancement of GPT language models (Brown et al.,
2020) driven by the larger scale of training data
and the model capacity, more knowledge can be
distilled and implicitly stored in the weights of
pre-trained VLMs with larger models and more
pre-training data. We empirically verify that the
VLM’s capability of recognizing brands from im-
ages is aligned with its performance of decoding
the messages from the ads. See results in Tab. 4.

4 Challenges in VLM Adaptations to
Image Ads and An Intuitive Solution

With CLIP as the clear champion, we further study
VLM adaptations for image ad understanding using
the best CLIP model (ViT-L/14@336px) as the
backbone. We aim to enable better performance
for image ad understanding by better adapting pre-
trained VLMs to the image ad domain with the
help of additional information such as scene-texts
extracted from the image.

4.1 The Issue of Overfitting and High
Computation Complexity

We find two practical challenges in adapting pre-
trained VLMs to the image ads, first, the overfitting
issue in fine-tuning due to limited image ads and
the lack of a strong supervision signal, and second,
the high computation burden caused by solutions

774

https://eval.ai/web/challenges/challenge-page/86/evaluation


to the previous challenge.
Annotations of image ads are hard to obtain

in general (Akula et al., 2022), making it com-
mon to only have limited training data (e.g., the
Pitt Dataset only contains 51,223 image-text pairs).
This results in VLM’s vulnerability to overfitting
during adaptation. We find that directly fine-tuning
CLIP contrastively on the Pitt Dataset with the sym-
metric cross-entropy loss (as in the original CLIP
paper) gives worse performance than the zero-shot
one unless we adopt early stopping and a carefully
tuned learning rate schedule. Moreover, as reported
in Tab. 1, the best zero-shot performance of CLIP
already surpasses the previous state-of-the-art and
is very close to 100%, leading to very weak su-
pervision signals for vanilla fine-tuning. We thus
need strong training signals. To save GPU memory
required by much larger batch sizes, we adopt hard
negative mining (Xuan et al., 2020), which selects
hard negatives from a very large candidate set as
opposed to within the mini-batch.

However, hard negative mining (HNM) strate-
gies usually incur a large computation burden. In
fully online hard negative mining (denoted full
HNM), for each training image x and the corre-
sponding texts y, we first rank Ncand negative
texts ty|y ‰ yu sampled from the entire training
data according to the online similarity scores (the
dot-product score fIpxq ¨ fT pyq computed from
the current VLM model), and then we choose the
Nhard ´ 1 most similar y as the hard negatives.
While this essentially constructs a much harder
candidate set Cpxq, it requires the computation of
features of all training texts at every gradient step,
which is prohibitively expensive. Existing meth-
ods propose to reduce the complexity by keeping a
sparsely updated bank of all training text features
(memory bank) (Wu et al., 2018) or with the help
of a momentum-updated text encoder (MoCo) (He
et al., 2020). Nevertheless, we tailor these methods
to our setup1 and find that they perform worse than
full HNM. We report the accuracy (%) in Tab. 2
with a harder eval protocol than the official one
by using larger numbers (K) of negative samples
randomly drawn from the test texts (thus a set of
harder negatives).

We believe this is because image ad understand-
ing requires fine-grained information extraction
(e.g., the specific brand of a product) and both these

1We use these methods to compute similarity scores but
still only select the hardest negatives for fine-tuning to save
GPU memory (the purpose of HNM).

Number of Candidates K 20 100 500 1000

Zero-shot 91.7 80.7 64.4 56.5
Direct FT 92.4 82.2 66.7 59.0
Direct FT + memory bank 92.8 82.9 67.5 60.3
Direct FT + MoCo 93.3 83.8 69.8 62.4
Direct FT + full HNM 93.7 84.6 70.0 62.9

Table 2: Accuracy (%) reported with different sizes (K)
of the candidate set on the test set of the Pitt Dataset.
The larger K means harder negative samples. Zero-
shot is the zero-shot performance of the best CLIP
model. FT means fine-tuning the best CLIP model.

two strategies are subject to the destruction of such
information as they compute the loss not in a fully
online manner. In particular, their text features used
for contrastive fine-tuning always come from differ-
ent VLM encoders, either the past checkpoints or
the momentum-updated versions). Although direct
fine-tuning with full HNM outperforms the others,
it is extremely inefficient and thus impractical.

4.2 Feature Adaptation as the Solution

We propose a simple and intuitive solution,
attention-based feature adaptors, that both handle
the aforementioned issues during adaptations and
enable incorporating additional information (e.g.,
scene-texts) for better image ad understanding.

Feature adapters are recently proposed (Gao
et al., 2021; Zhang et al., 2021; Pantazis et al., 2022;
Zhao et al., 2022) as a line of very efficient adapta-
tion strategies of VLMs. They freeze the weights
of the pretrained VLMs, pre-compute features us-
ing their encoders, and use additional lightweight
adapter networks to process these features. As a
result, on-the-fly feature computation over a mas-
sive candidate set becomes computationally feasi-
ble and so is the fully online hard negative mining,
since we only compute the adapted features online
via a lightweight network. More efficiently, we can
set the text adapter to an identity function (i.e., only
use adapters for image features).

More importantly, feature adapters are suitable
for fusing info from multiple sources. While previ-
ous feature adapters are mostly designed for image
classification, we consider it as a strategy to aggre-
gate multiple input branches (of potentially differ-
ent modalities). For instance, previous methods for
image ad understanding, such as VS (Dey et al.,
2021), utilize scene-texts extracted from images
(by OCR) to enhance its performance. Similarly,
we can extract text features from scene-texts using
a VLM’s text encoder and merge them with the
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Figure 3: Illustration of our brand understanding module that is an ensemble of text-matching and vision-based
recognition. Given an input image ad, we use MAVL to propose regions by prompting “all trademarks” and
retrieve entries in BrandSet-110K over the regions with CLIP. We aggregate the predictions across regions and the
text-matching results to generate the final output via some simple rules (see details in Appendix B).

image features extracted by the image encoder (of
the same VLM) via a feature adapter. In doing so,
we obtain a better representation of image ads.

Specifically, we propose to adopt one layer
of multi-head attention (Vaswani et al., 2017) as
our feature adapter design, similar to the Tiny-
Attention Adapter (Zhao et al., 2022). Here the in-
put sequence to the attention layer varies by modal-
ities (brand, scene-texts and image, as in Fig. 4)
instead of temporally or spatially as commonly in
Transformers. By the nature of alignment-based
VLMs, all information (whether in the text for-
mat as the scene-texts or the visual elements) are
embedded as vectors and lie in a shared semantic
space. We then utilize this property and fuse com-
plementary information (e.g., image features and
scene-text features) into one feature. Moreover, we
append a linear layer after the attention features
and equip it with a residual connection. Let us
use the notation in previous sections and further
denote xst as the scene-texts extracted from the
image x (by Google OCR APIs). Then our adapter
is represented as

fattpxq “ npfIpxq `ArfIpxq, fT pxstq, ...sr0sq

where np¨q is a normalization function and A is
multi-head attention (we leave room for other input
branches by leaving “...” here). Note that we do not
use any adapter for the text descriptions of images
(the labels of image ads), which further reduces the
computation complexity as now we only need to
compute and cache all text features in the training
set once and for all during full HNM.

In comparison, we also evaluate the popular
CLIP-Adapter (Gao et al., 2021) as a strong base-
line, which we tailor to our setup by training three

2-layer residual MLPs. Please see the Appendix
for implementation details. As reported in Tab. 3,
our proposal of using an attention-based adapter
(denoted KAFA w/o K) utilizes VLM features
well by aligning multimodal features already in
the same semantic space and outperforms CLIP-
Adapter. While other existing work (Shen et al.,
2021; Gui et al., 2021) merges multiple branches
of information by leveraging foundation models,
they rely on large encoder-decoder networks that
are computationally intensive and might not work
well with limited training data as in our case.

5 Improving Image Ad Understanding
with External Knowledge

To further improve image ad understanding, we pro-
pose to leverage external knowledge of real-world
entities, namely product and brand information.
The major focus of advertisements is to promote
brand awareness (Macdonald et al., 2003). Some-
times brand information is even a necessity to in-
terpret ads correctly since it eliminates ambiguities
and gives visual cues to the audiences (e.g., the ad
for a cleaning product in Fig. 2). It is then natural
to empower feature adapters introduced previously
with a brand understanding module that extracts
brand information from images. Here we present
our training-free brand understanding module that
considerably exploits VLMs.

5.1 Brand Understanding Module

Extracting brand information from an image is very
challenging due to the sheer scale of brands in the
real world. Existing published work (Su et al.,
2018; Li et al., 2022a) and even commercial APIs
tend to fall short of a good coverage. To solve this
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Figure 4: The overall training pipeline of our proposed KAFA, where three branches of information are fed into the
attention-based feature adapter, the only neural module free in the fine-tuning process. We leverage VLM encoders
for both sides of the contrastive fine-tuning.

issue, we construct a knowledge base that covers
brands much better than existing datasets. Our
knowledge base has the format, KFC: KFC is a
fast food chain, with around 110k entries covering
names of brands, companies, organizations and
others appearing in image ads. We call this dataset
BrandSet-110K (see details in Appendix B).

Next, we take an ensemble approach to detect
and retrieve relevant brand entries from BrandSet-
110K given an image ad. On one hand, we re-
trieve brands by performing string matching over
all names in BandSet-110K using the scene-texts
extracted by OCR from the image. On the other
hand, in case of OCR failures, no detection (some
logos have no texts), or multiple detected entries
(potentially false positives as most image ads pro-
mote only one brand at a time), we use a more
powerful vision-based module. Specifically, we
adopt MAVL (Maaz et al., 2022), a state-of-the-art
VLM, to propose object regions according to the
text prompt “all trademarks”, We then use the best
CLIP model to perform region classification based
on a set of carefully engineered prompts. And then,
we select the best entries in BrandSet-110K accord-
ing to the proposed regions. We finally use some
simple rules to combine the retrieved results from
text-matching and the vision-based module, as in
Fig. 3 (see details in the Appendix).

Overall, our brand understanding module is
training-free, covers much more entities than previ-
ously published work, and even outperforms some
commercial logo detection APIs by evaluation on
a small validation set, as reported in Tab. 4

5.2 Overall Pipeline and Final Results

Combining with our proposed brand understanding
module, we illustrate our overall pipeline in Fig. 4
and call this approach knowledge-augmented fea-
ture adaptation (KAFA). In Tab. 3, we demonstrate
that KAFA achieves substantial improvements in
image ad understanding over the VLM baseline

Method Inputs 20 100 500 1000

Zero-shot I 91.7 80.7 64.4 56.5
Direct FT + full HNM I 93.7 84.6 70.0 62.9
CLIP-Adapter I+ST 93.9 85.0 70.2 62.8

KAFA w/o K I+ST 95.0 86.8 72.7 65.1
KAFA w/o ST I+K 94.7 86.5 72.3 64.5
KAFA (ours) I+ST+K 95.6 87.7 73.9 66.0

Table 3: Accuracy (%) reported on the Pitt Dataset.
KAFA (our proposed attention-based adapter with ex-
ternal knowledge) achieves the best results compared
to other approaches and the versions with fewer inputs
(K = brand knowledge, ST = scene-texts, I = image).
Note: “Direct FT + full HN” is extremely inefficient.

Acc (%) Acc (%)

VLM-based (ALBEF) 14.5 Text-matching 36.0
VLM-based (LiT) 29.0 Google Cloud API 42.0
VLM-based (CLIP) 64.4 Combined (Text + CLIP) 66.6

Table 4: Brand recognition accuracy on ~600 valida-
tion image ads. It justifies our brand understanding
module and further verifies that models better at rec-
ognizing brands are better at image ad understanding.

and consistently outperforms other ablation ver-
sions with fewer inputs, justifying that our pro-
posed brand understanding module helps to further
improve image ad understanding. We present an
example in Fig. 1 to illustrate the improvement
of our method over the baseline, where for better
display we only show 2 negative text descriptions.
See more examples in Appendix G.

6 Additional Analysis

6.1 Hard Negative Samples in Evaluations
We report our main results with a harder eval pro-
tocol than the official one. In fact, it is a challenge
to perform effective evaluations in retrieval tasks
(Akula et al., 2020). While we need hard negatives
to better reflect the capabilities of a model, usually
by increasing the size of the candidate set, we also
want those hard negatives to be real negatives. As
illustrated in Fig. 5 (right), two companies can have
two different image ads that share a very similar
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Figure 5: (Left) Similarity distributions of texts of the
same and across images. Both are spread out with no
easy cutoff threshold to sample hard negatives. (Right)
Two different ads share the same message “I should
drive this car because it can drive anywhere”, exempli-
fying the difficulty of sampling hard negative samples.

message. Hence, given an image, simply using a
text of another as the negative might not work.

There is no easy solution. We can use a generic
sentence encoder to measure similarities among
different texts in (Hussain et al., 2017) and only
sample texts that are semantically different from
the target one (the ground truth) as negatives. We
adopt a strong sentence encoder (publicly avail-
able here) based on MiniLM (Wang et al., 2020) to
measure semantic similarities. We compute similar-
ities among descriptions of the same ad and those
across different ads. The similarity distributions are
spread out, as demonstrated in Fig. 5 (left), without
easy cutoff thresholds to make negative samples
both hard and truly negative. Instead, we propose
to use several different sizes K of the candidate set
with K “ 20, 100, 500, 1000. For each image in
the Pitt Dataset (Hussain et al., 2017), we randomly
choose a text from the ground truth and uniformly
sample K ´ 1 negatives from other images (harder
negatives with larger K).

While most existing methods evaluate (Hussain
et al., 2017) with the official evaluation protocol
(for ease of comparison we also provide results by
this protocol in Tab. 1), it suffers from the lack of
hard negatives. Each image ad comes with only
15 randomly sampled candidate texts including 3
positives, giving a random model a 20% accuracy.
Moreover, negatives are easy as they tend to be
semantically distinct from the positives, making
it hard to examine a model at finer levels. We
provide examples to compare negatives sampled in
our protocol and in the official one in Appendix E.

6.2 Data Leakage Regarding VLMs
The CLIP (Radford et al., 2021) model we use in
our experiments was pre-trained on a tremendous

Figure 6: An evaluation image and a found one in
LAION-400M. As a reference, this image’s caption
reads: I should drink “Brand Name” because it’ll give
me a recharge of energy.

amount (400M) of image-text pairs on the Inter-
net. A concern is that there might be data leakage,
i.e., the pre-trained VLMs might have already seen
images in the evaluation set, leading to inflated re-
sults. We perform an analysis to conclude that this
is unlikely the case. We manually inspect images
in the LAION-400M dataset (Schuhmann et al.,
2021) that are semantically similar to a set of ran-
domly sampled 100 eval image-text pairs. While
the dataset used to train CLIP is not publicly re-
leased, LAION-400M is a very close one with a
similar scale of data filtered by the CLIP model.
Specifically, for each of the 100 random samples,
we use the open-sourced CLIP-retrieval tool (here)
to find the closest images from LAION-400M in-
dexed by both the sample text and image. We do
not find any substantially overlapped content or
near duplicates (see Fig. 6 as an example). More-
over, our proposed method achieves significant per-
formance improvement over the VLM baseline and
both are based on the same CLIP model. Therefore,
data leakage is less of a concern.

7 Conclusion

In this paper, we study the adaptation of pretrained
alignment-based VLMs for the challenging image
ad understanding task. We benchmark and reveal
practical challenges in adapting VLMs, propose a
simple and intuitive (yet effective) strategy for fea-
ture adaptations, and further improve image ad un-
derstanding with external brand knowledge. While
we mainly focus on the image-to-text retrieval task
for its simplicity, we believe further studies can ex-
tend it to directly generating text descriptions given
image ads or even generating image ads given the
descriptions. We hope our study draws more atten-
tion to image ad understanding that are relevant to
the advertising industry and provide insights for a
broader machine learning community.
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Limitations

The data from the Pitt Dataset (Hussain et al.,
2017), while useful for our paper, contains many
images and annotations that may perpetuate harm-
ful stereotypes according to sensitive characteris-
tics such as gender and carry the risk of amplifica-
tion by machine learning models. We plan to col-
laborate with AI robustness researchers to identify
such examples and develop methods for improving
ML models in terms of robustness and reliability.
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A Scene-text Extraction by OCR

In our paper, we use scene-texts as one of the in-
puts for experiments in Pitt Dataset (Hussain et al.,
2017). We use the Google Cloud OCR API (link)
to extract all text tokens, which are grouped by
paragraphs by the API. We then group paragraphs
into blocks by simple heuristic rules (e.g., two con-
secutive paragraphs with similar font sizes should
be considered in the same block) and then filter out
those blocks with an average prediction confidence
score (provided by the API) less than 0.7.

B Brand Recognition

B.1 BrandSet-110K

We construct BrandSet-110K by first compiling en-
tries from public websites. Specifically, for the list
of topics (such as automobiles and healthcare) in
the Pitt Dataset (Hussain et al., 2017), we Google
with the query “Top XX brands/companies in Y” to
obtain a list of thousands of common brands, orga-
nizations, etc., denote source I. We further scrape
the Google Knowledge Graph Search API (link)
to find a much larger list of named entities, de-
noted source II, whose categories fall into “brands”,
“companies”, etc., where each entry comes with a
one-paragraph description. Since results from the
Knowledge Graph (KG) is a little bit noisy and
might miss some popular entities, we rely on source
I to make sure that the most prevalent entities ap-
pearing in our commercial world are included in
our dataset. We then query entries from source I in
KG to also obtain the descriptions. If such entries
are not found in KG, we simply use the descriptions
“X is a brand name in the industry of Y”. Together
with source II, we obtain a raw combined knowl-
edge base. Then we filter out those entries that
are common English words (if the entry appears
in the English dictionary (link) or a word set from
NLTK (link)). We do so to remove entries such
as “Everyday”, which will result in too many false
positives during brand detection. We also remove
entries consisting of a single character. Eventually,
we end up with around 110K entries, i.e., name and
description pairs.

Since the descriptions returned by KG can be
quite long, we further use a learning-based sen-
tence parser to only select the very first sentence
of the description (usually in the format of “X is
a brand/company/org in the industry of Y with Z
features”). We use this API (link) from Hugging

Face (Wolf et al., 2019), which is based on spaCy.

B.2 Brand Recognition by Text-Matching
The text-based brand recognition module essen-
tially performs text matching to exhaustively
search over all entries in BrandSet-110K given the
scene-texts extracted by OCR. For each name in
BrandSet-110K that is larger than 6 characters, we
match the text in a case-insensitive manner; other-
wise, we match it case-sensitively to reduce false
positives. A name is set to be matched in a scene-
text if it is a phrase of the text (“abc” is matched
in “abc def” but not in “abcdef”.) When doing
ablation studies of evaluating text-matching only
performance, in case of multiple predictions we
randomly select one as the output.

B.3 Vision-based Brand Recognition
The vision-based brand recognition module han-
dles situations where the text-based one fails (when
texts are too small or blurred or artistic for OCR
to work; or when logos are purely graphic). The
vision-based module is a pipeline of several steps.
The class-agnostic region proposal (we use the best
model in MAVL (Maaz et al., 2022), a state-of-the-
art model) is adopted to generate candidate regions
that contain brand logos or visual elements reveal-
ing brand information. We choose “all trademarks”
as the best prompt with other candidates such as:

• “all small objects”, “all brand logos”,

• “all brand icons”, “all brands”, “all logos”

After the region proposal, we use the best CLIP
(Radford et al., 2021) model (its visual encoder)
to compute the region features. We include the
entire image as an extra proposed region. Then we
use the text features (via the CLIP text encoder) of
the following 6 prompts to find the best entry in
BrandSet-110K. Namely

• “A brand logo of X”, “A logo of X”,

• “A trademark of X”,“A brand logo of X. Y”,

• “A logo of X. Y”, “A trademark of X. Y”

where X is the name and Y is the corresponding
description in BrandSet-110K. We first average dot
products of the region features and brand features
across all 6 prompts. We then find two candidates:
(1) the name X with the largest predicted scores
among all names and all regions of an image and
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(2) the name X with the largest predicted scores av-
eraged across all regions among all names that are
champions in at least one region. Our final output
is chosen by the higher value of the dot products of
the global image feature and the two text features
of the prompt “’An advertisement of X” (we select
this prompt after another minor prompt engineering
process).

B.4 Ensemble of Text-matching and
Vision-based Brand Recognition

We use simple heuristic rules to ensemble the
text-matching results and the vision-based ones.
Specifically, if there is no name detected from text-
matching, we return the vision-based result; if there
is only one name detected from text-matching, we
return the text-based result; if more than one name
is detected from text-matching, we select the name
from detection of both text and vision-based mod-
ules by the highest value of the dot product of the
global image feature and the text features of “’An
advertisement of X”. The ensemble module finally
returns the single name and the corresponding de-
scription in BrandSet-110K.

C Network Architecture of
Attention-based Feature Adapter

We adopt a very lightweight network for feature
adaptation. For each modality of the inputs (e.g.,
inputs to KAFA in the Pitt Dataset are three vec-
tors: scene-text features, image features, and brand
features), we first add learnable positional embed-
ding (which is used to distinguish between different
modalities) and then apply a multi-head attention
layer (Vaswani et al., 2017) to obtain a list of vec-
tors; we finally use the first vector (corresponding
to the image feature input branch) and add residual
connections from the input image feature (before
positional embedding) to produce the final output
(with normalization). To make things clearer, we
also provide the pseudocode.
import t o r c h . nn . P a r a m e t e r a s param
import t o r c h . nn . f u n c t i o n a l a s F

# args i s a l i s t o f i n p u t f e a t u r e s
# e . g . , [ img_f s , s c e n e _ t e x t _ f s , b r a n d _ f s ]

p o s _ e m b _ l i s t = [ ]
f o r _ in range ( n _ i n p u t ) :

p o s _ e m b _ l i s t . append (
param ( t o r c h . z e r o s ( [ i n p u t _ d ] ) ) )

a t t n = t o r c h . nn . M u l t i h e a d A t t e n t i o n (
embed_dim= i n p u t _ d ,
num_heads =8 ,
b a t c h _ f i r s t =True )

i n p u t s = [ ]
f o r i in range ( n _ i n p u t ) :

i n p u t s . append (
a r g s [ i ] + p o s _ e m b _ l i s t [ i ] )

x = t o r c h . s t a c k ( i n p u t s , 1 )
x , _ = a t t n ( x , x , x , n e e d _ w e i g h t s = F a l s e )
# The f i r s t i s t h e image f e a t u r e s .
x = x [ : , 0 ] + a r g s [ 0 ]
x = F . n o r m a l i z e ( x , dim=´1)

D Data Cleaning on Pitt Dataset

We perform data cleaning on both the training and
evaluation data of the Pitt Dataset (when evalu-
ated using the official evaluation protocol, whose
issue is discussed in the main paper, we stick to the
raw evaluation set). For every text in the dataset
(the response to the “what should I do according
to the ad and why” question), we remove invalid
ones (e.g., “I don’t know”, “not an ad”, “not sure”),
fix typos (e.g., “becasue”, “becaues”), and remove
those without answering the “why” question. Fur-
thermore, we filter out texts that do not mention
nouns or only have nouns that are not very infor-
mative (we compile a list of non-informative nouns
appearing frequently in the dataset, such as “prod-
uct”, “thing” and “vendor”). This step is to remove
non-specific texts such as “I should buy this prod-
uct because ...”. In the end, we randomly select one
text (with a fixed random seed) as the ground truth
of its image. If an image has all its texts removed
by data cleaning, we remove the image from the
dataset. We find such images constituting less than
3% of all images.

E Hard vs. Easy Negatives for
Evaluation in Pitt Dataset

Here we explain why we use larger number of
candidates K during evaluation. Model evalua-
tion for cross-modal retrieval is challenging (Akula
et al., 2020). The official evaluation protocol in
Pitt Dataset suffers from the issue that it lacks hard
negatives to fully reflect the perception and reason-
ing capability of the models. Each image in the
protocol has 3 positive texts and only 12 negative
ones, giving a random guess model a 20% accuracy.
On the contrary, increasing the number of candi-
dates in our evaluation protocol as introduced in
the main paper effectively yields harder negatives.
For instance, for the image ad in Fig. 7 whose
ground truth is “I should buy a Brand A camera be-
cause it will help me create”, if we set the number
of candidates to be 10 (i.e., 9 negatives), the best
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CLIP model makes the correct selection with all
easy negatives, among which the most confusing
ones are

• “I should drink Brand B because it de-ages
you”

• “I should not drown in my decision because
bad choices will keep you under”

• “I should buy this bag because it is resealable”

If we set 50 total candidates (i.e., 49 negatives),
again the CLIP baseline predicts correctly with
the most confusing ones still being relatively easy
negatives:

• “I should use Brand C cosmetics because it
makes you beautiful”

• “I should buy Brand D products because they
are reliable”

• “I should see a movie because it’s fun”

For a larger number (e.g., 100 total candidates),
the CLIP model starts to make mistakes, with hard
negatives such as

• “I should use Brand E makeup because it will
make me more seductive”

• “I should buy Brand F makeup because it will
make me beautiful”

• “I should buy this makeup because it will
make me shine”

Notice that for privacy reasons, all brand names in
this example are anonymized.

F Training Details

F.1 Direct Fine-tuning of CLIP
We fine-tune the best CLIP model on the train-
ing images of Pitt Dataset with a batch size of 8,
symmetric cross-entropy loss (the one used in the
original paper of CLIP) and the Adam optimizer
(Kingma and Ba, 2014) with weight decay of 1e´4.
We set other parameters of Adam as in the original
implementation of CLIP. We find that using a very
small learning rate (e.g., 1e ´ 7) is necessary for
fine-tuning CLIP on Pitt Dataset; otherwise, the
CLIP model can overfit easily. For the same rea-
son, we adopt early stopping and only fine-tune the
model for a maximum of 4 epochs. We leave the de-
tails in the next section for the fine-tuning version
with online hard negative mining (very computa-
tionally intensive as suggested in the main paper).

Figure 7: An example to illustrate the issue of easy neg-
ative samples in evaluation.

F.2 Fully Online Hard Negative Mining (full
HNM)

When performing hard negative mining during
training, for each image in a mini-batch, we first
compute the VLM features of a large number of
randomly sampled negative texts (in our experi-
ments we find 1000 to be large enough; while a
larger number can marginally improve the final per-
formance but it incurs a larger computation burden),
then we compute the dot products of the current
image feature and all these sampled text features,
and finally, we rank the dot products and select the
top N ´ 1 negatives to be included in computing
the gradients of the loss (we find N “ 8 to be effec-
tive). We use the asymmetric version of the cross-
entropy loss (i.e., the normal one) compared to
the asymmetric version in CLIP pre-training since
the number of negatives per image does not equal
the batch size when HNM is adopted. We reduce
the batch size to 4 whenever with online HNM so
that directly fine-tuning the largest CLIP model is
viable with a single V100 Nvidia GPU. We still
apply the learnable “logit scale” parameter in CLIP
pre-training which effectively makes contrastive
learning more stable.

For full HNM, if we directly fine-tune the CLIP
model, we need to compute text features of all texts
in the training set in every gradient step. While
this is computationally prohibitive, we adopt the
feature adapter strategy and thus cache all the text
features once and do not update the text encoder
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Figure 8: Additional examples that demonstrate KAFA’s improvements over the VLM baseline.

and the text features during fine-tuning.

F.3 More Ablation Studies
In our experiments presented in the main paper
(specifically in Tab. 1), we have justified the use of
online HNM, the additional inputs (scene-text and
brand information) to the feature adaptation, and
the advantages of the attention-based adapter over
the baseline adapter. We also perform experiments
on several variants of the attention-based feature
adapter and find that either using more than one
attention layer or adding layer norm & additional
linear projection as in the encoder-decoder Trans-
former (Vaswani et al., 2017) make the model more
vulnerable to overfitting.

F.4 Additional Details of Feature Adapters
For feature adapters (CLIP-Adapter and KAFA),
we use the full HNM for fine-tuning as discussed
in the previous section. We use the same training
setup as that of “Direct ft + HMN” except for the
additional input branches. For CLIP-Adapter, we
tailor it to our setup by training three 2-layer resid-
ual MLPs. Specifically, let as denote them as gmlp

I ,
gmlp
T and hmlp, built on top of the image and text

features extracted by VLMs, and a mixture of these
features, respectively. The adapted feature for x
becomes

fmlp
I pxq “ npfIpxq ` gmlp

I pfIpxqqq
fmlp
T pxstq “ npfT pxstq ` gmlp

T pfT pxstqqq
fmlppxq “ nphmlppcatrfmlp

I pxq, fmlp
T pxstq, ...sqq

where cat is concatenation. Here we omit the
adapted feature for text label y. And the adapted
feature for the text label y becomes

fmlp
T pyq “ npfT pyq ` gmlp

T pfT pyqqq
which is used during full HNM for fine-tuning.

For fine-tuning of both CLIP-Adapter and
KAFA, we find a much larger learning rate (i.e.,
1e´4) to be effective and train the model similarly
with early stopping and a maximum of 10 epochs.
We find it helpful to stabilize training by adding
an additional regularization loss to keep the feature
adapter’s output close to the VLM image features.
Specifically, we add the negative of dot products
between the two (averaged over all data points in
the mini-batch) to the overall training objective.
For this regularization term, we use a coefficient of
5 in all our experiments in the Pitt Dataset.

G Additional Examples

We present 2 additional examples in Fig. 8 to il-
lustrate the improvement of our method over the
baseline. Again, we only show 2 negative text de-
scriptions for better display, and we anonymize all
brand info.
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Abstract
Identifying granular and actionable topics
from customer questions (CQ) posted on e-
commerce websites helps surface the miss-
ing information on the product detail page ex-
pected by customers before making a purchase.
Insights on missing information on product
page helps brands and sellers enrich the cat-
alog quality to improve the overall customer
experience (CX). In this paper, we propose
a weakly supervised Hierarchical Multi-task
Classification Framework (HMCF) to identify
topics from customer questions at various gran-
ularities. Complexity lies in creating a list of
granular topics (taxonomy) for thousands of
product categories and building a scalable clas-
sification system. To this end, we introduce a
clustering based Taxonomy Creation and Data
Labeling (TCDL) module for creating taxon-
omy and labelled data with minimal supervi-
sion. Using the TCDL module, taxonomy and
labelled data creation effort by subject matter
expert reduces to 2 hours as compared to 2
weeks . For classification, we propose a two
level HMCF that performs multi-class classifi-
cation to identify coarse level-1 topic and lever-
ages NLI based label-aware approach to iden-
tify granular level-2 topic. We showcase that
HMCF (based on BERT and NLI) a) achieves
an absolute improvement of 13% in Top-1 accu-
racy over single-task non-hierarchical baselines
b) learns a generic domain invariant function
that can adapt to a constantly evolving taxon-
omy (open label set) without need of re-training.
c) reduces model deployment efforts signifi-
cantly since it needs only one model that caters
to thousands of product categories.

1 Introduction

Having correct, complete, and consistent informa-
tion on the detail page is very important to ensure a
world-class customer experience. E-commerce cus-
tomers often refer to the "Customer Questions and
Answers” (CQA) section to seek the information
that they deem important before buying. World

wide, a leading e-commerce website customers ask
and questions in the order of millions1 per week
before buying. Customers refer to the CQA section
primarily to find information that is a) not present
on product page or b) is inconsistent across various
sections of the product page. Therefore, identi-
fying information gaps on product page can help
catalog owners improve the quality of catalog, cre-
ate new attributes to enrich product page. It also
helps product owners design better products, un-
derstand customer preferences, and improve the
overall customer experience.

In this paper, we aim to build a scalable solution
that extracts topics from customer questions (CQ).
Note: In this problem, we want to extract topics
customers are interested in and not the answers to
their questions since the objective is to identify in-
formation gap on product page using CQs. Further,
we wish to identify granular and “actionable” top-
ics. An actionable topic clearly conveys the intent
behind the question. Please refer to Table 5 for
topic action-ability examples.

Identifying topics for CQ poses several prac-
tical challenges, especially, at the scale of an e-
commerce giant where products are spread across
thousands of categories.
Constantly evolving taxonomy (open label set):
We wish to extract diverse topics from various
product categories. The topics are dynamic and
keep evolving over time because new products keep
launching. Hence, traditional text classification ap-
proaches are not applicable for our use case since
they work with a fixed and limited set of labels.
Further, we usually don’t have a pre-defined taxon-
omy to start with, and we need to define a separate
taxonomy for each product category for two rea-
sons: a) we observe that CQs are generally very
specific to product categories b) we also observe
that granular topic overlap amongst similar or re-

1We are not revealing exact numbers to comply with com-
pany legal policy.
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Customer question Topic Action-ability Actions

What is seat height? size × can not take action
Does this sofa set include ottoman too? pack content × can not take action
Can I place lounger on right of the sofa? usage × can not take action

What is seat height? seat height ✓ Update “size chart”
Does this sofa set include ottoman too? includes ottoman ✓ Add pack content info in bullet points
Can I place lounger on right of the sofa? right-left placement ✓ Update placement images

Table 1: Examples of action-ability of topics

lated product categories such as Table, Chair, Sofa
is less than 30%. However, it is complex to manu-
ally create taxonomies across thousands of product
categories from scratch.

Labelled data scarcity: Next, it is infeasible to ob-
tain a large amount of manually annotated dataset
for thousands of product categories typically re-
quired for training deep learning models.

High cardinality of label space: We observe that
there are hundreds of granular topics per product
category in our datasets. We observe (in Table 3)
that performance of metric learning or softmax
based multi-class classifier degrades with such a
high number of classes.

To tackle the challenges mentioned above, we
introduce two main novel ideas. We introduce a
clustering based Taxonomy Creation and Data La-
beling (TCDL) module to create taxonomy and
labelled data efficiently with very minimal manual
supervision. Using this module, taxonomy creation
effort by a subject matter expert reduces to 2 hours
as compared to 2 weeks.

For topic identification, we introduce a novel
Hierarchical Multi-task Classification Framework
(HMCF), which performs multi-class classification
to predict level-1 topic and leverages Natural Lan-
guage Inference (NLI) to identify granular level-2
topic from question. We show that a model trained
using NLI based HMCF a) achieves an absolute
improvement of 13% Top-1 accuracy over a single-
task non-hierarchical architecture baseline, and b)
learns a generic function that can adapt to new
product categories and topics with high accuracy
without retraining.

Rest of the paper is organized as follows. We
discuss related work in section 2. In section 3, we
explain TCDL module in detail. We discuss HMCF
in detail in section 4. Following that, we discuss
experiments and results in section 5 and section 6,
respectively. Finally, we conclude the paper with
our findings in section 7.

2 Related work

The lack of availability of training data and a pre-
defined taxonomy is a big challenge in industry.
LDA ([Blei et al., 2003]) can be helpful in mining
topics from corpus of text and creating taxonomy.
Taxogen ([Zhang et al., 2018]) proposed an unsu-
pervised method to derive taxonomy from a large
corpus of text. However, these approaches model
the text corpus as Bag of Words (BoW) and do
not take into account the context of the keywords.
There are many models available that model multi-
class text classification as a hierarchical classifi-
cation problem [Tsochantaridis et al., 2005, Sinha
et al., 2018]. However, they do not offer flexibil-
ity in adding or removing labels without adding
extra parameters and retraining on entire dataset.
Also, they use deep learning based models which
require large amounts of labelled data for train-
ing. Recently, few-shot learning based approaches
have gained popularity in the NLP domain, partic-
ularly to address the challenge of large scale label
data availability ([Nichol et al., 2018], [Snell et al.,
2017], [Zhang et al., 2020]). However, these ap-
proaches do not take label information into account.
Recently, BERT ([Devlin et al., 2018]) has shown
state-of-the-art performance on many NLP tasks.
We use it for both level-1 and level-2 tasks.

3 Weakly supervised taxonomy and
labelled data creation

In this section, we describe the taxonomy and label
creation approach in detail (refer to Figure 1).

3.1 Hierarchical taxonomy

We organize topics into a two level hierarchy for
following reasons: a) using hierarchical taxonomy,
sellers can consume insights at two different lev-
els of granularity b) topic classification model per-
formance improves with hierarchical taxonomy as
compared to flat taxonomy (section 6).

Level-1 in taxonomy contains total of 9 generic
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Figure 1: Illustration of taxonomy creation and data labelling module

topics such as “size”, “health and safety”, etc.
They are common for all the product categories.
Whereas, level-2 topics are granular and different
for each product category. For example, some
of the “size” related level-2 topics for “CHAIR”
product categories are “arm height”, “seat depth”
whereas the same for “TABLE” product categories
are “table top dimensions”, “drawer dimensions”.
Please refer to Table 6 for more examples.

3.2 Taxonomy creation and data labeling
module (TCDL)

We propose a scalable two step approach for defin-
ing taxonomy. The steps are: a) cluster CQs b) as-
sign names to each clusters. First, we cluster CQs
using their Sentence-BERT embedding [Reimers
and Gurevych, 2019]. We perform “agglomerative
clustering” primarily because we don’t know the
number of clusters beforehand. We choose “cosine
similarity” with “average” linkage as a similarity
criterion and a threshold of 0.2 for merging the clus-
ters. We observe that the clusters obtained using
the criteria mentioned are coherent and granular.

To assign a topic name to each cluster, we take
the top k keywords for each cluster based on their
TF-IDF scores. Then, with minimal manual super-
vision, we can derive granular topic names with
guidance from top keywords for each cluster. We
organize all the granular topic names at level-2 and
manually map it to an appropriate level-1 topic.
With this approach, it requires only ∼ 1− 2 hours
of manual supervision as opposed to 2 weeks to
come up with taxonomy per product category.

At the end of taxonomy creation step, we have
a hierarchical taxonomy and level-1, level-2 labels
for each cluster. Cluster labels serve as level-1 and
level-2 labels for each question within the cluster.
This way, labelled data generation for the classi-

fication model is totally automated. Finally, to
obtain product category p specific taxonomy T p,
a granular topic t is added to T p only if there is a
question q from p with label t present in the TCDL
output. Please refer to Table 7 for the output of the
clustering and labeling.

4 Hierarchical Multi-task Classification
Framework (HMCF)

4.1 Problem definition and formulation

Given a question q from the product category p,
we want to map it to l1 and lp2. Here, l1 is a
level-1 topic generic across all product categories.
Whereas, lp2 is a level-2 topic specific to product
category p.

With HMCF described in the paper, we can map
q to 1-class at each level because CQs typically
talk about one topic. However, HMCF is generic
and can be extended to multi-label classification at
every level with minor modifications.

4.2 Framework details

Figure 2 shows the details of the proposed HMCF.
We use BERT as the shared input encoder for both
tasks. Individual task specific fully connected net-
works are added on top of BERT. [CLS] token
embedding from BERT is used as input to each
task specific network.

Level-1 topic identification problem is modelled
as multi-class classification task since level-1 topics
a) are high level, b) don’t vary with time, and c)
remain the same across product categories. Level-1
network is a fully connected network with 9 output
nodes and softmax activation.

Level-2 classes change over time and are dif-
ferent across product categories. To handle such
challenges, we leverage NLI based architecture for
level-2 topic identification task. Given a question q
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Figure 2: Inference in Hierarchical Multi-task Classification Framework

and a granular topic t, the level-2 network predicts
1 if t is an appropriate topic for q and 0 otherwise.
Level-2 network is again a fully connected network
with one output node and sigmoid activation. We
refer to the proposed architecture as BERT-HMCF-
1-model-NLI throughout the rest of the paper.

4.3 Input preparation

We use the BERT tokenizer to prepare input for
both tasks. Input for level-1 task is constructed as a
concatenation of [CLS], τq, [SEP]. Whereas, input
for level-2 task is constructed as a concatenation of
[CLS], τq, [SEP], τt, [SEP]. Here, τq and τt are the
lists of tokens of q and t obtained from the BERT
tokenizer, respectively. Whereas, [CLS] and [SEP]
are special tokens from the BERT vocabulary.

4.4 HMCF inference

In HMCF, inference happens in two stages (refer
to equation[1]). At first, given a question q, level-1
network is used to predict high level topic l1. Then,
given product category p and l1, level-2 network
is used to predict p specific granular topic lp2 that
maps to l1. To do so, q is paired with tp,l1i where
tp,l1i ∈ T p,l1 , the set of all p specific granular topics
that maps to l1. Then, BERT is used to encode
(q, tp,l1i ) pairs, and level-2 network is used to obtain
sp,l1i . Here, sp,l1i can be thought of as score of
appropriateness for the (q, tp,l1i ) pair. Finally, lp2 is
chosen as the tp,l1j for which sp,l1j is the maximum.

In the equation 1, exCLS is the [CLS] token em-
bedding from BERT for input x, L is the set of
all level-1 topics, M1 and M2 are the level-1 and
level-2 task networks, respectively, l1 is level-1
prediction, T p,l1 is the set of all p specific level-2
topics that map to l1, np,l1 is the number of topics

in T p,l1 and lp2 is the final level-2 prediction.

eqCLS = BERT(q)

l1 = argmax(M1(e
q
CLS)) where l1 ∈ L

e
q,t

p,l1
i

CLS = BERT(q, tp,l1i ) where tp,l1i ∈ T p,l1

S =
[
sp,l1i

]i=np,l1

i=0
where sp,l1i = M2(e

q,t
p,l1
i

CLS )

lp2 = tp,l1j where j = argmax(S)
(1)

4.5 HMCF training

4.5.1 Training data preparation
To prepare training data, we use the output of the
TCDL module that contains level-1 topic l1, level-2
topic lp2 and product category p for every question
q. Training data for level-1 task can be obtained
by setting l1 as the label for question q. We need
to create positive and negative (q, t) pairs for the
level-2 task. Given q, p, l1 and lp2, positive training
samples are obtained by pairing q with lp2. We
create easy negatives by pairing q with a randomly
sampled level-2 topic from the set of all level-2
topics available. To generate hard negatives, we
sample level-2 topic t′ from T p,l1 such that t′ ̸= lp2.
Here, T p,l1 is the set of all p specific level-2 topics
that map to l1.

4.5.2 Batch sharing for training
We train networks for both tasks simultaneously.
However, each batch contains data only for one
task. At every step of training, we randomly sample
a task and a batch for the same task for optimization.
We optimize task-1 network using standard cross-
entropy loss and task-2 network using binary cross-
entropy loss. If a batch corresponds to task k, then
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only task k specific parameters are optimized.

5 Experiments

5.1 Training setup and experiments
We conduct experiments to evaluate HMCF on
various aspects such as a) hierarchical vs. non-
hierarchical architecture; b) multi-task vs. single-
task modelling; c) suitability of NLI tasks for con-
stantly changing label space; d) zeroshot capabili-
ties; and e) impact of level-1 task performance on
overall performance.

We use a dataset of customer questions posted on
an e-commerce website for our experiments. This
dataset contains questions from 122 product cate-
gories. Taxonomy for all 122 product categories
and training data is prepared using the TCDL mod-
ule. BERT based HMCF and all the other baselines
are trained only on the data from 100 product cate-
gories. We denote this dataset as CQ100PCTrain.

We use the remaining 22 product categories to
test the few-shot capabilities of HMCF. To do so,
we separately train models on CQ100PCTrain com-
bined with only k(= 5, 10, 20) samples per level-2
topic from the remaining 22 product categories.

To reduce the impact of level-1 errors on over-
all system performance, we also experiment with
following inference strategy. We pair q with all
the level-2 topics that map to any of the top-k
(k = 1, 2, 3, . . .) level-1 topics by output proba-
bilities. Then, topic t with the highest output score
for the (q, t) pair from level-2 model is chosen as
the final level-2 prediction.

Since topic identification from CQs is a multi-
class classification problem, we choose Top-1 accu-
racy as a performance criterion for both tasks. We
measure the performance of the model on two sepa-
rate datasets: a) CQ100PCTest and b) CQ22PCTest.
CQ100PCTest is a full-shot dataset that contains
15000 manually annotated questions from same
100 product categories that are used in training.
CQ22PCTest is a zero-shot dataset that contains
5000 manually annotated questions from the re-
maining 22 product categories that are not used for
training. Refer to Table 2 for detailed data statis-
tics.

We use pre-trained bert-base-uncased2 as the
base encoder to maintain parameter parity among
every framework. We fine-tune all models on sin-
gle Nvidia V100 GPU for 2 epochs using Adam
optimizer, learning rate of 2e−5, batch size of 32.

2https://huggingface.co/bert-base-uncased

Dataset # questions # unique level-2 labels

CQ100PCTrain 81,042 2,031
CQ100PCTest 15,000 2,031
CQ22PCTest 5,000 246

Table 2: Data statistics

5.2 Baselines

BERT-Softmax is a single-task, non-hierarchical
BERT model with a linear layer and softmax ac-
tivation on top of it. Output layer contains 2031
nodes (same as no. of level-2 topics in the dataset).
BERT-cos is a single-task, non-hierarchical model.
In this model, we encode question q and topic
t separately using BERT and obtain 64 dimen-
sional projection using a learnable linear layer.
CosineLoss [eq. 2] is used to train the network.

CosineLoss(x, y) =

{
1− cos(x, y), if y = 1

max(0, cos(x, y)) if y = −1
(2)

BERT-NLI is a single-task, non-hierarchical NLI
model. It takes a question q and topic t as input.
Expected output is 1 if t is an appropriate topic for
q and 0 otherwise. During inference, we don’t use
level-1 information and pair q with all the level-2
topics for the product category p.
BERT-HCF-2-model-NLI differs from BERT-
HMCF-1-model-NLI in the following aspects:
HCF stands for hierarchical classification frame-
work. For HCF, we train two different models for
each task: one BERT model as a multi-class clas-
sifier for level-1 and another BERT model as an
NLI based binary classification for level-2. Note
that BERT-HCF-2-model-NLI is a hierarchical ar-
chitecture with single-task models for each task.
BERT-HMCF-1-model-cos and BERT-HCF-2-
model-cos are the architectures equivalent to
BERT-HMCF-1-model-NLI and BERT-HCF-2-
model-NLI, respectively. The only difference is
that level-2 task is trained using CosineLoss be-
tween 64 dimensional linear projections of individ-
ual [CLS] embeddings of question and topic.

6 Results

In this section, we discuss the results of our experi-
ments in detail. We use the Top-1 accuracy metric
in all the experiments. Below is a summary of key
observations made from the experiment results.

6.1 Key observations

We capture the detailed results of all experiments
in Table 3 and make the following observations.

790



CQ100PCTest CQ22PCTest

Architecture level-1 level-2 zero-shot level-1 zero-shot level-2

Non-hierarchical single-task
BERT-Softmax - 0.59 - -

BERT-cos - 0.59 - 0.58
BERT-NLI - 0.70 - 0.67

Hierarchical
single-task

BERT-HCF-cos-2-model 0.88 0.68 0.84 0.63
BERT-HCF-NLI-2-model 0.89 0.79 0.83 0.75

multi-task
BERT-HMCF-cos-1-model 0.9 0.69 0.86 0.59
BERT-HMCF-NLI-1-model 0.92 0.83 0.87 0.78

Table 3: Comparison of the performance of various architectures

Hierarchical framework performs better than
non-hierarchical framework. We observe from
Table 3 that models trained in hierarchical frame-
work tend to perform better than equivalent non-
hierarchical models. For example, BERT-HMCF-
1-model-NLI yields 13% and 11% absolute im-
provement in Top-1 accuracy (for level-2 task) over
BERT-NLI on the CQ100PCTest and CQ22PCTest
datasets, respectively. Superior performance of
hierarchical framework can be attributed to the fact
that a) level-1 prediction helps level-2 model nar-
row down focus on limited set of classes, leading
to better performance b) models can be trained on
hard negative examples under hierarchical frame-
work because of the availability of level-1 informa-
tion.

Multi-task model outperforms single-task
model. We can see from Table 3 that, BERT-
HMCF-1-model-NLI achieves a 4% absolute accu-
racy improvement over BERT-HCF-2-model-NLI
for level-2 task on the CQ100PCTest dataset. This
suggests that weight sharing between tasks is help-
ful in learning more general representations that
are useful across both tasks.

NLI framework is suitable for level-2 iden-
tification. Again, we can see from Table 3 that
NLI based architectures outperform equivalent co-
sine similarity based architectures. The primary
reason for this finding can be attributed to the fact
that [CLS] embeddings in NLI architecture are ob-
tained by computing attention over both question
and topic tokens together. Hence, the [CLS] embed-
dings obtained are rich in representation as com-
pared to individual question and topic embeddings
computed in a cosine similarity based framework.

NLI based architecture demonstrates excel-
lent generalization capabilities. We observe from
Table 4 that BERT-HMCF-1-model-NLI achieves
78% accuracy on the dataset of 22 product cate-

gories on which the model was not trained. Further,
with just 10 samples per label, accuracy reaches
82% which is almost at par with full-shot model
performance. We conclude that NLI architecture
can be thought of as computing a general similarity
metric between topic and question. Since this task
is domain agnostic, the model can easily adapt to
out-of-domain data.

k-shot setting level-1 level-2

0-shot 0.87 0.78
5-shot 0.89 0.81
10-shot 0.89 0.82
20-shot 0.91 0.84

Table 4: BERT-HMCF-1-model-NLI performance on
CQ22PCTest (22 product category dataset) in various
few-shot scenarios

Figure 3: Level-2 accuracy when top-k level-1 predic-
tions are considered for level-2 inference

Using Top-k level-1 predictions for level-2 in-
ference reduces the impact of level-1 error on
overall performance. Figure 3 demonstrates level-
2 accuracy with respect to k, where k is the number
of top-k level-1 predictions used for level-2 infer-
ence. Level-2 performance increases from k = 1
to k = 3 monotonically. The performance reduces
from k = 4 onwards, mainly because the model has
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to differentiate between more topics as k increases.

7 Conclusion

In this paper, we present HMCF, a hierarchi-
cal multi-task classification framework to identify
granular topics from customer questions. Through
systematic studies, we showcase that NLI based
HMCF is more appropriate for our problem as com-
pared to single-task or non-hierarchical architec-
tures and yields 13% absolute improvement in Top-
1 accuracy over single-task non-hierarchical base-
lines. We also demonstrate that NLI based HMCF
generalizes well on other domains since it learns
a domain invariant topic and question similarity
metric. We also propose a top-k level-1 predictions
based inference strategy for level-2 task to reduce
the impact of level-1 model errors on overall perfor-
mance. Further, with the TCDL module proposed
in the paper, taxonomy and labelled data creation
efforts reduce significantly. We deployed single
BERT-HMCF-1-model-NLI to production for 600
product categories and use it to provide actionable
insights to the selling partners. Selling partners and
brand owners make corrections to the product page
or create new attributes to enrich the detail page.
Our business teams consume the output to measure
the impact of enrichment on product page using the
purchase inquiry rate (PIR) metric, the % questions
asked WoW.
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id Customer question Level-1 Level-2 is level-2 correct? correct topic

1 What is seat height? size seat height yes -
2 Does this sofa set include ottoman too? pack/quantity includes ottoman yes -
3 Can I use it outdoor? usage indoor or outdoor usage yes -
4 Can this chair serve as a study chair for children? compatibility suitable for studying yes -
5 does it rust? usage rustproof yes -
6 is this a set of 2? pack/quantity quantity yes -
7 What is the height? what is the width? size seat height no (“size”, “seat height”), (“size”, “seat width”)
8 Is the table green color? Also, what is the size of white table? size table dimensions no (“product specification”, “color”), (“size”, “table dimensions”)
9 what is the inscription on the back? product specification front/back specification no (“product specication”, “back inscription”)
10 can I place 10kg oven on this table? usage placement no (“product specification”, “weight limit”)

Table 5: Example of customer questions and BERT-HMCF-1-model-NLI output

Level-1 Level-2

size [arm height, foot rest height, depth without cushion, . . . ]
product specification [color, reclining angle, rocking feature, . . . ]

usage [adjustable lumber, foldable, can be used outdoors, . . . ]
material [cushion material, leather type, arm material, . . . ]

compatibility [suitable for certain heights, suitable for kids, suitable for studying, . . . ]

Table 6: Example of taxonomy for CHAIR category

Questions in a cluster Top-3 keywords Level-2 topic Level-1 topic

what is the height of seat from the
floor?, how high is the seat from the
ground?, what is seat height?

seat, height,
floor

seat height size

Can this be used by men that weight
250pds...Top and bottom?, What is
the weight limit?, what’s the weight
capacity for this? I’m an adult
of about 300 pounds., What is the
weight limit? Can an adult use it?

weight, limit, ca-
pacity

weight limit product specification

Can its height be adjusted?, How
high can this adjust to?, Is it ad-
justable to height or is it one height?
limit?, Does it have different ad-
justable hights and what is the lowest
setting?, Is height adjustable

adjust, height,
limit

height adjustability usgae

Table 7: Example of output of taxonomy creation and data labeling module
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Abstract

Automated digitization of prescription images
is a critical prerequisite to scale digital health-
care services such as online pharmacies. This
is challenging in emerging markets since pre-
scriptions are not digitized at source and pa-
tients lack the medical expertise to interpret
prescriptions to place orders. In this paper, we
present prescription digitization system for on-
line medicine ordering built with minimal su-
pervision. Our system uses a modular pipeline
comprising a mix of ML and rule-based com-
ponents for (a) image to text extraction, (b) seg-
mentation into blocks and medication items, (c)
medication attribute extraction, (d) matching
against medicine catalog, and (e) shopping cart
building. Our approach efficiently utilizes mul-
tiple signals like layout, medical ontologies,
and semantic embeddings via LayoutLMv2
model to yield substantial improvement rel-
ative to strong baselines on medication at-
tribute extraction. Our pipeline achieves +5.9%
gain in precision@3 and +5.6% in recall@3
over catalog-based fuzzy matching baseline for
shopping cart building for printed prescriptions.

1 Introduction

In recent years, prompted by the COVID pandemic,
there has been a rise in the adoption of online phar-
maceutical services leading to improved access to
medications and health outcomes. However, in
emerging markets such as India, online pharmacy
ordering continues to be challenging since prescrip-
tions tend to be paper-based, unstructured and of-
ten, handwritten, which makes digitization a vi-
tal prerequisite. For in-store purchases, customers
follow a simple process of presenting a prescrip-
tion to the store pharmacist who interprets it and
fulfills the order. Current e-commerce purchase
process, however, imposes a significant cognitive
load on customers since they have to explicitly

∗Equal contribution
†Work done while at Amazon

specify the medicines. This process is onerous for
the customers due to their (a) unfamiliarity with
the ordering process, (b) difficulty in understand-
ing prescriptions, and (c) lack of expertise to in-
terpret medical acronyms and identify substitute
medicines. Further, most online pharmacies have
a post-cart creation workflow where customers up-
load the prescription to be verified by a remote phar-
macist. Lack of pharmacist capacity often leads
to long wait time making the process unscalable.
Therefore, an automated system that converts pre-
scription images to a digitized form to facilitate
search-less shopping is essential for the success of
online pharmacies. In particular, we need to extract
the medical advice section which contains a list
of medication items, each of which is a record of
multiple fields such as BRAND-NAME.
Challenges. Addressing this problem is non-trivial
due to multiple reasons shown in Figure 3a: (a) vari-
ability in prescription image quality, background,
and orientation, (b) diversity of layouts and doc-
tor styles, (c) high prevalence of typos that create
confusion between similar items (e.g., Fibrodone
and Firodone), (d) specialized vocabulary of re-
gional prescriptions, and (e) the need for convert-
ing dosage-specific instructions to a precise product
order. Additionally, there are limited labeled pre-
scriptions due to the high manual effort it entails.
Related work. While there have been significant
advances in document AI [6, 15, 19] and informa-
tion extraction [29, 21, 13] techniques, most of
these methods are effective only on images of well-
formatted documents such as invoices. Besides,
these generic methods require significant supervi-
sion and are not sufficiently modular to support
a phased automation of the prescription process-
ing workflow. Recent work on digitizing medical
prescriptions [27] is focused on using named en-
tity recognition (NER) methods for medication at-
tribute detection, but these models perform poorly
on non-US prescriptions due to vocabulary gaps
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Figure 1: Prescription processing stages & entities. Only fic-
tional prescriptions are shown in the paper for privacy reasons.

and do not utilize the layout or catalog information.
We present additional related work in Appendix B.
Contributions. In this paper, we present a study on
automated digitisation of prescription images with
printed content which covers design, data, model-
ing and evaluation aspects. We discuss experimen-
tal results for our emerging modular pipeline which
comprises a mix of ML and rule-based components
for (a) image to text extraction and normalization
(b) segmentation into blocks, medication items and
extraction of medication attributes, (c) matching
against pharmacy catalog, and (d) shopping cart
building. We detail how our approach efficiently
combines layout signal, medical ontologies, and
semantic embeddings via LayoutLMv2 model to
yield substantial improvement relative to strong
baselines on medication attribute extraction, and
results in +5.9% and +5.6% gain in precision@3
and recall@3 over catalog-based fuzzy matching
baseline for printed prescriptions. We discuss key
learnings relevant for low data regime document AI
systems in addition to presenting component-wise
efficacy of our pipeline and results from ongoing
experiments (Appendix A.4.2) to highlight future
directions. We present safety aspects in Section 9.

2 Prescription Digitization Problem

Given a prescription image, a natural choice for
digitization is in terms of conversion to a structured
prescription object as per a global standard such
as the Fast Healthcare Interoperability Resources
(FHIR) framework [3]. Since our objective is to

create a shopping cart for automated medicine or-
dering we focus on populating the relevant fields
only in the FHIR prescription schema (Table 5). To
accommodate the nuances of regional medications,
we define each medicine in the pharmacy catalog
as a unique tuple of BRAND-NAME or GENERIC-
NAME1, FORM, INGREDIENT and STRENGTH. A
unique pair of a medicine and package details cor-
responds to a stock keeping unit (SKU).

Figure 1 depicts the various stages of processing
a prescription (denoted by hA, hD, hO) that results
in the successive creation of following entities: (a)
Annotated Prescription is a visually rich document
(VRD) comprising labeled rectangular bounding
boxes (BBs). Each BB is associated with text and
a list of annotations, which include the start-end
offsets and labels corresponding to medication at-
tributes, item boundaries, and block type, (b) Digi-
tized Prescription is a structured object with canon-
ical entries following the FHIR-based prescription
schema, (c) Pharmacy Order is a list of SKUs from
the prescription along with the recommended quan-
tities. The conversion to a pharmacy order (hO)
can be enabled via a deterministic lookup using a
medicine-SKU map if the medication codes in the
digitized prescription are from the catalog. Hence,
we focus on the non-trivial transformations hA and
hD that entail a data-driven approach.
Let P = {pi}Ni=1 denote the set of the available
prescription images for training. For the ith pre-
scription pi, let (ai, di, oi) denote the human an-
notated prescription, digitized prescription, and
pharmacy order obtained from expert pharmacists,
i.e., ai = hA(pi), di = hD(ai), oi = hO(di).
Typically, pharmacists directly create or validate
pharmacy orders from a prescription image with-
out any record of the intermediate annotation and
digitization. Since these prescription-order pairs
are inadequate for an end-to-end neural model, we
explicitly gather supervision for the intermediate
stages for a subset of the prescriptions to enable
a pipelined approach. Let zAi , z

D
i , zOi denote bi-

nary indicators of the availability of ai, di, oi re-
spectively. Further LA(·, ·), LD(·, ·), LO(·, ·) be
suitable loss functions for comparison of pairs of
candidate annotated versions, digitized versions,
and orders corresponding to a prescription such as
the accuracy of annotations, matching with canoni-
cal entities, and the constructed order respectively
as shown in Table 2. Then, the training objective

1Generic names are globally approved, e.g., paracetamol, while brand
names are manufacturer given e.g., Calpol.
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is to learn mappings ĥA and ĥD that produce high
fidelity reconstructions of the processed versions
of the prescription and can be viewed as a loss
minimization:

minĥA,ĥD

[∑
i|zAi =1 LA(ai, ĥA(pi))

+
∑

i|zDi =1 LD(di, (ĥA ◦ ĥD)(pi))

+
∑

i|zOi =1 LO(oi, (ĥA ◦ ĥD ◦ hO)(pi))
]

Given a new prescription, the learned mappings
(ĥA, ĥD) along with hO yield a pharmacy order.

3 Solution Design

3.1 Design Choices
We discuss the key tenets and design choices of our
prescription digitization approach (Figure 3b).
Modularity. Supporting phased automation of
user-driven cart building and pharmacist-driven val-
idation workflows entailed a modular pipeline.
Solution choice dependent on input signals. Lim-
ited labeled prescription data coupled with access
to medical ontologies made it prudent to choose a
hybrid combination of rule-based and ML modules
instead of an end-to-end deep neural model.
Interoperability. The need to interface with other
healthcare systems led us to choose a data repre-
sentation based on global FHIR standards.
Extension over reinvention. Fast and scalable
implementation required use of existing solutions
for sub-problems wherever acceptable and focusing
on exploration of the harder sub-problems.

3.2 Components
We describe components of Figure 3b below.
Text extraction & VRD Normalization. First, we
identify OCR bounding boxes (BBs) and extract
the text from these BBs. Then we perform rotation
and background cropping, using the position coor-
dinates of BBs, to create normalized VRDs with
more homogeneous layouts as shown in Figure 2.

Figure 2: Steps in VRD normalization pipeline.

Entity Annotation. Annotating BBs comprises
three tasks corresponding to stage (b) of Figure
1: (a) detecting block(s) containing medical ad-
vice of doctor, (b) chunking of words, within med-
ical advice block, related to medication(s) into

item(s), and (c) extracting medication attributes
such as brand name, duration of consumption from
an item. Though a joint model that optimizes∑

i|zAi =1 LA(ai, ĥA(pi)) to simultaneously detect
blocks, medication items, and attributes seems like
a natural choice, it is prohibitive due to the con-
straints on amount of supervision, computational
effort, and limits on context size of NLP models
(usually 512 tokens). We simplify this problem by
solving the sub-tasks in the order (a → c → b).
Advice block detection reduces sequence length (as
shown in figure 4) permitting transformer-based en-
codings and increasing precision for later tasks. In
this task, we construct latent representation of the
BBs based on position, semantics, and membership
in medical ontologies and learn a supervised clas-
sification model to predict whether a BB contains
medical advice or not. We perform step (c) and
(b) only on BBs predicted as advice blocks. For
medication attributes, we label each token in ad-
vice BB using our NER model into one of 7 classes
(DURATION, FORM, FREQUENCY, INGREDIENT,
ITEM-MARKER, BRAND-NAME, and STRENGTH).
Sequence of NER predictions are fed into our
heuristic algorithm for medication item chunk-
ing that leverages relative positions of BRAND-
NAME, STRENGTH and FORM tokens. Matching
and Canonicalization. The next step (ĥD) is to
map each annotated medication item in the pre-
scription (e.g., T.[FORM] Crocin[BRAND-NAME],
5 ml[STRENGTH]) to a medicine ID in the phar-
macy catalog using extracted attributes. For this
we use our Pharmacy product catalog as a reference.
This catalog contains all medicine products listed
on our website and each product is described by a
set of attributes such as BRAND-NAME and FORM.
We adopt a two-stage approach comprising: (a)
identifying candidates by fuzzy matching predicted
BRAND-NAME with that in catalog, (b) computing
a match score based on FORM and STRENGTH to
identify the best matching medicine ID using either
a rule-based or an ML classifier.

Cart Building. The final step (hO) is to construct
the pharmacy order, i.e., list of required SKUs and
their quantities. To enable this, the standard dosage
amount of SKU is computed during catalog cre-
ation, e.g., 3 packs of 30 ml bottle maps to 90 ml.
From the digitized prescription, total recommended
dosage amount can be computed from dosage dura-
tion, daily dosage pattern and units to be consumed
at a time. Appropriate SKU and its quantity can be
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derived to minimally exceed this amount.

4 Data Collection

Due to the sensitive nature of prescriptions and
recent emergence of our medicine ordering applica-
tion, a public dataset of unstructured prescription
images does not exist to the best of our knowledge.
External benchmarks such as [5] only contain clean
text without any layout information. Hence, we
use a proprietary dataset of 1359 Indian prescrip-
tions paired with (fully or partial) digitized orders,
delinked from customer IDs. These are mostly or
fully printed prescriptions and have been validated
by our in-house experts. The prescription images
are modified as follows prior to modeling. AWS
Textract, which is security certified for critical data,
is used to extract text from images. The obtained
text is then run through AWS Comprehend to de-
tect personally identifiable information such as pa-
tient/doctor names, phone numbers and then the
corresponding OCR bounding boxes are grayed out.
For a subset of prescriptions, we procured in-house
human annotations for supervised training of all
components. Ground-truth text, BBs for medical
advice blocks, labeled text spans for medication
attributes, as well labels for pairs of candidate and
ground truth SKUs for medication matching were
annotated in the prescription image by the annota-
tors. More details on the annotation tasks are given
in Table 6. Table 1 lists details of the training and
evaluating splits for various components. Given the
expensive labeling effort, this data size is realistic
for early-stage specialized document AI systems.

5 Experimental Results

We present our evaluation method and results on
the efficacy of the full system and various compo-
nents with focus on medication attribute extraction.

5.1 Evaluation Methodology
Practical systems need to be evaluated during de-
velopment (offline metrics) and post deployment
(online metrics). Table 1 lists our offline evalua-
tion metrics. Most of these are self-explanatory
except Brand match which is the percentage of
medicine brand names ordered by the customers
in the extracted text and indicates the medical text
extraction efficacy. The online metrics of our sys-
tem (not reported for proprietary reasons) depend

2https://en.wikipedia.org/wiki/Word_error_rate
3Strict matching metrics as per SemEval-13 [7].

on whether the digitization is integrated into the
pharmacist processing flow or the customer-facing
UI. These include rate of correction of automated
cart suggestions, reduction in cart-building time, re-
duction in order rejections during verification stage
as well as business metrics on the order volume.

5.2 Component-wise Efficacy

Table 2 lists the metrics of various components of
our digitization pipeline, which we discuss below.
Text Extraction. Due to limited supervision, we
use pretrained off-the-shelf solutions. AWS Tex-
tract is our preferred choice as it provides a higher
brand match (+7%) than AWS Rekognition as the
latter has limit on the number of extractable words.
Advice Block detection. To reduce complexity for
downstream tasks, we first detect medical advice
blocks. We employ a two-stage solution (see Figure
4) of (a) clustering BBs using K-means on their po-
sitional coordinates, and (b) classifying each cluster
as advice block or not using XGBoost [8] classifier
trained on cluster position, and fractions of medical
and printed words. Lastly, adjacent advice blocks
are merged. This method can be extended to other
block types (e.g., header, footer) using a multi-class
classifier and block-type indicators. Our solution
results in an operational point with 94.8% recall,
88.1% precision, reduction in block size (Figure
5) and mostly homogeneous clusters (homogeneity
score: 0.857). Common errors occur due to: (a)
sparse text that cannot use local semantic context
well leading to false positives, and (b) long lines
that are ideally a single cluster but split because of
the high divergence in the horizontal dimension.
Medication Item Chunking. We exploit the obser-
vation that attributes of a medication are contiguous
with BRAND NAME preceding STRENGTH and the
ordering relative to FORM being flexible. Let tk be
the kth detected BRAND NAME token. For each tk,
we construct up to two candidate medications with
brand based on tk, STRENGTH based on the closest
STRENGTH token to tk in the span (tk, tk+1), and
FORM derived from the FORM tokens closest to tk
on either side in the spans (tk−1, tk) and (tk−1, tk).
Our approach yields high accuracy (97.2%) obviat-
ing the need for an ML system.
Matching and Canonicalization. As discussed in
Section 3.2, we employ a two-stage approach of
filtering and ranking using match score. For match
score computation, we consider two methods using
the same attribute fuzzy scores as inputs: 1) rule-
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Figure 3: (a) Illustration of the challenges with prescription digitization in emerging markets. The image presents a representative
Indian prescription, (b) Flow of automated order creation from prescription images

Figure 4: Flow chart of medical advice block detection mod-
ule. Highlighted blue boxes are predicted advice blocks.

based one with heuristics for handling missing val-
ues and 2) XGBoost classifier that predicts whether
a chunked item matches a candidate SKU using the
same features as rule-based one except heuristics.
Empirically, we see that the former approach yields
+18% gain over the latter in precision@1 of the top
matching item. Note that precision@1 is the same
as recall@1 due to stand-alone evaluation.

5.3 Medication Attribute Extraction

Table 3 shows performance of various approaches
based on multiple input signals: (a) Catalog Fea-
tures: These include membership scores of to-
kens with respect to dictionaries of BRAND-NAME,
INGREDIENT, STRENGTH (e.g., mg) and FORM

(e.g., tablet) created from the catalog, (b) Seman-
tic features: These include contextual text em-
beddings derived from transformer models such
as BERT [10] and MedBERT [25] pretrained on
Wikipedia and PubMed respectively, (c) Layout
features: Since the layout provides extra infor-
mation, e.g., text in the middle is usually medical

advice, we use LayoutLM [32] and LayoutLMv2
[31] models, which have multi-modal Transformer
architecture as backbone and utilize layout, visual,
and textual features to learn cross-modal interac-
tions, and (d) Collective labeling: We use the lin-
ear conditional random field (CRF) loss to exploit
relationships amongst labels, e.g. BRAND-NAME

often lies between FORM and STRENGTH.
Note than in Table 3, the token level metrics are

weighted with token length so that errors on small
tokens are less penalized and OTHER tokens are
excluded as these are not critical for the applica-
tion. From the results, we observe that XGBoost
trained with catalog features performs comparable
to custom Comprehend fine-tuned on our data il-
lustrating the importance of catalog signal. While
BERT-based models using semantic features fur-
ther improve the performance, the best accuracy
is seen when we incorporate layout features (Lay-
outLMV2 variants) as well. Note that models such
as Comprehend Medical and MedBERT are not
suitable for our problem as these are not trained on
the Indian medicine vocabulary.

Ablation Studies. To evaluate the efficacy of
the various signals as well as modeling sequen-
tial dependencies via CRF, we conducted ablation
studies. Since LayoutLMv2 already uses semantic
and layout features, we added collective labeling
(LayoutLMv2 + CRF) and catalog features (Lay-
outLMv2 + CF) separately and in a combined set-
ting (LayoutLMv2 + CF + CRF). We note from
Table 3 that performance only changes marginally.
Similar behavior is observed when using BERT-
variants indicating that catalog and collective la-
beling are subsumed by the semantic and layout
encoding. Good performance of XGBoost + cata-
log features variant points to presence of non-linear
interactions and value of catalog signal. Further
studies (Appendix A.4.2) indicate that the perfor-
mance depends on the quality and diversity of su-
pervision more than than the quantity pointing to
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Task Data split Metrics Approaches
Text extraction (-, -, 10) Brand match % Textract, Rekognition
Block detection (44, 5, 13) Precision (P), Recall (R) K-means + XGBoost
Medication attribute extraction (977, 190, 192) Token & entity level P, R, F1 3 Refer Table 3
Medication Item Chunking (977, 190, 192) Accuracy Rule based
Matching & canonicalization (272, 46, 58) Precision@k (P@k) Rule based, XGBoost

Table 1: Details of dataset (train,val,test splits), evaluation metrics, and approaches for sub-tasks.

Method Brand match%

Textract 56.17
Rekognition 49.38

(a) Text Extraction

Method Precision Recall

K-means +
XGBoost 0.881 0.948

(b) Block Detection

Method P@1

Rule based 0.945
XGBoost 0.765

(c) Matching

Method Accuracy

Rule based 0.972

(d) Medication Chunking

Table 2: Efficacy of various stages of pipeline excluding medication attribute extraction.

Type Model Token
Precision

Token
Recall

Token
F1

Entity
Precision

Entity
Recall

Entity
F1

AWS Solutions Custom Comprehend 0.955 0.882 0.915 0.774 0.790 0.782

Catalog Features (CF) CF + XGBoost 0.973 0.870 0.917 0.766 0.780 0.773

Semantic Features BERT 0.975 0.913 0.942 0.802 0.829 0.815
MedBERT 0.974 0.893 0.931 0.802 0.811 0.806

Layout Features LayoutLM (LLM) 0.981 0.918 0.948 0.826 0.834 0.830
LLMv2 0.983 0.926 0.953 0.829 0.842 0.835
LLMv2 + CF 0.981 0.915 0.946 0.835 0.837 0.836

Collective Labeling BERT + CRF 0.974 0.903 0.936 0.800 0.816 0.808
BERT + CF + CRF 0.974 0.896 0.932 0.808 0.814 0.811
LLMv2 + CRF 0.982 0.921 0.950 0.835 0.840 0.838
LLMv2 + CF + CRF 0.983 0.921 0.950 0.830 0.835 0.832

Table 3: Performance of various NER methods on medication attribute extraction.

the benefits of using active learning approaches.
Error Diagnosis. Table 4 presents an error diag-

nosis of our best model (LayoutLMv2) and areas of
improvement such as deducing labels from context
(e.g. "tablet once a day"→ Frequency). Figure 9
presents the confusion matrix of different medica-
tion attribute classes.

5.4 Overall Cart Building Efficacy

We evaluate the overall pipeline on a test set of 179
orders (71% are partially digitized) consisting of
200 digitized medication items. We predict top K
(K=3) SKUs for each medicine identified in the
prescription image for customer safety and evalu-
ate our approaches on precision@3 (i.e., fraction of
predicted being in the ground truth orders) and re-
call@3 (i.e., fraction of actual ordered medications
being detected). Since precision estimate is based
on partial orders, it is pessimistic. The baseline
method performs fuzzy matching of attributes (e.g.,
BRAND-NAME, FORM) of catalog items with n-
grams from complete prescription text and selects

top K SKUs for each prescribed medicine. Our pro-
posed approach combines the best version of each
component from Section 3.2 and gets +5.9% in pre-
cision@3 and +5.6% in recall@3 over the baseline.
Error diagnosis. Primary gaps in our approach
include: (a) Text extraction errors, e.g., capsule
extracted as "apsule" resulting in misclassification
as form; (b) Limited semantic understanding of
the model, e.g., "once a month" denotes Frequency
but was predicted as Duration; (c) Token not ex-
clusively associated with a label, e.g., “syrup” is
usually Form, but "corn syrup” is an Ingredient, and
(d) Minor variations in medication attributes (e.g.,
"LosarH" vs "LosarCH") which can be handled by
including INGREDIENT during matching.

6 Learnings

Below are our key learnings on building document
AI systems for low data regime:
Annotation design is critical. Annotation tasks
(drawing BBs, text chunking) should be well-
specified with low cognitive load and include all the
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````````Actual
Predicted ITEM-

MARKER
INGREDIENT FORM DURATION

BRAND-
NAME

STRENGTH FREQUENCY OTHER

ITEM-MARKER 6 . TAB

INGREDIENT Motia 3 Corn Syrup Pregabalin Para
Sucphate

FORM
ctab duone-
mer apsule T-FIL ointment at

bedtime
tab after
breakfast

DURATION
tues / thurs /
sat

BRAND-NAME
2 Clon-
azepam

Threptin
Diskettes VOGS GM Rient OD

STRENGTH
100 billion
spores SPF 50 10 gm

FREQUENCY 1 unit tablet once a
day

once a for
month 2 TSF bed Ativan

time

OTHER 1 . D-Rise
Glargin
composi-
tion Insulin

1 tab oral Continue Bioderma
Sebium

vertin tab
16mg

1-0-1 single
dose

Table 4: Error diagnosis matrix: Words colored in red belong to the row attribute and are confused for the column attribute.
For example, "Corn Syrup" is labeled as INGREDIENT but Syrup is wrongly predicted as FORM. There are few primary reasons
for the errors: (a) token being used with multiple labels, e.g., “syrup” is a common term in FORM, but "Corn Syrup” is a
special case where it is INGREDIENT. (b) Text extraction errors, e.g., Capsule detected as "apsule" resulting in it being labeled
as INGREDIENT instead of FORM. (c) Limited semantic understanding of the model (e.g., once a month is an expression for
FREQUENCY), and (d) High fraction of the OTHER class resulting in biased decisions.

relevant input (e.g., raw images) to avoid cascading
errors. This is especially true for annotations on
VRD output from OCR which could itself be er-
roneous. Building an annotation UI that leverages
existing models but allows for manual corrections
as part of a semi-automated workflow is an ideal
strategy for progressive improvement.
Divide and conquer. Despite the ubiquity of end-
end neural models, it is vital to choose a solution
approach based on application constraints, e.g.,
data limitations, the need for modularity to support
phased development and audibility. We adopted a
divide-and-conquer approach by partitioning our
problem into sub-tasks which could be solved sep-
arately using domain knowledge where possible.
Our multi-stage solution is extensible and reusable
across different workflows and data segments.
Model and problem complexity should match.
Ideal performance is obtained when complexity of
approach matches that of the problem conditioned
on available data and domain knowledge. We no-
ticed in our case that richer ML models were com-
parable or under-performed simpler ML models
and domain heuristic-based approaches in medicine
chunking and matching tasks due to less data.

7 Concluding Remarks

Prescription digitization is a critical enabler of on-
line pharmacy services. We present a holistic, mod-
ular approach to address this problem in a low data
regime using hybrid ML and rule-based compo-
nents. Our approach uses layout signals, medical
ontologies, sequential dependencies, and semantic
embeddings to yield significant improvement over

baselines and good performance on unstructured
printed prescriptions. Ongoing directions include
using active learning to judiciously label data (sec-
tion A.4.2), pseudo labeling of partially digitized
orders and digitizing handwritten prescriptions.

8 Limitations

Our prescription digitization approach has a few
limitations but is still effective for a broad enough
application domain and permits future enhance-
ments that address these limitations. First, our
system uses an off-the-shelf text extraction tool
(AWS Textract) that provides accurate extractions
on printed prescriptions but has variable perfor-
mance on hand written data depending on the legi-
bility of the handwriting. In future, we plan to build
a specialized extraction model trained to recog-
nise medical practitioner’s handwriting to replace
AWS TextExtract. Further, multiple components
in our approach (e.g., attribute extraction) have
been trained on primarily English transcriptions.
Extension to other language prescriptions requires
access to medical vocabulary and training data in
those languages. Note that AWS Textract supports
multiple languages and can be readily paired with
an automated translator to convert the content to
English. We did not consider this option since mul-
tilingual prescriptions in India tend to have mixed
content with medications written in English itself.
Lastly, the performance of multiple tasks such as
advice block detection, medication attribute extrac-
tion and matching-canonicalization depends on the
coverage of the available medical catalog.
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9 Safety and Ethics Statement

Our motivation is to improve access and affordabil-
ity to online pharmaceutical services in emerging
markets such as India through accurate and easy
digitization of medical prescriptions. Given the
sensitive nature of medical prescriptions and the
associated health impact, it was critical to pay at-
tention to multiple aspects that we discuss below:
Secure and Privacy-safe Data Collection: Pri-
vacy of customer data is paramount to us. Hence,
prior to modeling, we remove customer, facility
and practitioner information by obscuring the re-
gions containing personally identifiable fields such
as names, phone numbers, and addresses, which
are identified using security-certified AWS services
(AWS Comprehend, AWS Textract).
Model Bias: A key limitation of the existing medi-
cal NER models is their poor performance on non-
US and EU prescriptions due to bias in the training
data, which is almost exclusively based on US-
EU centric medical content and vocabulary. In
our approach, we have deliberately chosen to have
explicit dependence on aspects that vary across geo-
graphical regions (e.g., medical catalog), which en-
hances the applicability of our approach. To further
limit the model bias and minimize distributional
differences between training and production set-
tings, we have trained our models on prescription
images that are randomly sampled from customer
uploads. These often include low resolution and
improperly positioned images. In future, as the
scope of deployment changes, we plan to period-
ically retrain the model with training images by
sampling from the production data.
Health Safety: One of the primary concerns in
prescription digitisation is the impact of errors on
patient health and adherence to health regulations.
To alleviate adverse outcomes, we have multiple
guardrails. First, we present the top three sugges-
tions along with scores for each medication for
two-fold review by customer and pharmacist. Sec-
ond, to avoid prescription abuse (e.g., manipulation
of quantities, prescription reuse) and comply with
regulations, there are additional checks based on
the prescription date, patient purchase history, and
recommended limits on medication quantities.
Usage for a Limited Scope: Our proprietary sys-
tem has been trained for a specific-use case, i.e.,
prescription digitization with acceptable perfor-
mance on primarily English printed prescriptions
for India region. We plan to use the model within

this limited scope and expand usage only after ade-
quate benchmarking. To limit the risks of misuse,
we do not plan to release this system externally.
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A Additional Solution Details

A.1 Prescription Schema
Refer to Table 5 for prescription schema.

Field Type Description

Medicine ID Identifier Unique code in catalog

Duration Numeric #Days to consume the
medicine

Consumption
Pattern Enum Consumption pattern of

the doses, e.g., 1-0-0

Repeat Fre-
quency Numeric

For medications con-
sumed with gaps across
days

As Needed In-
dicator Boolean Set to true if medicine is

to be taken SOS
Dosage Size Numeric Size of the dose

Dosage Units Enum Units for quantifying
dose (e.g., 1 ml, 1 tablet)

Additional In-
struction String Guidelines on consum-

ing the medicine

Table 5: Schema for digitized prescription which is compliant
with FHIR standard.

A.2 Annotation Tasks
Refer to Table 6 for details on annotation tasks.

Annotation Task Labels

Block
Identification

Medical advice, Other

Medication Item
Chunking

B, I, O label for medica-
tion item segments

Medication
Attribute
Extraction

B, I, O labels based on
entities below
a) DURATION
b) FORM
c) FREQUENCY
d) INGREDIENT
e) ITEM-MARKER
f) BRAND-NAME
g) STRENGTH

Table 6: Annotation of VRD is done in three ways - (a)
forming BB around relevant block such as medical advice,
(b) identification of series of tokens which form one medica-
tion item, (c) extraction of attributes required for identifying
medicinal items, e.g., BRAND-NAME, STRENGTH.

A.3 Advice Block Detection
Figure 5 shows the reduction in length of prescrip-
tions with advice block detection.

A.4 Medication attribute extraction
A.4.1 Training setup and details
For training LayoutLMV2 model (our best perform-
ing model), PyTorch [23] is used and the pretrained
model is taken from open-source Huggingface li-
brary. Batch size of 2 and dropout of 0.1 is used
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(a) Token count density distribution for prescriptions (b) Token count density distribution for Advice blocks

Figure 5: Histogram for token sequence length for the entire prescriptions and advice blocks. Note that advice
blocks tend to be much smaller than the 512 tokens required for a transformer.

for model training. Learning rate schedule and
loss convergence curves are shown in Figure 6.
Model architecture for LayoutLMv2 is shown in
Figure 7. Adam optimizer is used with exponential
decay rates for first moment and second moment
estimated as 0.9 and 0.99 respectively.

(a) Loss curve epoch wise (b) Learning rate step wise

Figure 6: Details of the training set up for the LayoutLMv2
Model.

A.4.2 Efficient Use of Unlabeled Data.
Training the model with an increasing number of
randomly chosen prescriptions indicated that there
is improvement in performance, but at a relatively
slow rate. Since labeling effort is much more ex-
pensive than acquisition of unlabeled prescriptions,
we explored using common active learning meth-
ods [26] to prioritize the selection of prescriptions
for labeling. Figure 8 shows the learning curves
using increasing training data size with selection
based on random sampling, entropy of class poste-
riors, and product of entropy as well as normalized
occurrence frequency in the unlabeled data. The re-
sults point to potential benefits of judicious prioriti-
zation but more exploration is required to optimally
combine the entropy and frequency signals.

B Related Work

Our work is primarily related to four areas of re-
search that we briefly review below.
Document AI is a multi-disciplinary area centered

Figure 7: LayoutLMv2 Model Architecture from [31]

on understanding visually rich documents (VRDs)
using techniques [22, 20] spanning computer vi-
sion, layout understanding, natural language under-
standing, and information retrieval. Document AI
techniques that combine Optical Character Recog-
nition (OCR) [4, 2, 1] with graph neural net-
works [33, 34, 18, 29, 19] have proven to be ef-
fective at extracting structured information from
documents images, especially for well-formatted
printed documents with tables and headers such as
invoices. However, these methods perform poorly
on documents with uneven layout and handwrit-
ten content, such as medical prescriptions. Recent
models such as LayoutLM [32, 31] that jointly
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Figure 8: Plot of test entity level F1 score with model trained
using different data selection strategy and data volume. Curves
represent data selection strategies based on a) class posteriors
entropy, b) product of entropy and normalized frequency and
c) random sampling

Figure 9: Confusion matrix showing detailed error re-
ports.

learn the layout, visual, and text signal from a
large corpus of document images improve perfor-
mance with uneven layout. Handwritten text recog-
nition (HTR) remains an open challenge despite
advances in multi-dimensional RNNs and trans-
former models [9, 12, 17] due to the variability in
author style and limited supervision. Incorporating
domain-specific language models is, thus, critical
for domain-specific HTR. We combine ideas from
OCR, LayoutLM, and domain catalog-based match-
ing to create a tailored solution for our application.
Information extraction techniques [29, 21, 13]
that deal with conversion of unstructured text to
structured form, especially forming blocks of inter-
est comprising lists of multi-attribute records are

directly relevant to our application. These methods
primarily use coupled models for segmentation and
attribute detection (i.e. entity recognition (ER)),
based on conditional random fields in combination
with semantic embeddings derived from seq2seq
models such as BERT [10], Bi-LSTMs and require
extensive labeled data. Since such supervision is
limited in our scenario, we decouple segmentation
and attribute extraction tasks, using simpler ap-
proaches for the former and exploring the SOTA
ER techniques while incorporating ideas on exploit-
ing ontologies [30].
Prescription Digitization has seen rising interest
in recent years with standardization of health data
resources [3, 14]. Most techniques [28, 24, 11, 16],
however, fixate on the ER aspects assuming the
input is an unstructured text sequence and present
results on benchmark datasets [27, 13, 5] of printed
clinical documents from Western marketplaces.
These models are inadequate for unstructured pre-
scriptions since these do not account for the ex-
traction errors, layout signals, and the gaps in the
vocabulary. Therefore, we focus on developing a
holistic approach with raw noisy prescriptions as
input.
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