@inproceedings{khalifa-etal-2023-cautious,
title = "A Cautious Generalization Goes a Long Way: Learning Morphophonological Rules",
author = "Khalifa, Salam and
Payne, Sarah and
Kodner, Jordan and
Broselow, Ellen and
Rambow, Owen",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.101",
doi = "10.18653/v1/2023.acl-long.101",
pages = "1793--1805",
abstract = "Explicit linguistic knowledge, encoded by resources such as rule-based morphological analyzers, continues to prove useful in downstream NLP tasks, especially for low-resource languages and dialects. Rules are an important asset in descriptive linguistic grammars. However, creating such resources is usually expensive and non-trivial, especially for spoken varieties with no written standard. In this work, we present a novel approach for automatically learning morphophonological rules of Arabic from a corpus. Motivated by classic cognitive models for rule learning, rules are generalized cautiously. Rules that are memorized for individual items are only allowed to generalize to unseen forms if they are sufficiently reliable in the training data. The learned rules are further examined to ensure that they capture true linguistic phenomena described by domain experts. We also investigate the learnability of rules in low-resource settings across different experimental setups and dialects.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khalifa-etal-2023-cautious">
<titleInfo>
<title>A Cautious Generalization Goes a Long Way: Learning Morphophonological Rules</title>
</titleInfo>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Payne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Kodner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Broselow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Explicit linguistic knowledge, encoded by resources such as rule-based morphological analyzers, continues to prove useful in downstream NLP tasks, especially for low-resource languages and dialects. Rules are an important asset in descriptive linguistic grammars. However, creating such resources is usually expensive and non-trivial, especially for spoken varieties with no written standard. In this work, we present a novel approach for automatically learning morphophonological rules of Arabic from a corpus. Motivated by classic cognitive models for rule learning, rules are generalized cautiously. Rules that are memorized for individual items are only allowed to generalize to unseen forms if they are sufficiently reliable in the training data. The learned rules are further examined to ensure that they capture true linguistic phenomena described by domain experts. We also investigate the learnability of rules in low-resource settings across different experimental setups and dialects.</abstract>
<identifier type="citekey">khalifa-etal-2023-cautious</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.101</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.101</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1793</start>
<end>1805</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Cautious Generalization Goes a Long Way: Learning Morphophonological Rules
%A Khalifa, Salam
%A Payne, Sarah
%A Kodner, Jordan
%A Broselow, Ellen
%A Rambow, Owen
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F khalifa-etal-2023-cautious
%X Explicit linguistic knowledge, encoded by resources such as rule-based morphological analyzers, continues to prove useful in downstream NLP tasks, especially for low-resource languages and dialects. Rules are an important asset in descriptive linguistic grammars. However, creating such resources is usually expensive and non-trivial, especially for spoken varieties with no written standard. In this work, we present a novel approach for automatically learning morphophonological rules of Arabic from a corpus. Motivated by classic cognitive models for rule learning, rules are generalized cautiously. Rules that are memorized for individual items are only allowed to generalize to unseen forms if they are sufficiently reliable in the training data. The learned rules are further examined to ensure that they capture true linguistic phenomena described by domain experts. We also investigate the learnability of rules in low-resource settings across different experimental setups and dialects.
%R 10.18653/v1/2023.acl-long.101
%U https://aclanthology.org/2023.acl-long.101
%U https://doi.org/10.18653/v1/2023.acl-long.101
%P 1793-1805
Markdown (Informal)
[A Cautious Generalization Goes a Long Way: Learning Morphophonological Rules](https://aclanthology.org/2023.acl-long.101) (Khalifa et al., ACL 2023)
ACL