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Abstract

Explicit linguistic knowledge, encoded by re-
sources such as rule-based morphological an-
alyzers, continues to prove useful in down-
stream NLP tasks, especially for low-resource
languages and dialects. Rules are an impor-
tant asset in descriptive linguistic grammars.
However, creating such resources is usually ex-
pensive and non-trivial, especially for spoken
varieties with no written standard. In this work,
we present a novel approach for automatically
learning morphophonological rules of Arabic
from a corpus. Motivated by classic cognitive
models for rule learning, rules are generalized
cautiously. Rules that are memorized for in-
dividual items are only allowed to generalize
to unseen forms if they are sufficiently reliable
in the training data. The learned rules are fur-
ther examined to ensure that they capture true
linguistic phenomena described by domain ex-
perts. We also investigate the learnability of
rules in low-resource settings across different
experimental setups and dialects

1 Introduction

Discovering patterns and generalizing them is the
core concept behind learning in the vast major-
ity of NLP models throughout time regardless of
how they are learned or represented. Tasks such
as morphological (re)inflection and grapheme-to-
phoneme conversion have direct parallels with lan-
guage learning in humans, and there is often a de-
sire to compare the performance of modern systems
(especially deep neural networks) to that in humans
due to the relatively salient patterns in the transfor-
mations that the learners (machine or human) learn.
Representing such transformations with explicit
rules would further enhance the efforts on language
acquisition modeling and reduce the gap between
NLP and domain experts such as linguists and cog-
nitive scientists. Additionally, in low-resource set-
tings in NLP, rule-based resources continue to with-
stand the test of time when it comes to downstream

kitaab+ha kaatib+ha kaatib+iin+ha

Egyptian kitabha katibha katbinha
Sudanese kitaaba kaatiba kaatbinna
Hijazi kitaabaha kaatibha kaatbiinaha
Emirati kitaabha kaatbinha kaatbiinha

her book he is/I'm writing it they/we are writing it

ׇቘማׇॺ॒ ׇቘቄᑆၕဋ ׇቘቇحཝ༺ၕဋ

Table 1: Different realizations of three words across four
dialects. The dialects share the same underlying repre-
sentation of the words. Changes in the realized forms
are highlighted as follows: shortened vowels are bolded,
epenthetic phones are underlined, deleted phones are
not shown, and finally, realizations faithful to the under-
lying representations (i.e., no change) are italicized.

tasks; however, creating such resources is a tedious
task and often labor-intensive. Moreover, neural
networks are opaque and require additional efforts
to extract human-interpretable patterns from them.
Therefore, there is a crucial need for rule-learning
systems that produce well-generalizable rules and
are able to learn rules from a small amount of data.

In this paper, we present a theory-backed rule-
learning approach that produces a set of general-
izable rules given a dataset. We use Arabic mor-
phophonology as our case study for rule learning
because it is a morphologically rich language. Ad-
ditionally, Arabic is a continuum of related but
clearly morphologically distinct dialects, most of
which are very low-resourced. Our primary goal
of this study is not to achieve the best results on
a specific NLP task per se, but rather to derive an
optimal set of rules from data automatically.

Since we are studying morphophonology, we ex-
plicitly concentrate on transcribed speech, using
the Egyptian dialect of Arabic as our prime exam-
ple. Transcribed speech itself is data that is costly
to obtain so the low-resource setting is extreme: we
are not in a situation where we have lots of unan-
notated data but little annotated data; instead we
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have little data altogether. Therefore this is an ideal
setup for this study.

In a previous publication (Khalifa et al., 2022),
we introduced the problem, the dataset, and an
initial system which in this paper we call SIMPLE.
This paper’s main contributions are as follows:

• We propose a new algorithm for generalized
rule learning, PARLA.

• We perform experiments to compare differ-
ent metrics for use in PARLA. We show that
PARLA far outperforms the simple system we
proposed in our previous publication.

• We perform learning curve experiments to
simulate mid- and low-resource settings, com-
paring to a neural baseline (which does not
generate rules). We show that at low settings,
our rule-learning approach outperforms a stan-
dard state-of-the-art neural approach.

• We show that the knowledge acquired from
one dialect is transferable to another even in a
low-resource setup.

• We compare learned rules against rules written
by an experienced linguist.

The paper is structured as follows: Section 2
provides background and discusses related work.
In Section 3 we describe the conceptual design of
PARLA and a detailed description of our use case
in Section 4. Section 5 describes our experimen-
tal setup and evaluation methods used, we discuss
the results and findings in Section 6, and finally
conclude in Section 7.

2 Background and Related Work

2.1 Linguistics and Cognitive Science
One challenge posed by rule-based models is their
generalizability. Even in a hand-built setting, rules
with too narrow a scope will under-apply to new
data, and rules with too broad a scope will over-
apply. Thus, correctly selecting the scope in
rule-based models is similar to optimizing for the
bias/variance trade-off in statistical models.

Correctly identifying rule scope is of particu-
lar importance to morphology (and its interactions
with phonology), where irregular forms and ex-
ceptions are expected. This question of balancing
productive morphological rules with exceptions
has been a focus in the cognitive science of lan-
guage for decades (e.g., Chomsky and Halle, 1968;
Clahsen, 1999; Pinker and Ullman, 2002; Yang,
2002). One through line in much of this work ob-
serves that some morphological patterns should be

extended to new items (i.e., they are productive),
while others should not (i.e., they are unproductive).
Approaches that rely on explicit rules implement
them as rules vs. memorized input-output pairs
(Clahsen, 1999; Pinker, 1999), as rules with broad
scope vs. rules of very narrow, maybe unary, scope
(Albright and Hayes, 2003; Yang, 2016).

While not the only view from cognitive sci-
ence,1 we believe that the cognitively-motivated
rule-based approach has two practical benefits.
First, it is designed to function well in low-resource
settings. Child language acquisition is notoriously
low-resource: most of the morphology acquisition
is achieved in the first few years of life, regardless
of a language’s morphological complexity (Aksu-
Koç, 1985; Allen, 1996; Deen, 2005) on the basis
of only hundreds of types (Marcus, 1992; Fenson
et al., 1994; Bornstein et al., 2004; Szagun et al.,
2006). Second, rule sets are interpretable by lin-
guists who draw on their expert knowledge of many
languages and dialects. A rule-based approach can
be directly compared against and supplemented or
be supplemented with hand-built expert rules.

2.2 Arabic MorphoPhonology

Morphophonology refers to the bidirectional inter-
action between phonology and morphology and is
crucial for understanding how morphologically re-
lated words may nevertheless surface with different
forms. Arabic exhibits pervasive morphophono-
logical processes governed by phonological con-
straints on syllable structure which interact both
with concatenative and templatic morphology.2 To
make matters more complex, Arabic varieties ex-
hibit distinct morphophonological processes, so
words with identical morphological analyses may
have different forms. Table 1 demonstrates dialec-
tal variation in surface realizations for the same
morphological analysis.

In Arabic NLP, pre-compiled tabular morpholog-
ical analyzers (Buckwalter, 2002, 2004; Graff et al.,
2009; Habash et al., 2012; Khalifa et al., 2017; Taji
et al., 2018) are common. However, they do not
explicitly model morphophonological interactions
using rules. Habash and Rambow (2006) propose
an FST-based morphological analyzer and gener-
ator with hand-written morphophonological rules.
Similarly, (Habash et al., 2022) models allomorphy;
its rules are also manually created. Our work could

1See Seidenberg and Plaut (2014) for some alternatives.
2We do not explicitly address templatic morphology here.
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replace the hand-written rules in such approaches.
To our knowledge, there has been no work on mod-
eling spoken Arabic, and no work on automatically
learning morph-phonological rules for Arabic.

2.3 Rule Learning in Computational
Linguistics and NLP

Johnson (1984) is an early example of a compu-
tational study of rule learning for morphophonol-
ogy. He formulates a task of learning a set of or-
dered phonological rules. Given a minimal pair
set with contexts, he proposed an algorithm that
determines a set of features that characterize the
contexts which trigger the alternation. He gives no
experimental results.

The Minimal Generalization Learner (MGL; Al-
bright and Hayes, 2003) is widely used in compu-
tational phonology. It favors rules which have high
reliability, or rules with a high number of correct
hits proportionally to their scope or number of rules
they should apply to.

A more recent paper, Ellis et al. (2022), solves
(morpho)phonology problem sets with Bayesian
program induction. It achieves good performance
but learns from informative problem-set-like train-
ing data rather than naturalistic data. Much of its
performance comes from a meta-model learned
across 70 languages, which may be useful if used
for transfer to low-resource languages.

Rule learning has also been applied to morpho-
logical analyzers, for example, (Yarowsky and Wi-
centowski, 2000), which extracts a series of re-
write rules and applies them probabilistically.

3 Pruned Abundance Rule Learning
Algorithm (PARLA)

In this section, we introduce PARLA, an algorithm
that produces generalizable rules from a dataset of
input and output pairs. We show how we use it for
Egyptian Arabic morphophonology in Section 4.

PARLA approaches rule learning as a space-
pruning problem. We assume the starting point
to be an abundant number of rules that are gener-
ated from every data point found in the data with
the goal being to select the most productive rule
with respect to the data. The core mechanism in
determining the productivity of a rule is an eval-
uation metric that examines the scope of the rule.
The result will be a set of rules and exceptions that
represent the linguistic phenomena found in the
data. PARLA has two independent components; the

first generates all possible hypothesized rules ac-
cording to certain configurations, and the second
evaluates those rule hypotheses to determine their
generalizability. This section provides an abstract
view of PARLA.

3.1 Rule Generation

An independent rule-generating component is re-
sponsible for creating a set of rule hypotheses Rh

from a single data point in the training set. All the
rule hypotheses in Rh must produce the expected
output given the input that it was generated from.
In other words, the rules are not expected to be
generated arbitrarily. A rule hypothesis set is gen-
erated if and only if the input is different from the
output. A rule has a general format of a left-hand
side (LHS) representing the input and a right-hand
side (RHS) representing the output.

3.2 Abundance Pruning

The core component of PARLA is the evaluation
of the generalizability or productivity of a given
set of rule hypotheses over the data. For a set of
abundant rule hypotheses Rh from §3.1, the best
generalizable rule is chosen according to a pruning
criterion.

The rule hypotheses in Rh are sorted by decreas-
ing generalizability, where the generalizability of
a rule hypothesis rh is defined by the length of
the LHS string, with a shorter LHS string being
more generalizable. Ties are broken randomly.
Each rule hypothesis rh is then evaluated against
all the entries it is applicable to in the dataset.
The evaluation is based on a metric (henceforth,
eval_metric) that needs to be defined when we use
PARLA. eval_metric is a boolean function which
returns whether rh is productive, measured by a
function of its performance against the entries it
applies to. If no rule hypothesis from Rh is deemed
fit, then the data point from which rh was gener-
ated is memorized as an exception. However, once
a productive rule is found, it is evaluated against
the set of exceptions E; if a rule applies correctly
to an exception, the exception is removed from E.

Once the entire dataset is scanned, PARLA has
produced a set of productive rules R and a set of
exceptions E.

This algorithm implements the productive rules-
and-exceptions approach discussed in the cognitive
literature. Rules that apply sufficiently well (ac-
cording to eval_metric) to the rest of the training
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Algorithm 1: Abundance Pruning
Data: TRAIN, eval_metric
Result: R, E
R← ∅;
E ← ∅;
for itemi ∈ TRAIN do

Rh ← gen_rules(itemi);
sort(Rh);
for rh ∈ Rh do

if productive(eval_metric, TRAIN, rh) then
add rh to R;
for e in E do

if applicable(e, rh) then
remove e from E

end
end
break;

else
add itemi to E

end
end

end

data are learned. If no rule generated from a train-
ing item applies reliably to the rest of the data, it
is learned as an exception. Exceptions are imple-
mented as rules of maximum specificity: their LHS

only matches their exact word form.
Our approach is also amenable to online learn-

ing, as decisions about productivity are revised as
more training data is evaluated. Replacing existing
exceptions with more general rules when possible
is concordant with Yang’s (2016) Maximize Pro-
ductivity learning strategy, where the most general
valid rule is adopted over narrower competitors.

4 PARLA for Egyptian Arabic
MorphoPhonology

In this section, we describe PARLA configuration
details for the task of deriving the surface form, i.e.,
transcribed utterance, from an underlying represen-
tation.

4.1 Data

In this work we use the same dataset and splits
used in our previous work (Khalifa et al., 2022).
The data set is based on two existing resources,
(ECAL; Kilany et al., 2002) a pronunciation dic-
tionary primarily based on CALLHOME Egypt
(Gadalla et al., 1997), and CALIMAEGY (Habash
et al., 2012) an analyzer that generates a set of
possible morphological analyses for a given in-
put token. Surface forms were extracted from
ECAL, but the orthography is undiacritized and it
does not provide full morphological segmentations

that help in generating underlying representations.
CALIMAEGY was used to generate potential under-
lying representations which are morphologically
segmented, and the best option given POS tagging
and morphological features from both resources
was automatically chosen. We used the splits origi-
nally defined by ECAL, namely, TRAIN, DEV, and
EVAL.

Each entry in the dataset is a pair of a surface
form (SF) and an underlying representation (UR)
along with the frequency of SF in the original
CALLHOME Egypt corpus. SF is represented us-
ing a broad phonetic representation, while UR was
mapped from an orthographic form into the same
representation as SF. An example entry for the
word /mafatiièu/ ‘his keys’ é �jJ
�K� A

�	® �Ó below, where
‘#’ represents word boundaries and ‘=’ is the stem-
suffix boundary:

(1) UR SF
#mafAtIH=uh# #mafatIHu#

We minimally refined the dataset by removing
some entries from TRAIN which were added subse-
quently by hand and which do not have frequency
counts (since frequency counts are used later for
sampling different training portions for the learning
curve experiments), and erroneous entries that we
discovered using an automated well-formedness
check.

We employ PARLA with various configurations
to evaluate different aspects of our approach to
selecting productive rules.

4.2 Rule Generation
A rule r is defined by a left-hand side (LHS) ab-
stracting from part of an underlying representation
(UR) and the context of alternations, and the right-
hand side (RHS) corresponding to the surface form
(SF). These rules are conceptually similar to those
of two-level phonology (Antworth, 1991) in that
they capture all relevant phonological changes si-
multaneously and are not meant to apply in serial
like classic rules of Sound Pattern of English (SPE;
Chomsky and Halle, 1968). We introduce two pa-
rameters that allow us to generate a set of rule
hypotheses Rh from a single data point. The first
parameter is the context size, which is the number
of characters (including boundary characters at this
step) to be included in the rule around an alterna-
tion. We first generate the full combinatorial space
of preliminary rules according to a varying window
ranging from 0 up to 1 character on each side of
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an alternation for a total of four rule hypotheses as
shown below:

(2) AtIH=uh --> atIHu
fAtIH=uh --> fatIHu
AtIH=uh# --> atIHu#
fAtIH=uh# --> fatIHu#

The second parameter is the consonant abstrac-
tion level which is the specificity of the consonant
specification in the stem part of the LHS. Each
preliminary rule undergoes a consonant abstraction
process where at most one consonant is specified
at a time. This process only applies to stem con-
sonants, because affixes come from a closed class
lexicon. For example, if the stem part of a rule
has 3 consonants in it, then the preliminary rule
is extended to a total of 4 rule hypotheses, where
the LHS of each rule will have a single specified
consonant resulting in 3 rule hypotheses, and the
4th rule hypothesis is one with all consonants re-
maining unspecified. In our notation, a C in the
LHS of a rule means that it can match any conso-
nant (including glides). In the RHS of a rule, the
C indicates that it copies whatever consonant was
matched to the corresponding C on the LHS (or the
corresponding actual consonant in the LHS if it is
not generalized); in our notation, the consonants
in the RHS are always written as C unless a con-
sonant in UR is changed to another in SF. Recall
that consonants in affixes are always specified in
both LHS and RHS, as are vowels. See below an
example of consonant abstraction for the second
preliminary rule in Example 2, which results in
four rule hypotheses:

(3) fACIC=uh --> CaCICu
CAtIC=uh --> CaCICu
CACIH=uh --> CaCICu
CACIC=uh --> CaCICu

This rule generation procedure will result in a
large number of rule hypotheses Rh that, if applied
to the current UR, will all produce the correct cor-
responding SF.

4.3 Abundance Pruning

During abundance pruning, we choose an actual
rule from the set of rule hypotheses generated for a
data point in training. We experiment with two dif-
ferent evaluation metrics, the Tolerance Principle
(TP; Yang, 2005, 2016), and accuracy at a fixed
threshold t. Both metrics evaluate a rule r within
the scope of its application. As such we have two
systems:

PARLA-TP The TP is a model designed to
model the behavior of learner productions and er-
rors during language acquisition by only adopting
a rule if it would be more efficient than scanning
through a list of exceptions in a serial search model
of inflection.3 The threshold for rule reliability is a
function of the size of the set of attested items it is
expected to apply to, N . We use the formula below,
where e is the number of attested exceptions to the
rule, in our case, incorrectly generated SF. A rule
is accepted if the number of exceptions to it in the
training data under consideration falls below the
threshold θN :

e ≤ θN =
N

lnN
(1)

PARLA-ACC≥t is a family of metrics, which
check the accuracy of the generated SF within the
scope of the rule against the parametrized accuracy
threshold. Below, v = N − e is the number of
correctly generated SF. Unlike TP, the relative
error threshold 1 − t is constant irrespective of
scope size, while in the TP it is 1/ lnN .

v

N
≥ t ⇐⇒ e ≤ N × (1− t) (2)

4.4 Rule Selection
Rule selection at inference time is independent of
PARLA. For each incoming UR, if it is not found in
the list of exceptions, the rules with the longest and
the most specific LHS are determined. Specificity
is determined by the least amount of unspecified
consonants in the stem. If there is more than one
such rule, the tie is broken by selecting the rule that
has the highest success rate during training. If no
LHS matches the incoming UR, then the generated
SF will be a copy of UR.

5 Experimental Setup

5.1 Baselines
SIMPLE This baseline (Khalifa et al., 2022)
has two simplifications. First, it generates ex-
actly one rule per data point, because the con-
text window is fixed at (2,2) and all conso-
nants are abstracted. Therefore SIMPLE generates
only one rule from the data point in Example 1:
aCACIC=uh# --> aCaCICu#. Second, SIMPLE

does not take into account the productivity or gen-
eralizability of a rule, therefore, all generated rules
are considered, and hence, there are no exceptions.

3See Yang (2018) for a detailed explanation and mathemat-
ical derivation.
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TRANSFORMER We used the model described
in Wu et al. (2020) which is a character-level neu-
ral transformer that was used as a baseline for
the 2020 SIGMORPHON shared task on multilin-
gual grapheme-to-phoneme conversion (Gorman
et al., 2020). We use this system for its ability to
learn string-to-string mappings. It produces sur-
face forms from underlying forms, but it does not
produce rules, so it can only be compared in terms
of overall DEV and EVAL accuracy. We instanti-
ate TRANSFORMER using five different seeds and
report the average across the seeds. We used the
hyper-parameters suggested by the original authors
for small training conditions.

5.2 Evaluation

Following (Khalifa et al., 2022), we adopt the
TRAIN-DEV-EVAL partitions of ECAL. However,
ECAL partitions were drawn from running text
and therefore allows lexical items to repeat in each
partition. While a useful test for replicating likely
real-world conditions, this kind of partitioning is
not as useful for evaluating morphological general-
ization in particular. Thus, we also follow (Khalifa
et al., 2022) in evaluating on the out-of-vocabulary
(w.r.t. TRAIN) subsets of DEV and EVAL, which
we call OOV-DEV and OOV-EVAL. DEV and OOV-
DEV were used during the development of PARLA

while EVAL and OOV-EVAL are only used to report
the final result. Additionally, we report the number
of rules and exceptions generated by PARLA.

Learning Curve To simulate a low-resource sce-
nario, we performed a learning curve experiment
with training sizes extending from 100 to 1,000
types at increments of 100 and then increments
of 1,000 up to the full TRAIN set. To create the
training portions for the learning curve, we sam-
ple TRAIN in two different modes, uniform ran-
dom sampling, and weighted frequency-based ran-
dom sampling. The weighted sampling is intended
to simulate a more realistic distribution of low-
frequency forms and thus a more realistic low-
resource setup. For both sampling modes, training
sets are nested, so that all items in a small training
set are included in the next larger size. Nested train-
ing sets were generated five times with different
random seeds. Averages across seeds are reported.

6 Results and Discussion

6.1 Overall Performance
The performance of our system and the baselines is
reported in Table 2. Even though TRANSFORMER

outperforms all other systems at large training
sizes, it does not– by design– provide explicit rules,
which is the goal of our research. While SIMPLE

and PARLA-TP perform very similarly on unseen
forms, PARLA-TP achieves this with far fewer
rules, since exceptions never apply to unseen forms.
Furthermore, PARLA-TP outperforms SIMPLE in
both DEV and EVAL where PARLA-TP’s excep-
tions may apply to previously seen forms. The num-
ber of rules + exceptions learned by PARLA-TP is
very similar to the total number of rules learned by
SIMPLE. Lastly, PARLA-ACC≥0.4 is the best per-
forming amongst the three rule-producing systems.
When compared to PARLA-TP, PARLA-ACC≥0.4
acquires around 37% more rules and 83% fewer ex-
ceptions. Presumably, because it learns more rules
with fewer exceptions, PARLA-ACC≥0.4 achieves
an error reduction of about 33% on the two OOV

sets compared to SIMPLE and PARLA-TP.

6.2 Generalization Quality
The accuracy threshold for PARLA-ACC was cho-
sen based on the performance on both DEV and
OOV-DEV. The performance for different thresh-
olds t is reported in Table 3. At ACC≥0.0 the sys-
tem retains no exceptions because every rule passes
the evaluation metric. Interestingly, the number of
rules that it learns is similar to that of the best
performing setup but it has a much poorer overall
performance. This is because it always retains the
most general rule as discussed in § 3.2. On the
other hand, ACC≥1.0 retains more rules and far
more exceptions because of its stringent threshold.
It overfits TRAIN as expected and performs poorly
on OOV-DEV because the rules the system acquires
are necessarily more specific given the very con-
servative evaluation metric. These insights are a
strong indicator of the quality of the generaliza-
tion obtained through the PARLA-ACC evaluation
metric.

6.3 Learning Curve
In addition to overall performance, we also re-
port on simulated low- and mid-resource settings
through a learning curve experiment. The follow-
ing results are reported on the frequency-weighted
sampling mode only since both modes yielded sim-
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System R E R% E% TRAIN DEV OOV-DEV EVAL OOV-EVAL
SIMPLE 4,481 - 35.4% - 90.6% 80.4% 69.3% 82.1% 68.6%
TRANSFORMER - - - - 97.8% 95.2% 92.9% 95.2% 91.4%
PARLA-TP 2,153 2,305 17.0% 18.2% 96.5% 84.1% 69.2% 86.1% 68.3%
PARLA-ACC≥0.4 2,950 402 23.3% 3.2% 96.8% 88.8% 79.4% 90.0% 78.4%

Table 2: Results of the baselines and our systems in terms of the number of rules and exceptions (when available)
and their ratio with respect to the size of the TRAIN, and accuracy on each split of the data.

t R E R% E% TRAIN DEV OOV-DEV
0.0 2,889 0 22.8% 0.0% 45.3% 38.3% 37.2%
0.1 2,852 146 22.6% 1.2% 74.3% 67.6% 63.5%
0.2 2,897 194 22.9% 1.5% 79.4% 72.4% 67.5%
0.3 2,918 315 23.1% 2.5% 95.2% 87.8% 79.2%
0.4 2,950 402 23.3% 3.2% 96.8% 88.8% 79.4%
0.5 3,015 503 23.8% 4.0% 97.5% 88.7% 78.6%
0.6 2,905 913 23.0% 7.2% 98.7% 88.3% 76.2%
0.7 3,069 1,414 24.3% 11.2% 99.0% 86.3% 71.0%
0.8 3,183 1,968 25.2% 15.6% 99.1% 83.0% 63.6%
0.9 3,400 2,449 26.9% 19.4% 99.2% 80.7% 58.6%
1.0 3,578 2,575 28.3% 20.4% 99.2% 80.0% 57.1%

Table 3: Results of PARLA-ACC at different thresholds t. The results are in terms of the number of rules and
exceptions and their ratio with respect to the size of the TRAIN, and accuracy on TRAIN, DEV, and OOV-DEV
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PARLA-TP PARLA-ACC≥0.4 SIMPLE
TRANSFORMER

Figure 1: Accuracy on OOV-DEV for all systems across
different sets of training sizes.

ilar results.4 In the extremely low-resource setup
(100 to 1,000), shown in Figure 1, both config-
urations of PARLA outperform the baselines. In
the lowest setting, TRANSFORMER has the poor-
est performance and only catches up at the 800
training size mark. This further highlights the limi-
tations of such systems in extremely low-resource
settings which are often realistic when working
with transcribed speech (recall these are types, not
tokens). In the mid- to high-resource setup (1,000
to TRAIN) the performance for all systems catch
up and plateau midway.

Across both setups, PARLA-ACC≥0.4 outper-
forms PARLA-TP, but both configurations follow a

4TRANSFORMER performed slightly worse in frequency-
weighted sampled TRAIN than uniform sampled one at 1000
items.

0
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100

100 400 800
2,000

6,000
10,000

PARLA-TP - R PARLA-TP - E PARLA-ACC≥0.4 - R
PARLA-ACC≥0.4 - E SIMPLE - R

Figure 2: Percentage of rules (R) and exceptions (E) as
a function of TRAIN size.

similar trajectory. This robustness at small training
sizes is consistent with the cognitive inspiration for
PARLA. Productive rules+exceptions models were
designed for a language acquisition setting, where
most of the morphology is acquired on the basis of
only hundreds of types (§2).

Additionally, we report on the size of the sets of
rules and exceptions acquired by both configura-
tions of PARLA and SIMPLE (rules only). Figure 2
shows the counts of rules (R) and exceptions (E)
as ratios with respect to the training size. In the
low-resource setting, SIMPLE has a very high ratio
of rules to training size, this is explained by the fact
that rules acquired from such a small dataset will
hardly generalize given the rigid rule extraction
configuration (§5.1). On the other hand, PARLA-
TP, acquires the least amount of rules, especially
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in the low-resource setting. The ratio of rules to the
training set minimally decreases as more training
data is added. It is worth noting that both rules
and exceptions in PARLA-TP converge to similar
ratios. PARLA-ACC, however, acquires very few
exceptions and the ratio hardly increases as more
training data is added.

6.4 Cross-Dialectal Transferability
We performed a small-scale experiment to examine
the transferability of the knowledge the rules cap-
ture. A linguistically-trained native speaker anno-
tated a small portion of a running text of Sudanese
Arabic taken from the MADAR corpus (Bouamor
et al., 2018). The annotation was done in two parts:
converting written text into a representation of the
spoken form and then producing an underlying
representation of the spoken form. The annota-
tion resulted in 681 unique (UR,SF) pairs. We
trained all systems on three different training sizes
100, 1,000, and full TRAIN. From the results pre-
sented in Table 4, we can see that SIMPLE performs
poorly even when trained on the full set. TRANS-
FORMER severely underperforms in the lowest set-
ting and continues to underperform PARLA-ACC,
even when trained on the full set. On the other
hand, PARLA-TP surpasses PARLA-ACC≥0.4 at
the lowest training setting. PARLA-ACC≥0.4 picks
up once more data is made available. This demon-
strates the efficacy of our approach in even ex-
tremely low-resource settings. Even a limited num-
ber of training examples in dialect A can be used
to achieve decent performance in dialect B when
no training data for B is available.

System 100 1,000 TRAIN
SIMPLE 11.4% 34.4% 43.9%
TRANSFORMER 9.2% 63.7% 70.0%
PARLA-TP 64.8% 66.1% 68.3%
PARLA-ACC≥0.4 63.9% 69.7% 71.5%

Table 4: Performance of all systems trained on Egyptian
Arabic and evaluated on Sudanese Arabic.

6.5 Analysis of Rules
We carried out a qualitative analysis of the rules
produced by the best performing system, PARLA-
ACC≥0.4, and compared them with rules provided
by co-author Broselow, a linguist who is an expert
in Egyptian Arabic phonology. We analyzed the
top 140 PARLA rules in terms of the number of
forms they apply to. We found that the PARLA

rules capture true linguistic phenomena that are

described by Broselow’s rules. We highlight a few
of those rules below:

Definite Article /l/ Assimilation Also known as
the sun and moon letters rule5. The /l/ in the def-
inite article morpheme /Pil/ assimilates with the
next consonant if the consonant is coronal (or in
Egyptian, sometimes velar). We found 15 different
rules covering most of the coronal and velar con-
sonants in the sample we analyzed, e.g., l-t→ tC.
The rest of the consonants are covered in the rest
of the rules. It is worth noting that those top rules
were the ones with the (0,1) context since the left
context is not important when the only change is
the /l/ assimilation. We plan to introduce proper
phonological abstraction in the future to learn bet-
ter generalizations.

Avoidance of CCC consonant clusters Such
clusters usually occur when a sequence of conso-
nantal suffixes follow a consonant-final stem. For
example /katab=t=hum/ → [katabtuhum] ‘I/you
wrote them’, where the linguist rule is CCC→ CCVC.
We found two rules covering this phenomenon:
C=t=hA#→ CCaCa and C=t=li=uh# → CCiCu#.

Vowel Length Alternation Long vowels are
shortened when they occur in word-internal
closed syllables, as demonstrated by the following
linguist rule VVCCV → VCCV.6 We found 31
rules covering different contexts that correspond
to this phenomenon, e.g., CACC=a → CaCCa,
CIC=hA→ CiCCa, ... etc.

The rest of the rules cover other phenomena
that were not provided by the linguist. Those
phenomena emerged due to the design choices
followed in generating the underlying representa-
tion. These include rules relating to the 3rd mascu-
line singular pronoun morpheme /=uh/; a) deletion
of /h/ if the morpheme is word final or when in
an indirect object position /=li=uh/: =uh# → u#
and -CUC=li=uh#→ CuCCu#; b) The morpheme is
deleted if preceded by a long vowel: A=uh#→ A#
and C=nA=uh# → CCA#. Another phenomenon
covered in by the rules is the active participial
nouns with the template CACiC will have their /i/
vowel deleted when attached to some suffixes; e.g.,
CACiC=uh#→ CaCCu#.

5https://en.wikipedia.org/wiki/Sun_and_moon_
letters

6Here, long vowels are represented with VV while short
vowels are represented with V
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Other rules are more complex ones that would
cover more than one phenomenon at once as can
be seen in previous examples. We plan to explore
different approaches to generate underlying repre-
sentations.

We also investigated the rules that were gener-
ated at the lowest training size, and they cover the
aforementioned phenomena but with a fewer num-
ber of rules that don’t necessarily cover all contexts
in the evaluation sets. We expect that using abstract
phonological features would enhance the quality of
the rules greatly.

6.6 Error Analysis

We performed a qualitative analysis of errors made
by our best performing system, PARLA-ACC≥0.4,
trained on the full training set, and evaluated on
OOV-DEV. We analyzed a random sample of 100
errors and found that the majority of errors are due
to the sensitivity to the context of the alternation,
as expected. 40% of the errors are due to rules
being too general, with two scenarios. In the first
scenario, a more specific rule does not exist for that
UR because rules are sorted based on their speci-
ficity (§ 4.4). In the second scenario, the needed
rule covers more than one change (recall that a sin-
gle rule can cover multiple changes at once). In this
case, the general rule that was chosen covers the
changes only partially. 36% of the errors emerge
because no rules were found, either no applicable
rule was found (i.e. no applicable LHS), or a rule
was found but did not produce the correct SF, not
even partially. However, in some of those cases, the
phenomena are covered within different rules. 6%
of the errors are due to rules being applied when it
was not necessary, i.e., SF is a copy of UR. Even
though sun and moon rules have a large coverage,
9% of the errors are due to wrongful application of
the rule, either the LHS was correct, but the RHS
corresponded to a specific case, or the case of the
velars /k/ and /g/ where the /l/ assimilates in free
variation, making consistent learning impossible.
2% of the errors were due to the word being in
fact MSA and not Egyptian Arabic, and therefore
no correct rules had been learned to produce the
correct SF. Finally, 7% of the errors were due to
mistakes in the gold UR, which is expected due to
the automatic mapping between the resources to
create the gold URs.

Many of these errors are avoidable if we use a
more decomposed representation of the rules rather

than complex ones and also the introduction of
phonological features within the rule representa-
tion.

7 Conclusion and Future Work

We presented PARLA, an effective cognitively-
motivated rule-learning algorithm. PARLA is a
rules+exceptions model that produces the most pro-
ductive rules from a given input-output style dataset
according to a productivity criterion. We used
Egyptian Arabic morphophonology as a case study
for PARLA. Our two configurations use the Toler-
ance Principle productivity criterion (PARLA-TP)
and accuracy at a fixed threshold (PARLA-ACC).
We conducted experiments to evaluate the overall
performance, the performance at low-resource set-
tings, and the transferability of the acquired knowl-
edge from one dialect to another. PARLA-ACC≥0.4
was the best performer overall. When compared
to a state-of-the-art neural transformer designed
for such tasks, both configurations outperformed
the transformer in extremely low-resource settings.
Egyptian-trained PARLA was also effective when
tested on Sudanese Arabic, even in extremely low-
resource settings. We also show that the rules pro-
duced by PARLA capture the same linguistic phe-
nomena described by an experienced linguist.

In future work, we plan on further developing the
rule generation component by adding more ways
to configure it, including a finer-grained general-
ization mechanism based on phonological features,
different context window sizes, and using a de-
composed representation of the rules rather than
complex ones. We will extend the number of Ara-
bic dialects, and languages, we test PARLA on,
and use the produced rules to create multi-dialectal
morphophonological lexicons and analyzers. We
also plan to specifically examine PARLA-TP’s per-
formance and errorful predictions and compare
it to the performance and errors of children ac-
quiring their native languages. Furthermore, we
plan to study state-of-the-art neural morphological
(re)inflection models and extract rule-like represen-
tations from them and evaluate them in a similar
fashion to this study. Additionally, for the task of
learning morphophonology rules, we plan to ex-
periment with automatically transcribed data and
ways to automatically produce underlying repre-
sentations since data for many dialects only exists
in that form.
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Limitations

Despite PARLA being intended for general-purpose
linguistic rule learning, we only tested it on Arabic
and only to learn morphophonology rules. We also
recognize the state of the data and the task being
on out-of-context standalone tokens and not con-
tinuous utterances which is the nature of spoken
languages. This is something we plan to investigate
in the immediate future.
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Ethical Considerations

Our work is directly applicable to low- and very
low-resource languages. This carries great promise
of giving more groups access to technology; how-
ever, in developing the resources, there is also the
danger of disenfranchising native speaker infor-
mants and making unwanted normative linguistic
decisions. As part of our work so far, we are re-
lying on previously collected datasets (except for
the Sudanese dataset which we created ourselves),
but in the future, if we decide to gather data from
unstudied Arabic dialects, we will be cognizant of
the dangers inherent in data collection.

Our work is fundamental research which aims
at creating a system which generates human-
inspectable rules which do not over-generalize.
These rules cannot themselves be used without a
further system (such as a morphological generator
or analyzer). We recognize that our work could
be used to identify non-standard speech commu-
nities with the goal of forcing standard speech on
them; any linguistic field work runs the same dan-
ger. We believe any attempt to homogenize dialec-
tal variation (in the name of political nationalism,

for example) does not require NLP; for example,
European nation states like France and Germany
were quite successful in repressing dialectal varia-
tion in the 19th and 20th centuries before NLP. It
seems far-fetched to believe that our work would
enable language homogenization.
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